

1 **Spectral Emissivities and Temperatures of Burning Iron**
2 **as Single Particles or Groups of Particles**

3

4

Yuan Yao^{a*}, Di Chang^a, Aidin Panahi^{a,b}, Yiannis A. Levendis^{a*}

5

6

^a*Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA, USA*

7

^b*Chemical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA*

8

9

10 **Abstract**

11

12 This manuscript reports on the combustion of powdered iron, for the purpose of utilizing it as an
13 environmentally friendly circular energy carrier. The conducted research investigated the spectral
14 emissivity and temperature of iron particles, burned either individually or in groups. Combustion
15 experiments were conducted under high heating rates in an externally-heated drop tube furnace. The
16 pressure was atmospheric and the axial temperature was nearly-constant at ~1350 K. The oxidizer gas
17 contained 15-100% oxygen in nitrogen diluent. Iron particles were sieve-classified in the 44-53 μm
18 range. Results showed that, depending on the oxygen concentration, and consequently the particle
19 temperature, the average spectral emissivities of single burning particles varied between 0.18 and 0.46,
20 in the 600-1000 nm wavelength range. Corresponding temperatures of single particles varied between
21 2300 K and 2800 K, increasing with increasing oxygen concentration in the gas. In the case of groups
22 of iron particles burning in air at different particle number densities, average spectral emissivities were
23 found to be in the range of 0.42-0.45, with the upper value associated with denser particle clouds.
24 Corresponding peak temperatures of particle burning in groups were found to be in the range of 2160
25 K to 2100 K, with the lower value attributed to denser particle clouds.

26

27 **Keywords:** Emissivity; Combustion; Iron; Spectrometer; Temperature

28

29 * Corresponding authors:

30 y.levendis@northeastern.edu

31 Yao.yuan@northeastern.edu

33 **1. Introduction**

34 Metals, among all elements, can generate the highest volumetric heat release when burned,
35 making them exceptionally dense sources of energy [1-4]. Iron (with an energy density of 41
36 MJ/liter) is abundant on earth and can be utilized as a carbon-free fuel [5-7]. In powder form,
37 iron can be dispersed in air, ignited and burned to generate heat in a powerplant. The
38 combustion products of iron primarily consist of iron oxides, which can be collected and
39 reduced back to iron in a specialized process, enabling them to be burned again. This makes
40 iron a candidate for circular fuel utilization, offering a means to store and transport energy.

41

42 This research focused on the critical properties of spectral emissivity and temperature of
43 powdered iron particles and examined their behavior when burned both as isolated particles
44 and as groups of particles. Combustion experiments were conducted in a laboratory-scale drop
45 tube furnace (DTF) at elevated particle heating rates and temperatures, simulating conditions
46 typically found in pulverized-fuel suspension-type utility boilers.

47

48 In recent years, several studies have reported on the combustion of iron particles, see for
49 instance [8-16]. Some studies reported on flame temperatures [10-12]. Julien et al. [10]
50 investigated flame structures and particle combustion regimes of fine polydisperse micron-
51 sized particles ($d \sim 2.2 \mu\text{m}$), burning in hybrid fuel mixtures of methane and iron, using a
52 modified Bunsen burner. Particle concentrations varied from 0-350 g/m³. In the hot post-flame
53 gas (2200 K) at an excess oxygen concentration of 5%, particle spectrometric temperatures
54 were in the broad neighborhood of 2600 K, depending on the particle concentration. The iron
55 particles were assumed to behave as gray bodies, implying that their emissivity was assumed
56 to have no dependence on the wavelength for the region of interest in that study (500-700 nm).

57 McRae et al.[11] investigated stabilized, flat iron carbonyl particle flames of polydisperse
58 micron-sized particles ($d\sim 2.5\text{ }\mu\text{m}$) using a hot counter-flow burner. Assuming again that the
59 iron particles behaved as gray bodies, they reported average particle temperatures of 2630 K
60 and 2781 K in 30%O₂/Ar and 40%O₂/Ar mixtures, respectively using the same spectrometer
61 as Julien et. al [10]. Palečka et al.[12] observed discrete flame propagation regime of iron
62 particles ($d\sim 33\text{ }\mu\text{m}$) suspended in a flame tube under microgravity using spectrometry.
63 Combustion occurred in 20%O₂/Xe and 40%O₂/Xe gases, and respective temperatures were
64 ~2500 K and ~2800 K. However, a comparison of such experimental measurements with
65 thermodynamic prediction of the temperature of diffusively burning particles agreed only with
66 the former condition. In the case of the latter condition, the authors concluded that the
67 emission spectra may not have been gray. Tang et al [13] investigated the flame propagation
68 of iron dust (3–27 μm) suspensions in tubes under microgravity. Based on typical iron flame
69 spectra registered by spectrometry, they obtained the temperature of the burning particles by
70 linear fitting of the spectral intensity to Planck's law. They concluded that the emitting
71 particles were practically gray in the wavelength range of 500–850 nm. Ning et al. [14],
72 ignited single particles of different sizes in the range of 26-54 μm using a laser beam in
73 ambient temperature O₂/N₂ gases, with oxygen concentrations in the range of 13-50%.
74 Temperatures of ignited particles varied between 2150 K and 2720 K, depending on the
75 particle size and oxygen concentration in the gas. Those authors also used the gray body
76 assumption because, they mentioned, there is lack of data on spectral emissivity of iron and
77 iron oxide at the concerned temperature range. Panahi et al. [15] measured temperature-time
78 histories of individual 45-53 μm iron particles burning in air using a drop-tube furnace. An
79 average peak particle temperature of 2506 K was measured with three-wavelength ratio
80 pyrometry, again making the gray-body radiation assumption. This assumption was drawn

81 based on the good agreement of the three different two-color temperatures of the three-
82 wavelength pyrometer. In recent work by Hameete et al. [16] burned 32-54 μm iron particles
83 in air. Particles were carried in a capillary flow of nitrogen (9 m/s) and were introduced to a
84 coaxial air flow (1 m/s) of air preheated to 1015 K. Under the resulting high slip velocities,
85 the authors reported particle temperatures in air to be in the broad neighborhood of 2800 K.

86

87 Krishnan et al. [17] reported the average iron spectral emissivity to be 0.35 for the liquid melt
88 at 1890 K in the wavelength range of 300 to 1700 nm. Kobatake et al. [18] reported the spectral
89 emissivity of liquid iron to be \sim 0.38 in the broad neighborhood of the iron melting point (1600-
90 1950 K), in the wavelength range of 780-920 nm. They reported only small departures from
91 graybody radiation. Muller et al. [19] burned iron rods in pure oxygen and reported that at
92 high temperatures (well above the 1811 K melting point of iron) two superimposed phases
93 exist in the melt, iron (Fe) and wustite (FeO). Below 2350 K the two phases are distinct and
94 immiscible, whereas above this temperature the two phases are mixed. The emissivity of
95 molten iron was taken as $0.35\pm5\%$, based on the work of Krishnan et al. [17], whereas the
96 emissivity of liquid iron oxide at $\lambda=1064$ nm was measured to be $0.7\pm10\%$ at the maximum
97 temperature of 3400 K. Goett et al. [20] and Mitchell et al. [21] reported that in the wavelength
98 range 650-850 nm, the average spectral emissivity of melted steel (S235), shielded from
99 combustion by argon gas, decreased with increasing temperature in the range of 1900-2100K.

100

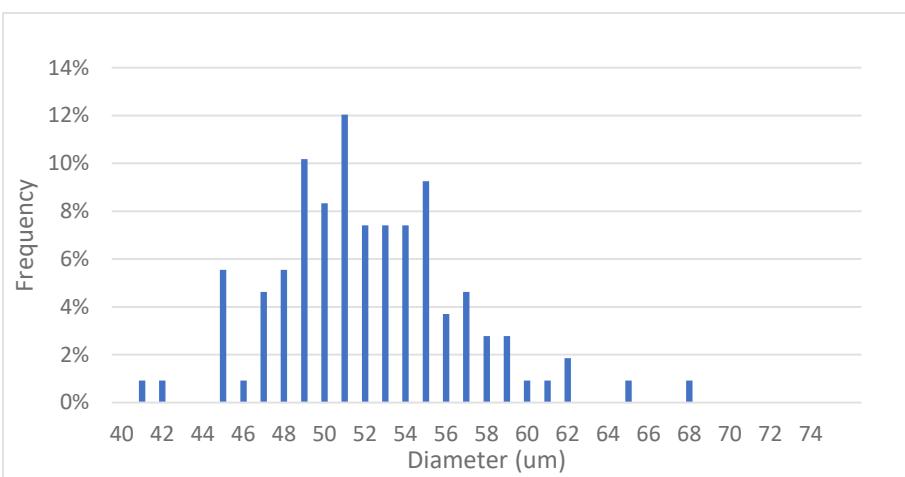
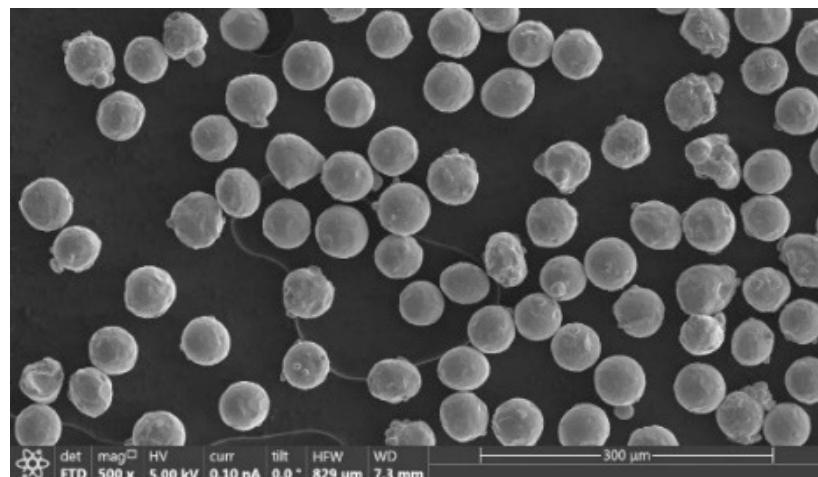
101 This work burned iron particles under high heating rates and high gas temperatures. Both
102 isolated single particles and groups of particles were burned. Temperatures of single particles
103 and groups of particles were measured by accounting for the variation of spectral emissivity
104 with wavelength, i.e., without making the gray-body radiation assumption. In the case of

105 single iron particle combustion, temperatures and spectral emissivities were measured in
106 different O₂/N₂ concentrations, to assess the effect of the oxidizer gas. In the case of group
107 particle combustion, temperatures and spectral emissivities were measured in air while the
108 particle number density in the furnace was varied. In the case of single particle combustion,
109 temperature was obtained by three different methods: (i) photo-spectrometry, which measured
110 simultaneously spectral emissivity and temperature at a large number of wavelengths in the
111 range of 600-1000nm, (ii) three color pyrometry which measured lumped particle temperature
112 at three distinct wavelengths, incorporating the spectrometrically-measured emissivities and
113 (iii) a digital camera which measured two-dimensional temperature of particles based on the
114 RGB method and again incorporating the aforementioned spectral emissivities. In the case of
115 group particle combustion only methods (i) and (iii) were implemented, i.e., photo-
116 spectrometry and digital camera, employed simultaneously.

117

118 This research endeavored to answer the following questions. (a) What are the spectral
119 emissivities and temperatures of single iron particles burning in air and in gases with different
120 oxygen-nitrogen concentrations, in a wavelength range of interest in pyrometry of burning
121 solid particles? (b) Does the particle temperature differ by either accounting for the spectral
122 emissivity dependence on wavelength or ignoring such dependence, i.e., making the gray-
123 body radiation assumption? (c) How do iron particles burn in groups and how does this mode
124 of combustion affect the average emissivity and temperature of the group, as well as the
125 temperature of individual particles in the group?

126



127

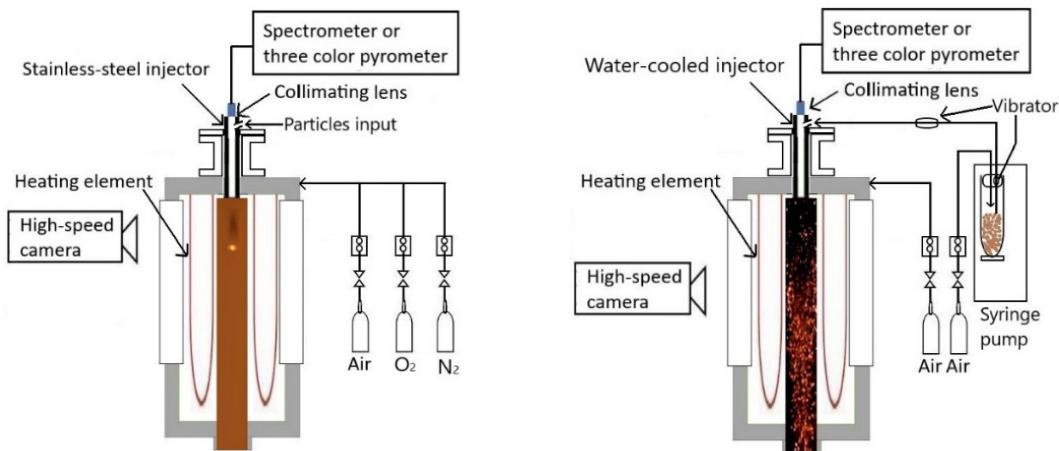
128

129 **2. Materials and Methods**

130 *2.1 Materials*

131 Iron particles were supplied by TLS Technik GmbH & Co in Germany. A scanning electron
132 microscopy (SEM) photograph in [Fig.1](#) reveals spherical/spheroidal particles in the narrow
133 size range of 45-53 μm . The particle size distribution of these particles, based on examining
134 several SEM photographs is also included in [Fig.1](#).

144 **Figure 1.** Scanning Electron Micrograph (SEM) of iron particles in the 45-53 μm nominal sieve size and their
145 actual measured size distribution.


146

147

148 2.2 Experimental Apparatus and Methods

149 Combustion of iron particles took place in an electrically heated laminar-flow drop-tube
150 furnace (DTF), manufactured by *Applied Test Systems* (ATS), depicted in Fig. 2. The furnace
151 was fitted with a transparent quartz tube to facilitate combustion observations. In all
152 experiments, the furnace wall temperature was set at 1400 K; the gas temperature at the
153 furnace centerline was measured with radiation-corrected thermocouples to be ~1350 K for
154 most of the length of the 25 cm long radiation zone. The heating rate of the particles was
155 determined to be in the range of 10⁴-10⁵ K/s; details are given in Refs. [15, 22].

156

157

158 **Figure 2.** Schematic illustration of the drop tube furnace. Left: Single particle combustion setup. Right:
159 group particle combustion setup.
160

161 In single particle experiments, the flowrate of gas to the furnace was set at 1 l/min. Five
162 different oxygen concentrations in nitrogen gas were implemented: 15% O₂, 21% O₂ (air), 35%
163 O₂, 50% O₂ and 100% O₂. In these single particle experiments, no gases were introduced
164 through the furnace injector. A very small quantity of iron particles was scooped by the tip of
165 a beveled needle syringe and released into the furnace injector by a gentle tap. Therefrom,
166 free-falling particles entered the DTF, where they ignited and burned. Combustion was

167 monitored in real time. When only one particle was detected burning in the DTF its
168 combustion record was saved.

169

170 In particle group combustion, the flowrate of air was set at 2.2 l/min through the furnace
171 injector and 0.8 l/min through the annulus between the injector and the furnace tube, totaling
172 3 l/min. Streams of particles were introduced into the furnace with a programmable syringe
173 pump, *KDS Model 200 Series 5600-002REVH*, through a thin metal tube, vibrated to prevent
174 jamming. Two different settings of the syringe pump resulted in two different mass flow rates
175 of particles in the DTF. To distinguish these two conditions, which were implemented in this
176 investigation, one was termed *dilute* and the other was termed *dense*. Such characterizations
177 are arbitrarily defined herein, based on cinematographic evidence, still frames of which are
178 presented in Figure 6, Section 3.2 of the manuscript.

179 The average particle number density ($PND = N/V$) in the visible section of the transparent
180 drop tube furnace (through the observation windows depicted in Fig. 2) was obtained by
181 counting particles in 15 different photographic frames recorded by the camera. In this
182 expression, V is the total furnace volume occupied by the group as defined in Ref. [23], and
183 N is the estimated total number of particles in the group. The interparticle distance was also
184 calculated based on the PND as follows: $L = (V/N)^{1/3} = (1/PND)^{1/3}$. The assumption
185 made herein is that the burning particles are evenly distributed in a 3-dimensional Cartesian
186 mesh, and each particle stays at the center of the mesh unit. The side length of the mesh unit
187 is taken as the inter-particle distance L [23].

188

189 2.3 Spectrometer Operation and Calibration

190 The spectrometer used for this purpose was an AvaSpec-2048 manufactured by *Avantes*
 191 coupled to the top of the particle injector with a 1 m long optical cable (C-UVIR600-1-BX,
 192 600 μm UV/IR broadband fiber (200-2500 nm)). During the combustion experiments, light
 193 from burning particles was focused on the fiber by an inverted collimating lens (Oriel, 1 l-mm
 194 diameter, 19-mm focal length). To accept only parallel rays and also minimize reflected
 195 furnace radiation climbing the injector's inner walls (upon multiple reflections) (a) the injector
 196 was black passivated and (b) a pinhole was used between the lens and the fiber. The position
 197 of the lens was fixed, but both the pinhole and the optical fiber could be moved axially relative
 198 to the lens and against each other, thus allowing fine tuning of the light collection system
 199 during experiments. Details of this lens/pinhole setup are provided in Fig. 3 of Ref. [24]. The
 200 spectrometer incorporated a 16-bit Analog to Digital (A/D) converter to realize raw format
 201 pixel values between 0 and 65535 non-dimensional radiation intensity counts in the
 202 wavelength range of 600-1000 nm. Integration times for measured signals were set at 10 ms
 203 to warrant sufficient signal strengths.

204 The monochromatic spectral radiation intensity of a graybody, $I_b(\lambda)$ in $[\frac{\text{W}}{\text{m}^3 \text{sr}}]$ of surface
 205 temperature, T_s , is given by Planck's law, Ref [24]:

$$206 \quad I(\lambda) = \varepsilon_\lambda \frac{c_1}{\lambda^5 \left(e^{\frac{c_2}{\lambda T_s}} - 1 \right)} \quad (1)$$

207 Where c_1 , c_2 are Planck's first and second constants. As shown in Equation 1, the spectral
 208 radiation intensity of a graybody object depends on its spectral emissivity ε_λ . In this work
 209 surface temperature, T_s and the spectral emissivity ε_λ of burning iron particles were calculated
 210 concurrently with the Newton iteration method [25]:

$$211 \quad |f|^2 = \sum_{j=1} (I_m(\lambda_j) - I(\lambda_j)) = \sum_{j=1} (I_m(\lambda_j) - (a_0 + a_1\lambda_j + a_2\lambda_j^2 + a_3\lambda_j^3 + a_4\lambda_j^4) \frac{c_1}{\lambda_j^5 \left(e^{\frac{c_2}{\lambda_j T_s}} - 1 \right)}) \quad (2)$$

212 In this expression, the spectral emissivity ε_λ is taken as a fourth-order polynomial function:

213 $\varepsilon_\lambda = a_0 + a_1\lambda_j + a_2\lambda_j^2 + a_3\lambda_j^3 + a_4\lambda_j^4$ (the solution is similar if a higher order polynomial is used).

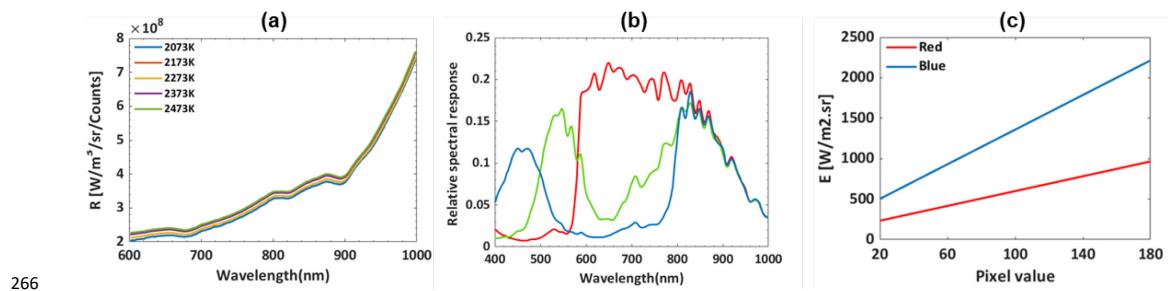
214 The polynomial expression used in this work was proposed in Refs. [26, 27] and it was then
 215 used in previous work by the authors to successfully measure the temperatures of platinum-
 216 based thermocouples, see Figs 14 and 15 in Ref. [25]. Thereafter, it was again used
 217 successfully to measure the temperature and the emissivity of various types of heated platinum
 218 thermocouples [28]. Finally, it was used in measurements of biomass flames [29]. Based on
 219 this validation, this expression was again adopted in this work.

220 The quantity $I_m(\lambda_j)$ represents the measured monochromatic spectral radiation intensity. The
 221 quantity $|f|^2$ represents the absolute mean square error between the measured intensities and
 222 the calculated monochromatic spectral radiation intensities at different wavelengths. Once
 223 $|f|^2$ reaches the minimum value, the respective surface temperature and the polynomial
 224 function of spectral emissivities represent the final calculated results.

225 The spectrometer was calibrated with a pre-calibrated gas-filled tungsten filament lamp,
 226 model *S6-100* acquired from *Pyrometer LLC* (New Jersey, USA). The lamp was positioned
 227 at the bottom of the furnace, mounted in the upright position. A section of the tungsten
 228 filament, specified by the manufacturer, was viewed through two pinholes, placed in series,
 229 and a mirror tilted at 45 degrees, see Ref. [24]. The diameter of the smaller pinhole was 500
 230 μm . The following apparent temperature values for the lamp filament (T_a) were provided by
 231 *Pyrometer LLC* at the wavelength of 0.65 μm , at different electrical current inputs: 2073 K,
 232 2173 K, 2273 K, 2373 K, and 2473 K. Based on these temperatures, the following true

233 temperatures (T_t) of the lamp: 2249 K, 2369 K, 2489 K, 2612 K, and 2735 K were calculated
 234 using Eq. 13 of Ref.[24] in conjunction with corresponding emissivity values for tungsten
 235 published by De Vos [30] Calibration of the spectrometer was done by converting the raw
 236 intensity data from units of “count” to units of $\frac{W}{m^3}/sr$ using a calibration function, R_λ :

$$237 \quad R_\lambda = f(\text{wavelength}) = \frac{\varepsilon_{\text{lamp}}(\lambda_j) \times I_{b,\text{lamp}}(\lambda_j)}{I_{\text{lamp}}(\lambda_j)} \quad (3)$$


238 In this expression, $\varepsilon_{\text{lamp}}$ is the emissivity of the lamp filament; $I_{b,\text{lamp}}$ is the calculated
 239 blackbody intensity of the lamp filament at T_t (in units of $\frac{W}{m^3}/sr$) from Planck’s law (the
 240 product of these two terms is given by Eq. 1); whereas I_{lamp} is the measured intensity in units
 241 of “count”. The calibration function R_λ is plotted in Fig. 3a versus the wavelength of
 242 observation (600-1000 nm). The effect of different temperatures on the R_λ function is
 243 relatively small, hence the average value of R_λ may be applied to all the temperatures of this
 244 study. Once the calibration function R_λ was obtained, the raw intensities (in counts) of the
 245 burning iron particles were multiplied by R_λ to convert their signals from counts to the units
 246 of $\frac{W}{m^3}/sr$.

$$247 \quad I_m \times R_\lambda \times AF = I'_m(\lambda_j) \quad (4)$$

248 In this expression, I_m is the intensity of a combustion event measured by the spectrometer in
 249 the units of counts; I'_m is the intensity of the combustion event in the units of $\frac{W}{m^3}/sr$ and AF
 250 is an area factor which depends on the ratio of the luminous areas during the experiment and
 251 during the calibration.

$$252 \quad AF = \frac{\text{Area of the calibration pinhole}}{\text{Luminous top area of a single particle or a group of particles}} \quad (5)$$

253 The diameter of the calibration setup pinhole was 0.5 mm. The luminous projected areas were
 254 obtained with the high-speed camera and average values were taken during the combustion of
 255 20 different particles or groups of particles. In the experiments where single particles were
 256 injected in the DTF, the viewed cross section luminous areas of individual particles had
 257 average diameters in the order of 0.1 mm, based on photographic evidence, see Ref. [15]. In
 258 experiments where streams of particles were injected in the DTF, particles burned in groups
 259 (clouds). In the case of clouds which were labeled *dilute* their viewed cross section luminous
 260 areas had diameters of \sim 0.61 mm. In the case of clouds which were labeled *dense* their viewed
 261 cross section luminous areas had diameters of \sim 1.22 mm. It is estimated that a \sim 14%
 262 uncertainty in the emissivity measurement was caused by this method. The view angle of the
 263 calibration lamp filament through the pinholes was the same as the view angle of the burning
 264 particles so relevant corrections were not applied. The accuracy of the method was deemed
 265 satisfactory when tested in the past against thermocouple readings in a flame [28].

267 **Figure 3.** (a) Spectrometer calibration function R_λ for different apparent lamp filament temperatures, observed in
 268 the wavelength range of 600-1000 nm. (b) Relative spectral response curves of the RGB bands of the high-
 269 speed electronic camera. (c) Calibration curves for red and blue channels of high-speed electronic camera.

270

271 2.4 Electronic camera and calibration

272 Two-dimensional temperatures of burning both single particles and groups of particles in this
 273 study were measured by high-speed *Edgetronic* 8GB color camera, operated at a shutter speed

274 of 1/1000s and a frame rate of 1000 frames/s. In each combustion event, the recording duration
 275 was 11 s and the Audio Video Interleave (AVI) raw format and QuickTime video format
 276 (MOV) high-quality video files were recorded. The camera has three channels for recording
 277 signals, labelled as Red, Green, and Blue. The raw signal for each channel has 0-255
 278 luminance levels; however, to prevent saturating the signal a neutral density filter was added,
 279 thus the luminance level was kept under 200. This method followed this investigation is
 280 different than camera-pyrometry methods, as it employed the entire wavelength spectrum
 281 from 400-1000 nm. Use of such a broad spectral range permitted comprehensive temperature
 282 assessment, offering a reliable means of temperature determination for complex and dynamic
 283 systems like high temperature fast moving objects, like free falling iron particles, exemplified
 284 by these burning particles. The camera measured the amount of radiation intensity from
 285 combustion events that reached its imaging sensor and outputted an image with pixel values
 286 (RGB) that correspond to the input radiation intensity. The particle radiation intensity E_i , over
 287 the observed wavelength range for combustion events at different surface temperatures, T_s ,
 288 captured by the camera is given by the following expression [25]:

$$289 E_i = \int_{\lambda_1}^{\lambda_2} \eta_i \cdot \tau \cdot \varepsilon_\lambda \cdot \frac{c_1}{\lambda^5 (e^{\frac{c_2}{\lambda T_s}} - 1)} d\lambda = f(pixel\ value_i) \quad i = R, G, B\ channel \quad (6)$$

290 In this expression, $\eta_i(\lambda)$ represents the relative spectral response for each channel, supplied
 291 by camera's manufacturer, shown in [Fig. 3b](#); T_s is the surface temperature; ε_λ is the spectral
 292 (monochromatic) emissivity, which was taken from the spectrometry; τ is the shutter time of
 293 the camera; and $E_i = f(pixel\ value_i) = a \times pixel\ value_i + b$ is the calibration fitting curve
 294 that transfers the $pixel\ value_i$ from i channel to radiation intensity E_i . Pixels representing
 295 regions with temperatures at or lower than the furnace temperature (1400 K) were not
 296 accounted for in the calculation of combustion temperatures. The wavelength range of

297 emissivity measurements for the spectrometer was set to 600-1000 nm. However, because the
298 spectral response of the camera is in the range of 400-1000 nm, spectral emissivities in the
299 400-600 nm portion of the spectrum were extrapolated. Using different emissivities at that
300 wavelength range has no noticeable result on the temperature values (less than 1 degree K
301 difference). The surface temperature T_s is obtained from the solution of Eq. (6).

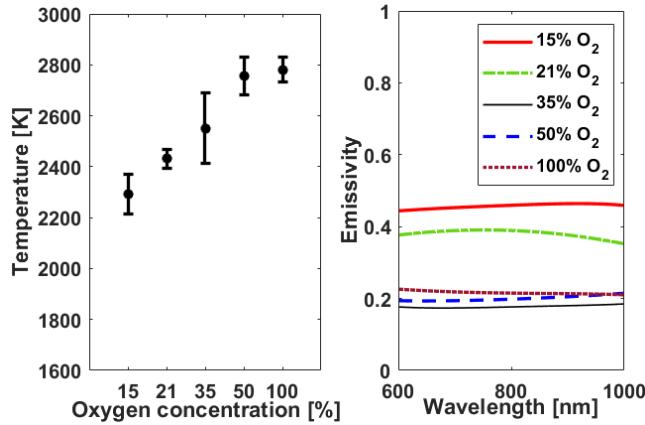
302 To calibrate the high-speed camera, the tungsten filament lamp was placed at an identical
303 distance from the camera as that of the particle combustion events in the furnace. The response
304 wavelength of the R channel is the strongest, whereas the B channel is the weakest, in the
305 temperature range of 1300-3000 K. The responses of the R and B channels were selected for
306 the temperature measurements. The calibration curves for converting raw data pixel values to
307 radiation intensities E_i in the R and B channels of the camera are shown in [Fig. 3c](#).

308 *2.5 Three-color pyrometer and calibration*

309 The three-color optical pyrometer of Levendis, Estrada and Hottel [\[24\]](#) was also used to
310 measure the temperature of burning single particles. Light from burning particles was
311 transmitted to the pyrometer [\[24\]](#). The two-color ratio method was used to calculate three
312 temperatures based on the particle radiation intensity signals obtained from the three channels
313 of the pyrometer (S_{999}/S_{810} , S_{810}/S_{640} , S_{999}/S_{640}). Often the three different detector signals result
314 in somewhat different temperatures based on the uncertainties in the emissivities, which are
315 listed in Tables, 1 and 2. In this analysis we retained signals which had the best agreements
316 among the three temperatures. The details of the method and pyrometer's calibration were
317 documented in [\[15, 24, 31\]](#).

318

319

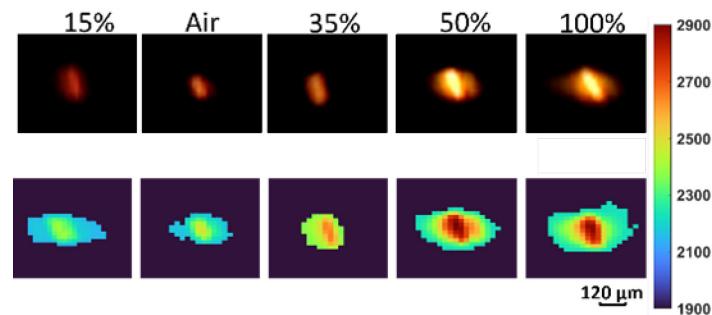

320 **3. Results**

321 *3.1 Combustion of single particles*

322 Spectral emissivities and temperatures of iron particles burning at different gas conditions
323 were measured by photo-spectrometry. Particles were treated as lumped light sources. Values
324 reflect temporal averaging over the burntime of particles. In addition, three-wavelength
325 pyrometry of burning particles provided high-resolution temporal temperature distributions,
326 over the entire burntime of individual particles. The emissivities obtained by the spectrometer
327 were utilized in the pyrometric temperature measurements. The measured spectral emissivities
328 of burning iron particles, averaged over a dozen particles in each case, were 0.46, 0.38, 0.18
329 0.21 and 0.21, respectively in 15% O₂, 21% O₂ (air), 35% O₂, 50% O₂ and 100% O₂. The
330 spectral emissivity of particles decreased with increasing oxygen concentration in the gas.
331 However, in most cases, the spectral emissivity of the iron particles varied little in the
332 wavelength range of 600-1000 nm. Spectrometric particle temperatures were found to
333 increase with the oxygen concentration with as follows: 2292 K, 2431 K, 2554 K and 2758 K
334 and 2780 K, respectively in 15% O₂, 21% O₂ (air), 35% O₂, 50% O₂ and 100% O₂. These
335 results are shown in [Fig. 4](#) and are included in [Table 1](#). Values of particle temperatures and
336 emissivities experienced some deviations from their means because of variations of particle
337 diameter in this size cut, surface inhomogeneities and, possibly, their exact locations in the
338 furnace. Above ~50% O₂, the rise of temperature with oxygen concentration moderated
339 significantly with increasing oxygen concentration and reached ~2800 K at 100% O₂. Such
340 moderation in temperature raise with oxygen concentration above a certain threshold was also
341 observed by Ning [\[14\]](#). Particle temperatures obtained by the spectrometer are representative
342 temperatures in the flame but they are not necessarily peak temperatures, as only a few data

343 points were taken during the burnout duration of each particle, which typically lasted for 20-
344 40 ms [15].

345



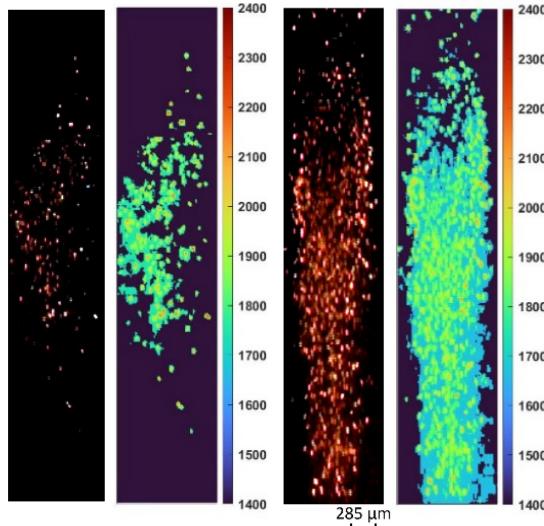
346 **Figure 4.** Spectrometric temperatures and emissivities of single iron particles burning in oxygen-containing
347 nitrogen gases.

348 Pyrometric temperatures were determined both with and without accounting for the variation
349 of the emissivity with wavelength. The validity of the commonly made graybody radiation
350 assumption was investigated. The peak pyrometric temperatures (averaged over at least 10
351 particles in each case) were as follows: 2394 K, 2505 K, 2689 K, 2836 K and 2827 K,
352 respectively in 15% O₂, 21% O₂ (air), 35% O₂, 50% O₂, and 100% O₂, based on the graybody
353 assumption for the emissivity. These peak particle temperatures were ~100 K higher than the
354 spectrometric average particle temperatures, which is reasonable since the latter were not
355 necessarily peak values. Results showed that the pyrometric temperatures deduced with the
356 graybody radiation assumption differed by as little as 4 K and as much as 37 K from those
357 determined with the graybody radiation assumption. Values of both temperatures are displayed
358 in [Table 1](#).

359 Two-dimensional camera snapshots of recorded temperature of single particles burning at five
360 different oxygen concentrations in nitrogen are displayed in [Fig. 5](#) and are also included in
361 [Table 1](#). The determination of these temperatures included spectroscopically derived

362 emissivities. The center portions of these images depict the temperature of the burning solid
 363 particles, whereas the lower temperatures at the periphery of the particles most likely
 364 correspond to the surrounding nanoparticle cloud. The overall diameters of the nanoparticle
 365 mantles (200-300 μm) are in line with those observed by Ning et al. [32]. The peak
 366 temperatures from the camera are also in line with the peak pyrometric temperatures.

367
 368 **Figure 5.** Top Row: photographs of different single iron particles burning in diverse O_2 concentrations in N_2 .
 369 Bottom Row: corresponding 2-D temperature maps obtained from the green (G) channel of the camera. Images
 370 appear slightly elongated due to the particle's high terminal velocity.
 371


372 **Table 1.** Average spectrometric temperatures and emissivities of **single particles** of iron and peak pyrometric
 373 temperatures (in both cases averaged over 10 particles).

Single iron particles burning in various O_2/N_2 gases					
Gas	15% O_2	Air	35% O_2	50% O_2	100% O_2
$T_{\text{ave,from spectrometer}} (\text{K})$	2292 \pm 77	2431 \pm 36	2554 \pm 131	2758 \pm 74	2780 \pm 49
$\epsilon_{\text{ave effective}}$	0.46 \pm 0.04	0.36 \pm 0.06	0.18 \pm 0.05	0.21 \pm 0.01	0.21 \pm 0.06
$T_{\text{peak,from pyrometer_graybody}} (\text{K})$	2394 \pm 46	2505 \pm 56	2689 \pm 19	2836 \pm 34	2827 \pm 60
$T_{\text{peak, from pyrometer_non graybody}} (\text{K})$	2390 \pm 45	2467 \pm 56	2685 \pm 19	2845 \pm 34	2824 \pm 60
$T_{\text{peak, camera}} (\text{K})$	2406 \pm 92	2506 \pm 59	2637 \pm 22	2887 \pm 86	2875 \pm 56

374

375 3.2 Combustion of particles in groups

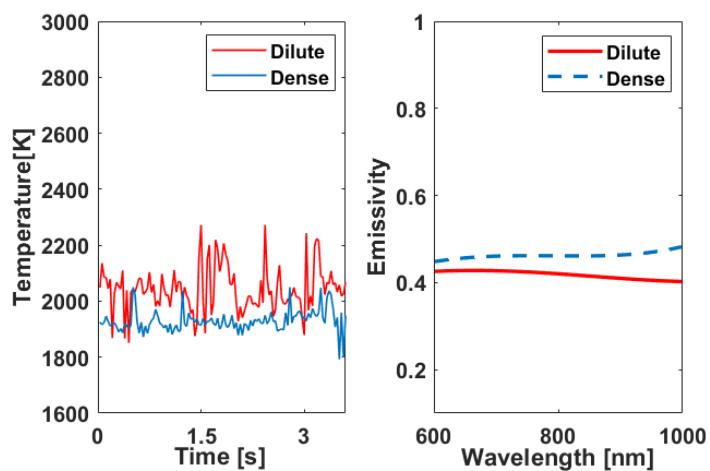
376 Based on photographic evidence recorded through the furnace windows and following
 377 Annamalai's group particle combustion classification [33], the iron particles within groups
 378 appear to burn rather discreetly in both cases labeled as *dilute* or *dense*, as exemplified in Fig.
 379 6. However, it cannot be entirely ruled out that the latter case may have experienced some
 380 localized interparticle interactions.

381

382 **Figure 6.** High-speed photography of group iron particle combustion in air with different PND-associated 2-D
 383 temperature maps obtained from the green (G) channel. Left: dilute cloud. Right: dense cloud.

384

385 The calculated nominal particle number densities ($PND = N_{particles}/V_{gas}$) in these two cases,
 386 obtained from 15 different snapshot measurements, were ~ 35 particles/cm³ (corresponding to
 387 a mass density of ~ 19 g/m³) and ~ 100 particles/cm³ (corresponding to 54 g/m³) of furnace
 388 volume. Corresponding global equivalence ratios, φ , were calculated based on the PNDs as:


$$389 \varphi = \frac{\left(\frac{m_{Fuel}}{m_{Air}}\right)_{actual}}{\left(\frac{m_{Fuel}}{m_{Air}}\right)_{stoichiometric}} \quad (7)$$

390 Where the $m_{Fuel} = \rho_{particle} \cdot V_{particle} \cdot PND = \rho_{particle} \cdot \pi(D^3/6) \cdot PND$, where $\rho_{particle}$
 391 is the density of iron, $V_{particle}$ is the volume of a single iron particle and D is the average
 392 diameter of the particles. At the gas temperature of the furnace (T~1350 K), the density of air
 393 was taken as 0.00027 g/cm³. This calculation was performed assuming that the main product
 394 of the iron particle combustion under these conditions was a mixture of 50% Fe₂O₃ – 50%
 395 Fe₃O₄. The values of the calculated global equivalence ratios are listed in [Table 2](#). Emissivities
 396 and temperatures of groups of iron particles burning in air, obtained from spectrometry and
 397 electronic camera, are also listed in [Table 2](#) and plotted in [Fig. 7](#).

398 **Table 2.** Average temperatures and emissivities of particles burning in **groups** using concurrent measurements
 399 with camera and spectrometer, taken over many snapshots. Peak particle temperatures with camera (10
 400 different frames) are included, as well as particle number densities, mass loadings, interparticle distances and
 401 equivalence ratios.

Streams of iron particles undergoing group combustion in air		
	Dilute	Dense
T_{ave} , spectrometer (K)	2063 ± 96	1929 ± 35
ϵ_{ave}	0.42 ± 0.039	0.46 ± 0.058
T_{ave} , camera (K)	1809 ± 3	1751 ± 10
T_{max} , camera (K)	2160 ± 27	2103 ± 15
PND (particles/cm ³)	35 ± 5	100 ± 13
Mass loading (g/m ³)	19.1 ± 1.8	54.7 ± 4.3
L (mm)	3 ± 0.1	2.1 ± 0.06
ϕ	$0.12 - 0.13 (\pm 0.01)$	$0.33 - 0.37 (\pm 0.03)$

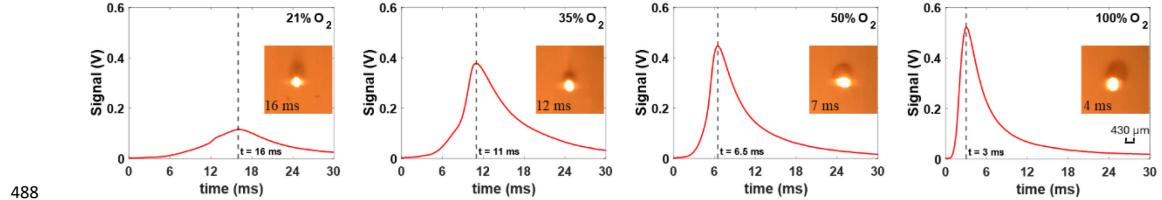
402 Both particle number densities in the furnace resulted in higher average emissivities than those
 403 of single particles burning in air. As the PND increased from 35 to 100, the emissivity also
 404 increased from 0.42 to 0.46, which values are close to the emissivity of the 15% O₂/85% N₂
 405 condition for single iron particles. Examining the 2D temperature colormap in Fig. 6, a large
 406 domain of temperatures (~1850 K for a dilute cloud, ~1750 K for a dense cloud) is seen
 407 between burning particles. This is attributed to the hematite nanoparticle aerosol dispersed in
 408 the interparticle space which, may have contributed to refraction or scattering of radiation
 409 emanating from burning particles.
 410

413 **Figure 7:** Spectrometric temperature and emissivity for iron particle dilute and dense clouds, burning in 1350 K
 414 air.

415 **4. Discussion**

416 Single Particles: At the wavelength range of interest (600-1000 nm) for high-temperature
417 combustion of iron in furnaces, the representative values for the effective spectral emissivity
418 of isolated iron particles were in the vicinity of 0.36, in air, at corresponding particle
419 temperatures in the neighborhood of 2500 K. This emissivity value is in the range of spectral
420 emissivities (0.35-0.38), measured by Krishnan et al. [17] and Kobatake et al. [18] in similar
421 wavelength ranges, for iron pools heated at or above their melting temperature. This similarity
422 of values suggests the presence of molten iron at the surface of the burning particles as
423 conversion to FeO is taking place, although emission peaks of this suboxide of iron, in the
424 neighborhood of 590 nm [34, 35], were not significantly pronounced in the collected raw
425 spectroscopic data, perhaps they were overwhelmed by combustion-emitted radiation. The
426 particle temperatures are in line with those reported by Panahi et al. [15] in prior experiments
427 in the laminar flow DTF of this laboratory and by Ning et al. [32] in a different experimental
428 setup. However, recent work by Hametee et al. [16] reported higher particle combustion
429 temperatures (2700 K) in air. The authors explained those higher values based on the high
430 velocity gradient between the injected particles and a parallel stream of hot oxidizing gas in
431 their burner. The resulting slip velocity may have facilitated the gas phase transport of oxygen
432 to the surface of the burning particles, and this effect may have resulted in higher temperatures
433 by a variety of phenomena mentioned in Ref. [16]. To the contrary, in the laminar flow reactor
434 used herein, where Reynold numbers were in the order of unity, the presence of the
435 nanoparticle cloud surrounding the burning particles could have played a role in the radiation
436 released by the oxidizing particle surface. Hematite aerosols may absorb light in the visible
437 and near infrared spectrum. In the wavelength range of interest to this study, there have been
438 reports that the real refractive index of collected hematite aerosols is ~ 2.75 and the imaginary

439 refractive index is in the range of 0-0.2, the combined value being 2.75 - 0.2i. Such values
440 have been retrieved from Ref. [36], based on a large body of literature compiled therein on
441 fine particles of hematite. The real component of the refractive index denotes the velocity of
442 light within the material relative to the speed of light in vacuum. It also indicates how much
443 a ray of radiation will be bent, or refracted, when it passes through the material [37]. The
444 imaginary term indicates how much of the radiation is lost due to absorption [37]. For
445 comparison, the index of refraction of the soot has been measured to be 1.57 - 0.56i [38].


446

447 During combustion of iron particles, radiation is emitted by both the oxidizing (burning)
448 micrometric particles, by gas phase oxidation of Fe and/or FeO vapors and by nucleating
449 Fe_2O_3 nanometric particles in the proximity of the vaporizing surface. The radiation emitted
450 from the particle's oxidizing surface is possibly attenuated by the surrounding nanoparticle
451 mantle. Sarofim and co-workers [39, 40] provided a method for obtaining the radiation
452 contributions of the burning micrometric coal particles surrounded by burning soot mantles.
453 Extending this method (see Eq. 2 of [39]) to burning iron particles surrounded by hot
454 nanometric iron/suboxide/oxide particles, the contributions of the radiation from these two
455 components were calculated. The surface temperature of a single micrometric particle burning
456 in air, was assumed to be 2500 K and the temperature of the nanoparticle mantle was taken as
457 2000 K, based on the 2D temperatures shown in Fig. 5. To calculate the radiative contributions,
458 it was assumed that 4% of the iron particle mass was vaporized in air and converted to
459 nanoparticles, based on current measurements in this laboratory and past reports in [35],
460 consisting of 100 nm diameter spherules. The nanoparticle mantle diameter enveloping a
461 burning 45 μm particle was taken as 120 μm . The wavelength of observation was taken as
462 800 nm, the emissivity of the burning iron particle was taken as 0.35 and the refractive index

463 of the hematite nanoparticle cloud was taken as $2.75 - 0.2i$. Under these assumptions, the
464 radiation contribution of the nanoparticle mantle was calculated to account for about one third
465 of the total radiation contribution of the burning particle radiation. In this calculation the
466 particle was assumed to be isothermal and the mantle was also assumed to be isothermal,
467 however the latter assumption is rather questionable. Moreover, the mantle is not necessarily
468 spherical because of the rather high terminal velocity of the micrometric particle. Furthermore,
469 not all of the 4% of the iron particle mass converts instantaneously to hematite nanoparticles;
470 this happens over several milliseconds. Hence, the aforesaid estimated radiation contribution
471 of the nanoparticles may be an upper end estimate. Actual contributions of the mantle to total
472 radiation emission may be less, but they can still be significant.

473 Finally, fully oxidized nanoparticles that have cooled off to the gas temperature in the furnace
474 may also interfere with the radiative environment in the furnace and affect the measurements.
475 As a burning micrometric iron particle falls fast by gravity, its nanoparticle mantle shapes into
476 a contrail of rapidly cooling nanoparticles, as seen in the dark plume (dark aura) forming
477 behind the falling and burning iron/iron oxide particles. The images in [Fig. 8](#) were taken with
478 backlight photography to observe the nanoparticle plume, whereas the images in [Fig. 5](#) were
479 taken with normal (not backlight) photography. In fact, to be able to observe the nanoparticle
480 contrails together with the burning particles, the latter became mildly overexposed in the
481 photographs in [Fig. 8](#). Clearer shadow photographs are shown in a publication by Ning et al.
482 [\[32\]](#). Please notice that the dark clouds of nanoparticles in the contrails have most likely
483 already cooled expediently to the temperature of the furnace gas, as expected because of their
484 minuscule size that enhances convective heat loses. Hence, they are not evident in the
485 temperature maps of [Fig. 5](#). Such contrails, particularly from multiple particles in group

486 particle combustion, could interfere with the pyrometric and spectrometric measurements of
487 temperatures and emissivities.

489 **Figure 8:** Intensity profiles of burning single iron particles in the DTF at different oxygen concentrations in nitrogen.
490 Photographs of the iron particles show the timing in the burnout profile where the nanoparticle contrails became
491 evident.

492 As the particle temperature increased at higher oxygen levels, the spectral emissivity
493 decreased. This trend cannot be associated with the increased presence of oxygen in the gas,
494 since O₂ is not known to absorb radiation in the visible and in the near infrared spectra [41,
495 42]. This trend was also observed by Goett et al. [20] for the spectral emissivity of molten
496 steel at similar wavelengths of observation, albeit in a narrower temperature range. Emissivity
497 values for that steel were a bit lower than the values measured herein, possibly because of its
498 heteroatom content (such as carbon, manganese, phosphorous and silicon). It is noteworthy
499 that this trend of decreasing emissivity with increasing temperature has also been documented
500 in the combustion of coal char particles, see Ref. [43]. Besides the effect of the temperature
501 of the melt on spectral emissivity, there are additional influences in the present experiments.
502 Since the variation of particle temperature was induced by varying oxygen concentration in
503 the gas, there may be contributions by different iron oxides forming in the melt, by different
504 surface structures and by the presence of different amounts of nanoparticles at the periphery
505 of each particle. Such nanoparticles formed by nucleation/condensation of vapors of iron and
506 iron suboxides and oxides at the periphery of burning iron particles, during a fraction of their
507 burnout period. Nanoparticle formation surrounding burning iron particles has been
508 documented in the literature [32]. High-speed photography with the electronic camera and
509

510 deduction of 2-D temperature profiles facilitated assessment of temperatures of the burning
511 micrometric particle and the nanoparticle mantle and measurement of its thickness. The size
512 of the mantle appeared to increase with oxygen concentration (see [Fig.5](#)), as higher amounts
513 of iron vaporized at the induced higher temperatures increasing the nanoparticle mass flux at
514 the periphery of the particle. The temperature maps in [Fig.5](#) of single particle combustion of
515 iron show distinct high temperature areas at the center, surrounded by lower temperatures
516 areas. Temperatures of the mantle appear to be significantly lower (by a few to several hundred
517 degrees K) than the temperature of the micrometric particles at the center of the images. This
518 is expected as the small nanoparticles oxidize expediently and cool faster to the furnace gas
519 temperature because of their very high surface area to volume ratios.

520 It should also be noted that the spectral emissivity of single particles is not decreasing
521 monotonically with increasing the oxygen concentration in the gas, but rather decreases from
522 O₂ concentration of 15% to 35% and then it levels off. This behavior may be attributed to
523 factors such as the increased degree of iron oxidation and the formation of different surface
524 structures on the collected iron oxide micrometric particles, and the amounts of nanometric
525 particles generated under different oxygen concentration conditions. Both factors are under
526 current investigation. Finally, the variation of burning particle temperatures deduced with or
527 without the gray radiation assumption of burning iron was observed to be mild (3-38 K).

528

529 **Streams of Particles:** Generally, combustion of fuel particles in groups is influenced by factors
530 such as the particle size, the local oxygen concentrations, which vary both spatially and
531 temporally by the random distribution and motion of the particles, and by multiple heat
532 transfer interactions among the particles [\[33\]](#). Annamalai et al. [\[33\]](#) reported on mechanisms
533 which occur during combustion of oil droplets and coal/char particles in furnaces, under

534 various droplets/particle densities and spatial arrangements. Average oxygen concentrations
535 in burning groups of such particles are lower than the ambient oxygen concentrations in the
536 of burning single particles and decrease with increasing particle number density. Iron
537 combustion is expected to follow a similar trend albeit to a lesser extent as they are much less
538 prone to devolatilization. Iron particles burning in groups in the furnace at the globally fuel-
539 lean conditions of this study exhibited discrete particle combustion. However, interactions of
540 their nanoparticle clouds cannot be precluded in this laminar DTF, where mixing was not
541 effective and local oxygen concentrations may have been lower than those of air. As a result,
542 lower average and maximum particle temperatures were measured than those prevailing in
543 single particle combustion; for instance, a 400-550 K drop in average temperatures was
544 recorded. However, such combustion temperatures did not decline linearly with PND, as from
545 single particle combustion to group particle combustion, at PND=35, the average temperature
546 decreased by 400 K, whereas the temperature only decreased by an additional 150 K at
547 PND=100. The effective emissivity of burning particles in groups is also affected by local
548 variations in oxygen concentration which influences local temperatures. It is also likely also
549 influenced the amounts of nanometric fumes (smoke) in the particle stream.

550

551 **5. Conclusions**

552 This work observed phenomena and assessed important parameters pertaining to the
553 combustion of iron particles in a furnace, both in isolation and in particle groups. Particles
554 experienced high heating rates in the radiation zone of a DTF furnace, ignited in 1350 K
555 oxygen-containing gases and burned to attain high temperatures. Single particles burned at
556 oxygen mole fractions ranging from 15% to 100% in nitrogen diluent, whereas groups of
557 particles were burned in air. Particle emissivities and temperatures were measured with a

558 photo-spectrometer, while temperatures were also measured with a three-color pyrometer and
559 with an electronic camera. Emissivities of single particles ranged from 0.18 to 0.46,
560 decreasing with increasing oxygen concentration up to somewhere between 35 to 50% [O₂]
561 and remained nearly constant thereafter. Temperatures of single particles exhibited exactly the
562 opposite trend, with peak values ranging from 2390 K to 2845 K, as the oxygen concentration
563 increased. The spectral emissivity of burning iron varied only modestly in the wavelength
564 range of 600-1000 nm. Thus, the graybody assumption appeared to be acceptable for
565 temperature measurement and related numerical simulations. Group particle combustion
566 appeared to occur in discrete mode, however, the overall consumption of oxygen in the group
567 lowered the particle temperatures.

568

569 **6. Acknowledgment**

570 This work was supported by the US National Science Foundation Grant # DMR-
571 G00008208, Dr. Jonathan Madison, Program Director. Help from Ms. Echo St. Germain to
572 obtain iron particle size distributions is acknowledged.

573

574 **7. References**

- 575 [1] Bergthorson J, Goroshin S, Soo M, Julien P, Palecka J, Frost D, et al. Direct
576 combustion of recyclable metal fuels for zero-carbon heat and power. *Applied
577 Energy* 2015;160:368-82.
- 578 [2] Julien P, Bergthorson JM. Enabling the metal fuel economy: green recycling of
579 metal fuels. *Sustainable Energy & Fuels* 2017;1(3):615-25.
- 580 [3] Bergthorson JM. Recyclable metal fuels for clean and compact zero-carbon power.
581 *Prog Energy Combust Sci* 2018;68:169-96.
- 582 [4] Dirven L, Deen NG, Golombok M. Dense energy carrier assessment of four
583 combustible metal powders. *Sustainable Energy Technologies and Assessments*
584 2018;30:52-8.

585 [5] Debiagi P, Rocha RC, Scholtissek A, Janicka J, Hasse C. Iron as a sustainable
586 chemical carrier of renewable energy: Analysis of opportunities and challenges for
587 retrofitting coal-fired power plants. *Renewable and Sustainable Energy Reviews*
588 2022;165:112579.

589 [6] Janicka J, Debiagi P, Scholtissek A, Dreizler A, Epple B, Pawellek R, et al. The
590 potential of retrofitting existing coal power plants: A case study for operation with
591 green iron. *Applied Energy* 2023;339:120950.

592 [7] Baigmohammadi M, Prasidha W, Stevens NC, Shoshyn YL, Spee T, de Goey P.
593 Towards utilization of iron powders for heating and power. *Applications in Energy*
594 and *Combustion Science* 2023;13:100116.

595 [8] Wright A, Higgins A, Goroshin S. The discrete regime of flame propagation in metal
596 particulate clouds. *Combustion Science and Technology* 2016;188(11-12):2178-99.

597 [9] Li S, Huang J, Weng W, Qian Y, Lu X, Aldén M, et al. Ignition and combustion
598 behavior of single micron-sized iron particle in hot gas flow. *Combustion and Flame*
599 2022;241:112099.

600 [10] Julien P, Whiteley S, Goroshin S, Soo MJ, Frost DL, Bergthorson JM. Flame structure
601 and particle-combustion regimes in premixed methane–iron–air suspensions. *Proc
602 Combust Inst* 2015;35(2):2431-8.

603 [11] McRae M, Julien P, Salvo S, Goroshin S, Frost DL, Bergthorson JM. Stabilized, flat
604 iron flames on a hot counterflow burner. *Proc Combust Inst* 2019;37(3):3185-91.

605 [12] Palečka J, Sniatowsky J, Goroshin S, Higgins AJ, Bergthorson JM. A new kind of
606 flame: Observation of the discrete flame propagation regime in iron particle
607 suspensions in microgravity. *Combust Flame* 2019;209:180-6.

608 [13] Tang F-D, Goroshin S, Higgins A, Lee J. Flame propagation and quenching in iron
609 dust clouds. *Proc Combust Inst* 2009;32(2):1905-12.

610 [14] Ning D, Shoshin Y, van Stiphout M, van Oijen J, Finotello G, de Goey P.
611 Temperature and phase transitions of laser-ignited single iron particle. *Combustion*
612 and *Flame* 2022;236:111801.

613 [15] Panahi A, Chang D, Schiemann M, Fujinawa A, Mi X, Bergthorson JM, et al.
614 Combustion behavior of single iron particles-part I: An experimental study in a
615 drop-tube furnace under high heating rates and high temperatures. *Appl Energy
616 Combust Sci* 2023;13:100097.

617 [16] Hameete J, Abdallah MS, Thijs LC, Homan TAM, Mi XC, Dam NJ, et al. Particle-
618 resolved hyperspectral pyrometry of metal particles. *Combustion and Flame*
619 2024;264:113435.

620 [17] Krishnan S, Yugawa KJ, Nordine PC. Optical properties of liquid nickel and iron. *Phys
621 Rev B* 1997;55(13):8201.

622 [18] Kobatake H, Khosroabadi H, Fukuyama H. Normal spectral emissivity measurement
623 of liquid iron and nickel using electromagnetic levitation in direct current magnetic
624 field. *Metall Mater Trans A* 2012;43(7):2466-72.

625 [19] Muller M, El-Rabii H, Fabbro R. Liquid phase combustion of iron in an oxygen
626 atmosphere. *J Mater Sci* 2015;50(9):3337-50.

627 [20] Goett G, Kozakov R, Uhrlandt D, Schoepp H, Sperl A. Emissivity and temperature
628 determination on steel above the melting point. *Weld World* 2013;57:595-602.

629 [21] Mitchell JA, Ivanoff TA, Dagle D, Madison JD, Jared B. Linking pyrometry to porosity
630 in additively manufactured metals. *Addit Manuf* 2020;31:100946.

631 [22] Panahi A, Vorobiev N, Schiemann M, Tarakcioglu M, Delichatsios M, Levendis YA.
632 Combustion details of raw and torrefied biomass fuel particles with individually-
633 observed size, shape and mass. *Combust Flame* 2019;207:327-41.

634 [23] Yao Y, Panahi A, Levendis YA. Comparative radiative property measurements of
635 single biomass and coal particles burning at high reactor temperatures. *Combust
636 Flame* 2024;263:113406.

637 [24] Levendis YA, Estrada KR, Hottel HC. Development of multicolor pyrometers to
638 monitor the transient response of burning carbonaceous particles. *Rev Sci Instrum*
639 1992;63(7):3608-22.

640 [25] Yan W, Panahi A, Levendis YA. Spectral emissivity and temperature of heated
641 surfaces based on spectrometry and digital thermal imaging—Validation with
642 thermocouple temperature measurements. *Experimental Thermal and Fluid
643 Science* 2020;112:110017.

644 [26] Wen C-D, Chr Y-H. The assessment of multispectral radiation thermometry using
645 linear and log-linear emissivity models for steel. *Numerical Heat Transfer, Part B:
646 Fundamentals* 2010;58(1):40-54.

647 [27] Wen C-D. Experimental investigation of emissivity of aluminum alloys and
648 application of multispectral radiation thermometry. *International Heat Transfer
649 Conference*. 49408. 2010:867-75.

650 [28] Yao Y, Panahi A, Levendis Y. Spectroscopic and pyrometric temperature
651 measurements of heated type B and S thermocouples. 2022.

652 [29] Yan W, Li K, Yu T, Huang X, Yu L, Panahi A, et al. Determination of flame
653 temperatures and soot volume fractions during combustion of biomass pellets.
654 *Energy & Fuels* 2021;35(3):2313-25.

655 [30] De Vos JC. A new determination of the emissivity of tungsten ribbon. *Physica*
656 1954;20(7-12):690-714.

657 [31] Bejarano PA, Levendis YA. Single-coal-particle combustion in O₂/N₂ and O₂/CO₂
658 environments. *Combust Flame* 2008;153(1-2):270-87.

659 [32] Ning D, Shoshin Y, van Oijen JA, Finotello G, de Goey Laurentius PH. Critical
660 temperature for nanoparticle cloud formation during combustion of single micron-
661 sized iron particle. *Combustion and Flame* 2022;244:112296.

662 [33] Annamalai K, Ryan W, Dhanapalan S. Interactive processes in gasification and
663 combustion—Part III: Coal/char particle arrays, streams and clouds. *Prog Energy
664 Combust Sci* 1994;20(6):487-618.

665 [34] Li S, Sanned D, Huang J, Berrocal E, Cai W, Aldén M, et al. Stereoscopic high-speed
666 imaging of iron microexplosions and nanoparticle-release. *Optics Express*
667 2021;29(21):34465-76.

668 [35] Tóth P, Ögren Y, Sepman A, Gren P, Wiinikka H. Combustion behavior of pulverized
669 sponge iron as a recyclable electrofuel. *Powder technology* 2020;373:210-9.

670 [36] Go S, Lyapustin A, Schuster GL, Choi M, Ginoux P, Chin M, et al. Inferring iron-oxide
671 species content in atmospheric mineral dust from DSCOVR EPIC observations.
672 *Atmos Chem Phys* 2022;22(2):1395-423.

673 [37] Shaddix CR, Williams TC. Soot: Giver and taker of light: The complex structure of
674 soot greatly influences the optical effects seen in fires. *American scientist*
675 2007;95(3):232-9.

676 [38] Sarofim AF. Radiative heat transfer in combustion: friend or foe. *Symposium*
677 (*International*) on *Combustion*. 21. Elsevier; 1988:1-23.

678 [39] Timothy L, Froelich D, Sarofim A, Beer J. Soot formation and burnout during the
679 combustion of dispersed pulverized coal particles. *Symposium (International) on*
680 *Combustion*. 21. Elsevier; 1988:1141-8.

681 [40] Timothy L, Sarofim AF, Beér JM. Characteristics of single particle coal combustion.
682 *Symposium (International) on Combustion*. 19. Elsevier; 1982:1123-30.

683 [41] Fridovich I. Oxygen: how do we stand it? *Medical principles and practice*
684 2013;22(2):131-7.

685 [42] Education UCfS. Carbon Dioxide Absorbs and Re-emits Infrared Radiation; n.d.
686 Available from: <https://scied.ucar.edu/learning-zone/how-climate-works/carbon-dioxide-absorbs-and-re-emits-infrared-radiation>. [Accessed June, 2024].

688 [43] Schiemann M, Gronarz T, Graeser P, Gorewoda J, Kneer R, Scherer V. A correlation
689 between char emissivity and temperature. *Fuel* 2019;256:115889.

690

691

692