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SUMMARY

Although transcriptomics data is typically used to analyze mature spliced mRNA, recent attention has fo-
cusedon jointly investigating spliced andunspliced (or precursor-)mRNA,which canbeused to study gene
regulation and changes in gene expression production. Nonetheless, most methods for spliced/unspliced
inference (such as RNA velocity tools) focus on individual samples, and rarely allow comparisons between
groups of samples (e.g. healthy vs. diseased). Furthermore, this kind of inference is challenging, because
spliced and unspliced mRNA abundance is characterized by a high degree of quantification uncertainty,
due to the prevalence of multi-mapping reads, i.e. reads compatible with multiple transcripts (or genes),
and/or with both their spliced and unspliced versions. Here, we present DifferentialRegulation, a Bayesian
hierarchical method to discover changes between experimental conditions with respect to the relative
abundance of unspliced mRNA (over the total mRNA). We model the quantification uncertainty via a
latent variable approach, where reads are allocated to their gene/transcript of origin, and to the respective
splice version. We designed several benchmarks where our approach shows good performance, in terms
of sensitivity and error control, vs. state-of-the-art competitors. Importantly, our tool is flexible, and works
with both bulk and single-cell RNA-sequencing data.DifferentialRegulation is distributed as a Bioconductor
R package.
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1. INTRODUCTION

Bulk and single-cell RNA-sequencing (RNA-seq) data enable estimating the abundance of both
(mature) spliced (s) and unspliced (u) (or precursor) mRNA. These splicing dynamics have been
previously studied from bulk data (Zeisel et al. 2011; Gaidatzis et al. 2015); furthermore, in single-
cell RNA-seq (scRNA-seq) data, they have been further exploited by RNA velocity tools, that infer
the time derivative of the gene expression state of cells (La Manno et al. 2018; Bergen et al. 2020).
In these approaches, s and u abundances are compared to their (estimated) equilibrium values.
Intuitively, if a gene has a higher relative abundance of u reads than at steady-state, in the near future
the smRNAwill increase becausewe expect a higher abundance of newly splicedmRNA, compared
to the amount of smRNA that is going to be degraded (Fig. 1). Therefore, gene expression (i.e. s) is
currently increasing, and we can think of this gene as being up-regulated. Conversely, if the relative
abundance of u reads is lower than at its equilibrium, in the near future, the amount of s mRNA
will decrease, because the newly spliced mRNAwill not fully compensate for the degraded mRNA
(Fig. 1). In this case, gene expression is currently decreasing; hence, we can conclude that the gene
is being down-regulated.

Here, following a similar rationale, we aim at identifying differences in gene regulation between
experimental conditions (e.g. treatments), by comparing the relative abundance of u reads, denoted
byπU . In particular, for a given gene, ifπU is higher in conditionA thanB, we speculate that the gene
is being up-regulated inA, compared toB. Note that this is different from canonical differential gene
expression tests, which focus on differences in the overall abundance of s reads. Instead, our goal is
to identify differences in the direction that gene expression is currently undergoing. In particular, it
was found that unspliced mRNA peaks, on average, 15 minutes before spliced mRNA, and can be
taken as a proxy for nascent transcription (Hendriks et al. 2014). Furthermore, changes in unspliced
mRNA are thought to be indicative of changes in post-transcriptional regulation (Gaidatzis et al.
2015). Therefore, identifying variations in πU can provide valuable insight into gene regulation
changes between conditions.

From a technical point of view, RNA-seq data is characterized by a large degree of quantification
uncertainty due to multi-mapping reads, i.e. reads compatible with multiple transcripts or genes
(McDermaid et al. 2018; Dharshini et al. 2020). Furthermore, when analyzing splicing dynamics,
we consider both splice versions of each gene/transcript; this doubles the number of transcripts
(bulk data) or genes (single-cell data) in the reference, and increases evenmoremapping ambiguity.

Twoapproaches, namely eisaR (Gaidatzis et al. 2015) andBRIE2 (Huang and Sanguinetti 2021),
have been proposed to compare splicing dynamics between groups of samples from bulk and
scRNA-seq data, respectively. The first approach uses the edgeR (Robinson et al. 2009) differen-
tial pipeline, based on a negative binomial distribution, where samples and groups are used as

Figure 1. Splicing dynamics (Weiler et al. 2022): unspliced mRNA (u), containing both introns and
exons, is transcribed from DNA (at rate α); then, splicing (at rate β) leads to spliced mRNA (s), which is
eventually degraded (at rate γ ).
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covariates for the mean parameter. The second method, instead, implements a Bayesian regression
approach on percent spliced-in values, with samples and groups modeled as covariates; however,
this approach was found to be extremely computationally intensive.

Additionally, other tools, originally designed to detect differences in alternative splicing pat-
terns, could also be employed to discover changes among s and u reads. Notably, DRIMSeq
(Nowicka and Robinson 2016), satuRn (which has two variants: one for bulk and one for single-
cell data) (Gilis et al. 2022), SUPPA2 (Trincado et al. 2018), and DEXSeq (Anders et al. 2012)
performed well in recent benchmarks (Love et al. 2018; Tiberi and Robinson 2020; Gilis et al.
2022). In particular, DEXSeq, for the purpose of our analyses, could be applied to transcript esti-
mated abundance (Love et al. 2018) (referred to throughout asDEXSeq_TECs), or to equivalence
classes counts (Cmero et al. 2019) (denoted by DEXSeq_ECs), where equivalence classes (ECs)
are collections of reads compatible with the same set of transcripts (including splicing status). Such
ECs, and theirmultiplicities, are typically used tomodel the variability ofmulti-mapping reads. The
majority of differentialmethods, in our case, eisaR,DRIMSeq, satuRn, SUPPA2 andDEXSeq_TECs,
input estimated counts, and thus fail to account for the noise in those estimates. Conversely,
DEXSeq_ECs avoids this issue by performing differential testing directly on equivalence classes.
However, while this approach accounts for reads mapping between s and u versions of a transcript,
it does not handle reads mapping to multiple transcripts, which are discarded, hence resulting in a
loss of data. Moreover, while most methods presented above can test genes or transcripts directly,
SUPPA2 and DEXSeq_ECs perform differential testing on exon junctions and ECs, respectively,
which results inmultiple statistical tests for each transcript, that are then aggregated to the transcript
level.When applied to scRNA-seq data,BRIE2,DRIMSeq, satuRn, andDEXSeq_TECs can partially
account for the quantification uncertainty, by treating separately ambiguously mapping reads (i.e.
those mapping to both s and u versions of a transcript); such reads are denoted by a. However, the
ambiguity in multi-gene mapping reads cannot be modeled.

To overcome these challenges, we propose a Bayesian approach that accounts for the quantifi-
cation uncertainty via a latent variable model, and allocates reads to their transcript or gene of
origin, and corresponding splice version.Our approach also allows for sharing of information across
samples, via a hierarchical framework, and genes, via informative priors. We designed a double
analysis framework, basedon twodistinctadhoc algorithms to analyzebulk and single-cellRNA-seq
data, accounting for the specifics of each type of data. In particular, bulk protocols enable studying
transcript-level signals across all cells, while single-cell data offer high cellular resolution but do
not allow accurate transcript-level inference. Here, we take advantage of the information that each
offers: our bulk approach targets changes at the transcript level (across all cells),while our single-cell
method identifies cell-type specific changes (at the gene level), e.g. genes that are differential in a cell
type but not in others. Below, we illustrate both approaches (Section 2), describe our benchmarks
(Section 3), and discuss results (Section 4).

2. MATERIALS AND METHODS

2.1. Model for bulk data

DifferentialRegulation takes as input the equivalence classes counts derived from RNA-seq reads,
and recovers the overall abundance of each transcript. Assume that, for a given experimental
condition, we collect RNA-seq data for N samples (i.e. biological replicates), with a total of T

transcripts; we define by X(t)
i =

(

X
(t)
Si ,X

(t)
Ui

)

the vector indicating the overall abundance of spliced

and unspliced reads coming from transcript t in sample i, with t = 1, . . . ,T, and i = 1, . . . ,N. Our
approach is built around two models.

The first one is a multinomial model for the abundance of reads across the T transcripts:

(

Y
(1)
i , . . . , Y (T)

i

)∣

∣

∣
ρi ∼ MN

(

ρi =

(

ρ
(1)
i , . . . , ρ(T)

i

))

(2.1)
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where Y
(t)
i = X

(t)
Si + X

(t)
Ui is the overall abundance (aggregated across both splice versions) of

transcript t in sample i, and ρ
(t)
i indicates the relative abundance for the tth transcript in the ith

sample, with
∑T

t=1 ρ
(t)
i = 1.

The secondmodel is a hierarchical beta-binomial distribution for the abundance of reads within
the s and u versions of each transcript:

X
(t)
Si

∣

∣

∣
π

(t)
Si ∼ Bin

(

π
(t)
Si , n = X

(t)
Si + X

(t)
Ui

)

, (2.2)

π
(t)
Si

∣

∣

∣
δ(t) ∼ Beta

(

δ
(t)
S , δ(t)

U

)

(2.3)

for t = 1, . . . ,T, and i = 1, . . . ,N,

where π
(t)
Si represents the relative abundance of spliced reads for transcript t in the ith sample,

δ(t) =

(

δ
(t)
S , δ(t)

U

)

represent thehyper-parameters of thehierarchicalmodel, andBeta(a, b) indicates

thebetadistributionwithmean a
a+b andvariance

ab
(a+b)2(a+b+1)

.Note that, for easier interpretation,

the hyper-parameters can be reparametrized as δ(t)
+ = δ

(t)
S + δ

(t)
U , usually referred to as the precision

parameter, which indicates the sample-to-sample variability, and π̄
(t)
S =

δ
(t)
S

δ
(t)
+

(

or π̄
(t)
U =

δ
(t)
U

δ
(t)
+

)

,

denoting the group-level relative abundance of s (or u) reads for transcript t, respectively. Note that
we chose not to use a hierarchical prior for ρ for twomain reasons: i) overall transcript abundances
are easier to infer (hence the benefit of sharing information across samples is smaller), and ii) we
wanted to limit the model complexity, and its computational cost.

Since the values of X (and hence Y) are not observed, they are treated as latent states and are
sampled from their conditional distribution (see Section 2.3). In particular, we allocate multi-
mapping reads among the transcript(s) and respective splice version(s) they are compatible with.
For instance, in sample i, consider a read compatible with the s version of transcript w, and the
u version of transcript z; this read will be allocated to the former and latter cases with probabil-

ity proportional to ρ
(w)
i ∗ π̃

(w)
Si , and ρ

(z)
i ∗ π̃

(z)
Ui , respectively, where π̃

(w)
Si = π

(w)
Si /l(w)

S and π̃
(z)
Ui =

π
(z)
Ui /l

(z)
U , with l

(w)
S and l

(z)
U being the effective lengths of the s version of transcript w and the u

version of transcript z, respectively. Normalizing for the transcript effective lengths ensures that the
probability of allocatingmulti-mapping reads does not depend on how long transcripts are, andwas
previously found to improve model accuracy (Soneson et al. 2015; Tiberi and Robinson 2020).

2.2. Model for single-cell data

Our framework for single-cell data is similar to the bulk approach, but presents four key differences,
as summarized below. First, droplet scRNA-seq data have little resolution at the transcript level;
therefore, analyses are performed on genes instead of transcripts. Second, cells are typically clus-
tered (usually in cell types): when cell clusters are available, we separately analyze each cluster, and
identify cluster-specific changes in regulation. Third, data refer to individual cells: a�er clustering
them, we use a pseudo-bulk approach and, for each sample, compute the total s and u counts across
all cells in a given cluster. Fourth, reads ambiguouslymapping toboth s andu versionsof a gene (i.e.a
reads) cannot easily be allocated to their splice version of origin. This is because the allocation step
requires the estimated probability that an ambiguous read is spliced, which cannot be accurately
computed, because it depends on unknown factors (Supplementary Details). Therefore, we only
use a latent variable approach for reads mapping to multiple genes; instead, a reads are treated
separately from s and u.

Consider one experimental condition and a single cell cluster, with scRNA-seq data available

for N samples and G genes; we denote by X
(g)
i =

(

X
(g)
Si ,X

(g)
Ui ,X

(g)
Ai

)

the vector with the overall

abundance of spliced, unspliced and ambiguous reads (across all cells in the cluster) coming from
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gene g in sample i, with g = 1, . . . ,G, and i = 1, . . . ,N. Again, we use twomodels; the first one is a
multinomial distribution for the abundance of reads across theG genes:

(

Y
(1)
i , . . . , Y (G)

i

)∣

∣

∣
ρi ∼ MN

(

ρi =

(

ρ
(1)
i , . . . , ρ(G)

i

))

(2.4)

where Y
(g)
i = X

(g)
Si + X

(g)
Ui + X

(g)
Ai is the overall abundance (across all splice versions) of gene g in

sample i, and ρ
(g)
i is the relative abundance for gene g in the ith sample, with

∑G
g=1 ρ

(g)
i = 1.

The second model is a hierarchical Dirichlet-multinomial, which is a generalization of the
beta-binomial model in (2.3)-(2.6), for the abundance of s, u and a reads within each gene:

X
(g)
i

∣

∣

∣
π

(g)
i ∼ MN

(

π
(g)
i , n = X

(g)
Si + X

(g)
Ui + X

(g)
Ai

)

, (2.5)

π
(g)
i

∣

∣

∣
δ(g) ∼ Dir

(

δ
(g)
S , δ

(g)
U , δ

(g)
A

)

(2.6)

for t = 1, . . . ,T, and i = 1, . . . ,N,

where π
(g)
i =

(

π
(g)
Si ,π

(g)
Ui ,π

(g)
Ai

)

is the vector with the relative abundance of spliced, unspliced

and ambiguous reads for gene g in the ith sample, and δ(g) =

(

δ
(g)
S , δ

(g)
U , δ

(g)
A

)

represent the

hyper-parameters of the hierarchical model; Again, from the hyper-parameters, we can obtain

the precision parameter δ
(g)
+ = δ

(g)
S + δ

(g)
U + δ

(g)
A , governing the sample-to-sample variability, and

the group-level relative abundances of s, u and a reads for transcript t: π̄
(g)
S =

δ
(g)
S

δ
(g)
+

, π̄
(g)
U =

δ
(g)
U

δ
(g)
+

,

π̄
(g)
A =

δ
(g)
A

δ
(g)
+

, respectively.

As before, the counts in X are not observed and treated as latent variables, which are sampled
based on ρ’s and π ’s, by allocating reads to their gene of origin and respective splice version (i.e. s,
u or a) (see Section 2.3). As an example, assume that, in sample i, a read is compatible with the s
version of gene w, the u version of gene z, and the a version of gene q; this read will be allocated

to the one of three cases with probability proportional to ρ
(w)
i ∗ π

(w)
Si , ρ(z)

i ∗ π
(z)
Ui , and ρ

(q)
i ∗ π

(q)
Ai ,

respectively. Note that, unlike in the bulk model, here we do not normalize for the effective lengths
of genes; this is primarily due to two reasons. First, the effective length of genes is defined as a
weighted average of the effective lengths of transcripts, weighted by transcript relative abundance,
which is not known. Second, normalizing for the effective length of transcripts in the bulk model
is based on the assumption that, given the samemRNA abundance, longer transcripts will produce
more RNA-seq reads; however, this assumption is not always valid in scRNA-seq protocols.

2.3. Parameter inference

In bothmodels, our hierarchical framework allows sharing of information between samples; we fur-
ther share information across transcripts (bulkmodel) and genes (single-cell model) via an empiri-
cal Bayes approach. In particular, our hyper-parameters δ, in (2.3) and (2.6), are initially estimated
from a random selection of 1,000 genes/transcripts, viaDRIMSeq (Nowicka and Robinson 2016);
these estimates are used to formulate informative priors for all hyper-parameters (Supplementary
Details). Note that, our empirical Bayes approach is very mild because each gene/transcript
contributes in a tiny fraction to the prior formulation. Additionally, we assume a weakly informa-
tive conjugate Dirichlet prior distribution for ρ, which results in a conjugate Dirichlet posterior
distribution (Supplementary Details).

If the values of X (and hence of Y) were observed, it would be straightforward to formulate
the likelihood of themodel in terms of themultinomial and binomial densities in (2.1)-(2.2) (bulk
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model), and in (2.4)-(2.5) (single-cell model). However, since X is not observed, in both models
the likelihood of the data is defined with respect to the actual observations, which, in our case,
are the number of counts in each equivalence class. In general terms, we define θ , X and Z as
the objects containing all model parameters, all latent variables, and the data from all equivalence
classes, respectively. The likelihood of the model, L(θ |Z), can be expressed as the integral over the
latent states: L(θ |Z) =

∫

X p(Z,X = x|θ)dx. Here, we use a Bayesian data augmentation approach
(Tanner andWong 1987; Gelfand and Smith 1990) which, instead of working with this integral,
alternately samples parameters and latent states from their conditional distributions: p(θ |Z,X),
and p(X|Z, θ). In particular, our sampling scheme follows aMetropolis-within-GibbsMarkov chain
Monte Carlo (MCMC) algorithm where parameters are updated, in four steps, from the follow-
ing conditional distributions: δ|π , π |X, δ, ρ|X, and X|Z,π . Importantly, although our approach
involves many parameters, the vast majority of them are updated using a Gibbs sampler, which
results in better mixing and convergence; only the hyper-parameters δ are sampled according to a
Metropolis step, where values are proposed based on an adaptive randomwalk (Haario et al. 2001).
Supplementary Details report, for each parameter, the prior and conditional distributions, and the
sampling scheme used.

Since the sampling of the latent variables is the most computationally intensive step of our
algorithms, we employ an undersampling scheme where latent variables are updated every 10
iterations (users can decrease this parameter). In our benchmarks, this led to a reduction of the
runtime of our full pipeline of 74% and 35%, for the bulk and single-cell models, respectively.
By default, the MCMC is run for 2,000 iterations, with a burn-in of 500 iterations (parameters
can be increased by users). To ensure convergence, a Heidelberger and Welch stationarity test
(Heidelberger andWelch 1983) is performed on the marginal log-posterior density of the hyper-
parameters, i.e. log(p(δ|π)). If the test fails, the burn-in is automatically increased up to half of
the chain length; if convergence is still not reached, a new chain is run, with doubled burn-in and
number of iterations. Additionally, our so�ware allows users to visually investigate convergence and
mixing, by plotting (via the plot_traceplot function), in each group, the posterior distribution of π̃U ,
which is the key parameter of the model (see Section 2.4).

2.4. Comparing groups

Until now, we have shown how we infer model parameters, separately, in each group of samples; in
what follows,wewill describehow results across conditions are compared.To this aim,we introduce
a new parameter, π̃U: in the bulk model, we set π̃U = π̄U , while in the single-cell approach we also
account for 50% of ambiguous reads, and define π̃U = π̄U + 0.5 ∗ π̄A. Note that, for simplicity,
we have dropped gene and transcript indices from the notation. Given two groups of samples,
A and B, to identify differentially regulated genes/transcripts, we compare π̃U between A and
B, that we call Aπ̃U and Bπ̃U , respectively. We therefore define the probability that group B is
up-regulated, compared to group A, as p = Pr (Bπ̃U > Aπ̃U), which can be easily estimated from
the posterior chains. In the Results Section, we used this probability to rank genes/transcripts
for DifferentialRegulation; in particular, we rank them according to max(p, 1 − p). In other words,
results with p close to 0 or 1 are ranked first (i.e. π̃U differs between groups), while results with
p ≃ 0.5 are ranked last (i.e. π̃U similar across groups).

In the single-cell model, we acknowledge that setting π̃U as π̄U + 0.5 ∗ π̄A is based on the
arbitrary choice of equally assigning 50% of ambiguous reads to s and u. Therefore, we also provide
an alternative way to rank genes, which does not require assigning ambiguous reads. In particular,
we approximate the posterior distribution of the original (πS,πU) with a bivariate normal around
its posterior mode, and perform a bivariateWald test (Li et al. 1991) to verify if s and u proportions
are equivalent across groups (Supplementary Details); note that πA is not considered, because it
is uniquely defined by πS and πU . Genes are then ranked based on the P-value of this test. Below,
results based on the probability P are referred to asDifferentialRegulation, while those based on the
Wald test are calledDifferentialRegulation_Wald.
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2.5. Simulation design

We designed several simulation studies to benchmark our method and competing approaches. To
generate realistic simulations, we started with real datasets as anchor data. In the bulk simulation,
which is an extension of the human simulation framework used in Soneson et al. (2016), we used
a sample from Trapnell et al. (2013) (SRR493366) to infer the relative abundance of each tran-
script and splice version. Estimates of sample-to-sample variability were obtained using data from
Cheung et al. (2010) and Pickrell et al. (2010), as previously described (Soneson and Delorenzi
2013).We then used these parameters to simulate counts for each transcript (and splice version) for
6 samples, which were randomly separated in two groups. We randomly selected 2,000 transcripts
as differentially regulated (DR); for each one, we inverted their s and u abundances in one of the two
groups. In order to introduce quantification uncertainty in our simulation, we provided the vectors
with desired transcript per million values for each transcript to RSEM (Li and Dewey 2011) to
simulate reads, and then mapped these reads to a reference transcriptome with salmon (Patro et al.
2017).

In the single-cell simulation, we started from the mouse data from Park et al. (2018), consisting
of four biological replicates; in this case, however, we did not simulate counts: instead, we used
estimated spliced and unspliced counts directly. We annotated cell types via SingleR (Aran et al.
2019), and kept the three most abundant ones. As above, we separated samples in two groups, and
introduced a DR effect, separately for each cell-type, in 20% of genes, by inverting s and u counts
in one of the two groups (selected at random). In order to generate cell-type-specific changes,
we randomly selected distinct differential genes in each cell type. To introduce quantification
uncertainty, we provided the count matrices (generated above) to a read-level simulator, minnow
(m̌innow), and aligned the simulated reads via alevin-�y (He et al. 2022).

In both bulk and single-cell analyses, we designed several additional simulations to investigate
robustness of resutls across various scenarios. First, we generated three simulations, where we
added differential gene expression (DGE) between groups, with an average fold change of 3, 6
or 9. Second, in the bulk analyses only, we simulated differential alternative splicing (DAS) across
conditions;DASwasnot simulated in single-cell data, because it requires transcript-level resolution,
which is not available in scRNA-seq protocols. Here, our aim is to identify DR genes, while DGE
and DAS are nuisance effects, that we do not wish to detect. Below, we refer to DR, DR + DGE
(average fold change of 3), and DR + DAS as our main simulations. Third, in the single-cell
analyses only, we simulated three datasets (with DR only) varying the number of cells with zero
expression (90, 95 and 99%), while keeping the overall gene abundance unchanged. Fourth, we
investigated the impact of batch effects on inference. For what concerns our analyses, batch effects
could potentially introduce differences in overall gene expression (DGE), in alternative splicing
(DAS), or in the relative abundance of spliced reads within genes/transcripts (DR). While the
impact of DGE and DAS on results can be assessed from the simulations described above, we
designed a further simulation where DR is introduced across 2 batches (for the design of batches
and groups, see Supplementary Tables S1 and S2). In methods that allow for covariates (namely,
DEXSeq, DRIMSeq, satuRn, and BRIE2), we explicitly modeled the batch effect. Fi�h, in order
to investigate false positive detections, we generated null simulated datasets, where no differential
effect is introduced between groups. In all simulations, we performed basic filtering and analyzed
genes/transcripts with at least 10 counts per group. For further details about the simulation design,
see Supplementary Details.

3. RESULTS

3.1. Bulk simulation study

We benchmarked DifferentialRegulation against eisaR, which was developed to identify changes in
splicing dynamics from bulk RNA-seq data, and various competitors that recently displayed good
performance in detecting DAS from bulk RNA-seq data:DRIMSeq, satuRn, SUPPA2, andDEXSeq
(Anders et al. 2012), whichwas used on both transcript estimated abundance (i.e.DEXSeq_TECs),
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Figure 2. Results from the main bulk simulations. Top row: ROC curves; i.e. false positive rate (FPR) vs.
true positive rate (TPR). Bottom row: false positive (FP) results among top detections (topN). Le� panel
(DR): simulation with differential regulation only; middle panel (DR + DGE): simulation with
differential regulation and DGE (average fold-change of 3); right panel (DR + DAS): simulation with
differential regulation and DAS.

and equivalence classes counts (i.e.DEXSeq_ECs). Figure 2 reports the receiving operating charac-
teristic (ROC) curve for the main bulk simulations, and the number of false detections among the
top-ranked transcripts, which is particularly relevant because top discoveries are usually selected
for subsequent analyses by life scientists. In all simulated scenarios, DifferentialRegulation, eisaR
and SUPPA2 display good performance, in terms of sensitivity, specificity, and false positive
detections among top-ranked transcripts. Of the three methods, SUPPA2 is the most affected by
DGE and DAS confounding effects, while DifferentialRegulation’s results are consistent also when
increasing the strength of theDGE effect (Supplementary Fig. S1).DEXSeq_TECs and satuRn also
perform well, yet with lower statistical power. Notably, DRIMSeq and DEXSeq_ECs display a low
TPR, because they fail to analyze several transcripts, and return multiple NA’s. These results are
consistent with what was previously observed in Love et al. (2018), Tiberi and Robinson (2020),
andGilis et al. (2022).When introducing batch effects, although the performance of all approaches
decreases, the relative ranking of methods remains stable (Supplementary Fig. S2). Furthermore,
DifferentialRegulation displays robust results, and leads to fewer false positive detections among its
top results than competitors. In addition, we investigated how overall transcript abundance affects
performance, and stratified the results of our main simulations into lowly, medium, and highly
abundant transcripts, corresponding to the first, second, and third tertile of abundance, respectively.
In general, higher abundance corresponds to increased statistical power, andbrings theperformance
of all methods closer; in all cases, the relative ranking of methods remains approximately stable
(Supplementary Figs. S3 and S4).
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Figure 3. Average runtime (in minutes), of each method, across three main bulk (le� panel; DR, DR +
DGE, and DR + DAS, as in Fig. 2), and the two single-cell main simulations (right panel; DR, and DR +
DGE, as in Fig. 4). All methods used 1 core, except BRIE2, which used 6 because the number of threads
cannot be controlled by users.

In the null simulated dataset, all methods control well false positive detections: Supplementary
Table S3 reports, for each method, the percentage of (raw) P-values below 0.1, 0.05 and 0.01.
Additionally,DifferentialRegulation’sP, the estimatedprobability that groupB is up-regulated (while
1 − p is the probability thatB is down-regulated), is centered around 0.5, as onewould expect when
two groups are not differential (Supplementary Fig. 5; le� panel).

From a computational perspective,DifferentialRegulation is the most demanding method, which
is unsurprising given the high cost of full MCMC algorithms involving latent states (Fig. 3, le�
panel); nonetheless, the approach ran in about 1 hour on a single thread.

3.2. Single-cell simulation study

In the single-cell simulation, we benchmarkedDifferentialRegulation against BRIE2 and satuRn_SC
(i.e. satuRn in its single-cell variant), and several approaches originally designed for bulk data:
eisaR,DEXSeq_TECs,DRIMSeq, and satuRn (bulk variant). Except BRIE2 and satuRn_SC, which
use single-cell observations, all methods worked with pseudo-bulk counts (i.e. aggregated counts
across cells in a cluster). Here, DEXSeq_ECs and SUPPA2 were excluded because they could
not be adapted to single-cell data: the former approach is bound to the output structure from
salmon, which is a bulk pseudo-aligner, and the latter requires transcript-level abundances, while
single-cell aligners (e.g. alevin-�y) return counts at the gene level. While eisaR was used on s and
u reads, all remaining methods were run on s, u and a estimated counts, hence accounting for
the uncertainty in ambiguous reads. Note that, however, only DifferentialRegulation accounts for
the variability in reads mapping to multiple genes. In our main simulations, DifferentialRegulation
displays good sensitivity and specificity, although its ROC curve is mainly below those of eisaR
andDEXSeq_TECs (Fig. 4). Nonetheless, ourmethod has fewer false discoveries than competitors
among top-ranked genes, particularly when introducing DGE as a nuisance effect (Supplementary
Fig. S6). Our approaches based on the posterior probability P (DifferentialRegulation), and on
a Wald test (DifferentialRegulation_Wald) perform similarly, although the second one leads to
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Figure 4. Results from the main single-cell simulations. Top row: ROC curves; i.e. false positive rate
(FPR) vs. true positive rate (TPR). Bottom row: false positive (FP) results among top detections (topN).
Le� panel (DR): simulation with differential regulation only; right panel (DR + DGE): simulation with
differential regulation and DGE (average fold-change of 3).

(marginally) fewer false discoveries in top ranked genes (Fig. 4). Results are consistent also when
varying the fraction of cells with zero abundance (Supplementary Fig. S7), and when dealing with
batch effects (Supplementary Fig. S8). In particular, while increasing zero abundance cells has little
impact on the results (which is reasonable in pseudo-bulk methods), batch effects lead to a general
deterioration in performance, particularly for DRIMSeq, satuRn, and satuRn_SC. Nonetheless,
DifferentialRegulation results are robust, especially when considering top detections. As in the bulk
simulation, we also stratified the results of our main simulations by overall gene expression, and
found a consistent ranking of methods across abundance level; as expected, higher gene expression
(i.e. more data) is associated with higher statistical power (Supplementary Figs. S9 and S10).
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Table 1. Single-cell real data analysis. Number of interesting genes present among the top 200 results, of
each cell-type, returned by every method. Methods “sat”, “DiffReg”, andDEX refer to satuRn,DEXSeq,
andDifferentialRegulation, respectively. “brain only” denotes the 97 genes which were only detected in
human brain; “cerebral cortex” indicates the 180 genes which display high expression in the human
cerebral cortex, compared to other regions of the brain; “excitatory neurons” represents the 30 genes
associated to excitatory neurons; “PGP1” refers to the 3 genes linked to PGP1; “overall” gathers all 299
genes belonging to any of the previous lists.

Genes sat_SC DiffReg DiffReg_Wald BRIE2 eisaR sat DEX_TECs DRIM

Brain
only 8 3 3 0 0 0 0 0
Cerebral
cortex 8 7 7 0 0 1 0 0
Excitatory
neurons 3 2 1 1 0 0 0 0
PGP1 0 2 2 0 1 0 0 0
Overall 17 14 13 1 1 1 0 0

In the null simulation study, all methods (except satuRn and satuRn_SC) display a good control
of false positives (Supplementary Table S4), andDifferentialRegulation’s p is again centered around
0.5, although with more variability compared to the bulk simulation (Supplementary Fig. S5; right
panel).

Computationally, coherently with what previously observed, eisaR, satuRn and DEXSeq_TECs
emerged as the fastest methods, while DifferentialRegulation required significantly more time, yet
approximately 35 times less than the other Bayesian approach, BRIE2 (Fig. 3, right panel), despite
BRIE2 using 6 times more cores than any other method.

3.3. Real data application

To compare methods on a real dataset, we considered the scRNA-seq data from Velasco et al.
(2019), containing a total of 21 brain organoids from the human cerebral cortex, which were
grown in vitro, for up to 6 months. Here we only considered a subset of 6 brain organoids from
the PGP1 stem cell line: 3 organoids were observed at three months of development, and 3 were
collected at six months of development. Comparing these two groups of samples should highlight
changes that happen during brain development. A�er filtering low quality cells, via the scater
(McCarthy et al. 2017) R package, and lowly abundant genes, with less than 10 non-zero cells, we
were le� with a total of 35,972 genes and 25,556 cells. Using the cell-type annotation available from
the original study (Velasco et al. 2019),we grouped cells in six cell types (SupplementaryTable S5).
We applied differential methods and discovered differences, for each cell type, across development
time points. We then used The Human Protein Atlas website (Pontén et al. 2008) to generate
the following lists of potentially interesting genes: 97 genes which have only been detected in the
human brain; 180 genes that displayed significantly higher abundance in the human cerebral cortex
(i.e. the area the organoids are derived from), compared to other regions of the brain; 30 genes
associated to excitatory neurons,whichplay a key role in thedevelopment of the humanbrain cortex
(Costa andMüller 2015); 3 genes linked to the PGP1 cell line (i.e. the cell line used to generate
the data). In absence of a ground truth, for each method, we investigated how o�en these genes
appear in the top 200 ranked genes from each cell type. Overall, satuRn_SC,DifferentialRegulation
and DifferentialRegulation_Wald top discoveries contain significantly more potentially interesting
genes than competitors (Table 1). DifferentialRegulation’s results are coherent with the fact that,
in the simulation studies, our approach, among its top ranked genes/transcripts, led to fewer false
positives than other methods.
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We also considered a bulk (paired-end) RNA-seq real dataset from pancreatic β cells in mouse
embryos, collected during pancreas development (Osipovich et al. 2021). The dataset consists
of 3 wild-type, and 3 Zfp800 knockout mice, where Zfp800 is a crucial protein for pancreas
development. A�er removing lowly abundant transcripts (less than 10 counts in at least one group),
we analyzed 54,904 transcripts, associated to a total of 16,347 distinct genes. Following a similar
approach to the one outlined above, we built two lists of potentially interesting genes, searching for
terms “mouse pancreas development” (110 genes) and “ZNF800” (3 genes) onTheHumanProtein
Atlas.We then converted each transcript name to the name of the corresponding gene, and counted
howmany of each method’s top 1,000 results belong to these two lists. Compared to the single-cell
real data, results are more homogeneous across methods (Supplementary Table 6); nonetheless,
DifferentialRegulation identifies slightly more interesting genes than competitors.

Finally, in both bulk and single-cell real data analyses, we visually checked convergence and
mixing of the posterior chains for π̃U (i.e. the key parameter of inference) for the 20most significant
results (traceplots in Supplementary Figs. S11–S14). Additionally, we investigated how robust
results are when running the algorithm multiple times. To this aim, we analyzed each real dataset
twice, using distinct seeds for the random number generator (i.e. set.seed in R), and compared
results: Wald test P-values across runs were highly coherent, with a Pearson correlation of 0.987
and 0.996 in the bulk and single-cell application, respectively.

4. DISCUSSION

We have introduced DifferentialRegulation, a Bayesian hierarchical approach to discover differ-
entially regulated genes and transcripts across conditions, by detecting changes in the relative
abundance of unspliced reads, which indicate differences in the future mRNA production. Our
method works with both bulk and single-cell RNA-seq data, and is based on two distinct models to
adapt to thepeculiar aspects of thedata being analyzed. Similarly, the outputs of the two frameworks
differ, and take advantage of the information that each data type provides: in bulk data, we target
transcript-level changes (across all cells), while in single-cell data, we aim at cluster (e.g. cell-
type) specific changes, yet at the gene level. Importantly, RNA-seq data is typically characterized
by a high degree of quantification uncertainty: we account for it via a latent variable approach
where reads are allocated to their gene/transcript of origin, and to the corresponding splice
version.

Starting from real data as anchor data, we designed several benchmarks for bulk and single-cell
RNA-seq data, and compared DifferentialRegulation to state-of-the-art tools. Our method displays
good sensitivity and specificity, and shows fewer false discoveries than competitors among top
ranked genes, that are usually chosen by biologists for further investigations. Additionally, our
approach appears to be robust with respect to nuisance effects, such as differential gene expression,
differential alternative splicing, and batch effects, and shows good performance even in lowly
abundant genes/transcripts. We also performed two real data analyses, where our method can
detect (among its top ranked genes) more potentially interesting genes than most alternative
approaches.

We distributedDifferentialRegulation, open-access, as an R package via the Bioconductor project,
which facilitates its integration with other bioinformatics tools and pipelines; furthermore, we
provided an example usage vignette, and plotting functions that simplify the visualization of results.

Finally, we would like to acknowledge some limitations of our framework. First, our method is
amongst the most computationally demanding tools we tested, although clever coding techniques
(such as undersampling, and C++ coding) enabled us to run our approach in our benchmarks in
approximately 40-60 minutes using a single core. Furthermore, note that, our single-cell approach
can also benefit from parallel coding, which can be particularly useful in large datasets. Second,
covariates, such as batch effects, are not modeled; nonetheless, such nuisance effects usually affect
overall gene abundance, while our framework focuses on relative abundance, and (as shown) is
robust to DGE changes; therefore, such covariates are unlikely to impact results.
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