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AttentionCARE: replicability of a
BCI for the clinical application of
augmented reality-guided
EEG-based attention
modification for adolescents at
high risk for depression

Richard Gall', Nastasia Mcdonald?, Xiaofei Huang?®, Anna Wears?,
Rebecca B. Price?, Sarah Ostadabbas®, Murat Akcakaya'* and
Mary L. Woody?

Signal Processing and Statistical Learning Laboratory, Department of Electrical and Computer
Engineering, University of Pittsburgh, Pittsburgh, PA, United States, 2Clinical Application of
Neuroscience Laboratory, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,
United States, *Augmented Cognition Laboratory, Department of Electrical and Computer
Engineering, Northeastern University, Boston, MA, United States

Affect-biased attention is the phenomenon of prioritizing attention to
emotionally salient stimuli and away from goal-directed stimuli. It is thought that
affect-biased attention to emotional stimuli is a driving factor in the development
of depression. This effect has been well-studied in adults, but research shows
that this is also true during adolescence, when the severity of depressive
symptoms are correlated with the magnitude of affect-biased attention to
negative emotional stimuli. Prior studies have shown that trainings to modify
affect-biased attention may ameliorate depression in adults, but this research
has also been stymied by concerns about reliability and replicability. This study
describes a clinical application of augmented reality-guided EEG-based attention
modification ("AttentionCARE") for adolescents who are at highest risk for future
depressive disorders (i.e., daughters of depressed mothers). Our results (n = 10)
indicated that the AttentionCARE protocol can reliably and accurately provide
neurofeedback about adolescent attention to negative emotional distractors that
detract from attention to a primary task. Through several within and cross-
study replications, our work addresses concerns about the lack of reliability
and reproducibility in brain-computer interface applications, offering insights for
future interventions to modify affect-biased attention in high-risk adolescents.

KEYWORDS

affect-biased attention, electroencephalography (EEG), augmented reality (AR), brain-
computer interface (BCI), neurofeedback, depression

1 Introduction

Attention plays a critical role in shaping an individual’s ongoing perceptions about
their environment and their ability to distinguish between cues related to sadness vs. joy
or punishment vs. reward (Posner, 2016). This, in turn, has profound downstream effects
on behavioral patterns and emotional states (Beck, 2008). Affect-biased attention refers to
a biased pattern of preferential attention toward a stimulus based on its relative affective
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salience (Todd et al., 2012; Morales et al., 2016). This cognitive
phenomenon is driven by biobehavioral mechanisms that prioritize
stimulus-driven attention to emotionally salient stimuli, which
diverts goal-directed attention from stimuli relevant to a task at
hand (for a review, see Woody and Price, 2022). For example, an
individual who exhibits high levels of stimulus-driven attention
for negative information may be more likely to click on a text
notification about a distressing news article while completing
an academic assignment, detracting from goal-directed attention.
When this bias happens chronically, it can lead to an increased
risk for depression or other internalizing disorders (LeMoult and
Gotlib, 2019).

Affect-biased attention for negative information is theorized
to be a key contributor to the development and maintenance
of depression and anxiety. According to cognitive models of
depression, increased attention toward negative information leads
to a skewed integration of environmental information across
cognitive systems (Price and Woody, 2024). This imbalance gives
rise to a flow of negative memories and perceptions regarding
oneself, others, and the world, which then increases the likelihood
that the individual will continue to exhibit biased attention for
negative information. Empirically, cognitive models have been
supported by research showing that increased attention to negative
information—particularly when it occurs at the expense of positive
and/or goal directed information—are associated with depressed
mood and functional impairment (for meta-analyses, see Peckham
et al., 2010; Armstrong and Olatunji, 2012; Suslow et al., 2020).

Although much of past research has centered on adults, a
growing body of evidence suggests a comparable link between
affect-biased attention and adolescent depression (Platt et al., 2017).
For example, studies have shown that adolescents with a history
of past or current depression, when compared to their never-
depressed peers, are more likely to display increased attention to
sad stimuli (Ladouceur et al., 2006; Hankin et al., 2010; Maalouf
etal., 2012; Sylvester et al., 2015). Further, the severity of adolescent
depressive symptoms is correlated with the magnitude of such
affect-biased attention (Platt et al., 2015; Sylvester et al., 2015).
Finally, affect-biased attention for negative information has been
shown to be a marker of risk for future adolescent depression,
as increased attention for sad stimuli is already present in never-
depressed but high-risk adolescents, but not in their lower risk
peers (Joormann et al., 2007), and this bias can be used to predict
future trajectories of adolescent depressive symptoms (Osinsky
etal., 2012).

Affect-biased attention often first emerges during adolescence
(Gibb et al.,, 2023) and is thought to have an outsized impact on
adolescent mood for several reasons. First, adolescence represents
a critical phase for brain maturation. During this period, the
development of prefrontal cortex regions, which modulate goal-
directed attention, is ongoing (Ladouceur, 2012; Casey et al,
2019). Simultaneously, limbic regions, which prioritize processing
of affectively salient stimuli, exhibit heightened activity during
adolescence, compared to childhood or adulthood. This heightened
reactivity can often overwhelm still maturing “goal-directed”
regulatory inputs from the prefrontal cortex and fronto-limbic
connections responsible for sustaining task-oriented attention,
leading to affect-biased attention (Ladouceur, 2012; Casey et al.,
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2019; Woody and Price, 2022). Second, adolescence is defined by
a series of changes such as the onset of puberty, social transitions,
and increasing academic demands (Silk et al., 2012; Guyer, 2020)
that can lead to novel stressors that are no longer well-addressed by
the coping skills established during childhood (Rapee et al., 2019).
Thus, during adolescence, the confluence of heightened stress and
ongoing brain maturation can allow affect-biased attention for
negative information to flourish, which may then increase risk for
future depression (LeMoult and Gotlib, 2019).

Identifying markers of risk for adolescent depression is seen
as a critical goal for public health as these markers may also
inform novel intervention targets that could alter the trajectory of
depressive disorders (Woody and Price, 2022). Adolescence marks
a key developmental window of risk for the onset of depressive
disorders given that levels of depression rise precipitously during
this phase and as many as 17% of adolescents will experience
an episode of major depressive disorder (MDD) by adulthood
(Merikangas et al., 2009). Furthermore, research has indicated that
the likelihood of adolescent depression is increased in specific
populations. For example, adolescent girls are more than twice
as likely to develop MDD compared to boys (Rapee et al,
2019). Additionally, offspring of depressed mothers are 3-4 times
more likely to develop MDD than those with never-depressed
mothers (Goodman, 2007). Given the elevated risk for depression
during adolescence, especially among high-risk youth like girls and
offspring of depressed mothers, it is imperative to identify risk
factors that precede the onset of adolescent depression, as they may
inform modifiable targets for early preventative interventions that
mitigate the risk of depression.

For these reasons, our team sought to develop a novel brain-
computer interface (BCI), AttentionCARE, that could be used
to modify affect-biased attention for negative information in a
population of high-risk adolescents (i.e., adolescent daughters
of depressed mothers). We hypothesized that training high-risk
adolescents to redirect attention from negative information and
attend to goal-directed information might disrupt the vicious
cycle linking affect-biased attention and depressed mood. Initial
interest in modifying affect-biased attention to improve depressed
mood stemmed from observations that antidepressants, such as
selective serotonin reuptake inhibitors (SSRIs), led to reductions
in attention to negative information, preceding improvements
in mood (Browning et al, 2010). Attention bias modification
training (ABMT) has since been tested as a possible treatment for
depression, and a recent meta-analysis from adult samples revealed
that ABMT leads to significant reductions in depressive symptoms
(Xia et al., 2023). However, this review and others (Price et al.,
2015; Rodebaugh et al., 2016) have also shown that existing ABMT
paradigms are limited by reliability and interpretability challenges,
and there is a need to enhance the robustness and precision of
these interventions. Further, ABMTs have rarely been tested during
adolescence (but see De Voogd et al., 2014; LeMoult et al., 2016).

Due the
neurofeedback has emerged as a promising approach for
modifying affect-biased attention (Woody and Price, 2022). Past
research has demonstrated the effectiveness of using neurofeedback

to accuracy of brain-based measurements,

to influence real-time attentional patterns (Debettencourt et al.,
2015), which can enable depressed patients to promptly and
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precisely modulate their affect-biased attention (Schnyer et al.,
2015; Mennen et al., 2021). However, these previous neurofeedback
paradigms have relied on expensive functional magnetic resonance
imaging (fMRI) procedures, constraining their future applicability
to clinical settings.

Using electroencephalogram (EEG) based neurofeedback can
not only enhance cost-effectiveness but also increase the feasibility
of clinical translation. Thus, in a previous pilot study, we developed
a more cost-effective EEG brain-computer interface, which used
steady-state visual evoked potentials (SSVEPs) to direct the
attention of five healthy adults while they completed a primary
cognitive task in augmented-reality (AR) (Huang et al., 2022).
Derived from EEG, SSVEPs are evoked by visual stimuli that
are luminance modulated at a fixed frequency and generated by
the primary visual cortex (Wieser et al., 2016). The magnitude
of SSVEP responses fluctuate with an individual’s attention to a
flickering stimulus, and by frequency-tagging SSVEPs to multiple
visual stimuli flickered at distinct frequencies, this method can
effectively differentiate attention to competing stimuli, even when
they overlap entirely in both time and space (Miiller et al., 2008;
Woody et al., 2017). SSVEPs offer BCIs a temporally-sensitive
neural measure of competition between stimulus-driven and goal-
directed attention at the level of neuronal populations in the
visual cortex.

Our AttentionCARE ~ BCI SSVEP
measurements, captured in response to competing visual stimuli

pilot integrated
presented through AR technology, for real-time detection of
affect-biased attention and implementation of neurofeedback. This
BCI employed a Microsoft HoloLens AR head-mounted display to
present competing visual stimuli superimposed on the real-world
environment. In a clinical context, the use of AR enables patients
to perceive their surroundings while tasks or alerts are displayed in
their visual field, creating an overlay effect. This approach enhances
comfort and intuitive control compared to an entirely virtual space.
Notably, AR technology has found applications in medical settings
and as part of BCI protocols (Lenhardt and Ritter, 2010; Zao et al.,
2016; Mak et al., 2022). Despite these advancements, our pilot
BCI was the first to employ AR as a part of affect-biased attention
training (Huang et al., 2022).

To direct affect-biased attention training, we developed an
attentional paradigm where, in each trial, we superimposed
two competing visual stimuli on the Hololens AR goggles.
Participants were instructed to focus on the task-relevant stimulus
(a semitransparent group of parallel lines, or a “Gabor” patch)
while ignoring an emotional distractor (an angry or sad face).
Each stimulus flickered at a separate frequency (8.57 or 12 Hz) to
differentiate SSVEP responses to the Gabor and the face. Following
each trial, participants received feedback on the extent of attention
given to the Gabor vs. the face, as indicated by a calculated SSVEP
feedback score. Findings revealed that our AttentionCARE BCI
led to discriminant SSVEP responses for both the Gabor and the
face and produced excellent internal reliability, when comparing
responses to odd vs. even trials (Huang et al., 2022).

The current study sought to implement a similar BCI to target
affect-biased attention in a sample of adolescent girls at high risk
for depression (n = 10). Specifically, we investigated the use of
a participant-specific support vector machine (SVM) to generate
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feedback about the probability that a participant was attending to
the Gabor, relative to the emotionally distracting face. Since EEG
signals are known to vary across individuals (Schirrmeister et al.,
2017; King et al., 2018), a generalized algorithm—such as what was
used in our earlier work (Huang et al., 2022) —may not accurately
capture the visual attention of all participants. We theorized that by
personalizing feedback about affect-biased attention, then it would
better reflect the visual attention of a participant and thus better
promote learning due to the improved feedback.

Through use of the proposed algorithm, we hypothesized
the successful reproduction of our pilot findings showing
that discriminant SSVEP responses can be generated by our
AttentionCARE BCI with high levels of internal reliability, but
now in a sample of adolescents at high risk for future depression
(i.e., adolescent daughters of depressed mothers) and with a
participant-specific SVM. From a preliminary sample of five
adolescents, the performance of several SVMs (using different
feature types, kernels, and a forward feature selection technique)
were profiled to determine the best performing algorithm across
the preliminary group. Following the selection of a novel SVM
classifier, we hypothesized that accuracy would be maintained,
within a tolerance, by implementing the same SVM classifier
parameters in a separate replication sample of five adolescents. If
these hypotheses were supported, then the current study’s use of
a novel BCI, coupled with robust methodology and commitment
to reproduce and replicate findings from our past and ongoing
work, would ensure a valuable contribution to the development and
implementation of a novel BCI to target affect-biased attention in a
sample of adolescents at high risk for future depression.

2 Methodology
2.1 Participants

Participants included 10 adolescents (100% assigned female
at birth) who were recruited as part of a larger longitudinal
study (n = 93). At the time of completing the current protocol,
adolescents were between the ages of 14 and 16 (M = 14.6). Among
adolescents in the current study, 80% self-identified their race as
White, 10% as African American/Black, and 10% as Multiracial.
Regarding ethnicity, 10% self-identified as Hispanic. The sample
was enriched for future risk for depression as 70% of adolescents
had a mother with a history of MDD in their lifetime but at the
time of completing the protocol, the adolescent did not meet DSM
5 diagnostic criteria for any current or past mood disorder.

Participants were split into two cohorts, consisting of five
adolescents in the first cohort and five adolescents in the
second. The first cohort was used as the preliminary sample
whereas the second cohort was used as a replication sample.
The preliminary sample completed only the two baseline phases
of the AttentionCARE protocol whereas the replication sample
completed both baseline phases and the feedback phase. This
study followed an IRB-approved protocol from the University
of Pittsburgh.
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The AttentionCARE stimuli presentation. A Gabor with 50% opacity, flickered at 12 Hz, f1, overlays a flickering emotional distractor stimulus at 8.57 Hz,
fo, (Huang et al., 2022). Facial image reproduced with permission from NIMH Child Emotional Faces Set (Egger et al., 2011).

FIGURE 1

FIGURE 2

(A) Participant completing a trial of the AttentionCARE protocol, depicting an example of the stimuli presented in a trial. (B) The bar chart used to
display the attention of the participant, where a higher score represents more attention given to a specific stimulus (Gabor or angry/sad face) (Huang

et al., 2022).

Gabor

Face
Click to next trial

2.2 AttentionCARE protocol

Consistent with our previous work (Huang et al., 2022), we
implemented the EEG-based AttentionCARE protocol using AR,
to ascertain participants attention to affective distractors vs. task-
relevant stimuli. In the protocol, each trial consists of an angry
or sad face (i.e., affective distractor) presented at the center of the
field of view of the AR headset (corresponding to the center of the
participants field of view), with a semi-transparent Gabor patch
(i.e., task-relevant stimuli) overlaying the face, presented for 5s.
The faces were flickered at a frequency of 8.57Hz (f;) and the
Gabor at a frequency of 12Hz (f,). By flickering the stimuli at
different frequencies, SSVEPs were evoked in the EEG signal at the
specific frequency tag, f; or f,, depending on the allocation of the
participant’s attention to each visual stimulus. Affective distractors
included 30 pictures of 15 female adolescent actors with sad and
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angry expressions selected from the NIMH Child Emotional Faces
Set (Egger et al., 2011). An example of the stimuli presented in a
trial is depicted in Figure 1.

The protocol was comprised of three phases: baseline, feedback,
and mastery; however, in this work we focused on the baseline
and feedback phases only. The baseline phase consisted of 30 trials,
during which the participant was instructed to attend to either the
face or the Gabor for every trial. The baseline phase is repeated
twice to have the participant attend to both the faces and Gabor for
30 trials each. In “Baseline 1,” participants are asked to pay attention
to the Gabor and ignore the face, and in “Baseline 2” they are asked
to pay attention to the face and ignore the Gabor. EEG data is
collected continuously. During the feedback phase, participants are
told to only pay attention to the Gabor and ignore the face during
each trial. The feedback phase includes three ‘epochs; where each
epoch consists of 50 trials of stimuli presentation, with feedback
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FIGURE 3

Flow diagram of the AttentionCARE protocol. The facial and feedback stimuli shown here are all the same, but in the protocol the stimuli would vary.

presented at the end of each trial. Within each epoch, 10 faces
are shown, and each face is shown five trials in a row, which
provides an opportunity for the participant to repeatedly practice
reducing their attention to that specific face. At the end of the trial,
participants are given feedback related to competition between the
attention they paid to the Gabor vs. the face. Feedback is given as
a visualization of the probability of whether the participant was
paying more attention to the face or the Gabor during that trial.
Figure 2 depicts an example of feedback given to a participant.
The goal of the feedback is to direct participants’ attention away
from affective distractors (i.e., the faces) and toward the task-
relevant stimuli (i.e., the Gabor). Feedback is generated using the
EEG data collected during a given trial. A flow diagram of the
paradigm is depicted in Figure 3 to better show the different phases
of the protocol and where participants were instructed to direct
their attention. Additionally, this figure includes the specifics of
which cohort completed which phases of the protocol. The display
order of the faces is randomly permuted, for each phase, across
participants to ensure there is no effect based on the display order.

2.3 Acceptability questionnaire

Following the completion of the AttentionCARE protocol,
participants completed a self-reported questionnaire to gauge the
acceptability of the system [adapted from Sekhon et al. (2022)].
Components of acceptability assessed included: (1) comfort, (2)
effort, (3) alignment with values, (4) perceived effectiveness, (5)
understanding of intervention, (6) self-efficacy and confidence, (7)
opportunity costs. Participants responded to statements, on a scale
of 1-5, such as “How comfortable did you feel when you were
asked to use neurofeedback to focus your attention on the non-
emotional parts of the game (i.e., the group of lines) vs. the negative
parts (i.e., the sad and angry faces)?” The anchor point for all
questions was 1, representing the minimum for the statement; in
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TABLE 1 Acceptability Questionnaire Items and M (SD) of
participant responses.

M (SD)

3.60 (1.14)

Item

How comfortable did you feel when you were asked to use
neurofeedback to focus your attention on the non-emotional
parts of the game (i.e., the group of lines) vs. the negative
parts (i.e., the sad and angry faces)?

How much effort did it take to use neurofeedback to focus 3.40 (1.34)
your attention on non-emotional vs. negative parts of the

game?

How fair is it to ask you to use neurofeedback to focus your 3.40 (1.34)

attention on non-emotional vs. negative parts of the game?

It is clear to me how the neurofeedback training will help me
to control my attention to non-emotional vs. negative
information

2.80 (1.10)

Neurofeedback training has helped me control my attention 3.20 (1.10)

to non-emotional vs. negative information

How confident did you feel using neurofeedback to focus 2.60 (1.34)
your attention on non-emotional vs. negative parts of the

game?

Learning to control my attention to non-emotional vs.
negative information is in line with my priorities

2.80(1.10)

the example statement above a response of 1 would represent “very
uncomfortable.” Full statements and the M (SD) of participant
responses are included in Table 1.

2.4 BCIl hardware

The system is comprised of four components working together
to implement the protocol. More specifically a Computer, a
Microsoft HoloLens 1, an EEG amplifier, and an Arduino. Figure 4
shows the interconnections of all components. The first component
is the computer, which acts as a centralized control hub for all
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Computer

Arduino-BLE

USB Serial
Cable

Bluetooth

Trigger  HoloLens
Cable

—_g.USBamp

USB Cable ol Amplifier

A flowchart illustrating the system’s interconnected components. The computer serves as the central control hub for all external devices. The
HoloLens handles stimulus presentations, while the G.USBamp Amplifier is utilized for collecting EEG data. The Arduino facilitates communication
between the Computer, HoloLens, and Amplifier, ensuring synchronization of stimulus presentation and EEG data collection.

external devices using MATLAB R2015a. The HoloLens uses real-
time head tracking to project the stimuli and feedback into a
participant’s field of view, developed in Unity. The system uses a
¢.USBamp biosignal amplifier using active g.Butterfly electrodes
with cap application from g.Tec (Graz, Austria) to record the
EEG signals, at a sampling rate of 256 Hz. The EEG data was
collected from 16 channel locations (P1, PZ, P2, CP1, CPZ, CP2,
CZ, C3, C4, T7, T8, FC3, FC4, F3, F4 and FZ) based on the
international 10/20 system. All EEG data is filtered by a Kaiser
FIR bandpass filter between [1, 40] Hz before processing. To
connect all components together an Arduino is utilized to send
commands via Bluetooth Low Energy (BLE) from the computer to
the HoloLens and amplifier. Additionally, due to latency differences
between the wired connection of the amplifier and BLE the Arduino
synchronizes the EEG data to the stimuli presentation. For a full
description of the system refer to our previous work (Huang et al.,
2022).

2.5 Feedback calculation for AttentionCARE
protocol

2.5.1 Preliminary sample

The preliminary sample was used to investigate the initial
performance of a participant-specific support vector machine
(SVM) to calculate feedback regarding the probability that a
participant was attending more to the Gabor or the face based on
their SSVEP responses for a given trial. Several different features
were extracted, along with a forward feature selection technique,
for each participant to establish the optimal features for the model.
Three different features were tested: the power spectral density
(PSD), the power of EEG signals from different frequency bands
around the harmonics of the Gabor and the face, normalized by
the total power of the signal (Power banks), and the correlation of
the EEG signal to a cosine signal oscillating at the frequencies of
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TABLE 2 Equations used to extract features from the EEG data for all
different feature types.

1
PSD N [Xas

nf+fo 2
> it [Xchannet ()|
o | Xenanna (F) [

Xehannel (1) cos (27 ?’lf[)

Power banks

Cosine correlation

the harmonics of the Gabor and the face (Cosine correlation). The
features were extracted from the occipital scalp region, which is the
region that is responsible for visual perception, corresponding with
channels O1, 02, and Oz. The forward feature selection method
iteratively adds random features from the full set to an empty
feature bank and trains the model until a criterion is met, in this
case, the misclassification rate was minimized. This results in a
model that uses a minimal subset of features while maintaining
a low misclassification rate. In addition to the three different
feature types, three different kernels were explored as well: linear,
polynomial, and radial basis function (RBF). Due to the limited
amount of data (i.e. 60 trials per participant) when training the
models, five-fold cross-validation was utilized to not overfit to a
certain data split.

Each feature was extracted from the EEG data based on the
equations shown in Table 2, where Xchannel (#) is the EEG data from
the respective channel, Xchanne(f) is the fast Fourier transform
(FFT) of the EEG data for a given channel, N is the total number
of EEG samples, f‘ is the fundamental frequency of the Gabor or
the face (corresponding to f; or f;), n is the n-th harmonic, and
fo is half the range of the frequency bin. For the PSD features,
the FFT is taken with respect to the average across the occipital
channels discussed above; the power bank and cosine correlation
features were extracted from each independent channel (i.e O1, 02,
and Oz).

It is important to note that when completing the
AttentionCARE protocol both the baseline phases and feedback
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phase are done in the same session, meaning that the classifier
was trained immediately following the baseline phases on the
data collected from that participant. This places an additional
constraint on the model selected, as it is paramount that the
training process is fast to ensure participants remain engaged.
Thus, the best-performing classifier was chosen not just by the
accuracy of the model but rather a combination of the accuracy
and the time to train.

2.5.2 Replication sample

Following the experiments with the preliminary sample to
determine the best-performing classifier that meets all criteria
previously outlined, the replication sample was used to evaluate
the classifier in several ways. Firstly, an identical analysis, using
five-fold cross validation was performed to establish if the model
performance could be replicated on the replication sample based on
a threshold determined by the preliminary sample. The threshold
was chosen to be within 10% of the accuracy on the preliminary
sample, the 10% tolerance is reasonable criteria as differences in
the classifier performance across the two groups was expected since
EEG signals vary across individuals (Schirrmeister et al., 2017;
King et al.,, 2018). Due to the limited number of participants, a
statistical analysis cannot be informative therefore the threshold
was used to explore the replicability until more data is gathered.
Additionally, the best-performing classifier on the preliminary
sample was implemented into the protocol to calculate feedback
during the feedback phase that the replication sample completed.
The classifier was trained on an 80%—20% split of the baseline data
to train and validate the model. Following training the model a
posterior probability distribution was fit to the SVM to normalize
the output between zero and one (Platt, 1999), thus the feedback
score represents the probability that a participant is attending to the
Gabor, relative to the face. The feedback given by the classifiers used
during the feedback phase was validated on the baseline data to
ensure that the probability scores were informative to participants.
Additionally, an examination of the reliability and usability of the
system was conducted on all phases of the AttentionCARE protocol
completed by the replication sample to certify the stability of all
phases in the protocol. Lastly, associations between participant
performance during the feedback phase and their acceptability
survey responses were examined.

3 Results

As described in the methodology, we utilized the preliminary
sample to investigate several different types of SVM classifiers
along with different feature types for implementation into the
AttentionCARE protocol. After completing the protocol, the
replication sample data was used to determine if the results
from the preliminary sample were replicated, indicating a within-
study replication. The validity of the feedback scores, or Gabor
probabilities, were examined in the replication sample to ensure
that the feedback given was significantly different when attending
to the Gabor or Face. Furthermore, we tested whether the high
internal reliability was preserved from our original work (Huang
et al.,, 2022) after the SVM classifier was tested in an adolescent
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sample, which would represent a cross-study replication. Finally,
exploratory analyses were conducted to assess the preliminary
effectiveness of the feedback during the feedback phase.

3.1 Within-study implementation,
replication, and validation of a
participant-specific SVM classifier

3.1.1 Implementation

The results of the participant-specific SVM experiments
performed on the Preliminary Sample for each feature type are
shown in Table 3. The table indicates which feature type was
used along with the specific parameters, if applicable, for a given
experiment. The parameters used are the number of harmonics, n,
and the range of the filter banks, fy, and whether forward feature
selection was used, FS.

As seen in the table, the best-performing classifier, based on
the average accuracy across the preliminary sample, was a linear
SVM with power bank features using a frequency range of fy =
2, n = 3 harmonics, and the forward feature selection technique.
However, our participant-specific SVM experiments also revealed
that training this classifier required an increased time to complete
(5-10 min), given the extended time requirements imposed by the
forward feature selection method. As described in Section 3.2,
there is an additional constraint on time to train the model, which
when using the forward feature selection technique cannot be met.
Past research has demonstrated that shorter ABMT protocols are
associated with more robust clinical effects (Price et al., 2017),
thus we chose to minimize any unnecessary delays in the current
protocol. Due to this, the best classifier not using forward feature
selection was chosen for the protocol, which was a linear SVM
with power bank features using a frequency range of fy = 2, n =
3 harmonics. The average accuracy of this classifier was 0.770 £
0.093, establishing a replication threshold of 0.693 - 0.847.

3.1.2 Replication

In the replication sample, the linear SVM with power bank
features using a frequency range of fy = 2, n = 3 harmonics was
found to have an average accuracy of 0.710 £ 0.115, which is
within the threshold range considered indicating a replication of
the findings from the preliminary sample.

3.1.3 Validation

To validate the performance of the linear SVM with power
bank features using a frequency range of fy = 2, n = 3 harmonics
used in the replication sample, we conducted analyses to determine
if the classifier could discriminate between SSVEP responses
for a participant attending to either the Gabor or the face.
When participants were instructed to pay attention to the Gabor
and ignore the face in Baseline 1, the probability scores were
significantly higher (M = 0.591, SD = 0.214) compared to when
they were asked to focus on the face and ignore the Gabor in
Baseline 2 (M = 0.286, SD = 0.183), £(4)=3.885, p = 0.018,
Cohen’s d = 1.737. This result indicates that the classifier trained for
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TABLE 3 Average accuracy across the preliminary sample using power spectral density features (PSD), power bank features, and cosine correlation
features (cosine corr) with different number of harmonics (n), frequency ranges (fp) and using the forward feature selection technique (FS).

Feature type Parameters Linear Polynomial Radial basis function ‘
PSD - 0.703 = 0.204 0.700 = 0.170 0.690 = 0.208
PSD FS 0.683 £ 0.198 0.683 £ 0.165 0.677 £0.212
Power bank n=1f=15 0.633 £ 0.172 0.607 = 0.120 0.640 = 0.103
Power bank n=2f=15 0.670 £ 0.135 0.703 £ 0.127 0.670 £ 0.157
Power bank n=3"f=15 0.737 £ 0.107 0.757 £ 0.102 0.710 £ 0.152
Power bank n=3"f=15FS 0.800 == 0.096 0.803 £ 0.119 0.800 = 0.102
Power bank n=11f =2 0.717 +0.120 0.690 + 0.148 0.620 %+ 0.145
Power bank n=2f=2 0.743 £ 0.89 0.663 £ 0.157 0.703 £ 0.112
Power bank n=31f=2 0.770 = 0.093* 0.730 £ 0.126 0.757 £ 0.138
Power bank n=31f=2FS 0.817 = 0.86 0.773 £ 0.124 0.857 = 0.082
Cosine Corr n=1 0.503 £ 0.114 0.540 = 0.064 0.560 = 0.134
Cosine Corr n=2 0.527 = 0.058 0.553 = 0.049 0.580 = 0.134
Cosine Corr n=3 0.560 % 0.069 0.613 % 0.066 0.617 £ 0.132
Cosine Corr n=3,FS 0.697 = 0.056 0.670 £0.115 0.750 = 0.099

The performance of the classifier selected for further testing in the replication sample is highlighted and marked with an asterisk.

TABLE 4 Average Gabor probability scores observed across the feedback phase, split by participant.

Participant  Average Number of times a face is seen Half of feedback phase
First Second

2 025 0.27 0.29 021 0.27 0.22 0.32 0.18

3 0.68 0.70 0.72 0.63 0.68 0.69 0.74 0.62

4 0.20 0.18 020 0.17 025 0.18 0.18 021

5 045 0.42 043 0.46 0.44 0.50 0.53 037

Average Gabor probabilities are also compared across the number of times a face was seen and in the first vs. second half of the feedback phase.

the AttentionCARE protocol successfully discriminated attentional ~ learned to redirect their attention would not be reflected in
competition between competing visual stimuli that overlap in time  unreliable feedback.
and space.

3.3 Evaluation of feedback effects observed

during the AttentionCARE protocol
3.2 Cross-study replication of the internal
consistency of the AttentionCARE protocol Table 4 shows the average Gabor probabilities classified during
the feedback phase, split by participant ID. The table also presents
To replicate the findings from our previous work regarding  average Gabor probabilities across the number of times a face
internal consistency of the AttentionCARE Protocol (Huang et al., ~ was seen and in the first vs. second half of the feedback phase.
2022), we performed an identical analysis on the split-half reliability ~ Of note, probability scores >0.50 indicated that the Gabor “won”
during all phases completed by the replication sample. We  the competition for attention, as determined by the classifier. If
found excellent even-odd split-half reliability (Guttman coefficients  the feedback protocol was working as expected, we would expect
ranging from 0.963 to 0.998), demonstrating that the reliability ~ that most participants would show Gabor probabilities >0.50. In
of the protocol was preserved in an adolescent sample and while  contrast, as shown in Table 4, only two out of five participants
using a participant-specific SVM classifier. Of note, a Guttman  attended more to the Gabor, relative to the face, on average during
coefficient closer to 1 indicates higher internal consistency of the  the feedback phase.
calculated probability scores. Internal reliability of a protocol is To probe this unexpected finding, we conducted exploratory
important to consider as feedback with low reliability may not  analyses to consider whether Gabor probabilities would increase
be useful to a participant since the effectiveness of the techniques  as the number of times each face was seen, as this would
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indicate that the participant was learning from feedback given
during previous trials. In addition, comparisons of the first vs.
the second half of the feedback phase could be used to describe
differences in performance after just being exposed to the feedback
phase compared to when a participant has more experience. To
statistically examine changes in Gabor probability scores by the
number of times a face was shown (i.e., trial 1 through 5) and
over time (first half vs. second half of the feedback phase), we
conducted a 2 (Time: first half, second half) x 5 (Trial: 1-5)
repeated measures ANOVA with Gabor probabilities serving as the
dependent variable. The main effects of Time, F(; 4y = 2.135, p =
0.218, r)f) = 0.348, and Trial were nonsignificant, F(4 4y = 1.412,p =
0.275, 7112) = 0.261, indicating that the Gabor probabilities did not
differ significantly across time or trials. In addition, the Time x
Trial interaction was nonsignificant, F(44) = 0.543, p = 0.707, r)f)
= 0.120.

Finally, to consider whether there were individual differences
associated with participant performance, we examined correlations
between participants’ average Gabor probabilities during the
feedback phase and responses from the acceptability questionnaire.
These are depicted in Figure 3. Gabor probability scores were
positively correlated with perceived fairness, efficacy, clarity, and
value of the protocol, as well as negatively correlated with effort.

10.3389/fnhum.2024.1360218

4 Discussion

Affect-biased a  well-established
vulnerability implicated in the development and maintenance of

attention is cognitive
depression that is known to emerge during adolescence (Gibb
et al., 2023). The current study describes the development and
implementation of the novel BCI, AttentionCARE, designed to
modify affect-biased attention in a sample of adolescents enriched
for risk for future depression (i.e., adolescent girls, 70% of whom
also had a history of maternal MDD during their lifetime). To
address the lack of reproducibility and reliability in past BCI
applications, our study hypotheses emphasized findings that
we could show to be replicable and verifiable. Specifically, we
conducted a successful replication of our earlier pilot findings
in adults (Huang et al., 2022), which showed that discriminant
SSVEP responses could be generated by our BCI with high levels
of internal reliability. However, in the current study, we achieved
these results by developing a novel participant-specific SVM to
calculate the probability that a participant was exhibiting high
levels of goal-oriented attention (i.e., attention to the Gabor in the
AttentionCARE protocol) compared to stimulus-driven attention
(i.e., attention to distracting angry and sad faces) and testing itin a
sample of high-risk adolescents. High internal consistency that can
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be reproduced across developmental stages (adults vs. adolescents)
and feedback classifiers (generalized vs. person-specific) signifies
that our BCI can be used to deliver reliable feedback to participants,
which is an essential prerequisite of learning to modify affect-biased
attention. Regarding within-study replication, our hypothesis that
the performance of our novel SVM would be equivalent in both our
preliminary and replication samples was confirmed. Furthermore,
the probability scores generated by the participant-specific SVM
were validated by our findings that there is a significant difference
in scores when attending to the Gabor vs. the face. Together, these
results indicate that performance, as indicated by our classifier, is
generalizable across a replication sample, and not specific to the
performance of the participants in the preliminary sample. All of
these factors are critical when designing reliable and reproducible
BCI applications.

Our findings suggest that further testing of our BCI to modify
affect-biased attention is warranted. The participant-specific SVM
used to generate probability scores demonstrated acceptable
accuracy (71%—77%), suggesting that it can be used to provide
personalized feedback to participants. This is in line with the
theoretical promise of using EEG-based neurofeedback to modify
affect-biased attention, as EEG offers the marriage of precise neural
measures and feasible clinical translation (Woody and Price, 2022).
In addition, the current findings suggest that our BCI overcomes
some of the reliability and interpretability challenges associated
with previous ABMTs (Price et al., 2015; Rodebaugh et al., 2016; Xia
etal., 2023). Finally, our use of AR technology is a novel application
that could be used to enhance participant comfort and engagement.

Notably, our novel SVM classifier revealed that the majority of
participants completing the feedback phase did not demonstrate
the expected improvement in performance over time. Although no
clear evidence of learning effects were observed, we hypothesize
that participants may need to complete the AttentionCARE
protocol several times to effectively learn to direct their affect-
biased attention, but a larger sample size is needed before inferences
can be drawn about learning effects and how to improve them.
In spite of the fact that there was no demonstrated improvement
during the feedback phase, the validation of the BCI’s reliability
and reproducibility is an important first step into clinical efficacy.
Now that this has been demonstrated future studies can focus on
exploring therapeutic applications of the BCI to establish dosing
and efficacy guidelines and develop precision medicine protocols
that use personalized BCIs to target specific patterns of affect-
biased attention. Additionally, our exploratory analyses revealed
several patterns that may highlight avenues for future research. We
observed large and significant correlations between average Gabor
probability scores and responses on our acceptability questionnaire,
see Figure 5, such that probability scores were positively correlated
with participants’ perceptions of fairness, efficacy, clarity, and the
value of the protocol and negatively correlated with the perceived
effort required to complete it. The feedback from individuals
identified as having lower performance on the protocol suggests
that they might not have actively participated due to potential
factors such as lack of comprehension, interest, or motivation,
these findings pend replication in larger samples. To better ensure
clinically meaningful effects the future sample sizes should be
powered to find medium or larger effects.
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In addition to its strengths, our study also had several
limitations. The current analyses were restricted to 10 adolescents,
and only five adolescents completed the feedback phase. Future
studies with larger sample sizes are needed to test learning effects
during the feedback phase. Second, although we have demonstrated
that AR can be used to direct participants’ attention, we have not yet
realized the full potential of AR in the AttentionCARE protocol. In
the current protocol, negative distractors consist of static images
of adolescent actresses displaying sad and angry facial expressions.
However, AR has the potential to use person-specific images, such
as images from a user’s cell phone, in immersive mixed-reality
environments, which could help improve participant engagement
and increase ecological validity. Finally, we have not yet tested
the AttentionCARE BCI in a sample of adolescent boys, which
may limit the generalizability of our results to only the highest
risk adolescents (i.e., daughters of depressed mothers; Goodman,
2007). Future studies will be needed to test our protocol in a fully
representative sample of adolescents and to determine if there
are sex differences in performance during the protocol. Based on
prior research we wouldn’t expect to see sex differences in affect-
biased attention (e.g., Gibb et al., 2023), but future studies will
benefit from examination of potential sex differences in dosing and
clinical effects.

In conclusion, our study describes an advancement in the
development and implementation of a novel BCI to modify affect-
biased attention in adolescents at high risk for depression. The
successful within- and between-study replications underscores the
robustness and reliability of our AttentionCARE BCI, for use
with both adolescents and adults. The demonstrated accuracy of
our participant-specific SVM shows promise for the delivery of
personalized feedback in future ABMTs. Future studies exploring
dosing and efficacy in larger samples, with more diverse participant
demographics, and refined AR applications are essential for a
more comprehensive understanding of the protocol’s potential
for modifying affect-biased attention, which would inform future
clinical trials.
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