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Affect-biased attention is the phenomenon of prioritizing attention to

emotionally salient stimuli and away from goal-directed stimuli. It is thought that

affect-biased attention to emotional stimuli is a driving factor in the development

of depression. This effect has been well-studied in adults, but research shows

that this is also true during adolescence, when the severity of depressive

symptoms are correlated with the magnitude of affect-biased attention to

negative emotional stimuli. Prior studies have shown that trainings to modify

affect-biased attention may ameliorate depression in adults, but this research

has also been stymied by concerns about reliability and replicability. This study

describes a clinical application of augmented reality-guided EEG-based attention

modification (“AttentionCARE”) for adolescents who are at highest risk for future

depressive disorders (i.e., daughters of depressed mothers). Our results (n = 10)

indicated that the AttentionCARE protocol can reliably and accurately provide

neurofeedback about adolescent attention to negative emotional distractors that

detract from attention to a primary task. Through several within and cross-

study replications, our work addresses concerns about the lack of reliability

and reproducibility in brain-computer interface applications, offering insights for

future interventions to modify affect-biased attention in high-risk adolescents.

KEYWORDS

affect-biased attention, electroencephalography (EEG), augmented reality (AR), brain-

computer interface (BCI), neurofeedback, depression

1 Introduction

Attention plays a critical role in shaping an individual’s ongoing perceptions about

their environment and their ability to distinguish between cues related to sadness vs. joy

or punishment vs. reward (Posner, 2016). This, in turn, has profound downstream effects

on behavioral patterns and emotional states (Beck, 2008). Affect-biased attention refers to

a biased pattern of preferential attention toward a stimulus based on its relative affective
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salience (Todd et al., 2012; Morales et al., 2016). This cognitive

phenomenon is driven by biobehavioral mechanisms that prioritize

stimulus-driven attention to emotionally salient stimuli, which

diverts goal-directed attention from stimuli relevant to a task at

hand (for a review, see Woody and Price, 2022). For example, an

individual who exhibits high levels of stimulus-driven attention

for negative information may be more likely to click on a text

notification about a distressing news article while completing

an academic assignment, detracting from goal-directed attention.

When this bias happens chronically, it can lead to an increased

risk for depression or other internalizing disorders (LeMoult and

Gotlib, 2019).

Affect-biased attention for negative information is theorized

to be a key contributor to the development and maintenance

of depression and anxiety. According to cognitive models of

depression, increased attention toward negative information leads

to a skewed integration of environmental information across

cognitive systems (Price and Woody, 2024). This imbalance gives

rise to a flow of negative memories and perceptions regarding

oneself, others, and the world, which then increases the likelihood

that the individual will continue to exhibit biased attention for

negative information. Empirically, cognitive models have been

supported by research showing that increased attention to negative

information—particularly when it occurs at the expense of positive

and/or goal directed information—are associated with depressed

mood and functional impairment (for meta-analyses, see Peckham

et al., 2010; Armstrong and Olatunji, 2012; Suslow et al., 2020).

Although much of past research has centered on adults, a

growing body of evidence suggests a comparable link between

affect-biased attention and adolescent depression (Platt et al., 2017).

For example, studies have shown that adolescents with a history

of past or current depression, when compared to their never-

depressed peers, are more likely to display increased attention to

sad stimuli (Ladouceur et al., 2006; Hankin et al., 2010; Maalouf

et al., 2012; Sylvester et al., 2015). Further, the severity of adolescent

depressive symptoms is correlated with the magnitude of such

affect-biased attention (Platt et al., 2015; Sylvester et al., 2015).

Finally, affect-biased attention for negative information has been

shown to be a marker of risk for future adolescent depression,

as increased attention for sad stimuli is already present in never-

depressed but high-risk adolescents, but not in their lower risk

peers (Joormann et al., 2007), and this bias can be used to predict

future trajectories of adolescent depressive symptoms (Osinsky

et al., 2012).

Affect-biased attention often first emerges during adolescence

(Gibb et al., 2023) and is thought to have an outsized impact on

adolescent mood for several reasons. First, adolescence represents

a critical phase for brain maturation. During this period, the

development of prefrontal cortex regions, which modulate goal-

directed attention, is ongoing (Ladouceur, 2012; Casey et al.,

2019). Simultaneously, limbic regions, which prioritize processing

of affectively salient stimuli, exhibit heightened activity during

adolescence, compared to childhood or adulthood. This heightened

reactivity can often overwhelm still maturing “goal-directed”

regulatory inputs from the prefrontal cortex and fronto-limbic

connections responsible for sustaining task-oriented attention,

leading to affect-biased attention (Ladouceur, 2012; Casey et al.,

2019; Woody and Price, 2022). Second, adolescence is defined by

a series of changes such as the onset of puberty, social transitions,

and increasing academic demands (Silk et al., 2012; Guyer, 2020)

that can lead to novel stressors that are no longer well-addressed by

the coping skills established during childhood (Rapee et al., 2019).

Thus, during adolescence, the confluence of heightened stress and

ongoing brain maturation can allow affect-biased attention for

negative information to flourish, which may then increase risk for

future depression (LeMoult and Gotlib, 2019).

Identifying markers of risk for adolescent depression is seen

as a critical goal for public health as these markers may also

inform novel intervention targets that could alter the trajectory of

depressive disorders (Woody and Price, 2022). Adolescence marks

a key developmental window of risk for the onset of depressive

disorders given that levels of depression rise precipitously during

this phase and as many as 17% of adolescents will experience

an episode of major depressive disorder (MDD) by adulthood

(Merikangas et al., 2009). Furthermore, research has indicated that

the likelihood of adolescent depression is increased in specific

populations. For example, adolescent girls are more than twice

as likely to develop MDD compared to boys (Rapee et al.,

2019). Additionally, offspring of depressed mothers are 3–4 times

more likely to develop MDD than those with never-depressed

mothers (Goodman, 2007). Given the elevated risk for depression

during adolescence, especially among high-risk youth like girls and

offspring of depressed mothers, it is imperative to identify risk

factors that precede the onset of adolescent depression, as they may

inform modifiable targets for early preventative interventions that

mitigate the risk of depression.

For these reasons, our team sought to develop a novel brain-

computer interface (BCI), AttentionCARE, that could be used

to modify affect-biased attention for negative information in a

population of high-risk adolescents (i.e., adolescent daughters

of depressed mothers). We hypothesized that training high-risk

adolescents to redirect attention from negative information and

attend to goal-directed information might disrupt the vicious

cycle linking affect-biased attention and depressed mood. Initial

interest in modifying affect-biased attention to improve depressed

mood stemmed from observations that antidepressants, such as

selective serotonin reuptake inhibitors (SSRIs), led to reductions

in attention to negative information, preceding improvements

in mood (Browning et al., 2010). Attention bias modification

training (ABMT) has since been tested as a possible treatment for

depression, and a recent meta-analysis from adult samples revealed

that ABMT leads to significant reductions in depressive symptoms

(Xia et al., 2023). However, this review and others (Price et al.,

2015; Rodebaugh et al., 2016) have also shown that existing ABMT

paradigms are limited by reliability and interpretability challenges,

and there is a need to enhance the robustness and precision of

these interventions. Further, ABMTs have rarely been tested during

adolescence (but see De Voogd et al., 2014; LeMoult et al., 2016).

Due to the accuracy of brain-based measurements,

neurofeedback has emerged as a promising approach for

modifying affect-biased attention (Woody and Price, 2022). Past

research has demonstrated the effectiveness of using neurofeedback

to influence real-time attentional patterns (Debettencourt et al.,

2015), which can enable depressed patients to promptly and
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precisely modulate their affect-biased attention (Schnyer et al.,

2015; Mennen et al., 2021). However, these previous neurofeedback

paradigms have relied on expensive functional magnetic resonance

imaging (fMRI) procedures, constraining their future applicability

to clinical settings.

Using electroencephalogram (EEG) based neurofeedback can

not only enhance cost-effectiveness but also increase the feasibility

of clinical translation. Thus, in a previous pilot study, we developed

a more cost-effective EEG brain-computer interface, which used

steady-state visual evoked potentials (SSVEPs) to direct the

attention of five healthy adults while they completed a primary

cognitive task in augmented-reality (AR) (Huang et al., 2022).

Derived from EEG, SSVEPs are evoked by visual stimuli that

are luminance modulated at a fixed frequency and generated by

the primary visual cortex (Wieser et al., 2016). The magnitude

of SSVEP responses fluctuate with an individual’s attention to a

flickering stimulus, and by frequency-tagging SSVEPs to multiple

visual stimuli flickered at distinct frequencies, this method can

effectively differentiate attention to competing stimuli, even when

they overlap entirely in both time and space (Müller et al., 2008;

Woody et al., 2017). SSVEPs offer BCIs a temporally-sensitive

neural measure of competition between stimulus-driven and goal-

directed attention at the level of neuronal populations in the

visual cortex.

Our pilot AttentionCARE BCI integrated SSVEP

measurements, captured in response to competing visual stimuli

presented through AR technology, for real-time detection of

affect-biased attention and implementation of neurofeedback. This

BCI employed a Microsoft HoloLens AR head-mounted display to

present competing visual stimuli superimposed on the real-world

environment. In a clinical context, the use of AR enables patients

to perceive their surroundings while tasks or alerts are displayed in

their visual field, creating an overlay effect. This approach enhances

comfort and intuitive control compared to an entirely virtual space.

Notably, AR technology has found applications in medical settings

and as part of BCI protocols (Lenhardt and Ritter, 2010; Zao et al.,

2016; Mak et al., 2022). Despite these advancements, our pilot

BCI was the first to employ AR as a part of affect-biased attention

training (Huang et al., 2022).

To direct affect-biased attention training, we developed an

attentional paradigm where, in each trial, we superimposed

two competing visual stimuli on the Hololens AR goggles.

Participants were instructed to focus on the task-relevant stimulus

(a semitransparent group of parallel lines, or a “Gabor” patch)

while ignoring an emotional distractor (an angry or sad face).

Each stimulus flickered at a separate frequency (8.57 or 12Hz) to

differentiate SSVEP responses to the Gabor and the face. Following

each trial, participants received feedback on the extent of attention

given to the Gabor vs. the face, as indicated by a calculated SSVEP

feedback score. Findings revealed that our AttentionCARE BCI

led to discriminant SSVEP responses for both the Gabor and the

face and produced excellent internal reliability, when comparing

responses to odd vs. even trials (Huang et al., 2022).

The current study sought to implement a similar BCI to target

affect-biased attention in a sample of adolescent girls at high risk

for depression (n = 10). Specifically, we investigated the use of

a participant-specific support vector machine (SVM) to generate

feedback about the probability that a participant was attending to

the Gabor, relative to the emotionally distracting face. Since EEG

signals are known to vary across individuals (Schirrmeister et al.,

2017; King et al., 2018), a generalized algorithm—such as what was

used in our earlier work (Huang et al., 2022) —may not accurately

capture the visual attention of all participants. We theorized that by

personalizing feedback about affect-biased attention, then it would

better reflect the visual attention of a participant and thus better

promote learning due to the improved feedback.

Through use of the proposed algorithm, we hypothesized

the successful reproduction of our pilot findings showing

that discriminant SSVEP responses can be generated by our

AttentionCARE BCI with high levels of internal reliability, but

now in a sample of adolescents at high risk for future depression

(i.e., adolescent daughters of depressed mothers) and with a

participant-specific SVM. From a preliminary sample of five

adolescents, the performance of several SVMs (using different

feature types, kernels, and a forward feature selection technique)

were profiled to determine the best performing algorithm across

the preliminary group. Following the selection of a novel SVM

classifier, we hypothesized that accuracy would be maintained,

within a tolerance, by implementing the same SVM classifier

parameters in a separate replication sample of five adolescents. If

these hypotheses were supported, then the current study’s use of

a novel BCI, coupled with robust methodology and commitment

to reproduce and replicate findings from our past and ongoing

work, would ensure a valuable contribution to the development and

implementation of a novel BCI to target affect-biased attention in a

sample of adolescents at high risk for future depression.

2 Methodology

2.1 Participants

Participants included 10 adolescents (100% assigned female

at birth) who were recruited as part of a larger longitudinal

study (n = 93). At the time of completing the current protocol,

adolescents were between the ages of 14 and 16 (M = 14.6). Among

adolescents in the current study, 80% self-identified their race as

White, 10% as African American/Black, and 10% as Multiracial.

Regarding ethnicity, 10% self-identified as Hispanic. The sample

was enriched for future risk for depression as 70% of adolescents

had a mother with a history of MDD in their lifetime but at the

time of completing the protocol, the adolescent did not meet DSM

5 diagnostic criteria for any current or past mood disorder.

Participants were split into two cohorts, consisting of five

adolescents in the first cohort and five adolescents in the

second. The first cohort was used as the preliminary sample

whereas the second cohort was used as a replication sample.

The preliminary sample completed only the two baseline phases

of the AttentionCARE protocol whereas the replication sample

completed both baseline phases and the feedback phase. This

study followed an IRB-approved protocol from the University

of Pittsburgh.
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FIGURE 1

The AttentionCARE stimuli presentation. A Gabor with 50% opacity, flickered at 12Hz, f1, overlays a flickering emotional distractor stimulus at 8.57Hz,

f2, (Huang et al., 2022). Facial image reproduced with permission from NIMH Child Emotional Faces Set (Egger et al., 2011).

FIGURE 2

(A) Participant completing a trial of the AttentionCARE protocol, depicting an example of the stimuli presented in a trial. (B) The bar chart used to

display the attention of the participant, where a higher score represents more attention given to a specific stimulus (Gabor or angry/sad face) (Huang

et al., 2022).

2.2 AttentionCARE protocol

Consistent with our previous work (Huang et al., 2022), we

implemented the EEG-based AttentionCARE protocol using AR,

to ascertain participants’ attention to affective distractors vs. task-

relevant stimuli. In the protocol, each trial consists of an angry

or sad face (i.e., affective distractor) presented at the center of the

field of view of the AR headset (corresponding to the center of the

participants field of view), with a semi-transparent Gabor patch

(i.e., task-relevant stimuli) overlaying the face, presented for 5 s.

The faces were flickered at a frequency of 8.57Hz (f1) and the

Gabor at a frequency of 12Hz (f2). By flickering the stimuli at

different frequencies, SSVEPs were evoked in the EEG signal at the

specific frequency tag, f1 or f2, depending on the allocation of the

participant’s attention to each visual stimulus. Affective distractors

included 30 pictures of 15 female adolescent actors with sad and

angry expressions selected from the NIMH Child Emotional Faces

Set (Egger et al., 2011). An example of the stimuli presented in a

trial is depicted in Figure 1.

The protocol was comprised of three phases: baseline, feedback,

and mastery; however, in this work we focused on the baseline

and feedback phases only. The baseline phase consisted of 30 trials,

during which the participant was instructed to attend to either the

face or the Gabor for every trial. The baseline phase is repeated

twice to have the participant attend to both the faces and Gabor for

30 trials each. In “Baseline 1,” participants are asked to pay attention

to the Gabor and ignore the face, and in “Baseline 2” they are asked

to pay attention to the face and ignore the Gabor. EEG data is

collected continuously. During the feedback phase, participants are

told to only pay attention to the Gabor and ignore the face during

each trial. The feedback phase includes three ‘epochs,’ where each

epoch consists of 50 trials of stimuli presentation, with feedback
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FIGURE 3

Flow diagram of the AttentionCARE protocol. The facial and feedback stimuli shown here are all the same, but in the protocol the stimuli would vary.

presented at the end of each trial. Within each epoch, 10 faces

are shown, and each face is shown five trials in a row, which

provides an opportunity for the participant to repeatedly practice

reducing their attention to that specific face. At the end of the trial,

participants are given feedback related to competition between the

attention they paid to the Gabor vs. the face. Feedback is given as

a visualization of the probability of whether the participant was

paying more attention to the face or the Gabor during that trial.

Figure 2 depicts an example of feedback given to a participant.

The goal of the feedback is to direct participants’ attention away

from affective distractors (i.e., the faces) and toward the task-

relevant stimuli (i.e., the Gabor). Feedback is generated using the

EEG data collected during a given trial. A flow diagram of the

paradigm is depicted in Figure 3 to better show the different phases

of the protocol and where participants were instructed to direct

their attention. Additionally, this figure includes the specifics of

which cohort completed which phases of the protocol. The display

order of the faces is randomly permuted, for each phase, across

participants to ensure there is no effect based on the display order.

2.3 Acceptability questionnaire

Following the completion of the AttentionCARE protocol,

participants completed a self-reported questionnaire to gauge the

acceptability of the system [adapted from Sekhon et al. (2022)].

Components of acceptability assessed included: (1) comfort, (2)

effort, (3) alignment with values, (4) perceived effectiveness, (5)

understanding of intervention, (6) self-efficacy and confidence, (7)

opportunity costs. Participants responded to statements, on a scale

of 1–5, such as “How comfortable did you feel when you were

asked to use neurofeedback to focus your attention on the non-

emotional parts of the game (i.e., the group of lines) vs. the negative

parts (i.e., the sad and angry faces)?” The anchor point for all

questions was 1, representing the minimum for the statement; in

TABLE 1 Acceptability Questionnaire Items andM (SD) of

participant responses.

Item M (SD)

How comfortable did you feel when you were asked to use

neurofeedback to focus your attention on the non-emotional

parts of the game (i.e., the group of lines) vs. the negative

parts (i.e., the sad and angry faces)?

3.60 (1.14)

How much effort did it take to use neurofeedback to focus

your attention on non-emotional vs. negative parts of the

game?

3.40 (1.34)

How fair is it to ask you to use neurofeedback to focus your

attention on non-emotional vs. negative parts of the game?

3.40 (1.34)

It is clear to me how the neurofeedback training will help me

to control my attention to non-emotional vs. negative

information

2.80 (1.10)

Neurofeedback training has helped me control my attention

to non-emotional vs. negative information

3.20 (1.10)

How confident did you feel using neurofeedback to focus

your attention on non-emotional vs. negative parts of the

game?

2.60 (1.34)

Learning to control my attention to non-emotional vs.

negative information is in line with my priorities

2.80 (1.10)

the example statement above a response of 1 would represent “very

uncomfortable.” Full statements and the M (SD) of participant

responses are included in Table 1.

2.4 BCI hardware

The system is comprised of four components working together

to implement the protocol. More specifically a Computer, a

Microsoft HoloLens 1, an EEG amplifier, and an Arduino. Figure 4

shows the interconnections of all components. The first component

is the computer, which acts as a centralized control hub for all
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FIGURE 4

A flowchart illustrating the system’s interconnected components. The computer serves as the central control hub for all external devices. The

HoloLens handles stimulus presentations, while the G.USBamp Amplifier is utilized for collecting EEG data. The Arduino facilitates communication

between the Computer, HoloLens, and Amplifier, ensuring synchronization of stimulus presentation and EEG data collection.

external devices using MATLAB R2015a. The HoloLens uses real-

time head tracking to project the stimuli and feedback into a

participant’s field of view, developed in Unity. The system uses a

g.USBamp biosignal amplifier using active g.Butterfly electrodes

with cap application from g.Tec (Graz, Austria) to record the

EEG signals, at a sampling rate of 256Hz. The EEG data was

collected from 16 channel locations (P1, PZ, P2, CP1, CPZ, CP2,

CZ, C3, C4, T7, T8, FC3, FC4, F3, F4 and FZ) based on the

international 10/20 system. All EEG data is filtered by a Kaiser

FIR bandpass filter between [1, 40] Hz before processing. To

connect all components together an Arduino is utilized to send

commands via Bluetooth Low Energy (BLE) from the computer to

the HoloLens and amplifier. Additionally, due to latency differences

between the wired connection of the amplifier and BLE the Arduino

synchronizes the EEG data to the stimuli presentation. For a full

description of the system refer to our previous work (Huang et al.,

2022).

2.5 Feedback calculation for AttentionCARE
protocol

2.5.1 Preliminary sample
The preliminary sample was used to investigate the initial

performance of a participant-specific support vector machine

(SVM) to calculate feedback regarding the probability that a

participant was attending more to the Gabor or the face based on

their SSVEP responses for a given trial. Several different features

were extracted, along with a forward feature selection technique,

for each participant to establish the optimal features for the model.

Three different features were tested: the power spectral density

(PSD), the power of EEG signals from different frequency bands

around the harmonics of the Gabor and the face, normalized by

the total power of the signal (Power banks), and the correlation of

the EEG signal to a cosine signal oscillating at the frequencies of

TABLE 2 Equations used to extract features from the EEG data for all

different feature types.

PSD
1

N

∣

∣Xavg (f)
∣

∣

2

Power banks

∑nf̂+f0

f=nf̂−f0

∣

∣Xchannel

(

f
)
∣

∣

2

∑N
f=0

∣

∣Xchannel

(

f
)
∣

∣

2

Cosine correlation xchannel (t)
∗ cos (2πnf̂ t)

the harmonics of the Gabor and the face (Cosine correlation). The

features were extracted from the occipital scalp region, which is the

region that is responsible for visual perception, corresponding with

channels O1, O2, and Oz. The forward feature selection method

iteratively adds random features from the full set to an empty

feature bank and trains the model until a criterion is met, in this

case, the misclassification rate was minimized. This results in a

model that uses a minimal subset of features while maintaining

a low misclassification rate. In addition to the three different

feature types, three different kernels were explored as well: linear,

polynomial, and radial basis function (RBF). Due to the limited

amount of data (i.e. 60 trials per participant) when training the

models, five-fold cross-validation was utilized to not overfit to a

certain data split.

Each feature was extracted from the EEG data based on the

equations shown in Table 2, where xchannel(t) is the EEG data from

the respective channel, Xchannel(f ) is the fast Fourier transform

(FFT) of the EEG data for a given channel, N is the total number

of EEG samples, f̂ is the fundamental frequency of the Gabor or

the face (corresponding to f1 or f2), n is the n-th harmonic, and

f0 is half the range of the frequency bin. For the PSD features,

the FFT is taken with respect to the average across the occipital

channels discussed above; the power bank and cosine correlation

features were extracted from each independent channel (i.e O1, O2,

and Oz).

It is important to note that when completing the

AttentionCARE protocol both the baseline phases and feedback
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phase are done in the same session, meaning that the classifier

was trained immediately following the baseline phases on the

data collected from that participant. This places an additional

constraint on the model selected, as it is paramount that the

training process is fast to ensure participants remain engaged.

Thus, the best-performing classifier was chosen not just by the

accuracy of the model but rather a combination of the accuracy

and the time to train.

2.5.2 Replication sample
Following the experiments with the preliminary sample to

determine the best-performing classifier that meets all criteria

previously outlined, the replication sample was used to evaluate

the classifier in several ways. Firstly, an identical analysis, using

five-fold cross validation was performed to establish if the model

performance could be replicated on the replication sample based on

a threshold determined by the preliminary sample. The threshold

was chosen to be within 10% of the accuracy on the preliminary

sample, the 10% tolerance is reasonable criteria as differences in

the classifier performance across the two groups was expected since

EEG signals vary across individuals (Schirrmeister et al., 2017;

King et al., 2018). Due to the limited number of participants, a

statistical analysis cannot be informative therefore the threshold

was used to explore the replicability until more data is gathered.

Additionally, the best-performing classifier on the preliminary

sample was implemented into the protocol to calculate feedback

during the feedback phase that the replication sample completed.

The classifier was trained on an 80%−20% split of the baseline data

to train and validate the model. Following training the model a

posterior probability distribution was fit to the SVM to normalize

the output between zero and one (Platt, 1999), thus the feedback

score represents the probability that a participant is attending to the

Gabor, relative to the face. The feedback given by the classifiers used

during the feedback phase was validated on the baseline data to

ensure that the probability scores were informative to participants.

Additionally, an examination of the reliability and usability of the

systemwas conducted on all phases of the AttentionCARE protocol

completed by the replication sample to certify the stability of all

phases in the protocol. Lastly, associations between participant

performance during the feedback phase and their acceptability

survey responses were examined.

3 Results

As described in the methodology, we utilized the preliminary

sample to investigate several different types of SVM classifiers

along with different feature types for implementation into the

AttentionCARE protocol. After completing the protocol, the

replication sample data was used to determine if the results

from the preliminary sample were replicated, indicating a within-

study replication. The validity of the feedback scores, or Gabor

probabilities, were examined in the replication sample to ensure

that the feedback given was significantly different when attending

to the Gabor or Face. Furthermore, we tested whether the high

internal reliability was preserved from our original work (Huang

et al., 2022) after the SVM classifier was tested in an adolescent

sample, which would represent a cross-study replication. Finally,

exploratory analyses were conducted to assess the preliminary

effectiveness of the feedback during the feedback phase.

3.1 Within-study implementation,
replication, and validation of a
participant-specific SVM classifier

3.1.1 Implementation
The results of the participant-specific SVM experiments

performed on the Preliminary Sample for each feature type are

shown in Table 3. The table indicates which feature type was

used along with the specific parameters, if applicable, for a given

experiment. The parameters used are the number of harmonics, n,

and the range of the filter banks, f0, and whether forward feature

selection was used, FS.

As seen in the table, the best-performing classifier, based on

the average accuracy across the preliminary sample, was a linear

SVM with power bank features using a frequency range of f0 =

2, n = 3 harmonics, and the forward feature selection technique.

However, our participant-specific SVM experiments also revealed

that training this classifier required an increased time to complete

(5–10min), given the extended time requirements imposed by the

forward feature selection method. As described in Section 3.2,

there is an additional constraint on time to train the model, which

when using the forward feature selection technique cannot be met.

Past research has demonstrated that shorter ABMT protocols are

associated with more robust clinical effects (Price et al., 2017),

thus we chose to minimize any unnecessary delays in the current

protocol. Due to this, the best classifier not using forward feature

selection was chosen for the protocol, which was a linear SVM

with power bank features using a frequency range of f0 = 2, n =

3 harmonics. The average accuracy of this classifier was 0.770 ±

0.093, establishing a replication threshold of 0.693 – 0.847.

3.1.2 Replication
In the replication sample, the linear SVM with power bank

features using a frequency range of f0 = 2, n = 3 harmonics was

found to have an average accuracy of 0.710 ± 0.115, which is

within the threshold range considered indicating a replication of

the findings from the preliminary sample.

3.1.3 Validation
To validate the performance of the linear SVM with power

bank features using a frequency range of f0 = 2, n = 3 harmonics

used in the replication sample, we conducted analyses to determine

if the classifier could discriminate between SSVEP responses

for a participant attending to either the Gabor or the face.

When participants were instructed to pay attention to the Gabor

and ignore the face in Baseline 1, the probability scores were

significantly higher (M = 0.591, SD = 0.214) compared to when

they were asked to focus on the face and ignore the Gabor in

Baseline 2 (M = 0.286, SD = 0.183), t(4)=3.885, p = 0.018,

Cohen’s d= 1.737. This result indicates that the classifier trained for
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TABLE 3 Average accuracy across the preliminary sample using power spectral density features (PSD), power bank features, and cosine correlation

features (cosine corr) with different number of harmonics (n), frequency ranges (f0) and using the forward feature selection technique (FS).

Feature type Parameters Linear Polynomial Radial basis function

PSD – 0.703± 0.204 0.700± 0.170 0.690± 0.208

PSD FS 0.683± 0.198 0.683± 0.165 0.677± 0.212

Power bank n= 1, f0 = 1.5 0.633± 0.172 0.607± 0.120 0.640± 0.103

Power bank n= 2, f0 = 1.5 0.670± 0.135 0.703± 0.127 0.670± 0.157

Power bank n= 3, f0 = 1.5 0.737± 0.107 0.757± 0.102 0.710± 0.152

Power bank n= 3, f0 = 1.5, FS 0.800± 0.096 0.803± 0.119 0.800± 0.102

Power bank n= 1, f0 = 2 0.717± 0.120 0.690± 0.148 0.620± 0.145

Power bank n= 2, f0 = 2 0.743± 0.89 0.663± 0.157 0.703± 0.112

Power bank n= 3, f0 = 2 0.770± 0.093∗ 0.730± 0.126 0.757± 0.138

Power bank n= 3, f0 = 2, FS 0.817± 0.86 0.773± 0.124 0.857± 0.082

Cosine Corr n= 1 0.503± 0.114 0.540± 0.064 0.560± 0.134

Cosine Corr n= 2 0.527± 0.058 0.553± 0.049 0.580± 0.134

Cosine Corr n= 3 0.560± 0.069 0.613± 0.066 0.617± 0.132

Cosine Corr n= 3, FS 0.697± 0.056 0.670± 0.115 0.750± 0.099

The performance of the classifier selected for further testing in the replication sample is highlighted and marked with an asterisk.

TABLE 4 Average Gabor probability scores observed across the feedback phase, split by participant.

Participant Average Number of times a face is seen Half of feedback phase

1 2 3 4 5 First Second

1 0.70 0.67 0.74 0.71 0.69 0.68 0.67 0.73

2 0.25 0.27 0.29 0.21 0.27 0.22 0.32 0.18

3 0.68 0.70 0.72 0.63 0.68 0.69 0.74 0.62

4 0.20 0.18 0.20 0.17 0.25 0.18 0.18 0.21

5 0.45 0.42 0.43 0.46 0.44 0.50 0.53 0.37

Average Gabor probabilities are also compared across the number of times a face was seen and in the first vs. second half of the feedback phase.

the AttentionCARE protocol successfully discriminated attentional

competition between competing visual stimuli that overlap in time

and space.

3.2 Cross-study replication of the internal
consistency of the AttentionCARE protocol

To replicate the findings from our previous work regarding

internal consistency of the AttentionCARE Protocol (Huang et al.,

2022), we performed an identical analysis on the split-half reliability

during all phases completed by the replication sample. We

found excellent even-odd split-half reliability (Guttman coefficients

ranging from 0.963 to 0.998), demonstrating that the reliability

of the protocol was preserved in an adolescent sample and while

using a participant-specific SVM classifier. Of note, a Guttman

coefficient closer to 1 indicates higher internal consistency of the

calculated probability scores. Internal reliability of a protocol is

important to consider as feedback with low reliability may not

be useful to a participant since the effectiveness of the techniques

learned to redirect their attention would not be reflected in

unreliable feedback.

3.3 Evaluation of feedback effects observed
during the AttentionCARE protocol

Table 4 shows the average Gabor probabilities classified during

the feedback phase, split by participant ID. The table also presents

average Gabor probabilities across the number of times a face

was seen and in the first vs. second half of the feedback phase.

Of note, probability scores >0.50 indicated that the Gabor “won”

the competition for attention, as determined by the classifier. If

the feedback protocol was working as expected, we would expect

that most participants would show Gabor probabilities >0.50. In

contrast, as shown in Table 4, only two out of five participants

attended more to the Gabor, relative to the face, on average during

the feedback phase.

To probe this unexpected finding, we conducted exploratory

analyses to consider whether Gabor probabilities would increase

as the number of times each face was seen, as this would

Frontiers inHumanNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1360218
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Gall et al. 10.3389/fnhum.2024.1360218

indicate that the participant was learning from feedback given

during previous trials. In addition, comparisons of the first vs.

the second half of the feedback phase could be used to describe

differences in performance after just being exposed to the feedback

phase compared to when a participant has more experience. To

statistically examine changes in Gabor probability scores by the

number of times a face was shown (i.e., trial 1 through 5) and

over time (first half vs. second half of the feedback phase), we

conducted a 2 (Time: first half, second half) × 5 (Trial: 1–5)

repeated measures ANOVA with Gabor probabilities serving as the

dependent variable. The main effects of Time, F(1,4) = 2.135, p =

0.218, η2p = 0.348, and Trial were nonsignificant, F(4,4) = 1.412, p=

0.275, η2p = 0.261, indicating that the Gabor probabilities did not

differ significantly across time or trials. In addition, the Time ×

Trial interaction was nonsignificant, F(4,4) = 0.543, p = 0.707, η2p
= 0.120.

Finally, to consider whether there were individual differences

associated with participant performance, we examined correlations

between participants’ average Gabor probabilities during the

feedback phase and responses from the acceptability questionnaire.

These are depicted in Figure 3. Gabor probability scores were

positively correlated with perceived fairness, efficacy, clarity, and

value of the protocol, as well as negatively correlated with effort.

4 Discussion

Affect-biased attention is a well-established cognitive

vulnerability implicated in the development and maintenance of

depression that is known to emerge during adolescence (Gibb

et al., 2023). The current study describes the development and

implementation of the novel BCI, AttentionCARE, designed to

modify affect-biased attention in a sample of adolescents enriched

for risk for future depression (i.e., adolescent girls, 70% of whom

also had a history of maternal MDD during their lifetime). To

address the lack of reproducibility and reliability in past BCI

applications, our study hypotheses emphasized findings that

we could show to be replicable and verifiable. Specifically, we

conducted a successful replication of our earlier pilot findings

in adults (Huang et al., 2022), which showed that discriminant

SSVEP responses could be generated by our BCI with high levels

of internal reliability. However, in the current study, we achieved

these results by developing a novel participant-specific SVM to

calculate the probability that a participant was exhibiting high

levels of goal-oriented attention (i.e., attention to the Gabor in the

AttentionCARE protocol) compared to stimulus-driven attention

(i.e., attention to distracting angry and sad faces) and testing it in a

sample of high-risk adolescents. High internal consistency that can

FIGURE 5

Scatter plots for each acceptability survey question and the accompanying average Gabor probability during the feedback phase. *p < 0.05.
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be reproduced across developmental stages (adults vs. adolescents)

and feedback classifiers (generalized vs. person-specific) signifies

that our BCI can be used to deliver reliable feedback to participants,

which is an essential prerequisite of learning tomodify affect-biased

attention. Regarding within-study replication, our hypothesis that

the performance of our novel SVMwould be equivalent in both our

preliminary and replication samples was confirmed. Furthermore,

the probability scores generated by the participant-specific SVM

were validated by our findings that there is a significant difference

in scores when attending to the Gabor vs. the face. Together, these

results indicate that performance, as indicated by our classifier, is

generalizable across a replication sample, and not specific to the

performance of the participants in the preliminary sample. All of

these factors are critical when designing reliable and reproducible

BCI applications.

Our findings suggest that further testing of our BCI to modify

affect-biased attention is warranted. The participant-specific SVM

used to generate probability scores demonstrated acceptable

accuracy (71%−77%), suggesting that it can be used to provide

personalized feedback to participants. This is in line with the

theoretical promise of using EEG-based neurofeedback to modify

affect-biased attention, as EEG offers the marriage of precise neural

measures and feasible clinical translation (Woody and Price, 2022).

In addition, the current findings suggest that our BCI overcomes

some of the reliability and interpretability challenges associated

with previous ABMTs (Price et al., 2015; Rodebaugh et al., 2016; Xia

et al., 2023). Finally, our use of AR technology is a novel application

that could be used to enhance participant comfort and engagement.

Notably, our novel SVM classifier revealed that the majority of

participants completing the feedback phase did not demonstrate

the expected improvement in performance over time. Although no

clear evidence of learning effects were observed, we hypothesize

that participants may need to complete the AttentionCARE

protocol several times to effectively learn to direct their affect-

biased attention, but a larger sample size is needed before inferences

can be drawn about learning effects and how to improve them.

In spite of the fact that there was no demonstrated improvement

during the feedback phase, the validation of the BCI’s reliability

and reproducibility is an important first step into clinical efficacy.

Now that this has been demonstrated future studies can focus on

exploring therapeutic applications of the BCI to establish dosing

and efficacy guidelines and develop precision medicine protocols

that use personalized BCIs to target specific patterns of affect-

biased attention. Additionally, our exploratory analyses revealed

several patterns that may highlight avenues for future research. We

observed large and significant correlations between average Gabor

probability scores and responses on our acceptability questionnaire,

see Figure 5, such that probability scores were positively correlated

with participants’ perceptions of fairness, efficacy, clarity, and the

value of the protocol and negatively correlated with the perceived

effort required to complete it. The feedback from individuals

identified as having lower performance on the protocol suggests

that they might not have actively participated due to potential

factors such as lack of comprehension, interest, or motivation,

these findings pend replication in larger samples. To better ensure

clinically meaningful effects the future sample sizes should be

powered to find medium or larger effects.

In addition to its strengths, our study also had several

limitations. The current analyses were restricted to 10 adolescents,

and only five adolescents completed the feedback phase. Future

studies with larger sample sizes are needed to test learning effects

during the feedback phase. Second, although we have demonstrated

that AR can be used to direct participants’ attention, we have not yet

realized the full potential of AR in the AttentionCARE protocol. In

the current protocol, negative distractors consist of static images

of adolescent actresses displaying sad and angry facial expressions.

However, AR has the potential to use person-specific images, such

as images from a user’s cell phone, in immersive mixed-reality

environments, which could help improve participant engagement

and increase ecological validity. Finally, we have not yet tested

the AttentionCARE BCI in a sample of adolescent boys, which

may limit the generalizability of our results to only the highest

risk adolescents (i.e., daughters of depressed mothers; Goodman,

2007). Future studies will be needed to test our protocol in a fully

representative sample of adolescents and to determine if there

are sex differences in performance during the protocol. Based on

prior research we wouldn’t expect to see sex differences in affect-

biased attention (e.g., Gibb et al., 2023), but future studies will

benefit from examination of potential sex differences in dosing and

clinical effects.

In conclusion, our study describes an advancement in the

development and implementation of a novel BCI to modify affect-

biased attention in adolescents at high risk for depression. The

successful within- and between-study replications underscores the

robustness and reliability of our AttentionCARE BCI, for use

with both adolescents and adults. The demonstrated accuracy of

our participant-specific SVM shows promise for the delivery of

personalized feedback in future ABMTs. Future studies exploring

dosing and efficacy in larger samples, with more diverse participant

demographics, and refined AR applications are essential for a

more comprehensive understanding of the protocol’s potential

for modifying affect-biased attention, which would inform future

clinical trials.
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