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Abstract

Stacking atomically thin two-dimensional nanosheet materials leads to unique synergy in their inherent properties due to an intimate combination
and matching that is not possible via separate individual components and phases. However, traditional synthesis and assembly methods result
in poor architectural control, diffuse interfaces and restricted surface chemistry, thereby limiting their prospective potentials. This brief overview
provides condensed consideration of different synthesis and assembly methods for the fabrication of diverse novel heterostructures from individual
nanosheets and challenges of existing methods. Finally, future perspectives regarding crafting of well-defined heterostructures with highly control-

lable architectures and interfacial/surface chemistry and advanced characterization methods are highlighted.

Introduction

Two-dimensional (2D) nanomaterials, such as graphene, metal
oxides (MO,s), transition metal dichalcogenides (TMDs) and
MXenes, have emerged as promising candidates for a wide variety
of applications including sensing, flexible electronics and energy
storage.'! Among them, graphene and its derivatives are the most
popular and widely reported for the past two decades (Fig. 1). As
known, graphene, a single one-atom thick layer of sp>-hybridized
carbon atoms arranged in a hexagonal honeycomb lattice, pos-
sesses high surface area (~2630 m%g), conductivity (~10° S/cm),
and Young’s modulus (E~1.1 TPa).*! It can be synthesized by
both top-down and bottom—up methods.”?! The top-down meth-
ods include the in-situ exfoliation of graphite oxide, followed by
reduction.”” The bottom-up approaches include the production of
graphene from precursors. Due to its exceptional properties, gra-
phene and its derivatives have been exploited in diverse applica-
tions including energy storage and sensing.'”

Metal oxides based on V,05s, SnO, or NiO are another class
of functionalized 2D nanomaterials that has garnered increasing
interest due to their ability to form ordered stacking morpholo-
gies, good electrochemical stability and high ionic conductiv-
ity.l''4) 2D materials with an abundant gallery of controlled
gap spacing and chemistry can not only promote the transfer
of diverse ions for high reaction kinetics, but also provide
new mechanisms and pathways for transport.'>!®] However,
these materials often suffer from brittleness, hypersensitivity
to moisture and oxygen and large charge-transfer resistance at
interfaces.!!”)
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A rapidly emerging class of 2D nanomaterials is MXenes.
These materials represent a large family of 2D transition metal
carbides, nitrides, and carbonitrides with a general formula of
M, X, T,, where M is a transition metal, X is carbon and/or
nitrogen, and T, is the surface functional group (e.g.,—OH, -O
or —F), and n=1, 2 or 3 (Fig. 1).["%%2] As known, MXenes are
typically derived by the selective removal of the A-layer atoms
(e.g., Si, Al, Ga) of a MAX phase through wet chemical or
molten salt etching.?*??1 Benefiting from the high electronic
conductivity, large specific surface area, and structural stability
of MXenes, they can act as functional substrates for supporting
nanocrystals of active materials (e.g., MO,, where M=Mn, Fe,
Co, Ni, Cu) for energy storage applications, energy storage,
sensors, and electromagnetic interference (EMI) shielding.[+23!

Nanomaterials, such as the graphene derivatives and
MXenes discussed above, are potential ion/proton host and
transport materials. To improve specific capacity and stabil-
ity with controlled ion transport, one approach is to physi-
cally stack van der Waals heterostructures from different 2D
materials in hetero-layered architectures (Fig. 1).1** Indi-
vidual nanosheets can be combined in diverse heterostruc-
tures by alternating dissimilar layers. As suggested, van der
Waals forces can contribute to the stability of heterostructures
with high binding energy.[** For example, the combination of
MXene and graphene sheets can provide synergistic metal-
lic electrical conductivity of stacked layers.[**) Moreover, the
structural similarity of MoS, and graphene provides a high pos-
sibility for correlated stacking.!”!
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Figure 1. Overall timeline of the development of 2D nanomaterials including graphenes, MXenes and heterostructures. Combined from

panels adapted with permission from Refs. 4-9.

Structural organization of 2D stacks greatly influences the
conductivity and transport abilities with preferred domain ori-
entation considered to be most efficient.[?”!] As demonstrated
with poly(ethylene oxide) (PEO) based electrolytes, controlling
the directional motion of ions is of great importance.*>=!! For
example, highly ordered PEO oligomer-salt complexes could
yield higher conductivity in the crystalline state due to organi-
zation of ion-conducting tunnels within the interlocking PEO
chains.*”! In contrast to the conventional ‘liquid-like’ transport,
the conduction mechanism was based on ion hopping along
fixed pathways in a rigid lattice.[3?! Vertical ordering of MXene/
V,05 heterostructures leads to significantly enhanced electron/
ion transport over the lithium-ion battery electrodes compared
to the horizontally ordered heterostructures due to shorter con-
duction pathways.5’]

The organization and interlayer spacing of 2D stacks can
be controlled by the preparation conditions and interfacial
chemistry (Fig. 2). For example, thinner graphene or MXene
stacks will increase the specific surface area for incorporating
more MO, nanosheets to increase the energy density. Larger
interlayer spacing of graphene or MXene can be explored
for embedding MO, nanosheets in the interspatial region of
graphene or MXene for higher packing density, and thus may
facilitate the enhanced intercalation of ions into heterostruc-
tures for higher ionic conductivity. Constructing higher order
heterostructured materials with intercalated 2D materials (e.g.,
graphene oxides (GO), polyelectrolytes, and ionic liquids)
with controlled interfacial bonding should be further consid-
ered. Furthermore, heterostacking and careful encapsulation
may reduce oxidation, and prevent the excessive aggregation
of MO, nanosheets. However, a lack of deeper understanding
regarding the fast transport mechanisms in hybrid nanocompos-
ites, structured electrodes, and solid electrolytes hinders their
practical use.?43®]

To date, diverse 2D heterostructures (borophenes, silicenes,
phosphorenes, graphenes and MXenes), have mainly been
developed for lithium-ion batteries (LIBs).l*” For instance,
2D TMDCs-graphene (widely explored MoS,-graphene,
WS,-graphene, SnS,-graphene, and VS,-graphene) have been
reported as heterostructured electrodes for LIBs.[**1 More
recently, the use of 2D heterostructures has been investigated
for zinc-ion and lithium-sulfur batteries, as well as for applica-
tions beyond energy storage such as EMI shielding and sens-
ing.[*! For instance, MXene (V,CT,)/metal organic framework
(MOF, Cu-HHTP) heterostructures were used as cathodes for
zinc-ion batteries due to their enhanced structural stability and
conductivity.™*? In another example, MXene/hexagonal boron
nitride (h-BN) heterostructures have been investigated for EMI
shielding performance.i*3! Graphene/h-BN and cobalt oxide-
functionalized MoS,/graphene heterostructures were utilized as
electrochemical biosensors for nicotine and glucose detection
with detection limits of 0.4 M and 30 nM, respectively.*+ 0]

Despite the importance of ion and electron transport in con-
fined 2D materials under electrical field in a number of funda-
mental processes, the key fundamental knowledge gap lies in the
transport processes related to chemical modification of stacks.
The direct monitoring of mobility and prevalence of carriers
in confined and uniquely organized 2D heterostructures under
electrical field have not been investigated thoroughly.™”) Shorter
transport paths, low energy loss, interstacking gaps and electro-
kinetic energy losses at “turning points” have been discussed yet
rarely investigated on a fundamental level for 2D heterostructures.

Here, we provide a brief overview of various ways to
synthesize 2D heterostructures and highlight key scientific
questions to be addressed in future studies, such as how the
heterogeneous environment and induced surface chemistry
of novel stacked nanostructures affect ion-wall chemical
and physical interactions that can tailor ion diffusion under
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Figure 2. Summary of current and future efforts on synthesis and assembly of nanosheets and prospective 2D organized heterostructures
with tailored surface chemistry, gap spacing, composition, morphology and properties.

confinement and may lead to fast ion transport. Our discus-
sion will underline the rational design and synthesis of novel
2D MXene/MO, heterostacked nanosheets through surface
chemistry with direct synthetic approaches as supported by
organized reactive templates. Finally, we discuss surface
characterization methods to investigate the heterostructures
and general trends in this field.

Fabrication of 2D heterostructures

To date, various approaches have been employed for the
fabrication 2D heterostructures, such as self-assembly and
in-situ growth methods including hydrothermal synthesis
and chemical vapor deposition (CVD) (Fig. 3).1*¥41 Among
them, self-assembly is the most widely reported due to its
versality. In contrast, in-situ growth methods are considered
more challenging, yet can lead to a better control over sur-
face chemistry, stacking manner and structures.[*%4”]
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Directed self-assembly
Self-assembly represents a popular route to the fabrication of
2D heterostructures that is based on tunable interfacial inter-
actions between different nanomaterials, such as Coulombic
and hydrogen bonding interactions, where precisely tunable
physical properties can be achieved via controlling interaction
strength of the two nanosheets. These methods have been inves-
tigated for a variety of different 2D heterostructures including
MXene/V,05, MXene/MOF, and MXene/MXene.[*34%52]
Layer by layer (LbL) assembly is a well-established
approach for the preparation of multilayered thin films with
controlled thickness and composition by the alternating deposi-
tion of different layers.”>* The LbL technique has been used to
develop heterostructured multilayers of various MXenes with
amine functionalized reduced GO (rGO), polymers including
polyethylene imine (PEI), poly(diallyldimethyl ammonium
chloride) (PDADMA), and polyaniline, as well as positively
charged amine functionalized TiyC,T,.5*>% Such assemblies
possess enhanced energy storage and sensing capabilities
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Figure 3. (a) Self-assembly of MXene and poly(diallyl dimethyl ammonium chloride) (PDDA) modified GO into heterostructures. (b) In-situ
growth of Bi,WOg4 and Bi,O,S 2D heterostructures using hydrothermal methods. Panels combined and adapted with permission from

Refs. 50, 51.

resulting from the enhanced ion-conductivity.’*! Simple

mixing of 2D nanosheets, followed by vacuum assisted filtra-
tion, cast drying, or freeze-drying is another well explored tech-
nique to create versatile heterostructures. For example, verti-
cally aligned MXene/V,05 were prepared by mixing MXenes
with V,Os sheets, followed by casting, freeze-drying, and com-
pression.[*3! Similarly, vertically pillared V,CT,/Ti;C,T, were
prepared by vacuum filtration, leading to open ion-channels and
mechanical stability.[’?!

In-situ growth

In-situ growth methods are another widely studied group of
approaches for the fabrication of the heterostructured stacks.
The major advantages of the in-situ growth approaches include
enhanced uniformity and stability, potentially enhanced ion
transport between the stacks, and possibility to introduce
binary and ternary super-heterostructures via tailored surface
nanochemistry.2%>7]

Hydrothermal synthesis, a method based on the crystalli-
zation of a substance in aqueous media under high tempera-
ture and high vapor pressure conditions, is one of the major
methods applied for in-situ growth. The combination of high
pressure and heat allows for the synthesis of highly crystalline
structures from precursors.[*®! Several studies have shown that
fine heterolayer structures comprised of metal oxides and 2D
materials, including SnOZ/SnSe,[Sg] MoSe/MXene,!*" or MoS,/
MXene!®'l have been synthesized through the hydrothermal
synthesis and showed superior electrical performances through
the enhanced mass transport between the layers. Another in-situ
growth method is hydrolysis, which uses water to breakdown
the covalent bonding and connect desired precursor material
to the target surface. Through the method, multilayer Nb,O5

or V,0s structures have been grown using rGO nanosheets or
carbon nitride thin film as a template with high charge transfer
property and high specific surface area.[®>%3]

In-situ polymerization is another method with potential for
the site-specific functionalization of the 2D structures. By using
functionalized surface sites via electrostatic attraction, in-situ
polymer growth can be directly conducted to grow additional
polymer layers. Through this method, the combination of 2D
structures with conductive polymers such MXene/polypyrrole
and MXene/polyaniline have been reported to exhibit excel-
lent electrical performance such as high capacitance and cycle
durability.[64-66]

In addition, ALD and CVD, well-known techniques for the
fabrication of high quality 2D materials and thin films, might
be considered.[”! Involving the introduction of vaporized sub-
stance to the substrate to be decomposed or react with the sub-
strate surface, the CVD process can yield uniform thin layer
with larger area and multilayered superlattices such as SnS,/
WSe, and WSe,/MoS,/WSe,.[%*6]

Future perspectives

Functionalized 2D heterostructures with controlled surface
chemistry and programmed architectures can be instrumental
for a variety of applications including energy storage, sens-
ing and EMI shielding. However, the fabrication of diverse
multilayers with strong, chemically bound interfaces between
the layers remains a challenge, which also restricts the choice
of the materials forming each layer. Furthermore, these limi-
tations are intensified as the number of the layers and diver-
sity of their nature increases. Advanced atomic force micros-
copy (AFM) characterization modes beyond conventional
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topographic imaging, such as Kelvin probe force microscopy
(KPFM), nano-DMA and AFM-IR, can offer insight in inter-
facial strengthening and physical heterostructure properties in
addition to traditional high-resolution electron microscopies
and X-ray relectivity.

Synthesis approaches

Further approaches for fabrication of different layered struc-
tures can be suggested to utilize the characteristics of strong-
bonded, transport-friendly interlayers. As discussed above,
carbon nitrides and graphene nanosheets have been used as
templates for the synthesis of MO,s, such as niobium pentoxide
(Nb,05) and vanadium pentoxide (V,05).16%6%]

As known, MO, nanosheets can be obtained via controlled
hydrolysis of metal precursors by utilizing similar surface
pendant groups and surface chemistry. During the synthesis
process, the OH-pendant groups will not only provide the
anchoring sites for precursors, but also serve as centers for
condensation of metal oxy-trihydroxide formed during slow
hydrolysis of metal precursors.!®*7% With the addition of a trace
amount of water, fast hydrolysis can be achieved, yielding MO,
nanosheets.!*>%"

Next, expansion of the hydrolysis approach to different 2D
templates, such as MXene nanosheets via its hydroxyl surface
functional groups, can be explored. Figure 4(a) shows the
potential use of MXene as a template by utilizing hydroxyl
(—OH) and —F groups on their surfaces. The hydroxylic groups
are capable of coordinating with transition metal precursors
(e.g., niobium(V) ethoxide or vanadium oxytriisopropoxide
(VOT)) over the surface of MXenes. Through subsequent
hydrolysis, multilayer structures of Nb,O5 or V,05 and MXene
can be obtained.

A novel way of synthetizing multilayer heterostructures
through combination of in-situ polymerization and previously
reported block copolymer-based nanoreactors can be investi-
gated to synthesize strong-bonded multilayer structure.l’!! Spe-
cifically, growing appropriate block copolymers on the surface
of the 2D nanosheets via surface-initiated atom transfer radical
polymerization (SI-ATRP) can be utilized as a step toward syn-
thesis of the nanoreactor template that can be used for further
building of heterostructures.

Next, Fig. 4(b) illustrates the steps of the potential approach
using MXene as a starting template. First, the surface hydroxyl
(—OH) groups on MXene can be converted into bromide groups
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(A=MXene, B=Nb,O;, and C=Sn0,) stacks and their alternating layered assembly.
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by reacting with 2-bromoisobutyl bromide, thereby forming
bromide-terminated initiation surface sites for SI-ATRP. Second,
poly(4-vinylprridine) (P4VP) can be grown by grafting from the
MXene surface. The grown brush layer can be coordinated with
metal precursors (e.g., niobium (V) ethoxide and VOT) to per-
form in-situ growth of MO, nanocrystals as a follow-up step.

Furthermore, multilayer superstructures with a combination
of different nanosheets can be achieved by using diblock copol-
ymers composed of two different blocks. For example, a hetero-
structure of MXene/Nb,Os/SnO, can be grown in this manner.
Specifically, amphiphilic di-block copolymer, poly(zert-butyl
acrylate)-block-poly(4-vinylpyridine) (PrBA-b-P4VP), can be
grafted on MXene surface via sequential SI-ATRP of 4-VP
monomers in the first step, followed by ters-butyl acrylate
(tBA) monomers, yielding a MXene-P4VP-PtBA template.
Subsequently, Nb,Os can be grown in the P4AVP regime because
of the coordination interaction between pyridyl groups of P4VP
with metal precursors (i.e., niobium(V) ethoxide), resulting in
PrBA-capped MXene/Nb,Os nanosheets.

Thereafter, PrBA-capped MXene/Nb,O5 nanosheets can
be transformed into PAA-capped MXene/Nb,Os nanosheets
using well-known hydrolysis procedure.l’” Finally, tin (IV)
ethoxide precursors can be added and coordinated with the
PA A blocks via the interaction between the carboxyl groups of
PAA and metal moieties of precursors, yielding higher-level
CBABC-type heterostructures with stacked MXene/Nb,O/
SnO, nanosheets (A=MXene, B=Nb,0s, and C=Sn0,).

In addition, these heterostructured stacks can be considered
as a means for complementary long-term oxidation control
during processing, storage, and utilization in order to retain
properties of center layer (A), by complementary coverage of
the facets. This approach is based upon known approaches in
adding antioxidant species such as L-ascorbate or graphene
oxide nanosheets to prevent the oxygen access to MXene sur-
faces.l”3! Indeed, individual MXene flakes can be unstable in
colloidal states due to oxidation of the titanium species. Some
current methods for arresting oxidation include removal of oxy-
gen from the solution by either inert gas purging or freezing
the dispersions, or prohibiting contact with oxygen through
dispersion of modified MXene in organic solvents.[*!

Moreover, the laminated heterostructured membranes can
be formed through directed assembly of the pre-synthesized
heterostructures. As has been demonstrated, TiO, nanorods,
SnO, nanowires, graphene oxide, and Co;0, nanoflakes can be
assembled with Ti;C,T, MXene via the vacuum assisted filtra-
tion (VAF) driven by the interaction between the —OH groups
on MO,s and the —F groups on HF-etched Ti,C,T, MXene
nanosheets.!”> Indeed, in a recent study, MXene and encap-
sulated MXene multilayer membranes have been successfully
fabricated with the vacuum-assisted method.[’®! We expect that
by choosing processing conditions, ordered layered morphol-
ogy can be extended across the whole membrane thickness with
preserved orientation of 2D nanosheets over large surface areas.

As an alternative approach to create organized morpholo-
gies with alternating stacks, LbL assembly with complementary

weak interactions can be further exploited.’*7”78 Indeed, owing
to the living characteristic of SI-ATRP, the end groups of poly-
mer brushes (i.e., —Br) will remain exposed and can be converted
into other functional groups [Fig. 4(c)]. For example, the —Br
groups on the surface of MXene/Nb,O5/SnO, nanosheets can be
converted into azide groups via reaction with NaN;. Secondly,
small molecules containing alkynyl and carboxyl groups at each
end, respectively (=-R'-COOH)), can be grafted via click reac-
tion under mild condition, yielding negatively-charged stacks.
Meanwhile, the other small molecules containing alkynyl and
quaternary ammonium groups (=-R’-NH,") can be grafted via
click reaction, producing positively charged stacks. Then, alter-
nating positively charged and negatively charged heterostructured
stacks can be exploited to assemble via LbL technology, resulting
in super-heterostructured materials. In addition, due to the intro-
duction of diverse spacers (R and R’ groups of small molecules)
the gap spacing can be tuned to tailor ion transport, storage, and
interfacial chemistry of channels between alternating stacks.

Characterization

Comprehensive multi-length scale characterization of complex
heterostructures and their physical properties is an extremely
challenging task that requires the utilization of a battery of high-
resolution spectroscopic and microscopic techniques. Beyond
traditional electron microscopies, composition, interfaces, inter-
calation mechanisms and organization of hybrid stacked hetero-
geneous nanostructures can be probed with advanced electron
microscopies and scanning probe imaging.!””!

For example, high-resolution selected area AFM in light tap-
ping mode has been shown to clearly monitor over the reac-
tion time a single structure, in this case a single MXene flake,
enabling precise determination of the assembly of biopolymers
and change in morphology and surface chemistry (Fig. 5).[7¢!
To ensure the same MXene flake can be monitored during
assembly process, pristine MXene flakes can be deposited on
thermally oxidized silicon wafers with labeled grids for optical
localization. The corresponding height histograms show the
apparent flake thickness and a similar thickness before and after
silk assembly promoted by complementary chemistry.

In another study, precise z-realignment of individual scan
lines in high resolution image allowed to monitor real-time site-
specific chemical reduction reaction on surface of the same 2D
graphene nanosheet during chemical reduction with precision
better than 0.1 nm in contrast to nominal accuracy of 0.2-0.3 nm
(Fig. 6).B% Concurrent monitoring of electrostatic forces ren-
ders observation of surface chemistry evolution during chemi-
cal reaction of hydrazine with nanoscale identification of site-
specific diversity (Fig. 6). Such precise monitoring of assembly
and surface chemistry evolution with atomic accuracy can be
even more critical for novel heterostructured materials.

Friction anisotropy of heterostructures was shown by meas-
uring lateral forces between asperities and surface of MXene
flakes.[*! The anisotropic direction of the frictional force is
highly dependent on thickness of the MXene layer.!®!] Next,
surface force spectroscopy (SFS) can provide precision and
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localized measurements such as intermolecular interactions
using force measurements of interaction between the AFM
probe and the surfaces of heterostructured materials. Quantita-
tive nanomechanical probing translates the force measured by

tip-surface interaction into pull-off forces related to adhesion.
Adhesive force measurements showed that varying precool-
ing treatments can improve interfacial adhesion.®%3! Another
study showed how surface interactions are influenced by charge
density of oxygen.'¥ AFM imaging with power spectral den-
sity analysis of 2D materials on carbon fiber surfaces showed
avenues for strengthening interfaces.®!

Furthermore, surface electrical potential measurements
with KPFM were applied to WSe,—~MoS, heterostructures
(Fig. 7).1%31 The researchers demonstrated spatial heterogene-
ity of individual heterostructures due to localized differences in
the light-mediated resistive switching mechanism for sensing
applications. Under UV illumination, in-situ potential differ-
ences observed their reduction over time due to increased light
intensity of MXene and ZnO films as electron—hole pairs are
generated at the interface of the heterostructure. ¢!

Another intriguing AFM mode for in-depth nanoscale char-
acterization of heterostructures is nano-IR.®®”) This technique
allows mapping of chemical composition of the heterostruc-
tures. Visualization of the spatial distribution at different fre-
quencies shows local compositional and structural differences
[Fig. 8(a—d)].1%

Another instance of nano-IR mode is mapping of graphene
surface plasmons formed on a pentacene, graphene heterostruc-
ture.®%) In this study, nano-IR has been used to show plasmon
edge features around the distinct layers of the heterostructure
which depend on the pentacene thickness and layer orienta-
tion. In related studies of polymer monolayers that can be
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Figure 7. KPFM maps of WSe,-MoS, heterostructures. (a) Topog-
raphy image of the heterostructure. (b) Surface potential (SP)
map taken under no illumination and (c) under illumination by a
401.5 nm laser diode. (d) Net surface photovoltage (SPV). () Line
profiles of surface potential corresponding to (b) and (c). All scale
bars 2 pm. Reprinted with permission from Ref. 85.

relevant for polymer-grafted 2D stacks, the heterogeneous
surface chemistry of thermo-responsive ionic polymer mon-
olayers was revealed by using high-resolution nano-IR map-
ping [Fig. 8(e)].°"

As known, machine learning (ML) analysis methods have
been utilized in materials science to accelerate materials dis-
covery, automate materials characterization techniques, ana-
lyze big data sets, predict materials properties, and ultimately
establish structure—property relationships.””' 3 It is worth to
note that ML approaches can further enhance comprehensive
understanding of heterostructure properties and in particularly,
advances in imaging techniques. For example, ML methods
were used to discover hidden patterns and establish correlations
between Raman and photoluminescence spectra of 2D MoS,
films.”* Recently, the utilization of artificial intelligence (AI)
driven scanning probe microscopy was explored to minimize the
required datasets needed to reconstruct 3D piezoresistive probe
microscopy images, and accelerate and guide dataset collection
by determining possible measurement points of interest using
Bayesian uncertainty.!*! In another study, ML models were used
in conjunction with AFM and friction force microscopy (FFM)
to correlate graphene layers with frictional properties.””

In conclusion, novel and diverse 2D heterostructures are
promising functional nanomaterials for a variety of different
emerging technologies, due to their unique properties includ-
ing high ionic conductivity, enhanced mechanical stability,
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Figure 8. (a) Schematic of nano-IR probing method. Nano-IR
images of hexagonal boron nitride (hBN) domains at varying
frequencies, (b) 1344, (c) 1320, and (d) 1368 cm™'. AFM topogra-
phy image and AFM-IR spectra from thin films based on thermo-
responsive polymers. Adapted with permission from Refs. 88, 90.

complementary transport pathways, and interfacial chemical
endurance. We suggest that in-situ growth methods of metal
oxides on MXenes via SI-ATRP will facilitate enhanced com-
positional, interlayer and interfacial chemistry control and
versatility, leading to improved conduction, organization and
operational stability for an array of prospective critical materi-
als applications. The advances in fine surface and interfacial
synthesis and nanoscale-resolution properties characterization
approaches discussed here are the key to design and advance
novel heterostructures with high architectural control and versa-
tile interfacial chemistry for further advances of diverse applica-
tions in energy storage, energy transport, electronic communica-
tion, multifunctional sensors, and electronic protection.
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