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Abstract 

 Marine systems are incredibly chemically complex. An understanding of the chemical compounds 

that make up the chemical diversity in these samples is critical to understanding ecological and ocean health 

metrics. Using Raman spectroscopy in tandem with machine learning combines a low-cost highly 

transportable analytical technique with a powerful and rapid computational approach that can aid in marine 

analysis. Here we use Raman spectroscopy and machine learning to identify mM concentrations of three 

chemically relevant compounds in three distinct classes in a complex aqueous matrix. Saccharides are 

represented by glucose, fatty acids by butyric acid, and proteins are represented by amino acid proxy 

through glycine. Eight classical machine learning models (gradient boosted regressors, random forests, 

histogram gradient boosted regressors, decision trees, k nearest neighbors, support vector regression, 

multilayer perceptrons, and multivariate linear regression) were tested for their accuracy in identifying the 

concentrations of glycine, glucose, and butyric acid in marine samples, which were benchmarked through 

a mass spectrometric method. Support vector regression was able to best identify all three concentrations 

of glycine, butyric acid, and glucose. Butyric acid was similarly well described through gradient boosted 

regression and histogram gradient boosted regression. The described spectroscopy and machine learning 

methodology has the potential to significantly advance rapid field analysis of marine samples. 
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Introduction 

Marine organic composition drives many of the methods in which the ocean interacts with the other 

chemical systems of Earth. The organic compounds have the ability to influence atmospheric chemistry 

when partitioning to the surface of the ocean and contributing to sea spray aerosols.1–9 They can also act as 

feedstocks or markers of metabolism within biological systems like algal blooms.10–12  Measuring marine 

organic compounds also improves the ability to detect and remediate potential marine disasters such as oil 

spills.13,14 The largest challenges in attaining a large scale understanding of ocean chemistry arise from the 

incredibly diverse array of compounds present in marine samples.7,8,15–17 

 Vibrational spectroscopy is used extensively to describe marine chemistry and aqueous 

environments.6,18–20 Raman spectroscopy is used, in particular, in deep ocean probes due to the durable 

instrumentation and ability to analyze aqueous environments without major disruption from the vibrational 

signature of water itself.21,22 Raman spectroscopy is also used as a method to identify chemical markers to 

understand physical properties (e.g. chemical kinetics, thermochemistry, and chemical building blocks) and 

biologic activity in marine systems.18,23 In our prior work, we used Raman spectroscopy to identify ion 

pairing in aqueous solutions of NaCl and KCl.24 Ion pairing is detected by observing how the vibration of 

water is affected by being in different solvation shells of ions. Detecting ion pairing requires a high signal-

to-noise ratio as these interactions may only make small perturbations in the OH symmetrical and 

asymmetrical stretching regions of the spectra.  

 Utilizing machine learning in tandem with vibrational spectroscopy has been of high interest in 

recent years,25,26 particularly in the areas of real-time reaction monitoring27 and medical diagnostics.28–31 

The vibrational fingerprints of different analytes of interest are proving to be powerful features for machine 

learning models. De Medeiros Back and colleagues published a paper in 2022 describing methodology 

utilizing vibrational spectroscopy to identify microplastics in the Mediterranean Sea. They found that 

support vector classification showed the best performance out of the machine learning methods that they 

evaluated. Our group has also successfully utilized machine learning and vibrational spectroscopy to 



identify organic concentrations in complex chemical matrices.32 In the prior work, attenuated total 

reflectance Fourier transform infrared spectroscopy (ATR-FTIR) data was used to evaluate the ability of 

six different machine learning methods to identify concentrations of glucose in a complex matrix of 

differing concentrations of egg serum albumin. Ultimately, we found that support vector regression had the 

highest accuracy in identifying glucose. To further analyze the extent of the expandability of the training, 

more chemically complex samples (containing sucrose, glucose, egg serum albumin, bovine serum albumin 

and 1-butanol) were created. It was found that the model could not only identify the concentration of glucose 

alone, but a sum concentration of saccharide (glucose and sucrose). 

 Here, we expand upon our results in our previous work by evaluating three different analytes’ 

concentrations simultaneously, rather than just one. Our three analytes of interest have been curated due to 

their relevance and impact on marine chemistry and the marine ecosystem. We evaluate a total of eight 

machine learning models to this end. Each of these models was trained using two different datasets. The 

first dataset, the spiked lab (SL) sample dataset, is created with ultrapure water and spikes of various 

concentrations of the three analytes. This dataset focuses on giving the models access to highly resolved 

calibration spectra with little matrix effect. The second dataset, the spiked marine (SM) sample dataset, 

utilizes the same spikes as in the previous dataset but instead of using ultrapure water, unspiked marine 

(UM) samples are used. This dataset provides real-world samples and works to highlight the effect of the 

matrix (salts, other organics, potential fluorophores) as well as secondary chemical effects of the complex 

chemical environment. This work presents, to the best of our knowledge, the first multi-output machine 

learning models to describe the organic components of ocean chemistry quantitatively.  

Methods 

Selection of Representative Analytes  

Describing the vast chemical complexity of ocean samples in just a few analytes of interest is 

incredibly challenging. This current work aims to focus on a saccharide, a fatty acid, and a proxy for 



proteins. Due to time and technique constraints, only one to two representatives could be chosen for each 

class of molecule. The compounds selected need to be ones that would be expected to be found in marine 

samples. As for concentration range, the total concentration sum was < 300 mM,46 arising from estimated 

total organic carbon (TOC) for marine samples. This average varies globally depending on marine system, 

time of year, and local ocean productivity.47–50 This adds the constraint that the analytes of interest should 

be soluble in room temperature water at a concentration of close to 300 mM. 

Marine proteins vary greatly with type and size. These variables make defining the concept of a 

total concentration challenging. To standardize and simplify this analysis, this study looks at amino acids 

rather than a specific protein. Glycine and histidine were chosen as analytes of interest. These amino acids 

have been defined as potential markers for  gluconeogenesis (non-sugar metabolism) and antifungal 

properties among others.51–54 Glycine has also been noted as partitioning into sea spray aerosols and being 

transported into cloud water.55 Amino acids have been reported to make up 11% by mass of the dissolved 

organic carbon within submicron sea spray aerosol particles.56 Note although histidine was chosen as a 

representative analyte it was not found to be in UM samples above the LOQ of the utilized mass spectral 

calibration and thus could not be analyzed through our Raman and ML combined approach. 

  For fatty acids, the analyte needed to be marine relevant and not have a strong partitioning to the 

aqueous surface. This second criterion limited the options to fatty acids with a carbon chain length of three 

or less. Butyric acid has a carbon chain length of three and has been noted as one of the most abundant short 

chain fatty acid in algal bloom metabolic processes.10,11,57,58 Butyric acid can also be an indicator of ocean 

oxygenation.59 As algal bloom populations collapse, the dissolved oxygen is depleted, causing negative 

impacts to ocean health.60,61 This lack of oxygen also increase ocean acidification.62 

 The chosen analyte representative for saccharides is glucose. This saccharide is one of the most 

abundant of the saccharides in marine systems.63 It is also a common feedstock for small scale marine life 

like algae and has been used in the past as a biomarker of algal bloom presence and stage.64,65 Glucose, 



along with other saccharides have also been known to partition into aerosols 9,63 where they can act as 

potential ice nucleators.66 

Solution Preparation 

 Butyric acid, glycine, and L-histidine were obtained from MilliporeSigma and glucose was 

obtained from Sigma Aldrich. All compounds have a purity of higher than 98%. 1 L of solution was made 

with each analyte compound at concentrations of 303, 262, 145, and 300 mM for glucose, butyric acid, 

histidine, and glycine respectively with ultrapure water (Milli-Q Advantage A10, resistivity 18.2 MΩ). 

These stocks were used as the spikes to make the SL and SM datasets as described in the Results and 

Discussion section. 

Raman Spectroscopy 

A total of 210 Raman spectra (100 SL, 100 SM, 10 UM) were collected using a custom-built Raman 

spectrometer. This instrument contains a diode-pumped 532 nm CW laser containing built-in laser line 

(±0.5 nm) and polarization filters (>100:1) (CrystaLaser). The excitation source is directly coupled to a 

custom-built fiber-optic polarized Raman probe system (InPhotonics) allowing 235 mW power at the 

sample with a spectral range of 90–4200 cm–1. The output, both polarized and depolarized scattered light, 

is collected by two independent fiber-optic terminated ports. The two polarization output ports are fiber 

coupled directly to a spectrograph through a 50 μm slit with a 1200 g mm–1 grating with a 750 nm blaze, 

which is calibrated to Ar/Ne emission lines (IsoPlane 320, Princeton Instruments), and is detected with a 

liquid-nitrogen cooled CCD detector (Pylon, 1340 × 400 pixels, Princeton Instruments). Each 200 μm core 

fiber is directly coupled to the spectrograph and allows for the simultaneous collection of the perpendicular 

(HV, depolarized) and parallel (VV, polarized) spectra. Measurements of all of the concentrations were 

performed at a room temperature of 21 ± 2 °C. Spectra were collected by signal averaging 50 frames each 

with a 0.4 s integration time. Only the parallel (VV, polarized) spectra were used for analysis. 

Paper Spray Ionization Mass Spectrometry (PSI-MS): 



Mass spectral data was used to benchmark the model results. The mass spectral data was not used 

to train the models, but to develop a validation set of concentrations for the field samples so that an 

appropriate error analysis of the ML models could be performed. The mass spectrometry (MS) method used 

herein for all calibrations consisted of a paper spray ionization (PSI) platform which has been utilized as a 

valuable ambient ionization MS method for direct, targeted, and rapid analysis of analytes within a native 

sample.33,34 In PSI-MS sample is deposited directly onto an untreated Whatman #1 filter paper triangle 

substrate produced in-house. All samples (i.e. SL and SM samples) were deposited on the paper substrate 

(10 μL sample size) and allowed to dry completely before the application of methanol extraction solvent. 

Ionization was facilitated by the application of a high DC voltage (6 kV) to the ionization apparatus, thus 

inducing an electrospray ionization mechanism from the paper substrate. Methanol extraction solvent was 

applied directly onto the paper substrate with the paper triangle secured from the rear via a copper clip. 

Paper substrates were held at a 5 mm distance from the inlet of the mass spectrometer which was held at 

250 °C inlet capillary temperature. Spectra were recorded over a total acquisition time of two minutes with 

0.25 minutes analyte and internal standard averaging for all calibrant and UM solutions. The MS was 

operated in positive-ion mode for butyric acid, glycine, and histidine analytes with analysis of protonated 

pseudomolecular ion and negative-ion mode for glucose for analysis of the chloride adduct 

pseudomolecular ion. Protonation of butyric acid was facilitated via the high DC voltage ionization 

mechanism.35 Protonation of glycine and histidine was assisted via addition of 0.1 % formic acid. Glucose 

chloride adduct formation was assisted via addition of 10 mM ammonium chloride.36 

Mass spectra were recorded using a Thermo Fisher Scientific Finnigan ion trap mass spectrometer 

(San Jose, CA). All MS parameters were held constant throughout with 3 microscans and 100 ms injection 

time. All spectral averaging was performed for 0.25 min. Tandem MS was performed via collisional 

induced dissociation (CID) for structural analysis using collision energies ranging from 20-40 

manufacturer’s units and were optimized for each unique chemical system. Data processing was performed 

using Thermo Fisher Scientific Xcalibur 2.2 SP1 software. 



Mass Spectral Quantification - Internal Standard Calibration Curve 

Using the PSI-MS platform, we sought to quantify each analyte in the UM samples and constructed 

internal standard calibration curves (Figure S2). This was done using standard solutions of each analyte 

made in neat water (13-100 mM) with appropriate internal standards (800 mM). We placed 50 μL of the 

prepared internal standard solution into 2 mL of the standard solution to prepare a 16 mM solution for 

analysis. We then took 10 μL aliquot of the 16 mM solution and place this on the paper triangle, allowing 

for 1 minute of dry time before extraction solvent application onto the paper and applying a 6 kV high DC 

voltage for subsequent analysis in the positive ion mode (butyric, glycine, and histidine) and negative ion 

mode (glucose). Tandem MS (MS/MS) mode was implemented for analysis, using the appropriate 

transitions for each compound and its corresponding internal standard (Figure S2a (butyric), S2b (glucose), 

S2c (glycine), and S2d (histidine)). We monitored the ratio of the intensity of the analyte-to-internal 

standard (A/IS) as a function of the analyte concentration – consistent with MS based calibration. Figure 

S2a-d shows the linearity achieved with R2 values that fall within the 0.99 range. With these results, we 

moved forward with the quantitative analysis of the selected compounds using the PSI-MS set-up with UM 

samples. Under analogous conditions to calibration, the UM samples were analyzed, and their spectrum 

confirmed the presence of butyric acid, glucose, glycine, and histidine in the ocean water samples via 

MS/MS. 

Field Collection for SM and UM Samples 

 Water was collected from two locations in Cocoa Beach, Florida in January 2023. Sampling site 

one was the Atlantic Ocean and site two was the Banana River within the Indian River Lagoon System. 

The Banana River is a brackish waterway connected via ocean inlet with mangrove shorelines; the 

conditions provide a unique aqueous environment on the west side of the Florida barrier islands. Samples 

are categorized as surface microlayer (SML) and bulk sea/river water (BW). We operationally define the 

SML as the top 1 mm of the sampled water and BW as the top 1 m of the sampled water. All samples were 

stored at room temperature and shipped; once received, samples were stored at 2C until analyzed. 



 BW samples from Cocoa Beach, Florida were collected. Briefly, sea samples were collected within 

10 meters of the ocean shoreline (28.314885 N, 80.607818 W) and river samples were acquired 

approximately 2 meters from land (28.309917 N, 80.614893 W) on January 10th and 11th 2023. All samples 

were collected and stored in mason jars with plastic lids instead of the traditional metal lids to avoid 

contamination through metal corrosion.  

BW was collected by first copiously rinsing a jar, replacing the lid, submerging the covered jar, 

and finally removing the lid underwater. Jars were filled to avoid head space. SML water was collected 

according to methods detailed by Harvey and Burzell.37 Briefly, a clean hydrophilic glass plate (Millipore 

Sigma, unframed, H × W × D 200 mm × 260 mm × 4 mm) was submerged perpendicular to the surface to 

about the top inch, the plate was then withdrawn from the water at a rate of approximately 20 cm/s. 

Adsorbed water and organics were collected via silicone squeegee into a copiously rinsed glass jar. 

An additional sample was collected from the tropical saltwater aquarium, ~ 200-gallon capacity, 

within the Center for Life Sciences Education at the Ohio State University. 

Data Preprocessing 

There was a large degree of observed Raman fluorescence in the SM and UM sample datasets. This 

presented itself as broad band elevated baselines (Appendix A – Figure S1). Fluorescence was expected 

from the large number and variety of naturally occurring organic compounds in solution. Multiple methods 

of preprocessing were evaluated to see if this baseline variation could be corrected and if that correction 

led to higher model accuracies. To ensure that all data was treated the same way, all preprocessing was 

completed on the SM, UM, and the SL datasets even though the fluorescence was not observed in the SL 

data (Appendix A – Figure S1). The highest accuracies came from taking the average of the Raman spectra 

from 1283 to 2640 cm-1. This average was then subtracted from all intensities from 346 to 3117 cm-1. This 

baseline corrects some of the observed Raman fluorescence in the SM and UM dataset. Next, the entire 



spectrum is normalized with respect to 3343 cm-1 which is correlated with the isosbestic point between the 

symmetric and asymmetric O-H stretching bands. This further corrects for the fluorescence. 

After preprocessing, the data was then split into training, testing, and validation datasets in ratios 

of 70:15:15 respectively. A random state, a variable within the sklearn train test split function, was assigned 

to ensure that the data was split the same way for each Jupyter Notebook, so all the models have access to 

the same data in the same splits. The 15 validation spectra were removed, in part, to ensure that when we 

performed a sample dropout test, the difference in accuracy could be associated directly with the sample’s 

representation in the dataset and not to the size of the dataset analyzed. This dropout test ensures that the 

models weren’t simply using the dilutions of the field samples to make their assignments. 

Python Scripts 

All python scripts have been made available via Jupyter Notebooks on GitHub 

(https://github.com/Ohio-State-Allen-Lab/multi_compound_marine_regression). 

Regression Methods 

Eight total regression methods were tested for accuracy in identifying the concentrations of the UM 

samples. Six of these models were evaluated in our previous work on the saccharide and egg serum albumin 

dataset. The remaining two were added once it was seen that ensemble algorithms were performing well on 

the SM and SL datasets. 

Decision Trees (DT)38 

Decision trees (DT) utilize iterative binary splits of the data to identify concentrations of new data. 

A fitting criterion of absolute error was used with a best splitter to separate the data into leaves that had a 

minimum of 5 samples. Fewer than 5 samples per leaf did not lead to increased model accuracy. 

Random Forest (RF)39 



Random forests (RF) utilize many decision trees to improve model accuracy. In this context, 100 

trees were trained independently of each other (non-bootstrapped) by minimizing squared error. All of the 

trees were then used simultaneously to make model assignments. As few as 10 and as many as 100 trees 

were evaluated in steps of 10 and the most successful model is presented here. 

Gradient Boosted Regression (GBR)40 and Histogram Gradient Boosted Regression (HGBR)41 

Gradient boosted regression (GBR) and histogram gradient boosted (HGBR) models are made 

similarly to random forest models in the fact that the base architecture is a decision tree. However, the 

difference is that as new trees are trained in GBR, models learn from the previous trees. For this context, 

100 trees are used reducing a loss of squared error. A learning rate of 0.5 was used with a max depth of 1. 

HGBR utilizes a histogram estimator to improve the speed of computation. The learning rate and max depth 

are both the model defaults and adjustments to these values didn’t lead to increased model accuracy. 

K Nearest Neighbors (KNN)42 

K nearest neighbors (KNN) models utilize the distance from previous datapoints to estimate 

quantifications for new samples. The presented models utilize the 5 nearest neighbors to make their 

assignments. Neighbor numbers between 1 and 10 were evaluated and 5 neighbors performed the best. 

Support Vector Regression (SVR)43 

Support vector regression (SVR) models work to optimize high dimensionality hyperplanes to fit 

datasets with many features. The kernel being utilized in the presented models is a radial bias function. All 

of the available kernels were tested, and the radial bias function performed the best. 

Multi-Layer Perceptron (MLP)44 

Multi-Layer Perceptron (MLP) models are examples of neural networks. These models utilize a 

combination of weights and biases that exist in pairs called neurons. These neurons are tuned throughout 

training steps to minimize error. The presented models were trained for 5,000 training iterations, with a 



rectified linear unit (ReLU) activation function and an Adam solver. Various combinations of training steps, 

activation functions and solvers were tested using the documentation from SciKitLearn. 

Multi-Variate Linear Regression (MLR)45 

Multi-variate linear regression models fit each feature (in this case, each wavenumber) with a linear 

function. The function for every feature is used simultaneously to make model assignments. The presented 

models use a Ridge linear model to fit the features. 

Results and Discussion 

 The two datasets, Spiked Lab (SL) and Spiked Marine (SM), consisting of only Raman 

spectroscopic data, were each made with a different perspective of the chemical system in mind. The SL 

dataset works on making a clean calibration curve of each chemical analyte as well as showing the direct 

interaction between the analytes of interest. The SM dataset includes the contribution of the salts and other 

organics present in the marine samples which can greatly affect the vibrational signatures observed. All 

data was labeled with a “true” concentration using the mass spectral data. Models trained on each of these 

datasets were used to predict the concentrations of the Unspiked Marine (UM) samples to evaluate their 

ability to be applied to new marine samples. 

Sample Organization 

 After selection of the analytes of interest, a methodology was developed to make unique 

combinations of organic concentrations to generate the datasets for training. Four distinct calibration curves, 

two with 10 datapoints and two with 5 datapoints, were utilized in the method. The calibrations and the 

sample combinations that are developed make up a single array and each dataset contains two sample arrays. 

Each sample array contains 50 samples. This is done in different ways for the SL samples and the SM 

samples (Figure 1). 



 For the SL samples, the first sample array has anti-correlated calibration curves (Figure 1 SL 

samples rows 7-11). This means that the analyte concentration gradients on opposite sides of the sample 

array are changing inversely to one another. This ensures that the models are penalized for trying to correlate 

any of the concentrations during the training. For the second sample array, the opposing analyte 

concentrations change proportionally to one another (Figure 1 SL samples rows 12 – 16). This second array 

was to ensure that there wasn’t in inverse correlation that could be picked up by the model either. 

 

Figure 1. Sample organization for model training datasets. The SL sample dataset (I) contains two sample arrays one in which 

there are anti-correlated concentrations (the species on opposite sides of the array have inverse calibration curves), and in the 

second the calibration curves move in the same direction. The SM sample dataset (II) contains first a dilution series of the field 

samples to ensure that the calibration curves were done lower than the concentration of the UM samples and then an anti-

correlated array of spikes. The row numbers show the solution array being used 1-5 is dilutions, 7-11 is anti-correlated calibration 

curves, and 12-16 is the correlated calibration curves. Not pictured: 6 represents the UM samples that are withheld as the final 

validation set for the trainings. 

 For the SM samples, the setup involved associating each column of the sample arrays with a marine 

sample (Table 1). This allowed for a dilution series to be made for the first sample array (Figure 1 SM 

samples rows 1-5). Due to the UM samples already having unique concentrations this dilution series took 

the place of the anti-corelated sample array in the SL dataset. The second sample array contained the same 

organic spikes that the correlated calibration data of the second SL sample array (Figure 1 SM samples 

rows 7-11). Together, these ensured that the concentrations of the UM samples would be within the 

calibration. A full spreadsheet describing the concentrations of each analyte in each sample correlated with 

the same alphanumerical matrix described in Figure 1 is available on the GitHub associated with the project 

(https://github.com/Ohio-State-Allen-Lab/multi_compound_marine_regression). 



 After analysis of the marine samples through ambient mass spectrometry, it was determined that 

that the marine sample concentrations of histidine were below the limit of quantification (LOQ) of our mass 

spectral calibration. This suggests that the marine concentrations are in the µM range or below and thus 

would be beneath the limit of detection for our Raman system. As a result, the histidine spikes are in the 

samples and are part of the solution prep, however they are not represented in the analysis as there is no 

“true” value to compare to model results for accuracy. 

Table 1. Marine samples associated with the UM and SM datasets. Concentrations of glycine, butyric acid, and glucose were 

calculated through mass spectrometry and will be used as the “true” values of concentration for these samples. Histidine 

concentrations were all beneath the LOQ for the mass spectral method. 

SAMPLE 

COLUMN 

WATER SAMPLING 

LOCATION 

GLYCINE 

(mM) 

BUTYRIC 

ACID (mM) 

GLUCOSE 

(mM) 

HISTIDINE 

(mM) 

A Atlantic Ocean - BW 6.01 26.81 14.20 <LOQ 

B Banana River - SML 2.94 22.23 6.37 <LOQ 

C Banana River - BW 1.24 26.26 12.95 <LOQ 

D Atlantic Ocean - SML <LOQ 21.82 20.19 <LOQ 

E Atlantic Ocean - BW 11.27 48.11 29.85 <LOQ 

F Saltwater Aquarium - BW 3.61 25.91 11.74 <LOQ 

G Atlantic Ocean - SML 3.79 23.31 10.94 <LOQ 

H Banana River - BW 6.65 21.72 40.57 <LOQ 

I Banana River - SML 2.23 24.82 14.90 <LOQ 

J Atlantic Ocean - BW 8.95 21.92 17.82 <LOQ 

 

 The concentration combinations within the spike-containing sample arrays are created by taking 

the row or column associated with each of the calibration curves and spiking those concentrations into 

either lab or marine water depending on the dataset.  



 After training all the models, initial assessments on internal accuracy were made. Figure 2 depicts 

all the error associated with each chemical species (glycine, butyric acid, and glucose) for each of the 

machine learning methods trained on SL data (left) and SM data (right). The errors associated with the SM 

models are, on average, higher than the models trained on the SL data. Within each set, the ensemble 

methods (GBR, RF, and HGBR) tend to perform better than the single models. There doesn’t tend to be an 

immediately visible trend between error and chemical species, suggesting that different models are able to 

optimize different chemical species more effectively. 

 

Figure 2. Test stage root mean squared error (RMSE) values for each combination of ML approach and chemical species. 

 All the models can then be used to predict the concentrations of the UM samples. Figure 3 has the 

model assignments for each of the different compounds. The models trained with the LS data are on the left 

(circles) and the models trained with the SM data are on the right (triangles). The dotted lines show a 

boundary of +/- 20% of the highest concentration of that analyte in a single marine sample. The models 

trained on the SM models show much more clustering of assignments within this +/-20% region. It is also 

possible to identify models that are performing more poorly across the board these include MLP, MLR, and 

RF. 



 

Figure 3. UM sample estimates from each ML approach on SM models (left - circles) and on SL models (right - triangles). Solid 

grey line denotes a difference between actual and predicted concentrations of 0. The dotted lines represent +/- 20% of the most 

concentrated marine sample for the given chemical species (glucose, glycine, and butyric acid). The SM models show more 

clustering within these boundaries than the SL models suggesting that the SM models were more accurate at identifying the 

concentrations within the UM samples. 



To improve the visualization of the models that are making assignments in the +/-20% range, the 

number of assignments in this region were counted for each model and for each compound (Figure 4). This 

confirms that the SM models perform better than the LS models at identifying the UM samples. This 

increase in accuracy likely comes as a function of the increased similarities between the training data and 

the final validation data. These similarities include non-analyte organics which are leading to the observed 

Raman fluorescence. These organic compounds likely change from sample to sample, but they work to 

make the training data more chemically similar to the final validation data. 

 

 

Figure 4. Counted values out of 10 for the correctly quantified UM samples within 20% of the max true values in a single UM 

sample. These counts are separated by ML approach and chemical species. Importantly, the SM models perform higher than the 

SL models in nearly every case. SVR achieved the highest accuracies for all three analyte concentrations. 

SVR performed the best at identifying the concentrations of glycine, butyric acid and glucose 

assigning 7/10, 9/10, and 8/10 within 20% of the true value, respectively. Butyric acid was also well 

described through the GBR and HGBR methods (Table 2). 



Table 2. Highest performing models for each analyte compound. 

Highest Accuracy Model for Each Analyte Compound 

Glycine Butyric Acid Glucose 

 

 

Support Vector 

Regression (SVR) 

 

 

 

7/10 Marine Samples 

Support Vector Regression (SVR) 

Or 

Gradient Boosted Regression (GBR) 

Or 

Histogram Gradient Boosted 

Regression (HGBR) 

 

9/10 Marine Samples 

 

 

Support Vector 

Regression (SVR) 

 

 

 

8/10 Marine Samples 

 

 As mentioned in Figure 1, the SM sample models (highest performing) are trained on dilutions of 

the marine samples. To further analyze the accuracy of these models, it is important to measure the marine 

sample accuracy if the model hadn’t been trained on dilutions of that exact sample. To accomplish this, the 

highest performing models (Table 2 –SVR (for glycine, butyric acid, and glucose), HGBR (for butyric 

acid), and GBR (for butyric acid)) were trained another 10 times each. For each model, training one column 

of marine samples was dropped, (e.g., SM samples: column A) then the model was evaluated using the UM 

sample associated with that marine sample (for column A: sample A6). This allows for the analysis of the 

model if it was shown a truly new marine sample. This was then repeated with each of the remaining 

columns independently. Figure 5 shows these results. 



 

Figure 5. Marine sample analysis using dropout sample method. For each model training one column of samples was dropped 

(e.g., SM samples column A) then the model was evaluated using the UM sample associated with that marine sample (for column 

A: sample A6). The dropped sample results are in black or grey and the original analysis is left in the color associated with that 

ML approach in Figure 4. The accuracy of models is well maintained for glycine (I) and butyric acid (II). The largest loss in 

accuracy was in the measurement of glucose. This variance, due to it mostly being overestimates, may be associated with the 

presence of other saccharides in these samples that cannot be determined using the stated mass spectral method.  



 The accuracy of analysis with and without sample dropout is maintained well in analyzing glycine 

and butyric acid. SVR performed the best out of the three possible butyric acid models in the drop out test. 

The model was able to achieve accuracy for 9/10 samples even with the sample dropout. GBR (8/10 correct) 

and HGBR (7/10 correct) both experienced reductions in accuracy in identifying concentrations of butyric 

acid while using sample dropout. The largest variance was found in the analysis of glucose where there is 

a trend in over estimation from the SVR model (Table 3). This perpetual overestimation may suggest that 

there are other saccharides in these field samples.32 Our “true” value for glucose is limited to only glucose 

based on the limitations of our mass spectral method, which can only evaluate one stated analyte at a time. 

Machine learning models can accurately identify a generalized saccharide concentration through a sum of 

glucose and sucrose;32 this is consistent with the vast majority of errors being positive, as observed here 

(Figure 5).  

Table 3. Effects of dropout sample test on highest performing models for each analyte compound. 

I Before Sample Dropout 

Analyte ML Approach 
No. Estimates Below  

20% Threshold 

No. Estimates Within 

20% Threshold 

No. Estimates Above 

20% Threshold 

Glycine SVR 3 7 0 

Butyric 

Acid 

SVR 1 9 0 

GBR 1 9 0 

HGBR 0 9 1 

Glucose SVR 2 8 0 

II After Sample Dropout (Net change) 

Analyte ML Approach 
No. Estimates Below  

20% Threshold 

No. Estimates Within 

20% Threshold 

No. Estimates Above 

20% Threshold 

Glycine SVR 3 7 0 

Butyric 

Acid 

SVR 1 9 0 

GBR 1 8 (- 1) 1 (+ 1) 

HGBR 2 (+ 2) 8 (- 2) 1 

Glucose SVR 4 (+ 2) 4 (- 4) 2 (+ 2) 

 

Future work should add samples to the SM dataset to help improve its stability, to lessen the reliance 

on any given marine sample and to further increase dataset size as the limited size of 100 spectra may be 

contributing to over fitting. Other experimental methods to benchmark and confirm the concentrations of 

the marine samples with additional representative analytes should be developed to improve the scope of the 



“true” concentrations. Other complementary analyte models should also be added to improve the overall 

organic compositional analysis. With sufficient analyte models it may also be possible to look for 

correlations between analyte models which would suggest which compounds may lead to systematic errors 

when coexisting in solution. 

Future work should also include evaluating these models in their ability to identify changes in 

concentrations in entirely field based systems. A limitation of this current work is that all concentrations 

have been artificially spiked on top of true field samples. This limits the current ability to make conclusions 

on the field systems themselves. With a larger sample set from a field campaign through collecting spatially 

and/or temporally spaced samples it is possible that models, like those described in this work, will allow 

for the analysis of marine systems in many capacities including potential origin of life or ecological studies 

among many others. 

Conclusion 

 Eight machine learning models were tested for their ability to identify four different analyte 

concentrations in a complex marine matrix. Two different Raman spectral datasets of organic spiked arrays 

were made on ultrapure water and on marine samples to approach the complex system in different ways. 

The results show that support vector regression had the highest accuracy in identifying all three analytes. 

Butyric acid was also well described through gradient boosted regression and histogram gradient boosted 

regression however these approaches performed more poorly than the support vector regression during the 

sample drop out test. In nearly every case the spiked marine (SM) dataset, in which the spikes were added 

to marine samples with their internal chemical complexity, outperformed the spiked lab (SL) dataset. Upon 

testing sample dropout to remove potential internal correlation in concentrations from the dilution series 

making up half of the SM dataset, it was found that butyric acid and glycine were largely unaffected. When 

this dropout approach was used with glucose, it led to an increase in overestimating glucose concentrations 

which suggests that there are saccharides in solution that are contributing to the same vibrational modes. 

This work reveals that it is possible to achieve accurate estimates of selected organics in an increasingly 



complex chemical matrix using Raman spectroscopy with machine learning. This combination of Raman 

and ML stands to improve our rapid response and characterization of marine samples both in the lab and in 

the field due to the durability and transportability of Raman instrumentation and the ease of use and rapid 

computations of a pretrained machine learning model. 
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