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ABSTRACT

We define the marginal information of a communication protocol,
and use it to prove XOR lemmas for communication complexity.
We show that if every C-bit protocol has bounded advantage for
computing a Boolean function f, then every Q(C+/n)-bit protocol
has advantage exp(—Q(n)) for computing the n-fold xor f®". We
prove exponentially small bounds in the average case setting, and
near optimal bounds for product distributions and for bounded-
round protocols.
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1 INTRODUCTION

If a function is hard to compute, is it even harder to compute it
many times? This old question is often challenging, and new an-
swers are usually accompanied by foundational ideas. We give new
answers in the framework of communication complexity, accompa-
nied by a new measure of complexity called marginal information.
This definition provides a new tool for proving lower bounds in
theoretical computer science.

A wide variety of important lower bounds in computer science
ultimately rely on information theoretic lower bounds in commu-
nication complexity, including lower bounds on the depth of mono-
tone circuits [17], lower bounds on data structures [19] and lower
bounds on the extension complexity of polytopes [3, 16, 26, 30],
to name a few nice examples. We refer the reader to the textbook
[23] for an introduction to the basic definitions and concepts in
communication complexity, the role played by the questions we
address here, and the connections to other areas.
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Given a Boolean function f : X X Y — {0, 1}, define the func-
tions f : X" x Y" — {0,1}" and " : X" x Y" — {0,1} as
follows!:

f*(xy) = (fCerya), £ (xay2), - - f (¥nyn)),
FE(xy) = f(x1y1) @ f(x2y2) @ - - @ f(xXnyn)-

So, f™ computes f on n different pairs of inputs, and f®" computes
the parity of the outputs of f™. If f is hard to compute, are f and
f®" even harder to compute? For deterministic communication
complexity, Feder, Kushilevitz, Naor and Nisan [10] proved that if
|X],1Y| < 2 and f requires C bits of communication, then f" re-
quires at least n(VC —log, £—1) bits of communication. In this work,
we study randomized communication complexity. Let || || denote
the communication complexity of a randomized communication
protocol 7 and define the advantage:

adv(C, f) = sup infE[(-1)7C¥+f(xv)y,
l=ll<c ™Y
This quantity measures the best worst-case advantage achievable
by a C-bit protocol over random guessing. We can now state our
main result:

Theorem 1. There is a universal constantk > 0 such that ifC > 1/k
and adv(C, f) < 1/2, then

kCy/n

adv( log(Cn)

,feB") < exp(—kn).

The constant 1/2 is not important, it can be replaced by any con-
stant less than 1. Some assumption of the type C > 1/k is necessary,
because if x,y € {0,1} and f(xy) = x ® y, then adv(1, f) = 0, yet
adv(2, f®") = 1. Prior to our work, the best known upper bound
was proved by the second author with Barak, Braverman and Chen
[2], who showed that the advantage is bounded by 1/2 for a similar
choice of the other parameters. Our work builds on the work of Yu
[31], who proved exponentially small bounds on the advantage in
the setting of bounded-round communication protocols.

Our ideas lead to many results similar to Theorem 1. Next, we
review the history that led us to the notion of marginal information,
explain the intuitions behind the choices made in the definition,
and then describe all of our results in Section 1.2.

1.1 The Evolution of Information Complexity

Marginal information is the most recent advance in an evolution
of definitions about information. We relate bounds on the com-
munication and advantage for computing f to the corresponding
parameters for f®" via a scheme that has been applied many times
before. We prove:

Throughout, we drop the delimiters between variables. f (xy) is to be read as f (x, ).
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Step 1 Every protocol computing f®" with significant advan-
tage and small communication has small marginal informa-
tion; see Theorem 5.

Step 2 Marginal information is subadditive, so the marginal
information for computing f is smaller by a factor of n; see
Theorem 6.

Step 3 Small marginal information can be compressed to give
protocols with small communication; see Theorems 7 to 10.

Definitions of information are famously subtle. In order to make
this strategy work, the marginal information needs to permit all 3
steps, and even minor changes to the definition can make one of
the steps infeasible.

Our current definition builds on important insights and intuitions
developed in theoretical computer science over a period of decades.
An early precursor to the use of information theory in computer
science is the work of Kalyanasundaram and Schnitger, who used
Kolmogorov complexity to prove lower bounds on the randomized
communication complexity of the disjointness function [27]. The
proof was subsequently simplified by Razborov [25], who gave a
beautiful short argument that used Shannon’s notion of entropy
[28] and implicitly followed the outline of the steps 1,2,3 described
above. This is related to the questions we study here because the
disjointness function can be thought of as a way to compute the
AND of 2 bits n times. Step 1 is relatively easy for this problem. Step
2 involved a clever way to split the dependence between random
variables, and was accomplished using the subadditivity of entropy.
Step 3 is also not too difficult.

The next chapter of the story was written during the study of
parallel repetition, a vital tool in the development of probabilisti-
cally checkable proofs. Raz [24] proved the first exponentially small
bounds in this context using the Kullback-Liebler divergence as a
measure of information. Given a distribution p(xy), and a carefully
chosen event W, Raz measured the divergence

E [D<p<x|yW>||p<x|y>> + D(p<y|xW>||p(y|x>>]
plxy|W)
- p(xlyWw)  pylxw)
‘p<xy|w>[l° (p(x|y> pylx) )]- )

In the proof, it is crucial that the event W is rectangular, meaning
that if x, y are independent, then they remain independent even
after conditioning on W. Once again, Step 1 is not too difficult.
Raz used the subadditivity of divergence and a similar set of clever
random variables as in [25] to split the dependence and accomplish
Step 2. Later, Holenstein [13] introduced a method called correlated
sampling to simplify the analogue of Step 3 in Raz’s proof, and
obtained better bounds. The second author used these tools to
prove optimal bounds for parallel repetition in the setting relevant
to probabilistically checkable proofs [21].

Chakrabarti, Shi, Wirth and Yao [9] were the first to propose
using general measures of information complexity to address the
questions we consider in this paper. Let xy denote the inputs, m
denote the public randomness and transcript of a communication
protocol and p(xym) denote the joint distribution induced by the
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protocol?. [9] proposed to measure the mutual information

p(xylm)

7 pGay) |

p(xym)

I(M:XY) =

Years later, this measure was renamed external information by [2].
The external information measures the information learned by an
external observer about the parties’ inputs. Step 1 is easy for this
measure of information. However, the subadditivity of Step 2 does
not hold in general; the proof only goes through when the input
distribution p(xy) is a product distribution. Jain, Radhakrishnan
and Sen [15], and Harsha, Jain, McAllester and Radhakrishnan [12]
gave ways to implement Step 3 that led to bounds on the success
probability for computing " in the setting where the inputs are
assumed to come from a product distribution and the communica-
tion protocols are restricted to having a bounded number of rounds.
Meanwhile, Bar-yossef, Jayram, Kumar and Sivakumar [1] showed
how to reframe Razborov’s proof using mutual information instead
of entropy, and proved other results using this formulation which
contained hints of the definition of information that came next.

The first upper bounds on the success probability in the general
setting came when the second author together with Barak, Braver-
man and Chen [2] adapted the methods developed in the study of
parallel repetition to these problems. In contrast with the external
information, they defined the internal information, which is the
sum of two mutual information terms

[10 (p(xlym) ,p(ylxm))].

(M : X[|Y) +1(M: Y[X) = pixly)  p(ylx)

E
p(xym)

@

The internal information measures what is learned by each party
about the other’s input. Equation (1) was the inspiration for Equa-
tion (2); indeed, each setting of m corresponds to a rectangular event.
When the inputs come from a product distribution, the internal and
external information are the same, and [2] proved that subadditivity
holds for internal information using an argument similar to the one
used in the context of parallel repetition. Moreover, they showed
how to leverage the technique of correlated sampling developed
by Holenstein to simulate protocols with information I and com-
munication C using ~ VIC/log C communication. They gave near
optimal simulations of ~ Ilog? C for protocols with small external
information using rejection sampling and a variant of Azuma’s con-
centration inequality. These results proved that there is a constant
k such that if adv(C, f) < 1/2, then

adv(ﬂ

log(Cn)’fEBn) <1/2

which was the first result along the lines of Theorem 1. Later, the
second author and Braverman [6] argued that this is the right
definition of information, because the internal information cost
of a function is equal to the amortized communication complexity
of that function. This suggested that the internal information might
well be the last word in this evolution of definitions, because it could
be defined purely using the concept of communication complexity.
It seemed like the only path to better results was through better

2We often say p(xym) is a protocol when we mean that it is a distribution induced
by a protocol.
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methods to compress internal information. This is a belief we no
longer hold.

Nevertheless, a flurry of ideas about compressing protocols with
internal information I and communication C followed. Braverman
[4] showed how to obtain protocols with communication ~ 20D,
The second author and Ramamoorthy [20] showed that if I4, Ig
denote the internal information learned by each party, then you
can achieve communication ~ Iy - 20UB) and can also achieve
communication ~ I4 + v/Ip - C3. Two excellent papers, the first by
Kol [18] and the second by Sherstov [29], showed that ~ Ilog? I
communication can be achieved when the inputs come from a prod-
uct distribution. Ganor, Kol and Raz [11] (see also [22]) gave a nice
counterexample: a function that can be computed with communica-

tion =~ ZZO(D, and internal information ~ I, but cannot be computed
with communication ~ 2I.

The next definition to evolve was proposed by the second author
together with Braverman, Weinstein and Yehudayoff [7, 8], inspired
by the work of Jain, Pereszlényi and Yao [14]. Rather than bound-
ing the information under the distribution p(xym) induced by the
protocol, they bounded the infimum of information achieved in the
ball of distributions that are close to the protocol. They defined the
information to be the infimum

inf g (M : X|Y) + lg(M : Y1X)

[ (i )|

where here the infimum is taken over all distributions g(xym)
that are close to p(xym) in statistical distance. This quantity was
ultimately bounded by setting g(xym) = p(xym|W), where here W
is areasonably large event (not necessarily rectangular) that implies
that the protocol correctly computes the function. The bound on
Equation (3) does not lead to a bound on the information according
to p(xym), because it is quite possible that the points outside W
reveal a huge amount of information. Still, [8] were able to follow
all 3 steps of the high-level approach to prove their results. Step
1 remained easy, but Steps 2 and 3 became more difficult using
Equation (3). [8] obtained exponentially small upper bounds for
the success probability of computing f", but did not manage to
prove new bounds on the advantage for f®" using this approach.
Equation (3) may not seem very different from Equation (2), but
it does involve a proxy g, and we pursue the use of such proxies
further in the definition of marginal information that we discuss
next.

In a paper full of new ideas, Yu [31] recently proved exponen-
tially small bounds on the advantage of bounded-round protocols
computing f®". Although Yu’s paper involves a potential function
that superficially looks like a definition of information, his proof
does not involve a method to compress protocols whose potential
is small, and we are unable to extract a definition of information
from his work. Still, his ideas inspired many of the choices made
in our definition. To define the marginal information, we need the
concept of a rectangular distribution, which was defined in [31]:

=inf E
9 q(xym)

®)

Definition 2. Given a set Q consisting of triples (xym), we say that
Q is rectangular if its indicator function can be expressed as

1o (xym) = La(xm) - Lg(ym),
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for some Boolean functions 1 4, 1 g. Given a distribution q(xym) and
a distribution p(xy), we say that q is rectangular with respect to p
if it can be expressed as

q(xym) = p(xy) - A(xm) - B(ym),
for some functions A, B.

For intuition, it is helpful to think of a rectangular distribution
as the result of conditioning a protocol distribution p(xym) on a
rectangular event. That would produce a rectangular distribution,
but the space of rectangular distributions actually contains other
distributions that cannot be obtained in this way.

From our perspective, the most useful insight of Yu’s work is
that if q is restricted to being rectangular, then one can allow g to
be quite far from p in Equation (3) and still carry out a meaningful
compression of a protocol p to implement Step 3. That is because
the rectangular nature of q allows the parties to use hashing and
rejection sampling to convert a protocol that samples from p into a
protocol that samples from q. If g(xym) = p(xym|R) for a rectangu-
lar event R, this is easy to understand: the parties can communicate
2 bits to compute if xym € R and output the most likely value of
f under g with xym € R. If xym ¢ R they can output a random
guess for the value of f. So, it is enough to bound the information
terms for xym € R, and enough to guarantee that the compression
is efficient for such points. This observation is very powerful, be-
cause it allows us to throw away problematic points in the support
of the distributions we are working with and pass to appropriate
sub-rectangles throughout our proofs.

For all of this to work, it is crucial that the protocol retains some
advantage within the support of g. For this reason, we need to keep
track of the information in the support of q as well as the advantage
within the support of g, and so, for the first time, the measure of
information is going to depend on the function f that the protocol
computes. We are ready to state the definition:

Definition 3. ForI > 1 and® § = 1/15, the marginal information
of a protocol p for computing f is defined as

e [atdym) gtubem)qGegm)y T

Mrlp. f) =gt sop °g(p<x|y> 2 (pGaym))
| . [(_1)f(xy)])—121/5)’
q(xy|m)

where the infimum is taken over all distributions q that are rectangular
with respect to the input distribution p(xy), and the supremum is
taken over all xym in the support of q.

We use the letter I above because it turns out that protocols
computing f can be efficiently compressed when My = O(I), and
any compression must have communication Q(I). Compare Defini-
tion 3 with Equations (2) and (3). The fact that ¢ must be teth-
ered to p is ensured by including the term g(xym)/p(xym). If
q(xym) = p(xym|R) for a rectangular event R, q(xym)/p(xym)
will be equal to 1/p(R). The last term in the product computes
the advantage of g for computing f, because under q and given
m, the best guess for the value of f is determined by the sign of

3Even though & is a fixed constant, we choose to write it in the definition because it
eases the notation throughout the paper.
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Eg(xylm) [(-1)F&*¥)], and its advantage is the absolute value of
this quantity. In words, the marginal information measures the
supremum over all xym of the information per unit of advantage,
of the best rectangular approximation gq.

In analogy with the external information, we define the external
marginal information:

Definition 4. ForI > 1 and § = 1/15, the external marginal
information of a protocol p for computing f is defined as:

I

M (p, ) = inf sup lo q(xylm) —(qGeym)\T-
P = int e tog| S0 ()
—12I/6

| B[l eo] T,
q(xy|m)
where the infimum is taken over all distributions q that are rectangular
with respect to the input distribution p(xy), and the supremum is
taken over all xym in the support of q.

When the distribution on inputs is a product distribution, it turns
out that the external marginal information is equal to the marginal
information.

To state our results about marginal information, we first define
the average-case measure of advantage. Given a distribution p(xy)
on inputs, define

advy(C.f) = sup B[(-1)" W],
lzll<C
where here the expectation is over the choice of inputs xy as well as
the random coins of the communication protocol. To study the more
restricted setting where the protocols we are working with have
a bounded number of rounds, define the worst-case and average
case quantities:
adv'(C,f) = sup infE[(-1)7T*W+ (xy)]
l=ll<c ™Y
adv(C,f) = sup E[(-1)"xWH )],
llzll<C
where throughout, the supremums are taken over r-round proto-
cols.

Returning to our high-level approach, we prove the following
results about marginal information, which allow us to carry out
Steps 1,2,3:

(1) First, we show that a protocol with small communication and

large advantage has small marginal information, to handle
Step 1:

Theorem 5. For every Boolean function f(xy) and every
protocol p of communication complexity C,

Mr(p, f) <2C+0()

—(l+12/5)-l-log( E| E [(—1)fH).
p(m) ' p(xylm)

For any fixed m, the quantity | By (xy|m) [(=1)f]| measures
the advantage of the protocol for computing f conditioned
on that value of m. So, if adv,(C, o) > exp(-m) via a
protocol corresponding to the distribution p, then the above
theorem implies that My (p, f®™) < O(C+Im). Unlike all pre-
vious definitions, for marginal information Step 1 involves
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significant work. Our proof crucially uses the fact that the
protocol has bounded communication complexity: for ex-
ample it would not be enough to start with a bound on the
internal information.

Next, we prove that marginal information is sub-additive
with respect to the n-fold xor of f. If the transcript m =
(mo, my, ..., mc), where m; denotes the j’th message of the
protocol, we show

Theorem 6. There is a universal constant A such that if
I > 1 and p is a protocol distribution for computing f®" with
p(xy) = [T, p(xiyi), then there is a protocol p; for comput-
ing f such that p;(x;y;) = p(xiyi), pi has the same number
of messages as p, for j > 1 the support of m;j is identical in p;
and p, and moreover

Mi(p, f) Mi(p, )
Mi(pi. ) € == 4 AT (1 +log T)
If M7 (p, f®") < O(In), this theorem proves that My(p;, f) <
O(I). This might well be the most technically novel part of
our proof; it is certainly where we spent the most time. The
main challenge is proving the result for n = 2, which is very
delicate. If n = 2 and M (p, f®?) is small, then there is a

rectangular distribution g such that the pair

q(x1x2y1y2m), p(x1x2Y1Yy2m)

leads to a small value of My (p, f®2). We show how to use
q, p to generate a new pair

g1 (xiyim™), p1 (x1y1m ™)

or a new pair

@2 (x2y2m), pa(x2y2m @)

proving that either My(p1, f) or Mp(p2, f) is more or less
bounded by My(p, f®2)/2.

We are unable to bound the length of the first message of
pi in terms of the length of the corresponding message of p

in Theorem 6, because in our proof the first message m%l)

or miz) needs to encode one of the inputs of the original
protocol. Fortunately, this is not a significant obstacle for
the high-level strategy.

Lastly, we show how to compress marginal information to
handle Step 3. We have been able to match many of the prior
results [2, 4, 6] about compressing information and external
information with corresponding results about compressing
marginal information and external marginal information,
though our proofs are much more technical. Our most gen-
eral simulation is captured by the following theorem:

Theorem 7. For every a > 0 there isa A > 0 such that if
M1(p, f) < al, p(xy) = p(xy) and moreover the messages
m = (my,...,mc) are such that ma,...,mc € {0,1}, then
advy, (A(I + VCIlog(CD)), f) > 1/A.

Theorem 7 shows that if the marginal information is O(I),
then one can obtain a protocol with communication 6] (ven
that has Q(1) advantage for computing f. For the external
marginal information, we prove:
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Theorem 8. For every a > 0 there isa A > 0 such that if
M (p, f) < al, p(xy) = p(xy), and moreover the messages
m = (my,...,mc) are such that my,...,mc € {0,1}, then
adv,(Allog?C, f) > 1/A.

This theorem gives improved results when the inputs come
from a product distribution. It is quite possible that even
better simulations can be obtained using the ideas of [5, 18,
29], but we have not managed to obtain such results. We also
obtain results that are independent of the communication
complexity:

Theorem 9. For every a > 0 there is a A > 0 such that

if Mr(p, f) < al and p(xy) = p(xy), then adv, (AL f) >
exp(—AI).

When the number of rounds of the protocol is bounded, we
prove:

Theorem 10. For every a > 0 there is a A > 0 such that
if M1(p, f) < al, p(xy) = p(xy), p has r-rounds and m, €
{0,1}, then advy,(Ar(I +logr), ) = 1/A.

These results about the marginal information cost allow us to prove
Theorem 1, as well as several other results of that flavor.

1.2 Using Marginal Information to Prove XOR
Lemmas
To state all of our results, let us define the average-case and
worst-case measures of success:

suc(C.f) = sup infPriz(xy) = f(xy)]

llzll<C *

suc’(C,f) = sup inf Prlr(xy) = f(xy)]

lIzll<Cc*
sucy(C, f) = sup Pr[z(xy) = f(xy)]
lixll<C
suc,(C.f) = sup Pr[r(xy) = f(xy)],
lzl<C
where in suc”, sucj, the supremum is taken over r-round protocols,
and in sucy, sucj, the probability is over inputs sampled from p(xy).
Yao’s min-max theorem yields

adv(C, f) = irI}f advy(C, N,

suc(C, f) = irﬁf sucy (C, f),
adv' (G, f) = ilﬁfade(C,f),

suc’(C, f) = 12f sucy (C, f). 4)

Given any distribution p on X X Y, define the n-fold product
distribution p" on X" X Y™ by u"(xy) = ]_[;‘:1 p(xjy;). Theorem 1
is proved by proving this stronger bound:

Theorem 11. There is a universal constant k > 0 such that if
C > 1/x and adv,(C, f) < «, then advn (kC+/n/log(Cn), f&") <
exp(—kn).

To prove Theorem 11, suppose that there is a protocol p com-
puting f®" with advantage exp(—kn) and communication T =
kC - \n/log(Cn).If T/n > 1, we set I = T/n and apply Theorem 5
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to show that Mj(p, f®™) < O(T +xIn) < O(In). Next, apply The-
orem 6 to find a protocol p” with Mf(p’, f) < O(I). Finally, apply
Theorem 7 to obtain a protocol computing f with advantage Q(1)
and communication proportional to

T T TlogT
= 4 2VITlog(T) < — +2-—8
n n \n
< <€ -log T < kC.
log nC

If T/n < 1, we set I = 1 and apply Theorem 5 to show that
M(p, f) < O(In). Next, apply Theorem 6 to find a protocol
p’ with Mp(p’, f) < O(I) = O(1). Finally, we apply Theorem 9 to
obtain a protocol computing f with advantage Q(1) and communi-
cation O(1). Setting x sufficiently small, we obtain a contradiction
in either case, which proves that there is no protocol p as above.
Theorem 1 can be obtained from Theorem 11 using Equation (4) and
the fact that the worst-case success probability of a communication
protocol can be increased by taking the majority outcome of several
runs of the protocol. We leave these details to the reader.

Theorems 1 and 11 yield bounds on the success probability for
computing f™ as well:

Corollary 12. There is a universal constant k > 0 such that if C >
1/x and adv(C, f) < k, then suc(kC+/n/log(Cn)), f*) < exp(—kn).

Corollary 13. There is a universal constant k > 0 such that if
C > 1/k and adv,(C, f) < k, then sucyn (kCy/n/log(Cn)), f*) <
exp(—kn).

This matches the result proved by [8] mentioned earlier. These
corollaries are obtained by observing that if S € {1,2,...,n} is
chosen uniformly at random, and xy are sampled according to p",
then

B |(~1)2ses TOVA 0D | = Prn(xy) = £ (xy)],

so a protocol computing " with success probability exp(—n/2)
yields a set of n’ = Q(n) coordinates where the protocol computes
f on’ with advantage exp(—Q(n)). Again, we leave the details to
the reader. When the distribution p(xy) = p(x) - p(y) is a product
distribution, we obtain stronger bounds:

Theorem 14. There is a universal constant x > 0 such that for
every product distribution y, if C > 1/x and adv,(C, f) < k, then
advyn (kCn/log?(Cn), f®") < exp(—kn).

To prove Theorem 14, suppose we are given a protocol p com-
puting f®" with advantage exp(—xn) and communication T =
kCn/log?(Cn).If T/n > 1, we set I = T/n and apply Theorem 5 to
show that M7 (p, f®™) < O(nI). Next, apply Theorem 6 to find a pro-
tocol p” with My (p’, f) < O(I). Finally, using the fact that for prod-
uct distributions, M?Xt (p, ) = M1(p, f), we can apply Theorem 8
to obtain a protocol computing f with advantage Q(1) and commu-
nication O(Ilog?(Cn)) < O(xC). Otherwise, if T/n < 1, set =1
and apply Theorem 5 to show that Mj(p, f®*) < O(n). Then, ap-
ply Theorem 6 to find a protocol p” with My(p’, f) < O(I) = O(1).
Lastly, we apply Theorem 9 to obtain a protocol computing f with
advantage Q(1) and communication O(1). Setting x to be small
enough gives a contradiction in either case.

As before, this yields a corollary for computing f™:
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Corollary 15. There is a universal constant x > 0 such that for
every product distribution y, if C > 1/x and advy(C, f) < «, then
suc‘un(KCn/log2 (Cn), f*) < exp(—kn).

Again, this is identical to a bound proved by [8] using a different
approach. For the bounded-round setting, we prove:

Theorem 16. There is a universal constant k > 0 such that if
C > (r(logr) + 1)/, and advy,(C, f) < «, then advlrln((KC/r -

logr)n, f&") < exp(—kn).

Yu [31] proves the same bound on the advantage with a com-
munication budget that grows like Q((C/r" — O(1))n). Our bound
eliminates the exponential dependence on r. To prove Theorem 14,
set T = (kC/r —log r)n, and suppose there is a protocol computing
f with r rounds, communication T and advantage exp(—kn). Set
I =T/n > 1. Then, M can be bounded by O(T +«In) by Theorem 5.
Applying Theorem 6 gives an r-round protocol with My bounded
by O(I), and applying Theorem 10 gives an r-round protocol with
communication complexity O(r(I + logr)) = O(kC) computing
f with advantage Q(1). Setting k to be small enough proves the
result. As usual, we obtain the following corollaries:

Corollary 17. There is a universal constant k > 0 such that if C >
7(rlogr)/x and ade(C,f) < k, then sucL,,((KC/r—log rn, f) <
exp(—kn).

Corollary 18. There is a universal constant k > 0 such that if C >
7(rlogr)/x, and adv' (C, f) < k, then suc” ((kC/r —logr)n, f™) <
exp(—«n).
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