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ABSTRACT

We de�ne themarginal information of a communication protocol,

and use it to prove XOR lemmas for communication complexity.

We show that if every �-bit protocol has bounded advantage for

computing a Boolean function 5 , then every Ω̃(�
√
=)-bit protocol

has advantage exp(−Ω(=)) for computing the =-fold xor 5 ⊕= . We

prove exponentially small bounds in the average case setting, and

near optimal bounds for product distributions and for bounded-

round protocols.
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1 INTRODUCTION

If a function is hard to compute, is it even harder to compute it

many times? This old question is often challenging, and new an-

swers are usually accompanied by foundational ideas. We give new

answers in the framework of communication complexity, accompa-

nied by a new measure of complexity called marginal information.

This de�nition provides a new tool for proving lower bounds in

theoretical computer science.

A wide variety of important lower bounds in computer science

ultimately rely on information theoretic lower bounds in commu-

nication complexity, including lower bounds on the depth of mono-

tone circuits [17], lower bounds on data structures [19] and lower

bounds on the extension complexity of polytopes [3, 16, 26, 30],

to name a few nice examples. We refer the reader to the textbook

[23] for an introduction to the basic de�nitions and concepts in

communication complexity, the role played by the questions we

address here, and the connections to other areas.
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Given a Boolean function 5 : X × Y → {0, 1}, de�ne the func-
tions 5 = : X= × Y= → {0, 1}= and 5 ⊕= : X= × Y= → {0, 1} as
follows1:

5 = (G~) = (5 (G1~1), 5 (G2~2), . . . , 5 (G=~=)),
5 ⊕= (G~) = 5 (G1~1) ⊕ 5 (G2~2) ⊕ · · · ⊕ 5 (G=~=) .

So, 5 = computes 5 on = di�erent pairs of inputs, and 5 ⊕= computes

the parity of the outputs of 5 = . If 5 is hard to compute, are 5 = and

5 ⊕= even harder to compute? For deterministic communication

complexity, Feder, Kushilevitz, Naor and Nisan [10] proved that if

|X|, |Y| ≤ 2ℓ and 5 requires � bits of communication, then 5 = re-

quires at least=(
√
�−log2 ℓ−1) bits of communication. In this work,

we study randomized communication complexity. Let ∥c ∥ denote
the communication complexity of a randomized communication

protocol c and de�ne the advantage:

adv(�, 5 ) = sup
∥c ∥≤�

inf
G~
E[(−1)c (G~)+5 (G~) ] .

This quantity measures the best worst-case advantage achievable

by a �-bit protocol over random guessing. We can now state our

main result:

Theorem 1. There is a universal constant ^ > 0 such that if� > 1/^
and adv(�, 5 ) < 1/2, then

adv
( ^�

√
=

log(�=) , 5
⊕=

)
< exp(−^=) .

The constant 1/2 is not important, it can be replaced by any con-

stant less than 1. Some assumption of the type� > 1/^ is necessary,

because if G,~ ∈ {0, 1} and 5 (G~) = G ⊕ ~, then adv(1, 5 ) = 0, yet

adv(2, 5 ⊕=) = 1. Prior to our work, the best known upper bound

was proved by the second author with Barak, Braverman and Chen

[2], who showed that the advantage is bounded by 1/2 for a similar

choice of the other parameters. Our work builds on the work of Yu

[31], who proved exponentially small bounds on the advantage in

the setting of bounded-round communication protocols.

Our ideas lead to many results similar to Theorem 1. Next, we

review the history that led us to the notion of marginal information,

explain the intuitions behind the choices made in the de�nition,

and then describe all of our results in Section 1.2.

1.1 The Evolution of Information Complexity

Marginal information is the most recent advance in an evolution

of de�nitions about information. We relate bounds on the com-

munication and advantage for computing 5 to the corresponding

parameters for 5 ⊕= via a scheme that has been applied many times

before. We prove:

1Throughout, we drop the delimiters between variables. 5 (G~) is to be read as 5 (G, ~) .

This work is licensed under a Creative Commons Attribution 4.0 Interna-
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Step 1 Every protocol computing 5 ⊕= with signi�cant advan-

tage and small communication has small marginal informa-

tion; see Theorem 5.

Step 2 Marginal information is subadditive, so the marginal

information for computing 5 is smaller by a factor of =; see

Theorem 6.

Step 3 Small marginal information can be compressed to give

protocols with small communication; see Theorems 7 to 10.

De�nitions of information are famously subtle. In order to make

this strategy work, the marginal information needs to permit all 3

steps, and even minor changes to the de�nition can make one of

the steps infeasible.

Our current de�nition builds on important insights and intuitions

developed in theoretical computer science over a period of decades.

An early precursor to the use of information theory in computer

science is the work of Kalyanasundaram and Schnitger, who used

Kolmogorov complexity to prove lower bounds on the randomized

communication complexity of the disjointness function [27]. The

proof was subsequently simpli�ed by Razborov [25], who gave a

beautiful short argument that used Shannon’s notion of entropy

[28] and implicitly followed the outline of the steps 1,2,3 described

above. This is related to the questions we study here because the

disjointness function can be thought of as a way to compute the

AND of 2 bits = times. Step 1 is relatively easy for this problem. Step

2 involved a clever way to split the dependence between random

variables, and was accomplished using the subadditivity of entropy.

Step 3 is also not too di�cult.

The next chapter of the story was written during the study of

parallel repetition, a vital tool in the development of probabilisti-

cally checkable proofs. Raz [24] proved the �rst exponentially small

bounds in this context using the Kullback-Liebler divergence as a

measure of information. Given a distribution ? (G~), and a carefully
chosen event, , Raz measured the divergence

E
? (G~ |, )

[
D(? (G |~, ) | |? (G |~)) + D(? (~ |G, ) | |? (~ |G))

]

= E
? (G~ |, )

[
log

(? (G |~, )
? (G |~) · ? (~ |G, )

? (~ |G)
)]
. (1)

In the proof, it is crucial that the event, is rectangular, meaning

that if G,~ are independent, then they remain independent even

after conditioning on, . Once again, Step 1 is not too di�cult.

Raz used the subadditivity of divergence and a similar set of clever

random variables as in [25] to split the dependence and accomplish

Step 2. Later, Holenstein [13] introduced a method called correlated

sampling to simplify the analogue of Step 3 in Raz’s proof, and

obtained better bounds. The second author used these tools to

prove optimal bounds for parallel repetition in the setting relevant

to probabilistically checkable proofs [21].

Chakrabarti, Shi, Wirth and Yao [9] were the �rst to propose

using general measures of information complexity to address the

questions we consider in this paper. Let G~ denote the inputs,<

denote the public randomness and transcript of a communication

protocol and ? (G~<) denote the joint distribution induced by the

protocol2. [9] proposed to measure the mutual information

I(" : -. ) = E
? (G~<)

[
log

? (G~ |<)
? (G~)

]
.

Years later, this measure was renamed external information by [2].

The external information measures the information learned by an

external observer about the parties’ inputs. Step 1 is easy for this

measure of information. However, the subadditivity of Step 2 does

not hold in general; the proof only goes through when the input

distribution ? (G~) is a product distribution. Jain, Radhakrishnan
and Sen [15], and Harsha, Jain, McAllester and Radhakrishnan [12]

gave ways to implement Step 3 that led to bounds on the success

probability for computing 5 = in the setting where the inputs are

assumed to come from a product distribution and the communica-

tion protocols are restricted to having a bounded number of rounds.

Meanwhile, Bar-yossef, Jayram, Kumar and Sivakumar [1] showed

how to reframe Razborov’s proof using mutual information instead

of entropy, and proved other results using this formulation which

contained hints of the de�nition of information that came next.

The �rst upper bounds on the success probability in the general

setting came when the second author together with Barak, Braver-

man and Chen [2] adapted the methods developed in the study of

parallel repetition to these problems. In contrast with the external

information, they de�ned the internal information, which is the

sum of two mutual information terms

I(" : - |. ) + I(" : . |- ) = E
? (G~<)

[
log

(? (G |~<)
? (G |~) · ? (~ |G<)

? (~ |G)
)]
.

(2)

The internal information measures what is learned by each party

about the other’s input. Equation (1) was the inspiration for Equa-

tion (2); indeed, each setting of< corresponds to a rectangular event.

When the inputs come from a product distribution, the internal and

external information are the same, and [2] proved that subadditivity

holds for internal information using an argument similar to the one

used in the context of parallel repetition. Moreover, they showed

how to leverage the technique of correlated sampling developed

by Holenstein to simulate protocols with information � and com-

munication � using ≈
√
��/log� communication. They gave near

optimal simulations of ≈ � log2� for protocols with small external

information using rejection sampling and a variant of Azuma’s con-

centration inequality. These results proved that there is a constant

^ such that if adv(�, 5 ) < 1/2, then

adv
( ^�

√
=

log(�=) , 5
⊕=

)
< 1/2,

which was the �rst result along the lines of Theorem 1. Later, the

second author and Braverman [6] argued that this is the right

de�nition of information, because the internal information cost

of a function is equal to the amortized communication complexity

of that function. This suggested that the internal information might

well be the last word in this evolution of de�nitions, because it could

be de�ned purely using the concept of communication complexity.

It seemed like the only path to better results was through better

2We often say ? (G~<) is a protocol when we mean that it is a distribution induced

by a protocol.
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methods to compress internal information. This is a belief we no

longer hold.

Nevertheless, a �urry of ideas about compressing protocols with

internal information � and communication � followed. Braverman

[4] showed how to obtain protocols with communication ≈ 2$ (� ) .
The second author and Ramamoorthy [20] showed that if ��, ��
denote the internal information learned by each party, then you

can achieve communication ≈ �� · 2$ (�� ) and can also achieve

communication ≈ �� + 4
√
�� ·�3. Two excellent papers, the �rst by

Kol [18] and the second by Sherstov [29], showed that ≈ � log2 �

communication can be achieved when the inputs come from a prod-

uct distribution. Ganor, Kol and Raz [11] (see also [22]) gave a nice

counterexample: a function that can be computed with communica-

tion ≈ 22
$ (� )

, and internal information ≈ � , but cannot be computed

with communication ≈ 2� .

The next de�nition to evolve was proposed by the second author

together with Braverman, Weinstein and Yehudayo� [7, 8], inspired

by the work of Jain, Pereszlényi and Yao [14]. Rather than bound-

ing the information under the distribution ? (G~<) induced by the

protocol, they bounded the in�mum of information achieved in the

ball of distributions that are close to the protocol. They de�ned the

information to be the in�mum

inf
@

I@ (" : - |. ) + I@ (" : . |- )

= inf
@

E
@ (G~<)

[
log

(@(G |~<)
@(G |~) · @(~ |G<)

@(~ |G)
)]
, (3)

where here the in�mum is taken over all distributions @(G~<)
that are close to ? (G~<) in statistical distance. This quantity was

ultimately bounded by setting @(G~<) = ? (G~< |, ), where here,
is a reasonably large event (not necessarily rectangular) that implies

that the protocol correctly computes the function. The bound on

Equation (3) does not lead to a bound on the information according

to ? (G~<), because it is quite possible that the points outside,
reveal a huge amount of information. Still, [8] were able to follow

all 3 steps of the high-level approach to prove their results. Step

1 remained easy, but Steps 2 and 3 became more di�cult using

Equation (3). [8] obtained exponentially small upper bounds for

the success probability of computing 5 = , but did not manage to

prove new bounds on the advantage for 5 ⊕= using this approach.

Equation (3) may not seem very di�erent from Equation (2), but

it does involve a proxy @, and we pursue the use of such proxies

further in the de�nition of marginal information that we discuss

next.

In a paper full of new ideas, Yu [31] recently proved exponen-

tially small bounds on the advantage of bounded-round protocols

computing 5 ⊕= . Although Yu’s paper involves a potential function

that super�cially looks like a de�nition of information, his proof

does not involve a method to compress protocols whose potential

is small, and we are unable to extract a de�nition of information

from his work. Still, his ideas inspired many of the choices made

in our de�nition. To de�ne the marginal information, we need the

concept of a rectangular distribution, which was de�ned in [31]:

De�nition 2. Given a set & consisting of triples (G~<), we say that

& is rectangular if its indicator function can be expressed as

1& (G~<) = 1� (G<) · 1� (~<),

for some Boolean functions 1�,1� . Given a distribution @(G~<) and
a distribution ` (G~), we say that @ is rectangular with respect to `

if it can be expressed as

@(G~<) = ` (G~) · �(G<) · �(~<),
for some functions �, �.

For intuition, it is helpful to think of a rectangular distribution

as the result of conditioning a protocol distribution ? (G~<) on a

rectangular event. That would produce a rectangular distribution,

but the space of rectangular distributions actually contains other

distributions that cannot be obtained in this way.

From our perspective, the most useful insight of Yu’s work is

that if @ is restricted to being rectangular, then one can allow @ to

be quite far from ? in Equation (3) and still carry out a meaningful

compression of a protocol ? to implement Step 3. That is because

the rectangular nature of @ allows the parties to use hashing and

rejection sampling to convert a protocol that samples from ? into a

protocol that samples from @. If @(G~<) = ? (G~< |') for a rectangu-
lar event ', this is easy to understand: the parties can communicate

2 bits to compute if G~< ∈ ' and output the most likely value of

5 under @ with G~< ∈ '. If G~< ∉ ' they can output a random

guess for the value of 5 . So, it is enough to bound the information

terms for G~< ∈ ', and enough to guarantee that the compression

is e�cient for such points. This observation is very powerful, be-

cause it allows us to throw away problematic points in the support

of the distributions we are working with and pass to appropriate

sub-rectangles throughout our proofs.

For all of this to work, it is crucial that the protocol retains some

advantage within the support of @. For this reason, we need to keep

track of the information in the support of @ as well as the advantage

within the support of @, and so, for the �rst time, the measure of

information is going to depend on the function 5 that the protocol

computes. We are ready to state the de�nition:

De�nition 3. For � ≥ 1 and3 X = 1/15, the marginal information

of a protocol ? for computing 5 is de�ned as

M� (?, 5 ) = inf
@

sup
G~<

log

(
@(G |~<)
? (G |~) · @(~ |G<)

? (~ |G) ·
(@(G~<)
? (G~<)

)�
·

��� E
@ (G~ |<)

[(−1) 5 (G~) ]
���
−12�/X

)
,

where the in�mum is taken over all distributions@ that are rectangular

with respect to the input distribution ? (G~), and the supremum is

taken over all G~< in the support of @.

We use the letter � above because it turns out that protocols

computing 5 can be e�ciently compressed whenM� = $ (� ), and
any compression must have communication Ω(� ). Compare De�ni-

tion 3 with Equations (2) and (3). The fact that @ must be teth-

ered to ? is ensured by including the term @(G~<)/? (G~<). If
@(G~<) = ? (G~< |') for a rectangular event ', @(G~<)/? (G~<)
will be equal to 1/? ('). The last term in the product computes

the advantage of @ for computing 5 , because under @ and given

<, the best guess for the value of 5 is determined by the sign of

3Even though X is a �xed constant, we choose to write it in the de�nition because it
eases the notation throughout the paper.
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E@ (G~ |<) [(−1) 5 (G~) ], and its advantage is the absolute value of

this quantity. In words, the marginal information measures the

supremum over all G~< of the information per unit of advantage,

of the best rectangular approximation @.

In analogy with the external information, we de�ne the external

marginal information:

De�nition 4. For � ≥ 1 and X = 1/15, the external marginal

information of a protocol ? for computing 5 is de�ned as:

Mext
� (?, 5 ) = inf

@
sup
G~<

log

(
@(G~ |<)
? (G~) ·

(@(G~<)
? (G~<)

)�
·

��� E
@ (G~ |<)

[
(−1) 5 (G~)

] ���
−12�/X

)
,

where the in�mum is taken over all distributions@ that are rectangular

with respect to the input distribution ? (G~), and the supremum is

taken over all G~< in the support of @.

When the distribution on inputs is a product distribution, it turns

out that the external marginal information is equal to the marginal

information.

To state our results about marginal information, we �rst de�ne

the average-case measure of advantage. Given a distribution ` (G~)
on inputs, de�ne

adv` (�, 5 ) = sup
∥c ∥≤�

E[(−1)c (G~)+5 (G~) ],

where here the expectation is over the choice of inputs G~ as well as

the random coins of the communication protocol. To study the more

restricted setting where the protocols we are working with have

a bounded number of rounds, de�ne the worst-case and average

case quantities:

advA (�, 5 ) = sup
∥c ∥≤�

inf
G~
E[(−1)c (G~)+5 (G~) ],

advA` (�, 5 ) = sup
∥c ∥≤�

E[(−1)c (G~)+5 (G~) ],

where throughout, the supremums are taken over A -round proto-

cols.

Returning to our high-level approach, we prove the following

results about marginal information, which allow us to carry out

Steps 1,2,3:

(1) First, we show that a protocol with small communication and

large advantage has small marginal information, to handle

Step 1:

Theorem 5. For every Boolean function 5 (G~) and every

protocol ? of communication complexity � ,

M� (?, 5 ) ≤ 2� +$ (� )

− (1 + 12/X) · � · log
(
E

? (<)

��� E
? (G~ |<)

[
(−1) 5

] ���
)
.

For any �xed<, the quantity | E? (G~ |<) [(−1) 5 ] | measures

the advantage of the protocol for computing 5 conditioned

on that value of <. So, if adv` (�, 5 ⊕=) ≥ exp(−<) via a

protocol corresponding to the distribution ? , then the above

theorem implies thatM� (?, 5 ⊕=) ≤ $ (�+�<). Unlike all pre-
vious de�nitions, for marginal information Step 1 involves

signi�cant work. Our proof crucially uses the fact that the

protocol has bounded communication complexity: for ex-

ample it would not be enough to start with a bound on the

internal information.

(2) Next, we prove that marginal information is sub-additive

with respect to the =-fold xor of 5 . If the transcript < =

(<0,<1, . . . ,<� ), where< 9 denotes the 9 ’th message of the

protocol, we show

Theorem 6. There is a universal constant Δ such that if

� ≥ 1 and ? is a protocol distribution for computing 5 ⊕= with

? (G~) = ∏=
8=1 ? (G8~8 ), then there is a protocol ?8 for comput-

ing 5 such that ?8 (G8~8 ) = ? (G8~8 ), ?8 has the same number

of messages as ? , for 9 > 1 the support of< 9 is identical in ?8
and ? , and moreover

M� (?8 , 5 ) ≤
M� (?, 5 ⊕=)

=
+ Δ� ·

(
1 + log

M� (?, 5 ⊕=)
= · �

)
.

IfM� (?, 5 ⊕=) ≤ $ (�=), this theorem proves thatM� (?8 , 5 ) ≤
$ (� ). This might well be the most technically novel part of

our proof; it is certainly where we spent the most time. The

main challenge is proving the result for = = 2, which is very

delicate. If = = 2 and M� (?, 5 ⊕2) is small, then there is a

rectangular distribution @ such that the pair

@(G1G2~1~2<), ? (G1G2~1~2<)
leads to a small value of M� (?, 5 ⊕2). We show how to use

@, ? to generate a new pair

@1 (G1~1< (1) ), ?1 (G1~1< (1) )
or a new pair

@2 (G2~2< (2) ), ?2 (G2~2< (2) )
proving that either M� (?1, 5 ) or M� (?2, 5 ) is more or less

bounded by M� (?, 5 ⊕2)/2.
We are unable to bound the length of the �rst message of

?8 in terms of the length of the corresponding message of ?

in Theorem 6, because in our proof the �rst message<
(1)
1

or <
(2)
1 needs to encode one of the inputs of the original

protocol. Fortunately, this is not a signi�cant obstacle for

the high-level strategy.

(3) Lastly, we show how to compress marginal information to

handle Step 3. We have been able to match many of the prior

results [2, 4, 6] about compressing information and external

information with corresponding results about compressing

marginal information and external marginal information,

though our proofs are much more technical. Our most gen-

eral simulation is captured by the following theorem:

Theorem 7. For every U > 0 there is a Δ > 0 such that if

M� (?, 5 ) ≤ U� , ` (G~) = ? (G~) and moreover the messages

< = (<0, . . . ,<� ) are such that <2, . . . ,<� ∈ {0, 1}, then
adv` (Δ(� +

√
�� log(�� )), 5 ) ≥ 1/Δ.

Theorem 7 shows that if the marginal information is $ (� ),
then one can obtain a protocol with communication $̃ (

√
�� )

that has Ω(1) advantage for computing 5 . For the external

marginal information, we prove:
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Theorem 8. For every U > 0 there is a Δ > 0 such that if

Mext
�

(?, 5 ) ≤ U� , ` (G~) = ? (G~), and moreover the messages

< = (<0, . . . ,<� ) are such that <2, . . . ,<� ∈ {0, 1}, then
adv` (Δ� log2�, 5 ) ≥ 1/Δ.

This theorem gives improved results when the inputs come

from a product distribution. It is quite possible that even

better simulations can be obtained using the ideas of [5, 18,

29], but we have not managed to obtain such results. We also

obtain results that are independent of the communication

complexity:

Theorem 9. For every U > 0 there is a Δ > 0 such that

if M� (?, 5 ) ≤ U� and ` (G~) = ? (G~), then adv` (Δ� , 5 ) ≥
exp(−Δ� ).

When the number of rounds of the protocol is bounded, we

prove:

Theorem 10. For every U > 0 there is a Δ > 0 such that

if M� (?, 5 ) ≤ U� , ` (G~) = ? (G~), ? has A -rounds and<A ∈
{0, 1}, then advA` (ΔA (� + log A ), 5 ) ≥ 1/Δ.

These results about the marginal information cost allow us to prove

Theorem 1, as well as several other results of that �avor.

1.2 Using Marginal Information to Prove XOR

Lemmas

To state all of our results, let us de�ne the average-case and

worst-case measures of success:

suc(�, 5 ) = sup
∥c ∥≤�

inf
G~

Pr[c (G~) = 5 (G~)]

sucA (�, 5 ) = sup
∥c ∥≤�

inf
G~

Pr[c (G~) = 5 (G~)]

suc` (�, 5 ) = sup
∥c ∥≤�

Pr[c (G~) = 5 (G~)]

sucA` (�, 5 ) = sup
∥c ∥≤�

Pr[c (G~) = 5 (G~)],

where in sucA , sucA` the supremum is taken over A -round protocols,

and in suc` , suc
A
` the probability is over inputs sampled from ` (G~).

Yao’s min-max theorem yields

adv(�, 5 ) = inf
`
adv` (�, 5 ),

suc(�, 5 ) = inf
`
suc` (�, 5 ),

advA (�, 5 ) = inf
`
advA` (�, 5 ),

sucA (�, 5 ) = inf
`
sucA` (�, 5 ) . (4)

Given any distribution ` on X × Y, de�ne the =-fold product

distribution `= on X= ×Y= by `= (G~) = ∏=
9=1 ` (G 9~ 9 ). Theorem 1

is proved by proving this stronger bound:

Theorem 11. There is a universal constant ^ > 0 such that if

� > 1/^ and adv` (�, 5 ) ≤ ^, then adv`= (^�
√
=/log(�=), 5 ⊕=) ≤

exp(−^=) .

To prove Theorem 11, suppose that there is a protocol ? com-

puting 5 ⊕= with advantage exp(−^=) and communication ) =

^� ·
√
=/log(�=). If ) /= ≥ 1, we set � = ) /= and apply Theorem 5

to show thatM� (?, 5 ⊕=) ≤ $ () + ^�=) ≤ $ (�=). Next, apply The-

orem 6 to �nd a protocol ?′ withM� (?′, 5 ) ≤ $ (� ). Finally, apply
Theorem 7 to obtain a protocol computing 5 with advantage Ω(1)
and communication proportional to

)

=
+ 2

√
�) log() ) ≤ )

=
+ 2

) log)
√
=

≲
^�

log=�
· log) ≲ ^�.

If ) /= < 1, we set � = 1 and apply Theorem 5 to show that

M� (?, 5 ⊕=) ≤ $ (�=). Next, apply Theorem 6 to �nd a protocol

?′ withM� (?′, 5 ) ≤ $ (� ) = $ (1). Finally, we apply Theorem 9 to

obtain a protocol computing 5 with advantage Ω(1) and communi-

cation $ (1). Setting ^ su�ciently small, we obtain a contradiction

in either case, which proves that there is no protocol ? as above.

Theorem 1 can be obtained from Theorem 11 using Equation (4) and

the fact that the worst-case success probability of a communication

protocol can be increased by taking the majority outcome of several

runs of the protocol. We leave these details to the reader.

Theorems 1 and 11 yield bounds on the success probability for

computing 5 = as well:

Corollary 12. There is a universal constant ^ > 0 such that if � >

1/^ and adv(�, 5 ) < ^ , then suc(^�
√
=/log(�=)), 5 =) < exp(−^=).

Corollary 13. There is a universal constant ^ > 0 such that if

� > 1/^ and adv` (�, 5 ) < ^, then suc`= (^�
√
=/log(�=)), 5 =) <

exp(−^=).

This matches the result proved by [8] mentioned earlier. These

corollaries are obtained by observing that if ( ⊆ {1, 2, . . . , =} is

chosen uniformly at random, and G~ are sampled according to `= ,

then

E

[
(−1)

∑
9 ∈( c (G~) 9+5 (G 9 ~ 9 )

]
= Pr[c (G~) = 5 = (G~)],

so a protocol computing 5 = with success probability exp(−=/2)
yields a set of =′ = Ω(=) coordinates where the protocol computes

5 ⊕=
′
with advantage exp(−Ω(=)). Again, we leave the details to

the reader. When the distribution ` (G~) = ` (G) · ` (~) is a product
distribution, we obtain stronger bounds:

Theorem 14. There is a universal constant ^ > 0 such that for

every product distribution `, if � > 1/^ and adv` (�, 5 ) < ^, then

adv`= (^�=/log2 (�=), 5 ⊕=) < exp(−^=).

To prove Theorem 14, suppose we are given a protocol ? com-

puting 5 ⊕= with advantage exp(−^=) and communication ) =

^�=/log2 (�=). If ) /= ≥ 1, we set � = ) /= and apply Theorem 5 to

show thatM� (?, 5 ⊕=) ≤ $ (=� ). Next, apply Theorem 6 to �nd a pro-

tocol ?′ withM� (?′, 5 ) ≤ $ (� ). Finally, using the fact that for prod-
uct distributions,Mext

�
(?, 5 ) = M� (?, 5 ), we can apply Theorem 8

to obtain a protocol computing 5 with advantage Ω(1) and commu-

nication $ (� log2 (�=)) ≤ $ (^�). Otherwise, if ) /= < 1, set � = 1

and apply Theorem 5 to show thatM� (?, 5 ⊕=) ≤ $ (=). Then, ap-
ply Theorem 6 to �nd a protocol ?′ with M� (?′, 5 ) ≤ $ (� ) = $ (1).
Lastly, we apply Theorem 9 to obtain a protocol computing 5 with

advantage Ω(1) and communication $ (1). Setting ^ to be small

enough gives a contradiction in either case.

As before, this yields a corollary for computing 5 = :
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Corollary 15. There is a universal constant ^ > 0 such that for

every product distribution `, if � > 1/^ and adv` (�, 5 ) < ^, then

suc`= (^�=/log2 (�=), 5 =) < exp(−^=).
Again, this is identical to a bound proved by [8] using a di�erent

approach. For the bounded-round setting, we prove:

Theorem 16. There is a universal constant ^ > 0 such that if

� > (A (log A ) + 1)/^, and advA` (�, 5 ) < ^, then advA`= ((^�/A −
log A )=, 5 ⊕=) < exp(−^=).

Yu [31] proves the same bound on the advantage with a com-

munication budget that grows like Ω((�/AA −$ (1))=). Our bound
eliminates the exponential dependence on A . To prove Theorem 14,

set) = (^�/A − log A )=, and suppose there is a protocol computing

5 with A rounds, communication ) and advantage exp(−^=). Set
� = ) /= ≥ 1. Then,M� can be bounded by$ () +^�=) by Theorem 5.

Applying Theorem 6 gives an A -round protocol withM� bounded

by $ (� ), and applying Theorem 10 gives an A -round protocol with

communication complexity $ (A (� + log A )) = $ (^�) computing

5 with advantage Ω(1). Setting ^ to be small enough proves the

result. As usual, we obtain the following corollaries:

Corollary 17. There is a universal constant ^ > 0 such that if � >

7(A log A )/^ and advA` (�, 5 ) < ^ , then sucA`= ((^�/A − log A )=, 5 =) <
exp(−^=) .
Corollary 18. There is a universal constant ^ > 0 such that if � >

7(A log A )/^, and advA (�, 5 ) < ^, then sucA ((^�/A − log A )=, 5 =) <
exp(−^=) .
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