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Abstract

Solvated organics in the ocean are present in relatively small concentrations but contribute
largely to ocean chemical diversity and complexity. Existing in the ocean as dissolved organic
carbon (DOC) and enriched within the sea surface microlayer (SSML), these compounds have
large impacts on atmospheric chemistry through their contributions to cloud nucleation, ice
formation and other climatological processes. The ability to quantify the concentrations of organics
in ocean samples is critical for understanding these marine processes. The work presented herein
details an investigation to develop machine learning (ML) methodology utilizing infrared
spectroscopy data to accurately estimate saccharide concentrations in complex solutions. We
evaluated multivariate linear regression (MLR), K-Nearest-Neighbors (KNN), Decision Trees
(DT), Gradient Boosted Regressors (GBR), Multilayer Perceptrons (MLP), and Support Vector
Regressors (SVR) toward this goal. SVR models are shown to best predict the accurate generalized
saccharide concentrations. Our work presents an application combining fast spectroscopic
techniques with ML to analyze organic composition proxy ocean samples. As a result, we target a
generalized method for analyzing field marine samples more efficiently, without sacrificing
accuracy or precision.
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Introduction
The sea surface microlayer (SSML) is a multifaceted, deeply complex region of the
ocean.'”” As the interface between the Earth’s atmosphere and ocean, the SSML performs vital

5819 and ice formation.*!'"!* Because of unique interfacial

functions that affect climate
anisotropy,'*!” the physical and chemical properties of the SSML are of interest for their
divergence from bulk water behavior. Generally, the SSML is enriched with lipids, proteins, and
saccharides (also referred to as sugars or carbohydrates) which contribute to the total dissolved
organic carbon (DOC).'® 22 Understanding the chemical composition of the SSML provides insight
into the biological activity and productivity within the SSML and enables predictions of cloud
condensation®® or ice nucleation,* ultimately aiding climatological models.?* 2’ Recent analyses of
saccharide concentrations in SSML have shown concentrations of about 500 nM from eight unique
compounds.?’ The dynamic nature and chemical complexity of the SSML make monitoring the
region difficult, and yet increasingly necessary.

For the described work, glucose and sucrose were chosen as analytes of interest as they are
two of the most abundant saccharides found in ocean samples.?® This approach focuses mainly on
the quantification of saccharides due to their importance in many marine processes. For example,

saccharides are common feedstocks for the ocean ecosystem®3

and can contribute globally to
atmospheric processes such as cloud nucleation through transport from the SSML into
aerosols.?®*! Understanding a generalized saccharide concentration is important to understanding
the total ocean chemical diversity and ecosystem health through these processes.

The presented work is motivated by the need for fast, accurate analysis of SSML samples
to establish a method that enables exponentially more SSML chemical measurements. Traditional
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methods to analyze SSML samples are typically limited to mass spectrometry, which requires



extensive organic, solid-phase extraction processes. Nevertheless, these methods have provided
invaluable information on SSML (and sea spray aerosol) chemical composition. To reduce the
sample preparation process and expedite analysis of results, we developed methods that utilize
infrared (IR) spectroscopy methods, specifically, attenuated total reflectance Fourier transform
infrared (ATR-FTIR) to estimate the saccharide concentration via machine learning (ML)
implementations. IR methods provide information on chemical composition and concentration by
probing the vibrations of chemical bonds, rather than relying on mass fragmentation. Identification
and quantification of specific chemical classes from IR spectra is carried out by analyzing peaks
characteristic to specific chemical bonds.>* We note that the limit of detection for ATR-FTIR
spectroscopy is higher than for mass spectroscopy, however the speed of analysis for this method
is superior.

ML provides a unique avenue to explore relationships among data that cannot be otherwise

deduced. The applications to improve or expand chemical systems via ML are broad and present
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throughout all chemistry fields. Materials design, novel drug discovery, catalyst
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optimization,” ™ and clean energy production®"* are some of the many fields where knowledge
has expanded because of ML. Advances in molecular dynamics in combination with machine
learning have also paved the way for bridging the connection between molecular structure and
physical characteristics.**** Recent work emphasizes the improved application of FTIR
spectroscopy, and more broadly vibrational spectroscopy, for qualitative and quantitative
assignment, especially when combined with ML models.***¢ Takamura and colleagues explored
methods to identify donor biological sex from urine samples.*’ They presented several ML

applications, including partial least-squares discriminant analysis with and without a genetic

algorithm, to explore the chemical information contained in their FTIR spectra. They found that



the increased computational complexity of an artificial neural network resulted in comparable
results to their discriminant analysis model’s predictive power. Butler and coworkers presented
successful use of support vector regressors (SVR) in predicting brain cancer from ATR-FTIR
spectra.*® Their high-throughput approach featured high sensitivity and specificity in the prediction
of benign versus malignant samples.

SVRs have also been employed in classification of Raman spectra to identify Alzheimer’s
Disease in mice; a relevant features map is utilized to identify pertinent peaks that are from
molecules known to be associated with the disease. A study from 2022 reports comparable
classification accuracy of microplastic Raman microscopy samples from k-nearest neighbors
(KNN), multilayer perceptron (MLP), and random forest (RF) models.*’ These literature examples
highlight the diverse applications of ML and develop techniques that expand the applications of
chemistry, as we present herein.

This work utilizes ML methods of increasing complexity to evaluate the training data and
investigate new data, including field samples with unknown composition. The utilized models in
this work are multivariate linear regression, K nearest neighbors, decision trees, gradient boosted
regression, multilayer perceptron, and support vector regressors. This diversity in model approach
explores the effects of computational complexity, i.e. single models vs ensemble models, and a
variety of regression solving techniques.

Fitting data to a linear regression model is common for absorbance data, such as fitting to
the Beer-Lambert Law to determine physical constants or identify concentrations of unknown
samples.>® Absorbance FTIR spectra generally follow a linear relationship of intensity with respect
to concentration, which is advantageous for determining new sample composition. Recent work

has utilized multiple linear regression to identify heavy metals, including investigating the effect



of surface chemistry on vanadium®' and lead™ toxicity. However, the simplicity of the method
ultimately restricts the model’s usefulness in more complex, dynamic systems. The largest
difference between Beer-Lambert Law linear regression and multivariate linear regression is that
all features (in this work, wavenumbers) are used simultaneously to make the multivariate model’s
assignments.> This multivariate linear regression (MLR) will act as a benchmark that can be used
to compare the other listed models to.

In contrast, SVR fits training data to the best function by minimizing the distance of each
value from the fitting equation to be able to predict continuous values. Not all data is appropriate
for SVR, but in cases where concentration is being predicted and is linearly correlated with
absorbance, it can be a well-suited model. A 2020 report by Mohammadi and colleagues presented
an application of SVR to predict different functional group fractions in crude oil.>* As another
example, ATR-FTIR and SVR were employed by Chen et al. 2022 to predict bio-oil characteristics
quickly.*

The work described herein provides a discussion on an improved approach to monitoring
the SSML. We explore ML approaches to achieve precise and accurate quantitative analysis of
simplified proxies of glucose and egg serum albumin (ESA). Glucose is used as our saccharide
proxy for training data as it is commonly observed in field measurements and saccharides are
frequently reported as a concentration of glucose.’>%37 We also use ESA in our training set
because ESA, our SSML protein proxy, has been shown to have surface activity and form insoluble
monolayers on aqueous interfaces, despite being a water soluble protein.>®*° While an unlikely
protein to find in field samples, ESA provides a complex matrix of amino acids that are abundant
in the ocean’s water column.>”$1"%3 The use of ML in conjunction with vibrational spectroscopy

enables greater exploration of chemical space and identifying connections between data. Our



results present, to our knowledge, a first account of predicting saccharide concentration from FTIR
spectra of ocean proxy samples using ML.

Methods

Training Solution Preparation, Data Collection, and Data Preprocessing

All chemicals were used as received and all solutions requiring water were prepared using
ultrapure water (18 m€) from a MilliQ system. For Simplified Proxy (SP) training spectra, stock
solutions of 1M glucose (Sigma Aldrich, 299.5% (GC)) in ultrapure water and 5 mg/mL egg serum
albumin (ESA) (Sigma Aldrich, 62-88%, agarose gel electrophoresis) in ultrapure water were
prepared. The solution matrix was produced by dispensing the relevant amount of each stock
solution via auto pipette and diluting with the requisite amount of water. Briefly, we selected this
system and concentrations to have reasonable complexity.

Both the protein and saccharide have IR absorbances from 1800 to 900 cm™'. The peaks
were well resolved, with minimal convolution. Inorganic salts were excluded in our matrix, but
we provide spectra of the O-H stretching region in the SI to emphasize the limited effect that they
have on the IR spectra. Concentrations were selected based on literature precedent from field study
results.?¢?733 Solutions were measured in triplicate via ATR-FTIR spectroscopy (PerkinElmer
Spectrum 3) with a single beam KRS-5/diamond ATR assembly. Spectra were acquired in the
“SingleBeam” mode without the use of a continuous reference and were detected using a liquid
nitrogen cooled HgCdTe (MCT) detector over 32 scans (approximately one minute) from 4000 to
450 cm™ with a resolution of 1 cm™. Spectra were converted to absorbance with a water-only
background spectrum (R,) using the established relationship of -log(R/R,). Baseline correction
was done using a linear fit model to correct for inconsistent baseline between measurements.

Water-only backgrounds were obtained every 5 sample measurements. Triplicate measurements



were used as individual spectra, rather than an average of the three, to provide more machine

learning training and testing data (Figure 1).

Samples ATR-FTIR

Preprocessing
- Calculate Absorbance Spectrum

- A=-log(R/Ry) —— Train and Predict
- Baseline Correction

Figure 1. Schematic flow chart of data collection process to the ML pipeline.

Lab Generated Simplified and Ocean Proxy Sample Preparation and Sampling

To test the models’ accuracies with increasing chemical complexity, ocean proxy (OP)
samples were made in the lab with a greater diversity of chemical constituents than the simplified
proxies. For these test data, stock ocean proxy-solution was prepared to have 0.1 M sucrose (Sigma
Aldrich, >99.5% (GC)), 0.1 M glucose, 0.5 mg/mL ESA, 3.323 mg/mL bovine serum albumin
(BSA) (Sigma Aldrich, > 98%, heat shock fraction, pH 7), and 0.1 M 1-butanol (Sigma Aldrich,
99.9%) (Table 1). Two additional solutions were prepared via dilution of the stock. The higher
concentration dilution was 7.5 mL of stock and 2.5 mL of water and the lower was 5 mL of stock
and 5 mL of water. The three solutions were analyzed using the data collection and preprocessing
described above.

Table 1. Concentrations of all species in the lab-made ocean proxy samples for evaluation of model
accuracy on more chemically diverse conditions

Ocean Proxy Ocean Proxy Ocean Proxy
A B C
Concentration of Sucrose (M) 0.10 0.075 0.05
Concentration of Glucose (M) 0.10 0.075 0.05
Concentration of Saccharide (M) 0.20 0.15 0.10
Concentration of ESA (mg/mL) 0.50 0.38 0.25
Concentration of BSA (mg/mL 3.32 2.49 1.66
Concentration of 1-Butanol (M) 0.10 0.075 0.05




Machine Learning Methods
All machine learning (ML) methods were implemented using Python scripts and SciKit-
Learn packages. These are available online at:

https://github.com/Ohio-State-Allen-Lab/Saccharide Quantification 2024.

Preprocessing

All data, which includes the entire training set of simplified proxy (SP — containing only
ESA and glucose) and the ocean proxy (OP — containing ESA, glucose, BSA, and 1-butanol)
samples were standardized using the SciKit-Learn StandardScaler function. This function
subtracts the mean of each feature (wavenumber) and divides each feature by the respective
standard deviation. The StandardScaler function was first fit using only the SP data, then this fit
was applied to both the SP and OP datasets. This was done to avoid the StandardScaler function
using the SP dataset information in the OP samples. If the StandardScaler function was fit on the
SP and OP datasets together, it would incorrectly inflate the final ability of these models to identify
the OP concentrations.®* After standardization, the OP data was separated from the data that would
then be used for training. The data was then split 70::30 into training and validation/test sets. The
latter of which was then split 50::50 into validation and testing datasets. A random state was set to
split the data the same way every time into the training, validation, and test datasets to ensure
consistency. The training and validation sets were used to train each of the models (210 spectra
for training 45 for validation). The withheld test data (45 spectra) were then used to further explore
the models’ accuracy on previously unseen data that was similar to the data the models were trained
on.

A total of 6 machine learning methods were utilized in this work. They will be described

here in order of increasing computational complexity.
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Multivariate Linear Regression (MLR)

In MLR, all features are fit with a hyperplane in which the dimensionality is determined
by the number of features and each feature is has associated weights. This hyperplane is then used
to identify concentrations of new samples in the same way that a line would be used for regression
with only one feature. Multiple linear models including Lasso, ElasticNet, and Orthogonal
Matching Pursuit were tested, but the best performing estimator was the Ridge regressor. This
method tends to perform well when there are a large number of features compared to the number
of spectral samples.®
K-Nearest Neighbors (KNN)

KNN is a method of supervised learning that uses the proximity of previously explored
data to make predictions by looking at the distance (the calculation of this distance is variable
depending on model parameters) between the neighbors and the training datapoint and using that
to adjust the predictions.®® In this work, we use the default Minkowski metric for distance which
calculates the standard Euclidian distance between points in multivariate space. Different numbers
of neighbors between 2 and 10 were tested and the model performed the highest when 5 were used.
Decision Trees (DT)

DTs work to separate the large dataset into smaller pieces repeatedly based on optimized
features to be used as split points.®’” These smallest components, or leaves, then are used to identify
predictions for new data. The model utilized in this work terminated splitting once two features
were unable to be split further. The model then worked to minimize squared error between training

predictions and true values. The original splits were randomized.



Gradient Boosted Regression (GBR)

GBR is an example of an ensemble algorithm that allows for the use of many smaller
models, in this context, decision trees.’® This method is more computationally complex than a
single DT and can identify more complex patterns. The model presented here utilizes a Huber loss
function and 2,000 estimators with a learning rate of 0.5 and a max depth of 1.

Multilayer Perceptron (MLP)

MLP is an example of an artificial neural network, a framework of interconnected nodes
referred to as neurons.®” Each neuron has associated weights, which are adjusted with each training
step through a mathematical process of backpropagation. The model presented in this work uses a
tanh activation function, an Adam solver, and 500 training steps.

Support Vector Regression (SVR)

SVR utilizes the power of high dimensionality data to identify patterns.”® By transforming
the data into a higher dimensionality space, it allows for the fitting of the model with different
mathematical approaches. The kernel describes the transformation used to transform the data into
the high dimensionality hyperplane. This model utilizes a radius bias function (RBF) as the kernel
for fitting the dataset.

Model Analysis

To evaluate the models after training, error was also calculated at three different places
within the training and testing process. The error calculated is root mean squared error (RMSE).
First, the RMSE for the training data is evaluated by comparing the predicted values to the true
values with each model. This describes how well the model was able to fit the training data. Next,

the validation error was calculated to predict the model’s accuracy on new data. Finally, the testing
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error focuses on the ability of the model to evaluate data that it has not previously been exposed
to.

We also evaluate the prediction of the models on the OP samples to determine how well
they perform on data that is chemically different than the data that the models were trained on.
This is done by determining the estimation accuracy by comparing the amount of saccharide
predicted by each model compared to the true combined saccharide concentration. If the model
exactly predicts the concentration, this amount would be 100%. Scores of less than 100% and more
than 100% represent under and over prediction respectively. This highlights the degree and
directionality of the prediction error in the final estimates of OP data.

Results and Discussion
Evaluating Feasibility of Using IR Spectra to Quantify Saccharide Concentration

The chemical complexity of SP and OP samples is explored with ATR-FTIR spectroscopy
and quantitative ML approaches to develop a simple and accurate method of analysis. The FTIR
spectra provide chemical information about the sample components and their concentrations,
which have a linear correlation with absorbance. The correlation diverges from a linear
relationship at high absorbance values, which is not of concern in the presently studied
concentration ranges. A single figure containing all the acquired spectra is presented in the SI
(Figure S1). Glucose has many vibrational modes that can be used for analysis (Figure S2).

Heat maps can be used to visualize the SP dataset in its entirety. The data was sorted with
respect to the concentration of glucose and then plotted against the wavenumber and the intensity
at that wavenumber for a given spectrum. This allows for the visualization of the entire dataset in
the context of changing glucose concentration and is presented as a heat map in Figure 2. A band

1

of increasing intensity can be seen between 1200 and 1000 cm™ correlating to the increasing
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concentration of glucose in solution, specifically with the C-C and C-O vibrational modes. The
presence of this band supports the ability of the machine learning models to have representative

features that will allow for the concentration analysis of glucose.

Glucose Concentration Dependent Spectral Response
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Figure 2. Heat map of the ATR-FTIR dataset as sorted by the concentration of glucose (0 — 1 M).
The band of intensity growing in between 1100 and 1000 cm™ corresponds to the increasing C-O
stretching within the IR fingerprint region from the increased concentration of glucose. We do not
see a strong spectral signature for the ESA relative to that of glucose also in solution (0 —5 mg/mL)
where we would expect the amide bands to exist between 1700 and 1500 cm™.

To evaluate each model’s ability to accurately predict within the training dataset, model
accuracy will be calculated for the training on the simplified proxy (SP) dataset. This SP dataset
contains only glucose (the analyte of quantification) and ESA (the chemical matrix). To explore if
the models are able to expand outside of the explicit training, these models will then be tested on
the ocean proxy (OP) dataset. Beyond the ESA and glucose within the SP dataset, the OP dataset
also contains sucrose, BSA, and 1-butanol. Each of the model’s predicted values will be compared
to the additive concentration of glucose and sucrose to make a generalized saccharide

concentration (Figure 3).
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Glucose Sucrose

Figure 3. Molecular structures of both glucose (left) and sucrose (right). Both saccharides contain
similar vibrational bonds and vibrational environments in regions of the structure. The simplified
proxy (SP) dataset contains only glucose and egg serum albumin whereas the ocean proxy (OP)
dataset contains both glucose and sucrose in solution with egg serum albumin, bovine serum
albumin, and 1-butanol.

Evaluating Machine Learning Models’ Fit of the Simplified Proxy (SP) Dataset

After training, the accuracy of each model’s ability to identify the concentrations of the test
and validation sets was evaluated to explore the influence of the chosen model to evaluate the SP
dataset through analyzing the RMSE error. Ideally, there wouldn’t be any effect and the error
would be consistent regardless of concentration range. Figure 4 visualizes these results. DT
(Figure 4 C) had the smallest associated RMSE and did not exhibit an increased error in low
concentrations. KNN, GBR, MLP, and SVR (Figure 4 B, D, E, and F respectively) all
experienced increased error at low concentrations. R? values for each model have also been

calculated and are presented in the SI (Table S2).
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Figure 4(a-f). Scatter plots depicting the accuracy of each of the utilized machine learning models
on the simplified proxy (SP) dataset. The y-axis represents the difference between the model
assigned and the actual concentrations of the testing dataset divided by the actual concentrations
multiplied by 100% (circles) and the withheld validation dataset (triangles). The gradient boosted
regression, multilayer perceptron, and support vector regression models do experience an
increased error at low concentrations.
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To perform a more in-depth error analysis, each of the model’s RMSE was calculated
between each step of the training by evaluating the training, validation, and test sets’ final
accuracies. All of the models had smaller than 70 mM in error amongst the different steps. These
results have been visualized in Figure 5.
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Figure 5. Bar graphs depicting the associated root mean squared error (RMSE) in each part of
the training process for the simplified proxy (SP) dataset. All models have a final testing error of
less than 0.07 M, but the MLR performed the best in this evaluation. The asterisk indicates that
for the decision trees the training error was 0.00 M.

Evaluating Machine Learning Models’ Fit of the Ocean Proxy (OP) Dataset

The saccharide concentrations of the OP samples were then estimated using these same
ML models. The “true” saccharide concentrations are defined as the sum of the concentrations of
glucose and sucrose. This additive concentration, coupled with the increased complexity of the
matrix extends these proxies beyond the chemical space that the models were originally trained

on. For the purpose of identifying a generalized saccharide concentration, it is important to select
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for the models with the highest estimation accuracy when comparing the estimated and true
concentrations without disproportionately valuing low or high concentration samples. A model
performing poorly here doesn’t suggest that the model is poorly trained, just that it doesn’t have
the capacity to generalize that far beyond the training. For example, MLR had the lowest RMSE
error in validation and test datasets as seen in Figure 5 for the simplified proxies. The MLR,
however, only has an estimation accuracy of 50-60% on the OP data, underestimating the
combined saccharide concentration by approximately half. This suggests that the MLR model is
highly fit to glucose and does not generalize to sucrose, which for other chemical contexts would
be ideal.

The highest accuracy in identifying the combined saccharide concentrations came from the
SVR and GBR models. They were both able to assign 2/3 of the solutions within 20% of the true
concentration of combined saccharide. SVR showed less spread in its predictions but tended to
overestimate. The lowest concentration of saccharide was not correctly identified but also existed
outside of the range of concentrations where SVR was performing well (Figure 4). GBR did not
consistently over or underestimate, but it had a large spread in prediction accuracy. These results

are shown in Figure 6.
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Figure 6. Predicted concentration divided true concentration of combined saccharide for ocean
proxy (OP) saccharide concentrations. Solid line at 100 represents 100% meaning that the
predicted concentration equals the predicted concentration. The dotted lines represent +/- 20%.
The darkest markers in each column represent the highest concentration of saccharide in OP (0.20
M) and the lightest represent the least concentrated (0.10 M). The models have varied levels of
success at identifying samples that are far removed from the original training set. The highest
performing models were GBR and SVR.

Summary of Discussion

Our quantitative results indicate SVR and GBR are the most promising models to explore
for identifying concentrations of saccharides within ocean samples. They are both able to estimate
the combined saccharide concentrations within 20% for 2/3 of the complex OP samples. This
accuracy would likely be increased if the data that the models were trained on were more
chemically similar to the OP dataset as that training would be more relevant to the OP data.
Conclusions

To develop efficient, less-expensive analytical techniques for analysis of the SSML,
several ML methods were applied to ATR-FTIR spectra and used to determine saccharide
concentration and chemical composition of aqueous samples. Our results indicate that SVR and

GBR models are viable for complex solutions, especially considering the training sample data is
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relatively simple. The research presented herein provides a unique approach to studying the
contributions to the DOC and as a result the SSML utilizing the advanced computational tools
available and reduces the time needed to perform analyses of marine samples. Further work should
focus on finding an optimal training data set, investigating quantifying other organic
concentrations, and intercalating other spectroscopic or spectrometric data, to name a few. An
improved understanding and quantification of the marine organics is achievable, wherein more
frequent measurements and analysis can occur, ultimately providing more information about the
productivity of the marine organics and thus their effects on our atmosphere and climate.
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