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Abstract 

Solvated organics in the ocean are present in relatively small concentrations but contribute 

largely to ocean chemical diversity and complexity. Existing in the ocean as dissolved organic 

carbon (DOC) and enriched within the sea surface microlayer (SSML), these compounds have 

large impacts on atmospheric chemistry through their contributions to cloud nucleation, ice 

formation and other climatological processes. The ability to quantify the concentrations of organics 

in ocean samples is critical for understanding these marine processes. The work presented herein 

details an investigation to develop machine learning (ML) methodology utilizing infrared 

spectroscopy data to accurately estimate saccharide concentrations in complex solutions. We 

evaluated multivariate linear regression (MLR), K-Nearest-Neighbors (KNN), Decision Trees 

(DT), Gradient Boosted Regressors (GBR), Multilayer Perceptrons (MLP), and Support Vector 

Regressors (SVR) toward this goal. SVR models are shown to best predict the accurate generalized 

saccharide concentrations. Our work presents an application combining fast spectroscopic 

techniques with ML to analyze organic composition proxy ocean samples. As a result, we target a 

generalized method for analyzing field marine samples more efficiently, without sacrificing 

accuracy or precision.  
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Introduction 

 

The sea surface microlayer (SSML) is a multifaceted, deeply complex region of the 

ocean.1–7 As the interface between the Earth’s atmosphere and ocean, the SSML performs vital 

functions that affect climate5,8–10 and ice formation.4,11–13 Because of unique interfacial 

anisotropy,14–17 the physical and chemical properties of the SSML are of interest for their 

divergence from bulk water behavior. Generally, the SSML is enriched with lipids, proteins, and 

saccharides (also referred to as sugars or carbohydrates) which contribute to the total dissolved 

organic carbon (DOC).18–22 Understanding the chemical composition of the SSML provides insight 

into the biological activity and productivity within the SSML and enables predictions of cloud 

condensation23 or ice nucleation,4 ultimately aiding climatological models.24–27 Recent analyses of 

saccharide concentrations in SSML have shown concentrations of about 500 nM from eight unique 

compounds.20 The dynamic nature and chemical complexity of the SSML make monitoring the 

region difficult, and yet increasingly necessary. 

For the described work, glucose and sucrose were chosen as analytes of interest as they are 

two of the most abundant saccharides found in ocean samples.28 This approach focuses mainly on 

the quantification of saccharides due to their importance in many marine processes. For example, 

saccharides are common feedstocks for the ocean ecosystem29,30 and can contribute globally to 

atmospheric processes such as cloud nucleation through transport from the SSML into 

aerosols.28,31 Understanding a generalized saccharide concentration is important to understanding 

the total ocean chemical diversity and ecosystem health through these processes. 

The presented work is motivated by the need for fast, accurate analysis of SSML samples 

to establish a method that enables exponentially more SSML chemical measurements. Traditional 

methods to analyze SSML samples are typically limited to mass spectrometry,5,32,33 which requires 
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extensive organic, solid-phase extraction processes. Nevertheless, these methods have provided 

invaluable information on SSML (and sea spray aerosol) chemical composition. To reduce the 

sample preparation process and expedite analysis of results, we developed methods that utilize 

infrared (IR) spectroscopy methods, specifically, attenuated total reflectance Fourier transform 

infrared (ATR-FTIR) to estimate the saccharide concentration via machine learning (ML) 

implementations. IR methods provide information on chemical composition and concentration by 

probing the vibrations of chemical bonds, rather than relying on mass fragmentation. Identification 

and quantification of specific chemical classes from IR spectra is carried out by analyzing peaks 

characteristic to specific chemical bonds.34 We note that the limit of detection for ATR-FTIR 

spectroscopy is higher than for mass spectroscopy, however the speed of analysis for this method 

is superior. 

ML provides a unique avenue to explore relationships among data that cannot be otherwise 

deduced. The applications to improve or expand chemical systems via ML are broad and present 

throughout all chemistry fields. Materials design,35,36 novel drug discovery,37,38 catalyst 

optimization,39,40 and clean energy production41,42 are some of the many fields where knowledge 

has expanded because of ML. Advances in molecular dynamics in combination with machine 

learning have also paved the way for bridging the connection between molecular structure and 

physical characteristics.43,44 Recent work emphasizes the improved application of FTIR 

spectroscopy, and more broadly vibrational spectroscopy, for qualitative and quantitative 

assignment, especially when combined with ML models.45,46 Takamura and colleagues explored 

methods to identify donor biological sex from urine samples.47 They presented several ML 

applications, including partial least-squares discriminant analysis with and without a genetic 

algorithm, to explore the chemical information contained in their FTIR spectra. They found that 
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the increased computational complexity of an artificial neural network resulted in comparable 

results to their discriminant analysis model’s predictive power. Butler and coworkers presented 

successful use of support vector regressors (SVR) in predicting brain cancer from ATR-FTIR 

spectra.48 Their high-throughput approach featured high sensitivity and specificity in the prediction 

of benign versus malignant samples.  

SVRs have also been employed in classification of Raman spectra to identify Alzheimer’s 

Disease in mice; a relevant features map is utilized to identify pertinent peaks that are from 

molecules known to be associated with the disease. A study from 2022 reports comparable 

classification accuracy of microplastic Raman microscopy samples from k-nearest neighbors 

(KNN), multilayer perceptron (MLP), and random forest (RF) models.49 These literature examples 

highlight the diverse applications of ML and develop techniques that expand the applications of 

chemistry, as we present herein. 

This work utilizes ML methods of increasing complexity to evaluate the training data and 

investigate new data, including field samples with unknown composition. The utilized models in 

this work are multivariate linear regression, K nearest neighbors, decision trees, gradient boosted 

regression, multilayer perceptron, and support vector regressors. This diversity in model approach 

explores the effects of computational complexity, i.e. single models vs ensemble models, and a 

variety of regression solving techniques. 

Fitting data to a linear regression model is common for absorbance data, such as fitting to 

the Beer-Lambert Law to determine physical constants or identify concentrations of unknown 

samples.50 Absorbance FTIR spectra generally follow a linear relationship of intensity with respect 

to concentration, which is advantageous for determining new sample composition. Recent work 

has utilized multiple linear regression to identify heavy metals, including investigating the effect 



 

5 

 

of surface chemistry on vanadium51 and lead52 toxicity. However, the simplicity of the method 

ultimately restricts the model’s usefulness in more complex, dynamic systems. The largest 

difference between Beer-Lambert Law linear regression and multivariate linear regression is that 

all features (in this work, wavenumbers)  are used simultaneously to make the multivariate model’s 

assignments.53 This multivariate linear regression (MLR) will act as a benchmark that can be used 

to compare the other listed models to. 

 In contrast, SVR fits training data to the best function by minimizing the distance of each 

value from the fitting equation to be able to predict continuous values. Not all data is appropriate 

for SVR, but in cases where concentration is being predicted and is linearly correlated with 

absorbance, it can be a well-suited model. A 2020 report by Mohammadi and colleagues presented 

an application of SVR to predict different functional group fractions in crude oil.54 As another 

example, ATR-FTIR and SVR were employed by Chen et al. 2022 to predict bio-oil characteristics 

quickly.55  

The work described herein provides a discussion on an improved approach to monitoring 

the SSML. We explore ML approaches to achieve precise and accurate quantitative analysis of 

simplified proxies of glucose and egg serum albumin (ESA). Glucose is used as our saccharide 

proxy for training data as it is commonly observed in field measurements and saccharides are 

frequently reported as a concentration of glucose.32,56,57 We also use ESA in our training set 

because ESA, our SSML protein proxy, has been shown to have surface activity and form insoluble 

monolayers on aqueous interfaces, despite being a water soluble protein.58–60 While an unlikely 

protein to find in field samples, ESA provides a complex matrix of amino acids that are abundant 

in the ocean’s water column.5,7,61–63 The use of ML in conjunction with vibrational spectroscopy 

enables greater exploration of chemical space and identifying connections between data. Our 
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results present, to our knowledge, a first account of predicting saccharide concentration from FTIR 

spectra of ocean proxy samples using ML. 

Methods 

Training Solution Preparation, Data Collection, and Data Preprocessing 

All chemicals were used as received and all solutions requiring water were prepared using 

ultrapure water (18 mΩ) from a MilliQ system. For Simplified Proxy (SP) training spectra, stock 

solutions of 1M glucose (Sigma Aldrich, 99.5% (GC)) in ultrapure water and 5 mg/mL egg serum 

albumin (ESA) (Sigma Aldrich, 62-88%, agarose gel electrophoresis) in ultrapure water were 

prepared. The solution matrix was produced by dispensing the relevant amount of each stock 

solution via auto pipette and diluting with the requisite amount of water. Briefly, we selected this 

system and concentrations to have reasonable complexity.  

Both the protein and saccharide have IR absorbances from 1800 to 900 cm-1. The peaks 

were well resolved, with minimal convolution. Inorganic salts were excluded in our matrix, but 

we provide spectra of the O-H stretching region in the SI to emphasize the limited effect that they 

have on the IR spectra. Concentrations were selected based on literature precedent from field study 

results.26,27,33 Solutions were measured in triplicate via ATR-FTIR spectroscopy (PerkinElmer 

Spectrum 3) with a single beam KRS-5/diamond ATR assembly. Spectra were acquired in the 

“SingleBeam” mode without the use of a continuous reference and were detected using a liquid 

nitrogen cooled HgCdTe (MCT) detector over 32 scans (approximately one minute) from 4000 to 

450 cm-1 with a resolution of 1 cm-1. Spectra were converted to absorbance with a water-only 

background spectrum (Ro) using the established relationship of -log(R/Ro). Baseline correction 

was done using a linear fit model to correct for inconsistent baseline between measurements. 

Water-only backgrounds were obtained every 5 sample measurements. Triplicate measurements 
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were used as individual spectra, rather than an average of the three, to provide more machine 

learning training and testing data (Figure 1). 

 
Figure 1. Schematic flow chart of data collection process to the ML pipeline. 

 

Lab Generated Simplified and Ocean Proxy Sample Preparation and Sampling 

To test the models’ accuracies with increasing chemical complexity, ocean proxy (OP) 

samples were made in the lab with a greater diversity of chemical constituents than the simplified 

proxies. For these test data, stock ocean proxy-solution was prepared to have 0.1 M sucrose (Sigma 

Aldrich, 99.5% (GC)), 0.1 M glucose, 0.5 mg/mL ESA, 3.323 mg/mL bovine serum albumin 

(BSA) (Sigma Aldrich, ≥ 98%, heat shock fraction, pH 7), and 0.1 M 1-butanol (Sigma Aldrich, 

99.9%) (Table 1). Two additional solutions were prepared via dilution of the stock. The higher 

concentration dilution was 7.5 mL of stock and 2.5 mL of water and the lower was 5 mL of stock 

and 5 mL of water. The three solutions were analyzed using the data collection and preprocessing 

described above.  

Table 1. Concentrations of all species in the lab-made ocean proxy samples for evaluation of model 

accuracy on more chemically diverse conditions 

 Ocean Proxy 

A 

Ocean Proxy 

B 

Ocean Proxy 

C 

Concentration of Sucrose (M) 0.10 0.075 0.05 

Concentration of Glucose (M) 0.10 0.075 0.05 

Concentration of Saccharide (M) 0.20 0.15 0.10 

Concentration of ESA (mg/mL) 0.50 0.38 0.25 

Concentration of BSA (mg/mL 3.32 2.49 1.66 

Concentration of 1-Butanol (M) 0.10 0.075 0.05 
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Machine Learning Methods 

All machine learning (ML) methods were implemented using Python scripts and SciKit-

Learn packages. These are available online at: 

 https://github.com/Ohio-State-Allen-Lab/Saccharide_Quantification_2024. 

Preprocessing 

All data, which includes the entire training set of simplified proxy (SP – containing only 

ESA and glucose) and the ocean proxy (OP – containing ESA, glucose, BSA, and 1-butanol) 

samples were standardized using the SciKit-Learn StandardScaler function. This function 

subtracts the mean of each feature (wavenumber) and divides each feature by the respective 

standard deviation. The StandardScaler function was first fit using only the SP data, then this fit 

was applied to both the SP and OP datasets. This was done to avoid the StandardScaler function 

using the SP dataset information in the OP samples.  If the StandardScaler function was fit on the 

SP and OP datasets together, it would incorrectly inflate the final ability of these models to identify 

the OP concentrations.64 After standardization, the OP data was separated from the data that would 

then be used for training. The data was then split 70::30 into training and validation/test sets. The 

latter of which was then split 50::50 into validation and testing datasets. A random state was set to 

split the data the same way every time into the training, validation, and test datasets to ensure 

consistency. The training and validation sets were used to train each of the models (210 spectra 

for training 45 for validation). The withheld test data (45 spectra) were then used to further explore 

the models’ accuracy on previously unseen data that was similar to the data the models were trained 

on. 

A total of 6 machine learning methods were utilized in this work. They will be described 

here in order of increasing computational complexity. 

https://github.com/Ohio-State-Allen-Lab/Saccharide_Quantification_2024
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Multivariate Linear Regression (MLR) 

In MLR, all features are fit with a hyperplane in which the dimensionality is determined 

by the number of features and each feature is has associated weights. This hyperplane is then used 

to identify concentrations of new samples in the same way that a line would be used for regression 

with only one feature. Multiple linear models including Lasso, ElasticNet, and Orthogonal 

Matching Pursuit were tested, but the best performing estimator was the Ridge regressor. This 

method tends to perform well when there are a large number of features compared to the number 

of spectral samples.65  

K-Nearest Neighbors (KNN) 

KNN is a method of supervised learning that uses the proximity of previously explored 

data to make predictions by looking at the distance (the calculation of this distance is variable 

depending on model parameters) between the neighbors and the training datapoint and using that 

to adjust the predictions.66 In this work, we use the default Minkowski metric for distance which 

calculates the standard Euclidian distance between points in multivariate space. Different numbers 

of neighbors between 2 and 10 were tested and the model performed the highest when 5 were used. 

Decision Trees (DT) 

DTs work to separate the large dataset into smaller pieces repeatedly based on optimized 

features to be used as split points.67 These smallest components, or leaves, then are used to identify 

predictions for new data. The model utilized in this work terminated splitting once two features 

were unable to be split further. The model then worked to minimize squared error between training 

predictions and true values. The original splits were randomized. 
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Gradient Boosted Regression (GBR) 

GBR is an example of an ensemble algorithm that allows for the use of many smaller 

models, in this context, decision trees.68 This method is more computationally complex than a 

single DT and can identify more complex patterns. The model presented here utilizes a Huber loss 

function and 2,000 estimators with a learning rate of 0.5 and a max depth of 1.  

Multilayer Perceptron (MLP) 

MLP is an example of an artificial neural network, a framework of interconnected nodes 

referred to as neurons.69 Each neuron has associated weights, which are adjusted with each training 

step through a mathematical process of backpropagation. The model presented in this work uses a 

tanh activation function, an Adam solver, and 500 training steps. 

Support Vector Regression (SVR) 

SVR utilizes the power of high dimensionality data to identify patterns.70 By transforming 

the data into a higher dimensionality space, it allows for the fitting of the model with different 

mathematical approaches. The kernel describes the transformation used to transform the data into 

the high dimensionality hyperplane. This model utilizes a radius bias function (RBF) as the kernel 

for fitting the dataset. 

Model Analysis 

To evaluate the models after training, error was also calculated at three different places 

within the training and testing process. The error calculated is root mean squared error (RMSE). 

First, the RMSE for the training data is evaluated by comparing the predicted values to the true 

values with each model. This describes how well the model was able to fit the training data. Next, 

the validation error was calculated to predict the model’s accuracy on new data. Finally, the testing 
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error focuses on the ability of the model to evaluate data that it has not previously been exposed 

to.  

We also evaluate the prediction of the models on the OP samples to determine how well 

they perform on data that is chemically different than the data that the models were trained on. 

This is done by determining the estimation accuracy by comparing the amount of saccharide 

predicted by each model compared to the true combined saccharide concentration. If the model 

exactly predicts the concentration, this amount would be 100%. Scores of less than 100% and more 

than 100% represent under and over prediction respectively. This highlights the degree and 

directionality of the prediction error in the final estimates of OP data. 

Results and Discussion 

Evaluating Feasibility of Using IR Spectra to Quantify Saccharide Concentration 

The chemical complexity of SP and OP samples is explored with ATR-FTIR spectroscopy 

and quantitative ML approaches to develop a simple and accurate method of analysis. The FTIR 

spectra provide chemical information about the sample components and their concentrations, 

which have a linear correlation with absorbance. The correlation diverges from a linear 

relationship at high absorbance values, which is not of concern in the presently studied 

concentration ranges. A single figure containing all the acquired spectra is presented in the SI 

(Figure S1). Glucose has many vibrational modes that can be used for analysis (Figure S2). 

Heat maps can be used to visualize the SP dataset in its entirety. The data was sorted with 

respect to the concentration of glucose and then plotted against the wavenumber and the intensity 

at that wavenumber for a given spectrum. This allows for the visualization of the entire dataset in 

the context of changing glucose concentration and is presented as a heat map in Figure 2. A band 

of increasing intensity can be seen between 1200 and 1000 cm-1 correlating to the increasing 
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concentration of glucose in solution, specifically with the C-C and C-O vibrational modes. The 

presence of this band supports the ability of the machine learning models to have representative 

features that will allow for the concentration analysis of glucose. 

 

 

Figure 2. Heat map of the ATR-FTIR dataset as sorted by the concentration of glucose (0 – 1 M). 

The band of intensity growing in between 1100 and 1000 cm-1 corresponds to the increasing C-O 

stretching within the IR fingerprint region from the increased concentration of glucose. We do not 

see a strong spectral signature for the ESA relative to that of glucose also in solution (0 – 5 mg/mL) 

where we would expect the amide bands to exist between 1700 and 1500 cm-1. 

To evaluate each model’s ability to accurately predict within the training dataset, model 

accuracy will be calculated for the training on the simplified proxy (SP) dataset. This SP dataset 

contains only glucose (the analyte of quantification) and ESA (the chemical matrix). To explore if 

the models are able to expand outside of the explicit training, these models will then be tested on 

the ocean proxy (OP) dataset.  Beyond the ESA and glucose within the SP dataset, the OP dataset 

also contains sucrose, BSA, and 1-butanol. Each of the model’s predicted values will be compared 

to the additive concentration of glucose and sucrose to make a generalized saccharide 

concentration (Figure 3). 
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Figure 3. Molecular structures of both glucose (left) and sucrose (right). Both saccharides contain 

similar vibrational bonds and vibrational environments in regions of the structure. The simplified 

proxy (SP) dataset contains only glucose and egg serum albumin whereas the ocean proxy (OP) 

dataset contains both glucose and sucrose in solution with egg serum albumin, bovine serum 

albumin, and 1-butanol. 

 

Evaluating Machine Learning Models’ Fit of the Simplified Proxy (SP) Dataset 

After training, the accuracy of each model’s ability to identify the concentrations of the test 

and validation sets was evaluated to explore the influence of the chosen model to evaluate the SP 

dataset through analyzing the RMSE error. Ideally, there wouldn’t be any effect and the error 

would be consistent regardless of concentration range. Figure 4 visualizes these results. DT 

(Figure 4 C) had the smallest associated RMSE and did not exhibit an increased error in low 

concentrations. KNN, GBR, MLP, and SVR (Figure 4 B, D, E, and F respectively) all 

experienced increased error at low concentrations. R2 values for each model have also been 

calculated and are presented in the SI (Table S2). 
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Figure 4(a-f). Scatter plots depicting the accuracy of each of the utilized machine learning models 

on the simplified proxy (SP) dataset. The y-axis represents the difference between the model 

assigned and the actual concentrations of the testing dataset divided by the actual concentrations 

multiplied by 100% (circles) and the withheld validation dataset (triangles). The gradient boosted 

regression, multilayer perceptron, and support vector regression models do experience an 

increased error at low concentrations. 
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To perform a more in-depth error analysis, each of the model’s RMSE was calculated 

between each step of the training by evaluating the training, validation, and test sets’ final 

accuracies. All of the models had smaller than 70 mM in error amongst the different steps. These 

results have been visualized in Figure 5. 

 

Figure 5. Bar graphs depicting the associated root mean squared error (RMSE) in each part of 

the training process for the simplified proxy (SP) dataset. All models have a final testing error of 

less than 0.07 M, but the MLR performed the best in this evaluation. The asterisk indicates that 

for the decision trees the training error was 0.00 M. 

 

Evaluating Machine Learning Models’ Fit of the Ocean Proxy (OP) Dataset 

The saccharide concentrations of the OP samples were then estimated using these same 

ML models. The “true” saccharide concentrations are defined as the sum of the concentrations of 

glucose and sucrose. This additive concentration, coupled with the increased complexity of the 

matrix extends these proxies beyond the chemical space that the models were originally trained 

on. For the purpose of identifying a generalized saccharide concentration, it is important to select 



 

16 

 

for the models with the highest estimation accuracy when comparing the estimated and true 

concentrations without disproportionately valuing low or high concentration samples. A model 

performing poorly here doesn’t suggest that the model is poorly trained, just that it doesn’t have 

the capacity to generalize that far beyond the training. For example, MLR had the lowest RMSE 

error in validation and test datasets as seen in Figure 5 for the simplified proxies. The MLR, 

however, only has an estimation accuracy of 50-60% on the OP data, underestimating the 

combined saccharide concentration by approximately half. This suggests that the MLR model is 

highly fit to glucose and does not generalize to sucrose, which for other chemical contexts would 

be ideal.  

The highest accuracy in identifying the combined saccharide concentrations came from the 

SVR and GBR models. They were both able to assign 2/3 of the solutions within 20% of the true 

concentration of combined saccharide. SVR showed less spread in its predictions but tended to 

overestimate. The lowest concentration of saccharide was not correctly identified but also existed 

outside of the range of concentrations where SVR was performing well (Figure 4). GBR did not 

consistently over or underestimate, but it had a large spread in prediction accuracy. These results 

are shown in Figure 6. 
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Figure 6. Predicted concentration divided true concentration of combined saccharide for ocean 

proxy (OP) saccharide concentrations. Solid line at 100 represents 100% meaning that the 

predicted concentration equals the predicted concentration. The dotted lines represent +/- 20%. 

The darkest markers in each column represent the highest concentration of saccharide in OP (0.20 

M) and the lightest represent the least concentrated (0.10 M). The models have varied levels of 

success at identifying samples that are far removed from the original training set. The highest 

performing models were GBR and SVR.  

Summary of Discussion  

 Our quantitative results indicate SVR and GBR are the most promising models to explore 

for identifying concentrations of saccharides within ocean samples. They are both able to estimate 

the combined saccharide concentrations within 20% for 2/3 of the complex OP samples. This 

accuracy would likely be increased if the data that the models were trained on were more 

chemically similar to the OP dataset as that training would be more relevant to the OP data. 

Conclusions 

 To develop efficient, less-expensive analytical techniques for analysis of the SSML, 

several ML methods were applied to ATR-FTIR spectra and used to determine saccharide 

concentration and chemical composition of aqueous samples. Our results indicate that SVR and 

GBR models are viable for complex solutions, especially considering the training sample data is 
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relatively simple. The research presented herein provides a unique approach to studying the 

contributions to the DOC and as a result the SSML utilizing the advanced computational tools 

available and reduces the time needed to perform analyses of marine samples. Further work should 

focus on finding an optimal training data set, investigating quantifying other organic 

concentrations, and intercalating other spectroscopic or spectrometric data, to name a few. An 

improved understanding and quantification of the marine organics is achievable, wherein more 

frequent measurements and analysis can occur, ultimately providing more information about the 

productivity of the marine organics and thus their effects on our atmosphere and climate. 

Supplemental Information 

Appendix A. ATR-FTIR Spectra of all Training Samples. 

Appendix B. Vibrational Analysis of Glucose and ESA 

Appendix C. Highest Concentration of ESA and Glucose 
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Appendix E. Analysis of MLR and SVR Weights 

Appendix F. Tabulated Values for Accuracy and Fit for Each ML Model 

Appendix G. Concentration Predictions for Ocean Proxy Solutions for Each ML Model 
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