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Abstract

We discuss current trends in developing novel synthetic polymers, biopolymers, and
corresponding soft and functional hybrid nanocomposites for advanced current and future
applications with an emphasis on active functional devices and functions. Among a wide variety
of polymeric materials and relevant applications, we select the fields, which are close to the
authors’ research interests. This selection includes strong but lightweight biopolymer composites,
gel-like and porous materials for chemical and energy transport control, fast-actuating responsive
materials and structures, and thin film electronic materials for chemical, physical, and biological

sensing applications compatible with human and robotic interfaces.
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Introduction.

In this brief overview, we discuss the authors’ viewpoint of current trends in developing novel
synthetic polymers, biopolymers, and corresponding hybrid nanocomposites for advanced current
and future applications with the focus on current and future active and functional materials,
structures, and devices. Among a variety of modern polymeric and biopolymer materials and
relevant applications reported to date, we choose several material classes and applied research
areas, which are closely relevant to the authors’ research interests, preferences, and activities as
briefly summarized below with selected examples of recent literature and own results presented in

the following section.

1. Structural materials and structure-focused applications.

Research efforts in traditional structure-oriented applications of polymeric and corresponding
composites without many functionalities are still critically important for many mature
developments and brand new fields in robotics or extreme environments with a high priority on
enhanced mechanical strength, high strain, dynamic response control, long-range durability, and
overall toughness. For the structure-focused applications of structural materials, significant
development efforts have been mostly made via exploring novel polymer blends and reinforced
nanostructured polymers with the tailored interfaces and hierarchical nanostructured organization;
novel highly crosslinked materials, both thermosets and thermoplastics; multiphase block-
copolymers and their nanocomposites with nanoparticles. Finally, extreme performance of fiber-
reinforced polymer and biopolymer materials and potentially dis-assembled, self-healing, and

recyclable materials bring broad attention [1].

2. Functional composites and processing for broader materials and applications.

Furthermore, the highest research activity is observed happens in the field of novel function-
oriented polymer/biopolymer-based materials for potential applications that require non-traditional
conductive, optical, magnetic, biological, and responsive properties. For instance, large efforts
have been made in the development of shape memory polymers, fast actuating materials,
biomedically compatible polymers, self-healing behavior and reversibly assembled phenomena,

light emitting and photonic properties, and polymers with bio-active and bio-degradable abilities.
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Besides, special attention is paid to the development and utilization of novel advanced
manufacturing techniques instead of traditional extrusion, casting, or rolling, which rely heavily
on bottom-up methods such as additive manufacturing, printing, electrospinning [2,3,4]. Most
popular additive manufacturing such as 3D and 4D printing refers to the process of the fabrication
of an object by adding multiple materials layers with relatively high spatial resolution in contrast
to traditional subtractive manufacturing that removes or cuts away material parts. Common
additive manufacturing techniques, such as melt spinning, direct ink writing, inkjet printing, and
3D photo-polymerization provide the fascinating advantage for rational design and fabrication of
complex, multiscale architectures that enable unprecedented mechanical properties, physical

properties, and added functionality [5,6].

3. Dynamic materials and structures: far from equilibrium materials and structures.

Vast majority of current polymer-based materials are fabricated and explored under close-to-
equilibrium conditions and well-annealed to assure their long-term stability and durability.
However, the open world around us evolves under far from equilibrium conditions to reach
multiple changing states with unique properties and new qualities in temporarily organized non-
equilibrium structures in contrast to traditionally designed engineering materials [7,8]. Overall,
these transformations can be triggered via molecular-based initiation and propagation of locally
organized instabilities in metastabale multiphase material elements interconnected into large-scale
meta structures and mismatched unstable phase boundaries for extreme materials adaptivity.
These materials may demonstrate multi-length scale dynamic behavior with ultra-fast propagation
of phase state to deploy initial material configurations into complex pre-programmed large-scale
architecture as triggered by minuscues energy disturbances. However, a fundamental
understanding of the complex far-from-equilibrium state of multiphase soft materials under
dynamic external and internal conditions as prospective self-transforming metamaterials across

multi-length scales is lacking.

4. Biologically-enabled and human-centered functional materials.

Finally, current research approaches are increasingly moving beyond traditional biomimetic
approaches in order to fabricate “living” materials with their abilities to actuate, self-heal, grow
and re-grow, directional and dynamic mechanical response, self-powered locomotion, and

biocompatibility and degradable ability. To this end, natural, naturally derived materials, and
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corresponding hybrid materials are synthesized, fused, nanofabricated, printed, and designed as
natural organs, human sensors, human skins, and brains for enhancement of human and machine

functions, performance, communication, and cognition [9, 10].

Examples of polymer-based materials for modern applications.

Below, we briefly discuss several examples of recent composite achievements from literature as

well as the authors’ research.

1. Structural composite materials and corresponding bio-based materials.

To summarize state-of-the-art developments in strong and lightweight structural composite
materials, Nepal and co-workers compared the mechanical properties of the enormous range of
structural composite materials from traditional engineering to bioinspired composites with
multifunctional attributes in the same parametric space in two corresponding Ashby plots with
different aspects of mechanical performance (Figs. 1, 2) [1]. The data collected from recent studies
are organized in color code presenting the same groups: 1) hierarchical biological materials, 2)
hierarchical nacre-mimetic materials, 3) hierarchical Bouligand structured materials, 4)
hierarchical fiber-inspired materials, 5) ordered, layered structured materials, 6) disordered, bio-
based structures that can be used in common hierarchical materials, and, finally, 7) engineering

materials [1] (Figs. 1, 2).

Analysis of available strong and elastic materials data in terms of their mechanical strength and
elasticity (ultimate strength vs. ultimate strain), which are vital for practical materials with high
resilience, tailored strain, and non-brittle failure, shows that the known bio-inspired composites
occupy practically the same parametric space as traditional composite inorganic and metal/ceramic
reinforced materials (Fig. 1). The majority of known bioinspired composites with soft components,
such as CNT-silk and PVA-montmorillonite clay (MTM)-fibrillated cellulose composites, are
comparable in the ultimate strength to common engineered ceramics, polymers, and metals (~0.1
- 1 GPa). The strength of existing biological and bioinspired composites can also match advanced
synthetic fiber-based composites, such as when silks, keratins, and aramid nanofibers combined

with inorganic nanoparticles and carbon nanotubes [1].
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The softer components, reconfigurable interfaces, and gradient organization in the composites
facilitate higher deformability than in traditional synthetic composites, including high maximum

strains of 10% and their ability to reconfigure from planar to highly curved or wrinkled for dynamic

morphing.
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Fig. 1. Mechanical properties of various composites in comparison with natural and traditional
materials classes. Ashby plot compares the ultimate strength vs. ultimate strain for various
hierarchical biological materials, nacre-mimetic structural, Bouligand structural, circular
hierarchical, fiber-inspired structural, layered ordered composites, and random bionanocomposite
materials. The hierarchical materials (biological, nacre-mimetic, Bouligand, and cylindrical fibers)
are included in green, light blue, dark blue, and purple, respectively. The ordered layered
composites are in yellow and the random, disordered bio-based structures are included in orange.
These materials are compared against common materials, which are included in light grey in the
background, such as engineering metals (stainless steel, gold, copper, silver, tin, nickel, various
alloys, titanium, Al/Si Carbide, zinc), engineering polymers, elastomers, polymer fibers, carbon
fiber/carbon nanotubes, engineering ceramics and metals, glasses, and multi-component
engineering composites. Fig. 1 reprinted from Ref. [1].

Beyond the elastic regime, yielding and strain hardening can result from local molecular and
nanoscale rearrangements such as disentanglement, strain-induced crystallinity, nanostructures

reorientation/aggregation and chain slippage. Such processes add significant plasticity might
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result in ultimate strains of hundreds of percent. The combination of high ultimate strains with
high strength in some wood-keratin composites sometimes surpasses that reported for synthetic
fibrous composites (Fig. 1).

Second, if the advanced mechanical performance is considered in terms of toughness vs. stiffness
(Young’s modulus) and excluding ultimate strains, biological and bio-derived composites (i.e.,
those utilizing some quantity of natural materials) also can compete with traditional composites
(Fig. 2) [1]. Bio-inspired composites dramatically extend the parametric space towards extremely
compliant materials with uniquely combined high toughness and modulus, comparable to

engineering polymers and ceramics.
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Fig. 2. Mechanical properties of various composites in comparison with natural and traditional
materials classes. Ashby plot compares the toughness vs. Young’s modulus for various
hierarchical biological materials, nacre-mimetic structural, Bouligand structural, circular
hierarchical, fiber-inspired structural, layered ordered composites, and random bionanocomposites
(see Fig. 1 for details). Reprinted from Ref. [1].

Bioinspired composites can perform much better than regular elastomers/gels, showing high
toughness values of up to 10 MJ/m>. Amazingly, some of these bio-inspired materials occupy
valuable, non-traditional parametric space with extreme toughness, up to 100 MJ/m? for silk,

chitosan, and wood-based composites, as well as high elastic moduli up to tens of GPa [1].
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Overall, as a result of continuous, recent and current research efforts hierarchically structured
polymer and biopolymer composites achieve the highest combinations of strength and strain, as
well as toughness and stiffness. The reinforced composites containing biological fibrous
components are among the best-performing materials. Hierarchical microstructures imbue unique
property combinations via multiple and complementary weak interactions and strong interfaces
and interphases. These reinforcing mechanisms might improve the performance of soft composites

making them better than common engineering materials.

2. Tailored flow of materials and energy with polymer and hybrid composites

Traditional membrane materials. Porous materials, such as zeolites, have a limited range of pore
sizes and suffer from nonuniform pore distribution, limiting their applications in energy storage
and advanced separations. Popular synthetic membranes are made of polytetrafluoroethylene
(Teflon), polystyrene, polycarbonate, polysulfones, poly(vinylidene fluoride), reinforced
crosslinked gels, and polyamides [11,12,13,14]. Accordingly, significant efforts have been made
to develop novel materials for more efficient membrane processes. For instance, N-Aryl-linked
spirocyclic polymers were used for membrane separations of complex hydrocarbon mixtures [ 15].
The developed membrane materials are composed of aromatic rings and flexible N-Aryl linkages
for preventing swelling, plasticization, and ultimately maintaining selectivity during operations.
Among other organized materials, polystyrene latexes and block copolymers with ordered

channels have demonstrated prospective high flux membranes [16,17].

The most commonly exploited natural and bioderived materials for separation membranes include
cellulose and other fibrous components due to their good mechanical properties, high porosity,
simple processing, and thermal stability (e.g., common filtration papers). Particularly, interest in
cellulose-type materials for filtration and separation is ascribed to their natural abundance, high
natural porosity, low solubility in water, and solubility in many common organic solvents along

with good chemical resistance [ 18].

2D organized transport-mediating materials. An interesting avenue for molecular transport
control includes the use of two-dimensional (2D) materials like graphene, transition metal

dichalcogenides, and hexagonal boron nitrides [19,20,21,22,23,24,25,26], which is originated
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from their high mechanical stability, electrical conductivity, interlayer spacing control, and rich

surface chemistries [2,27].

Particularly, Ti3CoTx MXenes, the most studied MXene materials, have been found to work well
as molecular sieving membranes due to the large lateral size of their nanosheets and molecular
gaps with surface
functional  groups
(Tx) of either -OH,
=0, -Cl or -F

allowing dispersion

in aqueous media ‘ + &L .
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various dyes [31]. With the addition of graphene oxide, the thin MXene-graphene oxide

membranes were able to reject higher percentages of dyes including 100% for brilliant blue [31].

Another approach showed that MXene membranes could be tuned to have fouling-resistant and
ultrahigh-flux properties by incorporating silver or iron hydroxide nanoparticles (Figs. 3b, c)
[32,33]. Similarly, MXene membranes (Ti3C>Tx) combined with alumina (Al,O3) nanoparticles to
enlarge interlayer spacing and high separation performance [34]. We demonstrated that
membranes from silk-modified MXene can show highly selective filtration performance (Fig. 3a)
[35]. Natural materials such as proteins and polysaccharides have been explored to modify

graphene oxide-based membranes for molecular transport control [36,37].

Ionic and coordinated open-pore materials for ion and energy transport. lonic liquids are pure
molten salts capable of being new potential electrolyte materials [38]. They have gained
considerable attention due to their unique properties—high ionic conductivity, high chemical and
thermal stability, a large electrochemical window, and low vapor pressure—which can be tuned

by choosing different combinations of cations and anions for high-performance electrolytes for
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electrochemical applications in devices such as batteries, capacitors, and solar cells [39].
However, their viscous fluidic nature impedes their ability to sustain a self-supporting, free-
standing shape; instead, they require solid confinement, which compromises their portability and
leads to the issues of leakage [40]. One common strategy for ionic liquid immobilization in
handleable materials without a significant sacrifice in their transport properties is via the formation

of ionogels in which ionic liquids are encapsulated within inorganic or polymeric matrices [41].

Mechanically strong and highly conductive ionogels can be used as mechanically reinforced and
robust network matrices for ion transports [42,43,44]. For example, the ionogels composed of
zwitterionic copolymers displayed high room-temperature ionic conductivities above 1 mS cm’!
and compressive elastic moduli in the range of several MPa [44]. Examples of biopolymers used
for robust ionogels include cellulose [45], gelatin [46], and chitosan [47]. Ionic liquids can be
entrapped into the readily formed network of nanocellulose, resulting in materials with enhanced
mechanical stability and/or ionic liquid loading without the dissolving/regeneration of cellulose

components.

3D organized transport-mediating materials. Recently introduced organized porous materials
from metal-organic frameworks (MOFs) demonstrate enhanced ion as well as chemical
transport/loading capabilities due to their unique open porous and ordered microstructures and
controlled chemistries [48]. Their well-defined porosity metrics allow for selective ion-conduction
through dimensional confinement. Their tunable and controllable surface functionalities also
enable favorable interfacial interactions with different electrolytes. The ion conduction capabilities
of MOFs highly depend upon their porosity, unit organization and alignment, the ionic

surrounding, and electrolyte interactions.

The tunable and precisely defined MOF porosity can also be advantageous for small-
molecules and biomolecules separations through size-sieving depending on the MOF pore sizes
[49]. Some designed MOFs were able to reversibly switch between distinct ordered and disordered
states [ 50]. Biomolecules are promising building blocks for MOFs due to their ability to coordinate
with metal ions and their potential for selective interactions with biomolecules [51]. In contrast to
traditional units, MOFs possessing biomolecules as critical structural elements are defined as “bio-
MOFs” (Fig. 4) [51]. The biomolecules in open frameworks include peptides and proteins as

“structural” components (Fig. 4) [51,52,53,54,55].
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3. Far-from equilibrium and active

rapid development of active and complex 3D architecture metamaterials that can transform their

geometry from 2D to 3D space under different stimuli (Fig. 5) [7,8,59,60,61,62].

These structures can be produced by combining functionally responsive materials and fabricated
reconfigurable kirigami frame structures, allowing far-from-equilibrium states with built-in
mechanical instability of engineered inter-phase connectors for a fast dynamic local response along
pre-programmed pathways in response to various remote different triggers (Fig. 5). Such kirigami
metamaterials will enable not only achievement of ultrafast shape self-transformation but also
answering the grand challenge scientific questions: how localized materials transformations can
be amplified by a meta-stable and confined organization of interconnected elements in multi-phase

kirigami frame for triggering global 3D shape transformations.

The elements of reconfigurable structures can be composed of various functional materials with
tunable phase volumes, which are embedded into engineered boundaries with far-from-
equilibrium state caused by local stress at phase boundaries and incommensurate geometries and

mismatched properties (Fig. 5).
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Fig. 5. Reconfigurable kirigami metamaterials with far from equilibrium transformation embedded
into metastable frames for fast actuation. (a) Natural far-from-equilibrium phenomena such as
spiral galaxies of stars with various shapes, hurricanes generated by the thermal energy of the
ocean that behaves as the dissipative structure with vortex shape, galactical dust, composed of
different matters (gas in ionic, atomic, and molecular forms as well as dust) between star systems,
and air turbulences, generated by pressure and flow vortices in propelled aircraft. (b) Global
swarm dynamics in living creatures such as fish schooling and bird flocking where the local energy
input of individual constituents gives rise to complex organized collective motion; the dynamic of
Venus flytrap's biological structure with rapid leaf closure for the leaves for fly trapping is based
on a snap-buckling instability. (c) Phase diagrams of frustrated material transformations and shock
wave propagation for far-from-equilibrium phenomena: Multiphase materials-structure in non-
equilibrium by combining metastable environment instability will produce a local response with a
shock wave that amplifies, accelerate, and propagate along the built-in phase boundaries for an
ultrafast global response. (d) Microfabricated designs and multiscale modeling of the chaotic
energy propagation along metastable boundaries and the predictive models will give a powerful
approach for controlled chaos with complex global shape transformation and fast morphing from
1D to 2D and to 3D/4D structure. Figs. 5a and 5b images reprinted from (ref. [7] and Space
Telescope Science Institute) for Fig. 5a images and (ref. [7], University of Canterbury Research
Repository, and ref. [61]) for Fig. 5b images with permission from (arXiv and Space Telescope
Science Institute) and (arXiv, University of Canterbury Research Repository, and United States
National Academy of Sciences), respectively.
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Photo-/electro- chemical/magnetic-induced transitions within active elements can result in global
shape changes with fast actuation via induced internal stresses that cause fast transformation of

transient local elements [63].

4. Functional materials for wearable and integrated sensors for human interfaces.

In the materials-oriented research efforts for wearable and integrated sensors, it has been
considered that the design, synthesis, and fabrication of hierarchical biomaterial patches with a
thickness of several microns and patterned conductive circuitry. These adhesive flexible thin
materials patches with embedded flexible electronic circuity can be exploited without the need for
thick elastomeric  supports, sealing templates, and metal electrodes (Fig. 6)
[36,64,65,66,67,68,69]. Our group has demonstrated examples of robust, flexible, and patterned
conductive multilayered hybrid materials composed of graphene oxide monolayers firmly glued
together by silk fibroins (Fig. 6 a, b) [65,66].

These materials show superior mechanical stability with the broad range of elastic modulus within
the 100 MPa — 10 GPa range, high flexibility, and resilience to bending, compatibility with metal
electrodes, high sensitivity to chemical environment, and good conductivity of electrochemically
reduced electrodes (10° Om/cm) (Fig. 6 ¢, d) [66,67]. It has been also shown that wafer-size
material patches can be fabricated by scaling up the assembling process (Fig. 6 e) [67].
Furthermore, conductive grids can be printed with electrochemical contact or ink-jet printing (Fig.
6 f) [68]. Adjustments of elastic modulus for enhanced stretchability with preservation of high
conductivity under severe deformations such as twisting can be conducted with materials
possesing kirigami patterning fabricated via screen-printing (Fig. 6 g, h) [60].

Further modification of the interfacial properties, adherence, and compatibility (biological,
mechanical, electrical, thermal) with supporting surfaces (e.g., skin or skull) can be conducted by
chemical modification of graphene oxide nanosheets and their multilayered morphology by, for
example, using cellulose nanofiber nets to wrap individual nanosheets before assembly (Fig. 6 1)
[36].

Recently, we demonstrated that the integration of adhesive synthetic materials with photonic
material gives rise to switchable photonic bio-adhesive materials that can change adhesive and
shear strength at variable humidity and simultaneously can monitor them through the visible color

change of the adhesive materials (Fig. 6j) [70]. Resulting humidity-responsive and colorimetric
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photonic adhesive material demonstrated its ability to monitor the wound healing process and

contamination of the target surface by liquid via color changing property.
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Fig. 6. Flexible bio-hybrid multilayered films from graphene oxides and silk fibroins. SEM images
of the cross-section of graphene-silk composites (a) and those integrated with the metal electrode
(b); flexibility of metal-graphene-silk grids (c); mechanical performance with an ultimate strength
of 0.35 GPa (d); wafer-size uniform conductive film (e); electrochemically patterned electronic
grid (f); kirigami stretchable films with a self-powered ability (g); resilience of resistivity (<1%
variability) for full film twisting (up to 360°) (h); and AFM image of individual graphene oxide
nanosheet wrapped with cellulose nanofibers for mechanical performance enhancement and
control (i); schematic of self-assembly of the chameleon adhesive material from synthetic
components and cellulose nanocrystals (j); correlated iridescence-adhesion-strength change of
photonic adhesive films at relative humidity from 0% to 97% (from left to right) (k). Figs. 6a, 6b,
6¢, 6d, 6e, 6f, 6g, 6h, 61, 6j, 6k reprinted from refs. [65], [66], [66], [67], [67], [60], [60], [36],
[70], and [70], respectively.

Furthermore, post-chemical surface modification can be used to induce strong adhesion to various
substrates with complex topography of wearable conformal stickers, prints, and even tattoos (e.g.,
high roughness and porosity, presence of hairs) to directly adhere to human clothes, gadgets, and

skin.
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Conclusions.

In conclusion, we suggest that the continuous research focus in the broad field of advanced
polymer and biopolymer composite materials is continuously shifting from traditional structurally
oriented materials with enhanced mechanical performance to complex functional materials and
structures with added, non-traditional properties such as enhanced conductivity, highly tailored
materials with nanoscale control for directional materials and energy transport, resilient photonic
materials with active optical appearance, and flexible/bendable meta-materials with fast multi-

stimuli response and actuating behavior.

On the other hand, bio-derived/enabled “living” intelligent soft materials have gained significant
attention in the past decade and current research focus in this materials class includes biologically-
inspired properties and added functions such as ability to growth and regrown, self-propellant
locomotion ability, self-healing behavior, and the ability for full integration and synchronized
functions into the cellular environment, human body, skin, and brain for self-transforming
structures, hyper-sensitive sensors, sight-off communication, adaptive traps/channels for acoustic
and light waves, or autonomous adaptive human-friendly materials for enhanced survivability,
adaptivity, and sustainability for biomedical applications health monitoring, human performance

enhancement, extreme environments, and defense applications.
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