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Abstract—The Unidata Program Center dedicates two software
engineers to the development and maintenance of a science
gateway meant to serve the members of the Earth Systems
Science community. Unidata collaborated with one such commu-
nity member, Dr. Greg Blumberg of the Department of Earth
Sciences at Millersville University, in order to provide three
undergraduate courses in atmospheric science with access to a
custom JupyterHub cluster on the Jetstream2 Cloud boasting
preconfigured environments, a shared network drive, the capa-
bility to enable machine learning education, and the execution
of the Weather Research and Forecasting (WRF) model. The
implementation of these features through the Kubernetes orches-
tration engine is discussed in detail, including initial failures of
the Unidata Science Gateway team and the resolution of the issues
that arose as a result. The performance of WRF executed at scale
using JupyterHub is discussed at a surface level, with more study
necessary to make further conclusions. Finally, feedback from Dr.
Blumberg, both positive and constructive, is discussed along with
specific use cases for the cyberinfrastructure.

Index Terms—science gateways, cyberinfrastructure, meteorol-
ogy, atmospheric science, education, WRF, Jupyter, JupyterHub,
Kubernetes, Docker

I. INTRODUCTION

The Unidata Program Center (simply, Unidata), a part of the
University Corporation for Atmospheric Research, develops
and maintains a science gateway hosted on the Jetstream?2
Cloud [2] serving the Earth Systems Science community. In
addition to serving data via software technologies such as
TDS, RAMADDA, and EDEX, all fed via the Unidata IDD,
the Unidata Science Gateway [1] (USG) accepts requests from
professionals and educators for custom JupyterHub clusters,
co-located with the aforementioned data, for use in research
and educational settings. The USG team has deployed short
term JupyterHubs for workshops at conferences serving over
100 people and longer term JupyterHubs for semester long
courses.
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As the needs of the Unidata community have evolved, so has
Unidata’s ability to provide new features, such as deploying
shared drives for quick access to large data sets or allowing for
different compute profiles for synchronous and asynchronous
teaching instruction. Many of these features were born from
grass roots efforts along with colleagues at multiple aca-
demic institutions. One such collaboration was with Dr. Greg
Blumberg of Millersville University of Pennsylvania, who
approached the USG team with a request for a JupyterHub
intended for use by over 40 undergraduate students across
three different atmospheric science courses: Stats & Decision
Making in Earth Science (ESCI 446), Atmospheric Radiative
Transfer (ESCI 345), and Boundary Layers and Turbulence
(ESCIT 448).

We offer this case study to demonstrate how a JupyterHub
deployed by a small team can facilitate education even when
complex, computationally intensive software is part of the
curriculum. Furthermore, we highlight the importance of so-
liciting feedback from users, as it can provide valuable insight
into how your science gateway fulfills user needs, and where
it may be lacking.

II. MOTIVIATION & REQUIREMENTS

The conversation between Unidata staff and Dr. Blumberg
was initiated at the American Meteorological Society’s 103"
annual meeting, which took place January 2023 in Denver, CO.
Followup discussions took place via email correspondence and
this line of communication was kept open for the duration of
the spring semester.

A. Standard Requirements

The JupyterHub [3], [4] was to be configured to provide
users with a JupyterLab single-user server that provided them
with 10 GB of persistent storage, 4 GB of memory, and a
guaranteed 1 virtual CPU (vCPU), with a limit of 2 vCPUs.
In addition, a 300 GB drive was shared via the Network
File System (NFS) protocol to provide students with large



meteorological data sets for exercises and assignments. Three
GitHub repositories, one for each course, were desired to be
pulled into each single user server. Finally, a conda envi-
ronment was provided by Dr. Blumberg to the USG team
which included packages and tools common to meteorological
workflows in python, such as siphon, netcdf4, cartopy,
and wrf-python.

B. Weather Research and Forecasting

In addition to the standard requirements, Dr. Blumberg
made a request for the single user JupyterLab servers to be
equipped with one of the idealized scenarios of the Weather
Research and Forecasting model, commonly referred to as
WREF [5]. Generally ran from a terminal shell, WRF consists
of a suite of software executables and tools which can be
used in a wide variety of numerical weather prediction (NWP)
applications from daily operational weather forecasting, to in-
depth research projects such as dissertations, and when guided
by a skilled instructor, education. Dr. Blumberg required
the idealized WRF “single column” model with a modified
“registry” file which sets build time options. These particular
modifications would instruct WRF to output specific fields
relevant to his teaching objectives during runtime. For Dr.
Blumberg’s application, WRF would be ran via JupyterLab’s
built-in terminal shell in the web browser.

The complexity of the WRF system that makes it so
multi-faceted also makes it difficult to compile, especially for
nontechnical users or those inexperienced in building software
from source. In addition, while system administration staff at
one’s institution may have the knowledge necessary to compile
software, they may lack the NWP context in order to provide
all the tools and features needed by the end user. Thus, there
is a high barrier to entry to run the WRF model, especially for
an undergraduate course in meteorology where students aren’t
typically expected to have all the technical know-how—after
all, they are there to learn.

On the other hand, while there are many atmospheric
science professionals who have likely compiled and ran WRF
dozens, if not hundreds of times, doing so in a multi-user,
user friendly environment presents its own challenges, such
as acquiring SSL certificates or setting up user authentication.
Furthermore even finding the time to acquire the compute
resources in the first place, whether it be bare metal or cloud
resources, may pose a challenge to university faculty—after
all, they are there to do science, and to educate.

The Unidata Science Gateway team is uniquely positioned
to offer the type of service that removes many of these afore-
mentioned obstacles. Although the USG team is composed of
only two full time software engineers and our time is often
split between various projects, one of our main priorities is
attending to the needs of our core community members such
as Dr. Blumberg.

III. DEPLOYMENT STRATEGY

The vast majority of the preliminary steps of our JupyterHub
deployments is enabled by the work of Andrea Zonca of

Cloud Configuration
Cloud Provider Jetstream?2 running Openstack
VM Flavor m3.medium
CPUs per node 8
Memory per node 32GB
Storage Volume Size 60GB
Operating System Ubuntu 20.04

# of Main Nodes 1
# of JupyterHub “Core Nodes” 1
# of Worker Nodes 10
Total # of nodes 12

Certificate Provider
Cloud Controller

Letsencrypt via cert-manager
cloud-provider—-openstack
TABLE T
THE PROVISIONING AND CONFIGURAITON OF THE KUBERNETES CLUSTER
TOOK PLACE VIA THE KUBESPRAY PROJECT. CONFIGURATION FOR THE
VM FLAVOR AND NUMBER OF NODES IS DONE VIA CLUSTER.TFVARS
[7], THE TERRAFORM CONFIGURATION FILE. ANSIBLE AUTOMATES THE
PROCESS OF INSTALLING KUBERNETES AND CONFIGURING IT TO
COMMUNICATE WITH JETSTREAM2 THROUGH THE
CLOUD-PROVIDER-OPENSTACK CLOUD CONTROLLER. THIS ALLOWS
K8S TO, FOR EXAMPLE, CREATE AND MOUNT STORAGE VOLUMES.

SDSC, who has modified the Kubespray project [6] for use
on Jetstream2. Through Kubespray, Kubernetes (K8s) [10] and
all associated virtual infrastructure—virtual machines, network
resources, security groups, etc.—are installed and provisioned
via a combination of Ansible and Terraform, respectively. SSL
certificates are provided through cert-manager via Letsencrypt
[8] and a K8s Ingress resource, rather than a load balancer,
handles incoming traffic. The “main” K8s node, which pro-
vides the cluster’s core functionality such as running the
K8s API server, cert-manager pods, ingress controller, and
cloud controller, and the “worker” nodes, which are intended
to contain JupyterHub resources and pods, both run on the
m3.medium VM flavor. This flavor comes equipped with 8
vCPUs, 32GB of memory, and 60 GB of volume storage
intended for use by the operating system, Ubuntu 20.04.

The JupyterHub is deployed on top of this K8s cluster
and is installed via the K8s package manager, helm, and
is configured by a .yaml file [11]. It is here that many
of the requirements described in Section II-A are satisfied.
The Docker image [11] containing the JupyterLab instance
that users will connect to when logging into the JupyterHub
is also referenced in this .yaml file. This Docker image is
based off of the Jupyter Docker Stacks scipy notebook and
the python environment is built using the co-located conda
environment file. In addition, the WRF single column model is
compiled along with the netcdf-c and netcdf-f libraries
which are necessary as dependencies. While not done in this
instance, it is noted that any future Docker images built with
WREF or similar software can and should be done in a multi-
stage manner to reduce the number of layers and build smaller
images. A Persistent Volume Claim was created and mounted
to a dedicated Pod which exported this volume via a Service as
an NFS mount to single user Pods so all users can access the
shared data [9]. Lastly, GitHub OAuth was chosen to provide
authentication as it is a mature and reliable technology. A
summary of the cluster configuration is found in Table L



IV. LESSONS LEARNED

As the request for a JupyterHub came to the USG team’s
attention a short time before the start of the spring semester
at Millersville University, the JupyterHub was deployed in
two stages. First the Standard Requirements from Section II-A
were implemented, with the exception of the NFS mount. Both
the NFS mount and the WRF model, described in Section 1I-B,
were not a priority for the beginning of the semester and were
instead rolled out several weeks later. A small cluster with
a single main node and a single worker node with otherwise
identical configuration was deployed and used for development
purposes. When a new milestone was reached, for example
compiling WREF prior to any changes to the registry file, this
was communicated to Dr. Blumberg so that he could verify
that everything was functioning as desired.

This approach, however was flawed in one crucial aspect:
the model was verified to run on a single user’s JupyterLab
server at a time, and no attempt was made to stress test
the cluster with multiple users running the model at once.
When Dr. Blumberg instructed his class to run the model in
a synchronous classroom setting, the single-user pods in the
cluster all became unreachable via the web browser interface.

When a JupyterHub is deployed in a standard manner as
in Section III, K8s is configured to schedule all JupyterHub
related pods on the aforementioned worker nodes, with no
additional preferences or requirements. This means that the
JupyterLab pods run the risk of being scheduled on the same
node(s) as the JupyterHub “core pods,” a set of pods that
provide essential functionality such as running the JupyterHub
API and proxy servers. When ran by multiple users, the WRF
model used an entire node’s resources, leaving nothing to
the core pods, resulting in the crash. This was systematically
confirmed to be the case by simultaneously running 1, 2,
3, then finally 4 WRF models on the development cluster.
Each subsequent addition of a pod running WREF, using 2
vCPUs, resulted in a slower execution time, and finally a
crash when the 4™ pod ultimately used the last of the node’s
compute resources, preventing the JupyterHub core pods from
performing their essential functions.

To remedy this, a dedicated node was added to the cluster.
This new “core node” was given a K8s “Taint,” which
prevents pods from being scheduled on it unless they have the
corresponding “Toleration,” and a “Label,” which acts as a
“Selector” that must exist on a node for a pods with a “Node
Affinity” for that label to be scheduled on that node. The Taint
was added to the core node using the standard Kubernetes
command: kubectl taint nodes <node-name>
hub. jupyter.org/dedicated=core:NoSchedule.

The JupyterHub configuration was updated so that its core
pods spawn with the appropriate Toleration and Node Affinity.
As the single-user pods do not have these attributes by default,
they will not spawn on the JupyterHub core node. Figure 1
shows the portion of the JupyterHub configuration file that
allows for this behavior.

The new deployment strategy was applied to the devel-

scheduling:
corePods:
tolerations:
- key: hub.jupyter.org/dedicated
operator: Equal
value: core
effect: NoSchedule
— key: hub. jupyter.org_dedicated

operator: Equal
value: core
effect: NoSchedule
nodeAffinity:
matchNodePurpose: require
Fig. 1. JupyterHub configuration that allows for a dedicated “core” node.
Note that the core node must be tainted for this to have the desired effect.
# of Models | Min (s) | Max (s) | Mean (s) | Std Dev (s)
1 0.006 0.190 0.052 0.040
2 0.012 5.704 2.245 1.202
3 0.006 8.648 3.667 1.466
4 0.008 12.460 5.492 1.25
TABLE 1T

BASIC STATISTICS FOR EXECUTION TIME PER MODEL TIME STEP. WHILE
NOT A RIGOROUS STUDY, IT IS CLEAR THAT THE RELATIONSHIP IS
NON-LINEAR, WITH & 1.64 ORDERS OF MAGNITUDE DIFFERENCE

BETWEEN THE EXECUTION TIME PER MODEL TIME STEP BETWEEN 1 AND

2 SIMULTANEOUS MODEL EXECUTION AS OPPOSED TO THE = 0.30 (I.E.
log( 2) ORDERS OF MAGNTITUDE DIFFERENCE THAT WOULD BE

EXPECTED FOR A LINEAR RELATIONSHIP.

opment cluster and the same tests were undertaken. The
separation of the WRF processes from those of the core pods
ensured that the cluster remained operational. An overview of
the final cluster arcitechture is shown in Figure 2

The WREF single column model takes some initial conditions
and integrates the governing equations of our atmosphere
forward in time for a user-determined number of iterations.
As before, the WRF model suffered a performance loss—
using execution time per model time step as the metric—when
multiple single-user servers were executing simultaneously.
Some basic statistics on these measurements, meant as an
exploratory exercise, are shown in Table II. A more robust
study would be necessary to account for outliers, e.g. the
reported integration time is higher when the current model
state is written to disk. However it can be concluded that WRF
does not scale well when ran in the manner described. Further
studies can be carried out to determine whether removing
some of these layers of abstraction and virtualization could
restore some performance. Nevertheless, in an asynchronous
work environment, i.e. homework assignments or take home
projects, this implementation of WRF can still be beneficial
to the educational experience.

V. FEEDBACK & USE CASES

Dr. Blumberg’s JupyterHub request was one of the largest
ever made to the USG team for a semester long course, mea-
sured by both the number of courses/concurrent users and the
range of capabilities requested. Although the persistently open
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Fig. 2. When a user navigates to the JupyterHub in their web browser, their
request makes it to the cluster via the ingress resource on the Main Node.
Kubernetes then routes that request to the JupyterHub’s proxy server found
on the Core Node. If the user is not yet authenticated or makes a JupyterHub
specific request—e.g. attempting to access the admin page—they will be
routed to the JupyterHub pod. Once they have authenticated with GitHub, the
JupyterHub will interface with the user scheduler and Kubernetes to spawn
a single user JupyterLab Pod where the user is then routed to access the
computing resources. User’s access their data in the automatically mounted
cloud storage volumes, which are originally created by Kubernetes’ interface
with Openstack.
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line of communication allowed both parties to relay important
information about progress updates and downtime, little was
known by the USG team about what the cluster was actually
being used for. A post-semester interview with Dr. Blumberg
was organized to give him a chance to present the USG team
with feedback and any information he felt was relevant. The
discussions had in this conversation were invaluable, as they
provided us with insight to the challenges faced by instructors
in a classroom setting and how the USG helped ease that
burden. Constructive feedback was also given and was much
appreciated, as it made us aware of room for improvement.
Furthermore, this experience has encouraged us to seek out
feedback in such a manner in future collaborations as it builds
trust and shows the USG team’s dedication to investment in
our community, two principles outlined as fundamental to
ensuring adoption of science gateways and cyberinfrastructure
[12].

A. Positive Feedback

Much of the positive feedback received concerned some
of the objectives of all science gateways. In particular, the
USG allowed easy and uniform access to cyberinfrastructure
to a large number of concurrent users. Dr. Blumberg explained
how, when he had led python tutorials in the past, much time
and effort was spent simply setting up students’ environments.
Staging a JupyterHub server solves this issue. However, staff at
his institution were unable to successfully configure their own
JupyterHub, specifically user authentication, with the limited
time that was given to them before the start of the spring
semester. The USG made this problem trivial, as students only
had to provide Dr. Blumberg with a GitHub username to be
added to the allow list via the JupyterHub Admin Panel.

The availability of a shared drive reportedly made using
data sets convenient. As the data was co-located with the
compute resources, this not only reduced the data access time,
but ensured that data would be available which may not always
be the case if the data is fetched by a third party data server.
As Dr. Blumberg developed course material in the form of
notebooks or scripts, the nbgitpuller [13] workflow, in
which updates to the remote GitHub repository are pulled into
single-user servers at launch time, made shipping out these
changes to multiple users much easier than would have been
possible without this technology. Finally, the integration of the
WREF single column model into the JupyterHub made running
the model immediately accessible to an entire classroom of
students without effort on the users’ end.

B. Constructive Feedback

There were some areas that were identified as having room
for improvement, with the crashing of the server when running
WREF being an obvious case. However, it was communicated
and mutually understood that this was a new capability that
had not previously been thoroughly tested and that unforeseen
issues could potentially arise. The USG team is grateful to
Dr. Blumberg for his patience during the resolution of these
issues, and the opportunity to develop new skills, features, and
experience in more rigorous testing procedures.

While nbgitpuller made delivering material to students
relatively simple, it was not without its criticisms. First, a
“manual” restart of a single user server was sometimes neces-
sary to pull in the latest course material. This was due to the
implementation of nbgitpuller as part of the single user
pod creation procedure. The JupyterHub was set to cull/destroy
inactive single user pods, implying a recreation of the pod and
the retriggering of nbgitpuller on a user’s next login.
If a user had their server persistently active on a browser
tab/window, this culling would not occur and nbgitpuller
would not activate when they returned to their still active
JupyterLab session. Thus, a “manual” restart of the single user
server was necessary in such cases. The addition of a notebook
that calls nbgitpuller has since been added to the USG
team’s JupyterHub deployment workflow.

Secondly, a low maintenance method of delivering as-
signment answer keys was desired. Currently, the workflow



recommended by the USG team is to push out the answer
key to the same repository as the assignment itself. However,
as this is a public repository, unless one waits until after the
assignment has been graded to push the keys, they would be
visible to students from the start, defeating the purpose of a
graded assignment. This also makes it difficult for instructors
to reuse a repository when reteaching the course. One possible
solution to this would be to push the answer keys to a private
repository which is then manually cloned by the instructor
into a shared drive. This, however, necessitates managing two
separate repositories and leaves some simplicity to be desired.
Further discussion on this issue is needed.

C. Use Cases

Much of the curriculum for the three courses taught by
Dr. Blumberg was guided by the principle of learning by
doing. For example, Atmospheric Radiative Transfer (ESCI
345) assignments, exercises, and notebooks were crafted such
that students would not only learn the mathematical principles
behind radiative transfer, but also be able to visualize their ef-
fects on incoming and outgoing radiation through the tweaking
of parameters in a Jupyter notebook and reproducing plots.

In Stats & Decision Making in Earth Science (ESCI 446),
exploratory data analysis and the application of statistical
methods was facilitated by access to the JupyterHub. One
course learning objective was to introduce students to the
fundamentals of machine learning methods. One exercise had
students use parameters derived from atmospheric soundings
taken in storm environments which were known to have
produced supercell thunderstorms [14], [15]. This data set also
included whether or not the observed supercells were tornadic.
Part of this data set was used to train two models using the
scikit—-learn libraries which predicted whether a tornado
would form. The other part used to evaluate its accuracy. This
lesson provided many students an introduction into simple
machine learning workflows and procedures.

The WRF model was used in the Boundary Layers and
Turbulence (ESCI 448) course for students to gain an intu-
ition for the biases introduced by different parameterizaton
schemes, which are packages used to predict unresolveable
sub-grid scale atmospheric processes such as a cloud droplet
formation or turbulence. One such example is shown plotted
in Figure 3. Separately, students were tasked with performing
real observations of the planetary boundary layer, the portion
of the atmosphere most directly influenced by the earth’s
surface. These observations, which are collected by a kite-
based platform, were provided by NASA’s Science Activation
Team - the AEROKATS and ROVER Education Network
(AREN) [16]. The JupyterHub then was used by the students to
create visualizations of their data to identify how key planetary
boundary layer features could be influenced by surface features
such as the amount of vegetative cover.

VI. SUMMARY

The USG team is continually challenged by community
members such as Dr. Greg Blumberg to improve the capa-
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Fig. 3. Students were tasked with running the WRF Single Column Model,
a simulation in time of the atmosphere for many vertical levels over one
particular location above the Earth’s surface. Demonstrated here is how
the “potential temperature”—roughly described as the temperature of an air
parcel translated “adiabatically” to the surface—uvaries in the vertical column
throughout multiple “diurnal cycles”. In this case, the the WRF model was ran
with the “YSU” boundary layer parameterization scheme. Students executed
the model with a different parameterization scheme by editing a runtime
configuration file called namelist . input to compare results, all else being
equal. Further discussion of this topic is beyond the scope of this paper.

bilities of our science gateway and offer new features. In the
past, such collaborations would not go much further than the
provisioning of the necessary cyberinfrastructure. Although
anecdotal, this experience, in which we uncovered information
that may prove useful to practitioners of multiple diverse
disciplines such as science gateway developers and scientific
educators, has convinced us that such conversations are not
only useful, but often times necessary to push ones craft.
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