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Abstract

Summary: dadi is a popular software package for inferring models of demographic history and natural
selection from population genomic data. But using dadi requires Python scripting and manual paralleliza-
tion of optimization jobs. We developed dadi-cli to simplify dadi usage and also enable straighforward
distributed computing.

Availability and Implementation: dadi-cli is implemented in Python and released under the Apache
License 2.0. The source code is available at https://github.com/xin-huang/dadi-cli. dadi-cli can
be installed via PyPI and conda, and is also available through Cacao on Jetstream2 https://cacao.
jetstream-cloud.org/.

Introduction

In population genomics, model-based inference is important for learning about past population history
and natural selection (Johri et al. 2022). A common approach is to fit models to data summarized by
an allele frequency spectrum (AFS), which is a multi-dimensional array in which each entry counts the
number of mutations observed at a given combination of sample frequencies. Multiple approaches exist for
inference from AFS (Excoffier et al. 2013; Jouganous et al. 2017; Kamm et al. 2020; Excoffier et al. 2021),
and dadi is popular for inferring models of demographic history (Gutenkunst et al. 2009) (population
size changes, divergences, and migration) and distributions of mutation fitness effects (DFEs; Kim et al.
2017). Features particular to dadi include computation on graphics processing units (Gutenkunst 2021),
uncertainty estimation using the Godambe Information Matrix (Coffman et al. 2016), modeling of inbred
(Blischak et al. 2020) and polyploid populations (Blischak et al. 2023), and inference of joint DFEs
between populations (Huang et al. 2021). dadi is implemented as a Python library and driven by a script
file, which provides flexibility for advanced users but is a barrier for new users. Moreover, parameter
optimization within dadi can be computationally expensive and is highly parallelizable, but dadi users
must implement their own parallelization framework. To address both these challenges, we implemented
dadi-cli, a command-line interface for dadi that supports distributed computation.

Approach

Through dadi-cli, users can implement the primary dadi workflows, using several subcommands (Fig. 1A).
Distributed parallel computing in enabled for the most computationally intense subcommands. For any
workflow, a user will typically first use the GenerateFs command to calculate the data AFS from an
input Variant Call Format file (Danecek et al. 2011).

Often the final goal is to infer a model of demographic history, using putatively neutral mutations,
such as those in intergenic regions. Arbitrary scenarios of population divergence, size change, and


xin.huang@univie.ac.at
rgutenk@arizona.edu
https://github.com/xin-huang/dadi-cli
https://cacao.jetstream-cloud.org/
https://cacao.jetstream-cloud.org/
https://doi.org/10.1101/2023.06.15.545182
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.15.545182; this version posted June 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A Putatively Neutral Mutations

GenerateFS ( BestFit E

rel Plot

GenerateCache

Stat

VCF =

Se
/eclce an
Ylationg
B T 5 D data 2 model 16¢
I I I M I I | - :
9]
m 100
C
0
C ’ res(i:gﬂals 0 ’ ?glsJiduals 0

20 19

-10% —102 -10° -10"2 -10"*% ‘
2NAS 0 10
20 =10 0 10

0 CEU 20 -

YRI
o

Figure 1: A) Workflows implemented in dadi-cli. Blue arrows indicate a workflow for inferring a demographic
model from putatively neutral mutations. Red arrows indicate a workflow for inferring a distribution of fitness
effects (DFEs) from selected mutations. Hexagonal nodes indicate subcommands for which parallel processing
is implemented. B) Split-migration demographic history model. C) Ilustrative lognormal distribution of
fitness effects (DFE) of new mutations. D) Model assessment plot. The upper-left panel shows the data allele
frequency spectrum (AFS), and the upper-right shows the demographic history plus DFE model AFS. The
lower-left panel shows the scaled residuals for each entry in the AFS, and the lower-right shows a histogram
of the scaled residuals.
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continuous and pulse migration are supported, through models built into dadi or through user-coded
custom model functions. A key computational parameter for dadi is the number of grid points used to
discretize population allele frequencies. Large sample sizes demand more grid points for accuracy; dadi-cli
provides a default calculation sufficient for most demographic inference. Model parameters are optimized
to maximize the composite likelihood of the AFS using the InferDM subcommand, with the BestFit
command used to consolidate results among several optimization runs. Once the maximum likelihood
parameter set is identified, statistical uncertainties can be estimated using the Stat subcommand, and
a visual comparison between the model and data can be produced by the Plot subcommand.

The DFE of new mutations can be estimated from putatively selected sites, often within coding
sequences. To do so, a demographic model is first estimated, typically from synonymous mutations, that
corrects for effects of both demographic history and linked selection. Because selected mutations are
assumed not to interact, the expected AFS for a given DFE is a weighted sum over spectra for each
possible selection coefficient (Keightley & Eyre-Walker 2007). A cache of those spectra is calculated
given the demographic model using the GenerateCache subcommand. Multiple parametric models for
the DFE are supported, like gamma and lognormal distributions, and users can create custom models.
The InferDFE command is then used to maximize the likelihood of the AFS for selected mutations.
The BestFit, Stat, and Plot commands then perform similar functions to the demographic model case.
Recently, our group has introduced the notion of a joint DFE between populations (Huang et al. 2021),
for which inference is also supported.

Typically, parameter optimization is the most computationally demanding step in dadi inference,
implemented in the InferDM and InferDFE subcommands. Exploring the nonlinear likelihood surface
to identify the true maximum likelihood point is challenging. For dadi-cli, we take a multiple-shooting
approach, beginning with a short global optimization and then using local optimizations started from
many initial parameter sets. In this procedure, convergence is assessed by comparing the likelihoods
and parameter values of the best local optimization runs. (See Excoffier et al. (2013) and Noskova
et al. (2020) for alternative approaches for exploring parameter space.) It is often unclear how many
optimization runs will be necessary to identify the mximimum likelihood parameter values. To aid users,
the --force-convergence option runs optimizations until convergence criteria are met.

The multiple-shooting optimization approach used by dadi enables straightforward parallelization
and distributed computing. When running on a single compute node, dadi-cli uses the built-in Python
multiprocessing module to coordinate parallel optimization across local CPU cores. For challenging
optimizations, dadi-cli enables coordination across multiple compute nodes through the Work Queue
framework within CCTools (Bui et al. 2011). This framework enables communication between a manager
process and workers that may be distributed across nodes, coordinated simply by a project name and
password file. Typically, users would use a Work Queue factory to automatically spawn workers on each
node, while a single dadi-cli process acts as the manager. For users without fixed high performance
computing facilities, we supply Terraform scripts that enable users to easily launch Elastic Compute
Cloud instances from from Amazon Web Services to run dadi-cli and Work Queue. Lastly, for users
unfamiliar with high performance or cloud computing, we have developed a web interface within the
Cacao framework to launch jobs on the public Jetstream2 cloud computing system (Hancock et al.
2021).

Example

As an example, we present and inference of the DFE for nonsynonymous mutations using samples from
two human populations, Yoruba in Ibadan, Nigeria (YRI) and Utah residents (CEPH) with Northern and
Western European ancestry (CEU), from the 1000 Genomes Project data (The 1000 Genomes Project
Consortium 2015). Using BCFtools (Danecek et al. 2021), we first created compressed .vcf files con-
taining only the populations of interest and biallelic single-nucleotide mutations in coding sequences.
Frequency spectra for synonymous and nonsynonymous mutations can then be extracted into *.fs files
using the following commands:

dadi-cli GenerateFs --vcf data/1KG.YRI.CEU.syn.vcf.gz --pop-info data/1KG.YRI.CEU.popfile.txt
--pop-ids YRI CEU --projections 20 20 --polarized --output results/1KG.YRI.CEU.20.syn.fs

dadi-cli GenerateFs --vcf data/1KG.YRI.CEU.non.vcf.gz --pop-info data/1KG.YRI.CEU.popfile.txt
--pop-ids YRI CEU --projections 20 20 --polarized --output results/1KG.YRI.CEU.20.non.fs
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(Note that for speed of execution, here we project our frequency spectra down to 20 chromosomes per
population, which a complete analysis would avoid.) For initial data quality assessment, a plot of the
synonymous AFS can be made using

dadi-cli Plot --fs results/1KG.YRI.CEU.20.syn.fs --output results/1KG.YRI.CEU.20.syn.pdf

yielding Fig. S1.

To infer a DFE, we first fit a demographic model to the synonymous mutation data, which accounts
for both demographic history and some effects of linked selection. We fit a split with migration model
(Fig. 1B) using the following command

dadi-cli InferDM --fs results/1KG.YRI.CEU.20.syn.fs --model split_mig
--1lbounds 1e-3 1e-3 0 0 O --ubounds 100 100 1 10 0.5 --force-convergence 10 --cpus 4
—--output results/1KG.YRI.CEU.20.split_mig

Here the bounds arguments define the range of parameter values that will be explored, and the cpus
argument enables parallel execution of four optimization runs at a time. The four demographic model
parameters are the relative sizes of the two populations compared to the ancestral population (nu; and
v2), the divergence time T', the migration rate m. In addition, by default a parameter is added to account
for misidentification of mutation ancestral states (Baudry & Depaulis 2003). The force-convergence
argument tells dadi-cli to run at least ten optimizations and to continue optimization until the top three
parameter sets found are within a narrow range of likelihoods. Note that if the InferDM subcommand
were run multiple times, the output files would be consecutively numbered, so they could be easily
combined using the BestFit command:

dadi-cli BestFit --input-prefix results/1KG.YRI.CEU.20.split_mig.InferDM

To distribute the optimization runs across nodes using Work Queue, with a project name of dminf
and a password file pwfile, the InferDM command could be changed simply by adding the argument
--work-queue dminf pwfile. Then workers could be spawned by running a factory process on each
node, with each worker using a single core

work_queue_factory -T local -M dminf -P pwfile --cores=1

The Work Queue framework manages network communication between manager and workers (although
crossing firewalls can be a challenge.) Given the optimized parameters, the quality of the fit to the data
can be visualized (Fig. S2):

dadi-cli Plot --fs results/1KG.YRI.CEU.20.syn.fs --model split_mig
--demo-popt results/1KG.YRI.CEU.20.split_mig.InferDM.bestfits
—--output results/1KG.YRI.CEU.20.syn.vs.split_mig.pdf

This plot shows that the model poorly fits low-frequency mutations that are private to the CEU sample.
This is most likely because this model does not include the exponential growth that is known to have
occurred in European populations.

With the demographic model inferred, we now turn to the DFE, assuming that selection coefficients
for all mutations are equal in the two populations. We generate a cache of spectra corresponding to
different values of the selection coefficient.

dadi-cli GenerateCache --model split_mig_sel_single_gamma
--cpus 4 --sample-size 20 20 --grids 280 290 300
--demo-popt results/1KG.YRI.CEU.20.split_mig.InferDM.bestfits
--output results/1KG.YRI.CEU.20.split_mig.sel.single.spectra.bpkl

The caches includes 50 values of the population-scaled selection coefficient between —10~* and —2000.
The number of values can be adjusted with --gamma-pts and the range can be adjusted with —~-gamma-bounds.
Because model calculation at large selection coefficients in challenging, the grids setting is used to en-
able a finer grid for model integration. Next we maximize the likelihood of the nonsynonymous data by
optimize the parameters of a lognormal DFE model (Fig. 1C).

dadi-cli InferDFE --fs results/1KG.YRI.CEU.20.non.fs --cpus 4
--cacheld results/1KG.YRI.CEU.20.split_mig.sel.single.spectra.bpkl
--pdfid lognormal --lbounds -10 0.01 O --ubounds 10 10 0.5
--demo-popt results/1KG.YRI.CEU.20.split_mig.InferDM.bestfits --ratio 2.31
--output results/1KG.YRI.CEU.20.split_mig.dfe.1D_lognormal --force-convergence 10
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Here the model parameters are the mean and standard deviation of the distribution of log selection
coefficients, along with an ancestral state misidentification parameter. An important input is the ratio
of mutation rates for the creation of nonsynonymous versus synonymous mutations. After optimization,
we extract the best fit parameters just as in a demographic history inference

dadi-cli BestFit --input-prefix results/1KG.YRI.CEU.20.split_mig.dfe.1D_lognormal.InferDFE

We can assess the quality of our inference both visually and via formal uncertainty analysis. Visually,
we plot a comparison of model and the data (Fig. 1D)

dadi-cli Plot --fs results/1KG.YRI.CEU.20.non.fs --pdfild lognormal
—--dfe-popt results/1KG.YRI.CEU.20.split_mig.dfe.1D_lognormal.InferDFE.bestfits
--cacheld results/1KG.YRI.CEU.20.split_mig.sel.single.spectra.bpkl
--output results/1KG.YRI.CEU.20.non.1D_lognormal.pdf

We see that the pattern of residuals is very similar to the demographic model fit to the synonymous data
(Fig. S2). This is typical in DFE analysis, and the magnitude of the residuals suggests that altering our
demographic model may be valuable. We estimate confidence intervals using bootstrap resampling over
genomic regions of both our synonymous and nonsynonymous mutations

dadi-cli GenerateFs --vcf data/1KG.YRI.CEU.syn.vcf.gz --pop-info data/1KG.YRI.CEU.popfile.txt
--pop-ids YRI CEU --projections 20 20 --bootstrap 100 --chunk-size 1000000
--output results/boots_syn/1KG.YRI.CEU.20.syn --seed 42

dadi-cli GenerateFs --vcf data/1KG.YRI.CEU.non.vcf.gz --pop-info data/1KG.YRI.CEU.popfile.txt
--pop-ids YRI CEU --projections 20 20 --bootstrap 100 --chunk-size 1000000
--output results/boots_non/1KG.YRI.CEU.20.non --seed 42

Note that we use the random number seed argument to ensure that the same genomic regions are chosen
in each command. With these bootstraps, we can then run a Godambe Information Matrix analysis,
which estimates uncertainties account for linkage between mutations (Coffman et al. 2016)

dadi-cli StatDFE --fs results/1KG.YRI.CEU.20.non.fs
—--dfe-popt results/1KG.YRI.CEU.20.split_mig.dfe.1D_lognormal.InferDFE.bestfits
--cacheld results/1KG.YRI.CEU.20.split_mig.sel.single.spectra.bpkl --pdfid lognormal
--bootstrapping-nonsynonymous-dir results/boots_non
—--bootstrapping-synonymous-dir results/boots_syn
--output results/1KG.YRI.CEU.20.split_mig.dfe.1D_lognormal.ci

We find that the 95% confidence intervals for our estimates of the mean and standard deviations of the
logs of the population-scaled selection coefficients are 1.76 — 2.88 and 4.92 — 5.85, respectively. These
confidence intervals overlap with the analysis in Huang et al. (2021).

As a command-line tool, dadi-cli is straightforward to use within workflow managers. For example, we
provide a SnakeMake (Koster & Rahmann 2012) workflow that fits DFE models to all populations within
the 1000 Genomes Project data. As expected, we find similar parameters for all populations (Fig.S3).

In conclusion, dadi-cli is a powerful and convenient tool for population genomic inference. It greatly
simplifies the usage of dadi, particularly for complex operations such as uncertainty analysis. Moreover,
dadi-cli enables parallel and distributed parameter optimization. As population genomic data become
available for more species, dadi-cli will be a useful tool for the research community to explore population
history and natural selection.
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Figure S2: Comparison between synonymous data and split-with-migration demographic model.
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Figure S3: Lognormal DFE model inferences for 1000 Genomes Populations. Top panel shows the mean
of the distribution of logs of scaled selection coefficients, while the bottom shows the standard deviation.
Whiskers denote 95% confidence intervals. Used abbreviations: AFR, African populations; AMR, American
populations; EAS, East Asia populations; EUR, European populations; SAS, South Asia populations; ACB,
African Caribbean in Barbados; ASW, African Ancestry in Southwest US; ESN, Esan in Nigeria; GWD,
Gambian in Western Division, The Gambia; LWK, Luhya in Webuye, Kenya; MSL, Mende in Sierra Leone;
YRI, Yoruba in Ibadan, Nigeria; CLM, Colombian in Medellin, Colombia; MXL, Mexican Ancestry in Los
Angeles, California; PEL, Peruvian in Lima, Peru; PUR, Puerto Rican in Puerto Rico; CDX, Chinese Dai in
Xishuangbanna, China; CHB, Han Chinese in Beijing, China; CHS, Han Chinese South; JPT, Japanese in
Tokyo, Japan; KHV, Kinh in Ho Chi Minh City, Vietnam; CEU, Utah residents (CEPH) with Northern and
Western European ancestry; FIN, Finnish in Finland; GBR, British in England and Scotland; IBS, Iberian
populations in Spain; TSI, Toscani in Italia; BEB, Bengali in Bangladesh; GIH, Gujarati Indian in Houston,
TX; ITU, Indian Telugu in the UK; PJL, Punjabi in Lahore, Pakistan; STU, Sri Lankan Tamil in the UK.
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