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ABSTRACT
Clostridioides difficile infection (CDI) is a gastro-intestinal (Gl) infection that illustrates how pertur-
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bations in symbiotic host-microbiome interactions render the Gl tract vulnerable to the opportu-
nistic pathogens. CDI also serves as an example of how such perturbations could be reversed via
gut microbiota modulation mechanisms, especially fecal microbiota transplantation (FMT).
However, microbiome-mediated diagnosis of CDI remains understudied. Here, we evaluated the
diagnostic capabilities of the fecal microbiome on the prediction of CDI. We used the metagenomic
sequencing data from ten previous studies, encompassing those acquired from CDI patients treated
by FMT, CDI-negative patients presenting other intestinal health conditions, and healthy volunteers
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taking antibiotics. We designed a hybrid species/function profiling approach that determines the
abundances of microbial species in the community contributing to its functional profile. These
functionally informed taxonomic profiles were then used for classification of the microbial samples.
We used logistic regression (LR) models using these features, which showed high prediction
accuracy (with an average AUC > 0.91), substantiating that the species/function composition of
the gut microbiome has a robust diagnostic prediction of CDI. We further assessed the confounding
impact of antibiotic therapy on CDI prediction and found that it is distinguishable from the CDI
impact. Finally, we devised a log-odds score computed from the output of the LR models to
quantify the likelihood of CDI in a gut microbiome sample and applied it to evaluating the
effectiveness of FMT based on post-FMT microbiome samples. The results showed that the gut
microbiome of patients exhibited a gradual but steady improvement after receiving successful FMT,
indicating the restoration of the normal microbiome functions.

Introduction
intricate and complex interactions marked by host-

Gut microbiome is inextricably linked to human
health and well-being. A normal human gut micro-
biome lives in a symbiotic relationship with the
host and usually exhibits a rich diversity in its
taxonomic profile. The role and the impact of gut
microbiome on human health have been gradually
uncovered in the past decade.'™ Scientific and
experimental evidence substantiates that enteric
microorganisms play a role in maintaining the gut
physiologic homeostasis by offering critical meta-
bolic functions, colonization resistance against
harmful pathogens, protection of the intestinal bar-
rier and modulating immune responses of the
host."  Growing evidence also  suggests
a bidirectional communication between the central
nervous system and the host gut microbiome.® This
gut microbiome-host interplay is facilitated by very

microbe feedback, as well as microbe-microbe
crosstalk. These interactions are driven by various
biochemical reactions which facilitate the response
and adaptation of microorganisms to environmen-
tal changes such as diet, host lifestyle, antibiotic
usage, etc.” It is not a trivial task to understand
the nature of this microbiome-host partnership.
Compositional profiling of the gut microbiome
from healthy humans indicates a high microbial
diversity across individuals, potentially due to the
complex behaviors of the associated-hosts.® The
heterogeneity is even more pronounced in human
subjects with altered gut microbiomes.” The widely
reported host-to-host variance in gut microbiome
taxonomic composition has significant implica-
tions. First, the gut microbiome does not function
as a collection of individual species or strains but
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rather as a dynamic collective ecosystem that pro-
motes, facilitates, and modulates the context-
dependent microbiome functions.'® Second, the
gut microbiome is characterized by a high func-
tional redundancy such that species could become
interchangeable in the life-cycle of a microbiome
without changing the microbiome integrity and
impact.'"'? Regrettably, the ability to determine
every member of the microbial community remains
nearly impossible. Additionally, analytical tests and
quantitative methods to establish the underlying
mechanistic understanding of the relationship
between the functions, the evolution, and the inter-
actions of microbial communities and the host
phenotype (healthy or diseased) or a particular bio-
logical process remain also largely limited.

Large-scale human microbiome initiatives'>'* have
generated massive omic data from patients with var-
ious clinical conditions such as inflammatory bowel
diseases,'” irritable bowel syndrome,'® CDL'™" as
well as healthy controls. These studies and many
others®®** have enabled the study of functional and
compositional changes observed in gut microbiome
of healthy and diseased individuals. Among these
clinical conditions, CDI is relatively well studied and
illustrates how alterations in equipoised host-micro-
biome interactions render the human GI tract vulner-
able to pathogenic attacks.” >

CDI is caused by the infection of C. difficile,
a toxin-producing bacteria and an opportunistic
pathogen residing in the human GI tract.
C. difficile is easily transmissible in healthcare set-
tings, and its spores are metabolically dormant and
resistant to standard disinfectants.”® However, once
ingested, they germinate in response to environ-
mental cues such as certain bile salts and amino
acid germinants, though the process and the factors
regulating its germination pathways are not
mechanistically and decisively elucidated.”’ > The
risk of getting CDI increases with prolonged stay in
healthcare settings (such as hospitals and nursing
homes) and the use of antibiotics.*® In fact, CDI is
particularly severe in the elderly population (aged
65 and older), resulting in a high mortality rate
within the first month of CDI diagnosis.”" Clinical
diagnosis of CDI traditionally involves noninvasive
examinations based on relevant clinical manifesta-
tions including diarrhea, presence of toxins or
detection of toxin-producing C. difficile strains

through stool tests or by nucleic acid amplification
tests (NAAT).** CDI diagnosis could also involve
imaging tests of the colon or invasive diagnostics
such as colonoscopy.

However, due to the complexity of factors asso-
ciated with CDI pathogenesis and the range of its
clinical manifestations,” the currently used tests
may lead to conflicting diagnostic indications.**
Accurate diagnostic approaches that take into
account the gut microbiome impact on C. difficile
colonization are needed and could lead to better
prevention or therapeutic tools and options.>
Numerous studies have revealed pathogenic
mechanisms associated with CDI and indicated
that both the C. difficile toxin mechanism of action
(along with its virulence-associated pathways) and
the non-virulence factors are equally important in
effective characterization of CDI.>***~*

In this paper, we investigated the approach of
applying machine learning to CDI prediction
using fecal microbiome from CDI patients, in an
attempt to identify the microbial features asso-
ciated with CDI that could potentially aid in its
clinical diagnosis. We further studied whether the
impact of antibiotic usage on gut microbiome
could be decoupled and distinguished from the
gut dysbiosis observed after C. difficile active
infection development.

We assembled the microbiome metagenomic
datasets from the cohorts of three groups of
human subjects from ten published studies: CDI+
cases, CDI- controls, and CDI- subjects but taking
antibiotics. We aimed to develop predictive models
for distinguishing these groups. The cohorts of CDI
+ cases and CDI- controls also comprise those
involved in both allogenic and non-allogenic FMT
studies. We devised a hybrid species/function
approach to determining the taxonomic profiles
using the corresponding functional profiles of the
microbiome samples. Using these functionally
informed taxonomic profiles, we deployed logistic
regression (LR) models that showed high predic-
tion accuracy on distinguishing CDI+ cases from
CDI- controls. These results suggest that the func-
tional profile of the gut microbiome is a strong
indicator of CDI. Furthermore, they indicate that
the integration of metagenome sequencing data
and machine learning offers not only an adequately
reliable approach to CDI detection but also



provides insights about factors and determinants of
CDI etiology.

Results

We collected the metagenomic sequencing data
from ten previously published human gut micro-
biome studies (see Table 2 for details), acquired
from 197 human subjects including 88 samples
from 73 CDI+ patients (as cases) and 203 long-
itudinal samples from 94 CDI- individuals as well
as 88 longitudinal samples from 30 healthy indivi-
duals who volunteered to take antibiotics (as con-
trols). In all of these studies, the metagenomic
sequences were generated using Illumina sequen-
cers with reads length of 100bp. We used these data
to test our hypothesis that the fecal microbiome in
particular, the collective microbial functional
dynamics, is predictive of C. difficile infection status
of the host.

C. difficile is not more abundant in the gut
microbiome of the CDI+ cases than those of the
controls

Previous studies have shown that C. difficile alters
the gut microbiome to favor its growth and
proliferation.”>*” We first determined the abun-
dances of C. difficile in the gut microbiome of CDI
+ patients versus CDI- controls from all the 6 CDI
cohort studies. We assembled a total of 87 C. difficile
genomes (see supplementary materials Table S9 for
the list) and then estimated the C. difficile abundance
in a microbiome sample based on the normalized
count of reads that were mapped to these genomes.
As shown in Figure 1, the normalized read count of
C. difficile is 8.713 x 1072 £3.040 x 10~* in the
CDI- cohort, which is significantly greater than
5.797 x 107> £ 5.715 x 10~* in the CDI+ cohorts
(p — value =1.152 x 10 by Mann-Whitney
U-test). This result is somewhat surprising but
could also be a result of antibiotic treatment of the
herein studied CDI+ patients. However, the normal-
ized read count was significantly less in ABX+ group
compared to the CDI+ patients, see Supplementary
Figure S1. Nevertheless, this result indicates that
simply profiling the abundance of C. difficile gen-
omes in gut microbiome may not offer any predic-
tive power for CDI.
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Figure 1. C difficile strains abundance, estimated by the nor-
malized read count of C. difficile genomes in the gut micro-
biome samples from CDI+ and CDI- individuals,
respectively. In the figure, each dot represents the normalized
read count in a specific sample. The normalized read count was
computed by counting all reads mapped to the 87 C. difficile
genomes, and then normalized by the total number of reads in
the microbiome sample. These results encompass samples from
the 6 CDI cohorts analyzed in this study.

Species/function profiling of gut microbiome in
CDI+ vs CDI- samples

Model formalism

Sampling a microbial community for metagenomic
sequencing analysis means collecting a mixture of
DNA from different organisms (bacteria, archaea,
eukaryotic cells, viral species, etc.) at different levels
of abundances and taxonomic diversity. The
uneven abundance problem in microbial samples
exacerbates the risk of sampling high abundant
microbial community members and missing the
least abundant species. In addition, the current
taxonomic profiling methods use some minimum
detection thresholds and thus may further exclude
less abundant or rare microbial members that could
provide vital and critical relevant information,
especially in relation to human health and diseases.

In this study, we investigated the hypothesis that
the functional profile of the gut microbiome from
an individual (host) indicates the clinical status of
the host with regard to CDI. We developed a hybrid
approach to the species/function profiling of meta-
genomic samples from CDI+ cases and CDI- indi-
viduals. The hybrid approach starts with
a conventional functional analysis identifying
genes and biological pathways in metagenomic
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samples using HUMAnN3 software.*' Next, in con-
trast to the conventional reads coverage-based
taxonomic profiling that relies either on the refer-
ence microbial genomes or the de novo assembled
contigs/scaffolds, the presence and relative abun-
dance of a taxon are defined by a linear sum of the
contributions of all the genes in the sample that are
also part of its genomic architecture (see details in
Materials and methods section). This functional
genes-to-genomes approach links functions to tax-
onomy and could capture the rare and less abun-
dant taxa that are functionally important for the
ecological dynamics of the microbial community.**
In the end, the inferred functionally informed taxo-
nomic profiles were used as input features for
machine learning prediction of CDI clinical status
of the respective host. Figure 2 illustrates the work-
flow of the hybrid analysis.

Gut microbiome of CDI+ cases is discernible
from that of CDI- controls including those taking
antibiotics

We performed Linear Discriminant Analysis
(LDA) on the species/function composition profiles
inferred from the metagenomic samples of the
three groups: CDI+ cases, CDI- but taking antibio-
tics (CDI-/ABX+), and CDI- not taking antibiotics
(CDI-/ABX-), using the LDA class implemented in
the python scikit-learn package.*> As shown in
Figure 3, the three groups are separable on the
basis of their respective functionally informed com-
position profiles. Specifically, CDI+ and CDI-
(including CDI-/ABX+ and CDI-/ABX-) groups
are clearly separated along the first linear discrimi-
nant (LD1 explaining 78.41% of the observed
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variance). These results indicate that the clinical
status of CDI (CDI+ or CDI-) can be predicted
from the functionally informed taxonomic profiles
of the host’s fecal microbiome.

Inferred microbial species/function profiles
indicate C. difficile infection of the host

Using the aforementioned approach, a total of 642
microbial species were found to contribute to the
distinguishable functional profiles of the three
groups. We then built a logistic regression (LR)
model to classify the host into these three groups
using the microbial species/function profiles as the
input features. We further used the logistic LASSO
regression** for selecting a small subset of features
(i.e., microbial species), which are likely associated
with CDIL.

We evaluated the model in three different ways.
First, we built the model using the samples from all
studies, then assessed the model accuracy using
a fivefold cross-validation (5-CV) approach, i.e.,
each time 80% of the data were used for training
and the remaining 20% of the data were used for
testing. The model prediction performance and
accuracy were assessed by the area under the
Receiver Operating Characteristic (ROC) curve
(AUC) and the Matthew’s correlation coefficient
(MCC) with a threshold of 0.50. The AUC evaluates
the probability of correctly ranking pairs of nega-
tive and positive classes and provides the model
performance across all thresholds but fails to
account for potential class imbalance.*> We used
MCC as an other evaluation metric that ranges
between — 1 and + 1. MCC evaluates the classifier
behavior where a higher MCC value indicates the
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Figure 2. The computational approach for species/function profiling of microbiome samples and construction of machine
learning models for predicting the C. difficile active infection of the host. This species/function hybrid approach aims at identifying
microbial species/strains contributing to the observed functional profiles. We used the HUMANN3 pipeline that analyzes the next-
generation sequencing (NGS) reads from the metagenomic samples and reports the genes and functional profiles, from which the
species abundances are inferred and then used for subsequent statistical and machine learning analyses.
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Figure 3. Linear Discriminant Analysis (LDA) of three groups
of samples: CDI+ in pink color, CDI-/ABX- cyan colored and
CDI-/ABX+ in gray color, respectively. Using the functionally
informed taxonomic profiles, the three groups are separable and
two linear discriminants explain the observed variation between
the three groups where LD1 explains 78.41% and LD2 explains
21.59% of the observed variance.

model ability to make correct predictions on both
positive and negative classes independent of the
ratio of the classes or class label swapping.*® Thus,
MCC provides a reliable means to evaluate the
model performance where other evaluators (such
as AUC and accuracy) might give overoptimistic
performance results due to class imbalance in the
data, for instance.

Next, we adopted a leave-one-study-out cross-
validation strategy, where the samples in one
study were used as the hold-out testing data,
while the samples from the other studies were
used to build and train the model, and the
model’s prediction performance was assessed
on the hold-out study.

Finally, we computed a log-odds score based on
the probability P(S; = CDI+) reported for
a specific sample S; by the model:

Log-oddsscore = log(

where X; is the derived relative abundances of spe-
cies contributing to the observed functional profile
of the sample §;.

Figure 4 and supplementary Figures S2 and S3
show the predictive results of the logistic regression
classifiers. Using all the 642 species, the LR model
predicted CDI+ with an average AUC of 0.949 in
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5-CV when we considered the two classes of CDI+
(as the positive class) and CDI-/ABX- (as the nega-
tive class). Given that CDI patients in these studies
were treated with antibiotics or had prior antibiotic
exposure, these predictions may be confounded by
the impact of antibiotic treatment. To address this
issue, we built an LR model considering the two
classes of CDI+ (as the positive class), and the
combined CDI-/ABX+ and CDI-/ABX-, denoted
as CDI- (as the negative class). The new predictive
model reached an average AUC of 0.919 in 5-CV,
indicating a strong predictive power (see supple-
mentary Figure S2 and Table S3). Using the leave-
one-study-out cross validation, this model showed
high accuracy (average AUC of 0.912) in predicting
CDI+ vs CDI-. However, the model accuracy is
lower for predicting CDI+ vs ABX+/CDI- samples
in the Palleja et al. study® (accuracy = 80.0%) when
the model was trained using the other samples from
the other studies (see Table S3), perhaps due to the
different antibiotic treatment used in this control
study (a cocktail of three last resort antibiotics)
versus the treatment used in the other study (to be
discussed in detail later under Confounding impact
of antibiotic treatment on CDI section).

We further evaluated the predictive models built
by using the logistic LASSO regression (LASSO-LR),
which selects a small subset of features and thus is
often more robust.*® The LASSO-LR model reached
an average AUC of 0.951 in 5-CV on the classifica-
tion between the two classes of CDI+ vs CDI- and an
average AUC of 0.947 in 5-CV on the classification
between the two classes of CDI+ vs CDI-/ABX-
(Figure S2A and Figure S2B, respectively.) The
accuracies of LASSO-LR models are comparable
with those of the LR models, even though LASSO-
LR selected only 21 (out of 642) species as input
features, which indicates that only a small number
of species in the gut microbial communities are
sufficient to give a good prediction of CDI. Using
these 21 species (see list in the supplementary Table
TS4), we built an LR binary classifier and computed
the log-odds scores of CDI+ patients, CD-/ABX-,
and ABX+ subjects. As shown, in Figure 5, the log-
odds score is mostly negative for CDI+ cases, while it
is mostly positive for CDI- controls including those
taking antibiotics (ABX+ group). The log-odds
scores are even more negative in some of the diar-
rhea patients even though they are CDI- which may
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Figure 4. CDI prediction based on the species/function profiles of the host’s fecal microbiome. The leave-one-study-out
validation results of the LR model (plots a-c) and the LASSO-LR model (plots d-f) and each column panel indicates the classes being
evaluated: LR model for CDI+ vs CDI- in a), CDI+ vs CDI-/ABX- in b) and ABX+ vs ABX- in c). LASSO-LR predictions for CDI+ vs CDI- in d),
CDI+ vs CDI-/ABX- in €) and ABX+ vs ABX- in f). In each plot, the AUC of a model trained on all the other cohorts and tested on the hold-
out study is presented. Both LR and LASSO-LR models have similar performance, but the prediction of CDI is not as robust when dealing
with diarrhea patients as in Duan et al study (lower AUC in all) or antibiotic usage as is the case in e) for the Milani study. FPR: false
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Figure 5. CDI prediction based on a consortium of 21 species
significantly associated with CDI. The species were selected by
the LASSO-LR algorithm (see text for details).

imply that the gut microbiome of CDI+ patients
shares some features with those from patients of
other gut diseases, Figure 5.

The leave-one-study-out cross-validation of
the LASSO-LR models demonstrated high
accuracies in predicting CDI cases and the qual-
ity of the predictions is in strong agreement with

the input classes, as shown in Figure 4a-f and
Table 1. We observed that the LASSO-LR mod-
els classifying CDI+ vs CDI- showed much lower
prediction accuracy (MCC = 0.258) on the sam-
ples from the study of Duan et al.'” in the cross-
sample validation evaluation. We also observed
that the LASSO-LR model for classifying CDI+
vs CDI-/ABX- performed poorly on the samples
from the studies of Duan et al.'” and Milani
et al,* as illustrated in Table 1 and Table S3.
Notably, the Duan et al. study included 5 CDI+
cases, 4 CDI- patients but with diarrhea symp-
toms, and 5 CDI- healthy controls, whereas the
Milani et al. study included 5 CDI+ cases, 5
CDI- patients who had extra-intestinal infectious
diseases and were taking antibiotics, and 5 CDI-
patients who had extra-intestinal noninfectious
diseases but were not taking antibiotics. We
observed that the LASSO-LR models classifying
CDI- vs CDI-/ABX- tended to predict the
patients who had other gastrointestinal condi-
tions and taking antibiotics as CDI cases, while
the LASSO-LR models classifying CDI+ vs CDI-,
which included the antibiotics-treated healthy
controls in the negative class, showed enhanced
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Table 1. The performance of predictive models in the cross-sample validation.

Watson Fricke Milani Duan Kim Smillie
LASSO-LR CDI+ vs CDI-/ABX-
Accuracy 0.931 0.938 0.467 0.643 0.930 0.935
AUC 0.908 0.984 0.780 0.667 0.955 0.969
MCC 0.846 0.882 0.277 0.471 0.855 0.876
LASSO-LR CDI+ vs CDI-
Accuracy 0.914 0.875 1.000 0.643 0.919 0.935
AUC 0.907 0.969 1.000 0.733 0.982 0.982
MCC 0.808 0.750 1.00 0.258 0.809 0.876

Table 2. Details on the data sources and sample size used in this study. CDI stands for C. diff infection, and MS stands for metabolic

syndrome disorder.

Study Accession Clinical status Intervention Donors Controls
pre [samples post [samples per
Condition  Patients type per subject] subject] number samples number samples
Smillie et al. ~ PRJEB23524 CDI 19 FMT 19 [1 pre-FMT] 48 [1 to 4 post-FMT] 4 12
2018
Watson et al.  PRJNA701961 CDI 10 FMT 19 [2 pre-FMT] 51 [4 to 9 post-FMT] 2 39
2021
Podlesny PRJEB39023 DI 8 FMT 8 [1 pre-FMT] 11 [1 to 2 post-FMT] 8 8
et al. 2021
Kim et al. PRJEB35738/ CDI 26 26 26 60 60
2020 PRJEB33013
Milani PRINA297269 CDI 5 5 CDI-ABX+ 5
et al.2016
5 5 CDI-ABX- 5
Duan et al. PRINA591064 CDI 5 5 4 CDnD 4
2020
5 CDnC 5
Lee et al. PRJNA353655 healthy FMT 2 [1 pre-FMT] 4 [2 post-FMT] 2 4
2017
Lietal. 2016  PRJEB12357 MS 5 FMT 5 [1 pre-FMT] 20 [4 post-FMT] 3 5 5 5
healthy self-FMT 5 [1 pre-FMT] 20 [4 post-FMT]
Raymond PRJEB8094 Healthy Antibiotics 18 36 5 15
et al. 2016
Palleja et al. ~ ERP022986 Healthy Antibiotics 12 43
2018

predictive power of discerning CDI- patients
taking antibiotics from the CDI+ cases, but
showed poor predictive power on the patients
with diarrhea symptoms from Duan et al. study
(for details see Table 1 and supplementary mate-
rials Table S3). We also observed that if we hold
out the CDI- diarrhea patients from the training
sample, both the LR and LASSO-LR models
improve slightly their predictive performance
(see supplementary Figures S3, S4). On the
other hand, the model accuracies are much
higher when a broad range of samples from all
studies are used for model construction, Figure
S2. These results demonstrated the advantage of
the meta-analysis performed here that covered
a comprehensive set of negative controls (with
various clinical conditions and/or treatment) for
building an accurate predictive model.

Confounding impact of antibiotic treatment on
CDI

Given that CDI patients are generally treated with
antibiotics, failure to consider the potential impact
of antibiotics on CDI prediction may lead to the
CDI prediction confounded with impact of the
antibiotic treatment on the host gut microbiome.
On the one hand, various studies have shown that
antibiotic usage alters the composition and
decreases the richness and diversity of the host
gut microbiome.*””® On the other hand, pro-
longed usage of antibiotics is a known risk factor
for C. difficile infection.”® However, even though
the mechanism behind the interplay between anti-
biotics and CDI is relatively known,* factors dis-
tinguishing dysbiotic modulations due to
antibiotic usage from CDI gut dysbiosis are not
well understood.
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Here, we attempted to evaluate the confound-
ing impact of antibiotic treatment on CDI by
assessing the predictive power of the LR models
on three tasks: 1) the prediction of CDI inde-
pendent of the antibiotic treatment (Figure 4a,
d), 2) the prediction of antibiotic treatment
regardless of CDI status (Figure 4c,f), and 3)
the classification between CDI+ cases vs antibio-
tic treated individuals (ABX+; Figure S2 D). For
task 2, CDI+ cases and ABX+ cases (taking and
after taking antibiotics) form one class (the
negative class), while CDI- and ABX- form the
positive class. We used data from Palleja et al.,*’
where healthy individuals were given a cocktail
of the three last resort antibiotics (meropenem,
gentamicin, and vancomycin) for 4 days and
followed up to 180 days post-intervention. We
also used data from the Raymond et al. study”’
in which healthy individuals were administered
a second-generation cephalosporin, cefprozil for
7 days and followed for up to 3 months.

We found that the LASSO-LR models can
successfully predict CDI independent of the
antibiotic treatment (task 1, with an average
AUC of 0.951 and an MCC value of 0.810) and
the antibiotic treatment regardless of CDI or not
(task 2, with an average AUC of 0.886 and an
MCC of 0.670), see supplementary figures S2A
and S2C. Furthermore, we observed that despite
the effect of antibiotics, CDI+ cases can be dis-
tinguished from ABX+ cases with high predic-
tive accuracy (average AUC = 0.935;
supplementary Figure S2 D). However, among
the healthy individuals who took the cocktail of
the three last resort antibiotics, half of them on
day 4 of the antibiotic usage and 73% of them
on day 4 post-usage were predicted as CDI+
(i.e., the false positives; see Supplementary mate-
rials, Table S3). On days 42 and 180, the func-
tional and species profiles of their gut
microbiome moved closer to those samples
where the hosts did not use antibiotics and the
samples were predicted as true CDI-. These
results suggest that strong usage of antibiotics
may create a microbiome environment (in
terms of the functional and species composition)
that somewhat resembles that of CDI. This
seems to be consistent with the previous study
that indicated that the risk for CDI is elevated

during the prolonged use of antibiotics or within
a month of its usage.’

Assessing the effectiveness of fecal microbiota
transplantation (FMT)

Fecal microbiota transplantation (FMT) is recog-
nized as an effective therapeutic option for CDI
treatment.”>> We evaluated the extent to which
our model for CDI prediction can be exploited for
assessing the effectiveness of FMT based on the
post-FMT gut microbiome samples from the
patients. We utilized the log-odds score computed
from the output of the CDI prediction model
(Equation 1) to measure the likelihood of an effec-
tive FMT: the low (negative) score on the post-FMT
sample indicates it remains to be likely C. difficile
infected, and thus the FMT is less effective, whereas
a high (positive) score indicates the sample to
become unlikely C. difficile infected, and thus the
FMT is more effective.

We studied the previously published post-FMT
data acquired after four types of FMT: 1) an auto-
logous FMT,>* where the microbiota from a healthy
donor was transplanted to the same subject; 2)
a non-allogenic FMT, where the microbiota from
a single healthy donor was transplanted to two
healthy subjects who have no known underlying
clinical conditions;>* 3) an allogenic FMT, where
the microbiota from three separate healthy donors
were transplanted to five recipients with metabolic
syndrome (MS);>* and 4) an allogenic CDI FMT
where ten and nineteen CDI patients received fecal
microbiota transplantation from two to four
healthy donors,'”>* respectively.

As shown in Figure 6a-c, the LASSO-LR model
gives a reliable prediction (with the positive log-odds
score) for all the CDI- subjects (Types 1, 2 and 3; see
above) using their pre-FMT and post-FMT gut
microbiome samples. Figures 6d and 6e show the
change of the log-odds scores on the pre-FMT and
post-FMT samples from the CDI+ patients receiving
allogenic CDI FMT (Type 4). Figure 6d shows the
subjects from the Smillie et al. study,'” which studied
the post-FMT samples from the CDI+ patients in
a short period of time (the longest up to 135 days),
and Figure 6f showed the subjects from the Watson
et al. study,” which followed the CDI+ patients in
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Figure 6. Evaluation of FMT effectiveness based on CDI prediction over post-FMT host microbiome data. A log-odds score is
computed from the probability output by the LASSO-LR binary classifier, where CDI+ cases are labeled as the class 0 and CDI- controls
are labeled as the class 1. Thus, the negative scores indicate likely CDI+ while the positive scores indicate CDI-. Each connected line
corresponds to one subject receiving FMT. Figures a-c serve as the positive control for evaluating CDI FMT. Figure a) shows log-odds
score for 5 healthy individuals who received their own fecal stool (autologous FMT) and b) indicates scores for 5 MS patients treated by
FMT and c) includes results from 2 healthy individuals who received fecal stool from the same donor. Figures d and e indicate scores of
the Smillie cohort where d) shows 11 patients who showed a gradual increase in their scores post-FMT while e) indicates 2 individuals
that were misclassified (red color), 2 unsuccessful FMT (blue color) and 4 others who showed a decline in their scores post-FMT. Figure
f) shows 10 rCDI patients from the Watson et al. study and indicates that despite fluctuations in their log-odds scores, these rCDI
patients remained consistently in remission (red color indicates 2 misclassified cases).

the long term (up to 336 days) after they received
FMT. We observed that the LASSO-LR model miss-
classified two CDI+ patients in these two cohorts,
respectively, even though the overall prediction
accuracy is satisfactory (i.e., 93.5% and 93.1%,
respectively). Interestingly, for all these CDI+
patients, the log-odds scores on their post-FMT
samples are higher comparing with their pre-FMT
samples in the Watson et al. study and in the Smillie
data except 4 patients. Among these cases, three
FMT cases were reported as failure in the Smillie
study (highlighted in orange and marked with a star
in Figure 6e), among which one has a relatively small
log-odds decrease compared with the other cases,
though this individual is also predicted a false nega-
tive by the LASSO-LR model (highlighted in blue
and marked with a red head Figure 6e). We observed
that two cases who shortly after FMT procedure
showed improvement (increase in their log-odds
score), their log-odds scores have decreased 45 and
75 days post-FMT, respectively, Figure 6e). After all,
the increase of the rate of change of log-odds score
after FMT is gradual shortly after the intervention
(FMT procedure), (see Figure 6d) and consistent
over the long period of follow-up (Figure 6f),

implying the improvement of the clinical condition
is subtle in the short term (Figure 6d) but steady and
significant in the long term (Figure 6f) i.e., fluctua-
tions in log-odds remain above 0 consistent with
CDI- profiles.

Functional profiles of the gut microbiome from
CDI+ patients elucidate pathways indicating
potential C. difficile pathogenesis and
colonization

The analyses of the functional profiles of CDI+, CDI-/
ABX-, and CDI-/ABX+ samples revealed 603 path-
ways with consistent abundance patterns across sam-
ples. Using a p-value threshold of 1 x 107* (2-tail
t-test), we found 271 pathways whose abundances
are significantly different between CDI-/ABX- and
CDI+ (for the full list, see Supplementary table TS5).
Among these pathways, 42 are significantly different
between CDI-/ABX- vs CDI-/ABX+, while 204 are
significantly different between CDI-/ABX+ and CDI
+. We also observed that 14 pathways exhibit
a significant difference across the three categories
(CDI-/ABX- vs CDI-/ABX+ vs CDI+ (by pair-wise
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2-tail t-test)) whereas 29 pathways show no significant
difference between CDI+ and ABX+ groups. Among
the remaining 332 pathways that were not found
significantly different between CDI+ and CDI-/
ABX- by our criteria, 33 pathways were found to
show the significant impact in ABX+ group compared
to the other two groups, CDI-/ABX- and CDI+.

Consistent with previous studies,”””* we
observed an elevated presence of pathways involved
in central carbon metabolism (GLUCOSE1PMETAB-
PWY, PENTOSE-P-PWY, GALACTARDEG-PWY,
P461-PWY, etc.) and in nucleotides and amino acid
metabolism especially the Stickland metabolism (such
as GLCMANNANAUT-PWY and ARGDEG-PWY)
and purines de novo biosynthesis (such as PWY-7220,
PWY-7222) in CDI+ than in CDI- samples (Figure 7
and supplementary Figure S6-7). On the other hand,
we observed that pathways involved in complex sugar
metabolism (such as PWY-6737) are highly abundant
in CDI- compared to CDI+ samples.

Our results shed light on the dynamics in the gut
ecosystem that potentially facilitate CDI pathogenesis.
We observed the increased presence of pathways
involved in fatty acid biosynthesis, especially lipopo-
lysaccharides (LPS) (such as LPSSYN-PWY,
PHOSLIPSYN-PWY, NAGLIPASYN-PWY) in CDI
+ compared to CDI-. Bacterial LPS are complex gly-
colipids located in the outer membrane of all gram-
negative bacteria and are essential for their growth
and viability.”® Proinflammatory LPS are known to
cause or contribute to inflammation-related
diseases.” Both Klebsiella pneumoniae and

Escherichia coli, two of the identified 21 bacteria pre-
dominant in CDI+ harbor the pathways associated
with LPS. In addition, pathways involved in the heme
biosynthesis and the electron transfer cofactors are
significantly increased in CDI+ cases (see Figure S6),
which paints the picture of a molecular ecosystem
showing signs of inflammation and oxidative stress.
Antibiotic impact on gut microbiome could also be
mediated by this lipid-induced inflammation. We
observed a moderate increase in abundance in path-
ways of fatty acid biosynthesis (Figure S6). The oxida-
tive stress and inflammation of the protective layer
may lead to the release of the host heme, which
C. difficile takes in its defense system to protect itself
against antibiotic activities.”” This suggests that
C. difficile colonization may be enabled by other bac-
teria producing an excess of free heme, which is
known to cause the oxidative stress and tissue
injury.®" These findings indicate that the severity
and manifestations of CDI result from interspecies
interactions. In fact, each of the 21 species that were
identified in this study contributes to some or all the
observed significantly differential pathways (Table
S§7). The complete summary of the pathways enriched
in both CDI+ and CDI- samples is provided in the
supplementary Figure S6-7 and Table S5.

Discussion

Our study showed the great potential of fecal micro-
biome samples for CDI detection. Specifically, the
predictive model exploiting the microbial functional
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Figure 7. Pathways significantly different in CDI+ vs CDI- samples. These pathways are selected by a LASSO-LR model to predict
with high accuracy CDI+ vs CDI-. In the figure, using a 2-tail t-test, "ns” indicates a no significant statistical difference between the
means of the two groups, **** indicates a statistical significance with a p-value < 1 x 1074, *** indicates a p-value < 1 x 1073 and

** a p-value <1 x 1072,



profile or the species composition contributing to
the functional profile can accurately detect CDI. We
identified 21 species that have robust prediction of
CDI. Among these selected species, there are species
that are known commensals such as
Faecalibacterium  prausnitzii and Bacteroides
thetaiotaomicron®® and species that are known to co-
colonize with C. difficile such as Klebsiella
pneumoniae,” and species that are reported to pro-
vide some protection against CDI such as Prevotella
copri and Ruminococcus gnavus.64

However, despite high prediction accuracy, the
model classifies some CDI- subjects taking antibio-
tics as CDI+ cases, in particular those taking
a cocktail of the three last resort antibiotics. In
these cases, the antibiotic impact is significant 4
days after cessation: the species/functional profiles
of these gut microbiome samples are similar to those
of the CDI+ cases. These results suggest that the
impact of antibiotics on potential CDI development
could be significant during the usage and shortly
after the treatment, which is consistent with pre-
vious studies.’® In addition, despite the overall high
accuracy, our model misclassifies some CDI-
patients (according to stool tests) who suffered
from diarrhea as CDI+. On the one hand, this may
be due to the lack of sufficient training samples (we
have four such patients in total) for our model to
learn the specific functional profiles of the micro-
biome samples in this group. On the other hand, it is
possible that the model did not learn the representa-
tion of specific disease stages because we have
a relatively small training dataset (369 samples in
total including both positive and negative samples),
while the CDI+ patients were at a different stage and
thus have different gut microbiome conditions. In
fact, previous studies have encountered this chal-
lenge. For instance, Manor et al. in their recent
study evaluated the association of microbiome with
various host phenotypes, and reported that the host-
microbiome associations are predominantly context
dependent and microbial composition-specific.*’
Other meta-analyses investigating how microbiome
relates to the human health also reported that the
microbial functional markers are associated with
a wide range of diseases with only a particular subset
of them associated with specific diseases.*"*> These
studies and many others have mostly used only one-
time samples from participants, and thus lack the
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added value of longitudinal data, which raises the
question of whether a detected host-microbiome
association is a true signature of a disease or the
signal of a shared response or a nonspecific trait
related to the disease.®® To address this issue, here,
we combined both longitudinal and space-
resolved samples and focused on the species that
contribute to the distinctive functional profiles
between the two classes of samples. This approach
may be applied to the study of the association
between human microbiome and other clinical
conditions affecting humans.

Ideally, a comprehensive functional analysis of
microbial communities allows us to understand the
ecological dynamics and to establish the nature of
the host-microbiome relationship. However, such
analysis would mandate the integration of various
meta-omics data from metagenomics, metatran-
scriptomics, metaproteomics, and metabolomics
augmented with other auxiliary metadata.
Unfortunately, this level of analysis is currently in
its infancy and remains expensive, and as a result,
the data are scarce. Nonetheless, the functional ana-
lysis of microbial communities based solely on meta-
genomics data provides a proxy measure of the
potential functional profile of the sampled microbial
community. Intuitively, if any significant alteration
in the functional capacity of a microbial community
potentially results in meaningful biological implica-
tions on the equilibrium and the stability of the
microbiome, such perturbation would lead to the
change of the host phenotype (i.e., the clinical con-
dition). Therefore, the adequate analyses of metage-
nomic data acquired from clinical samples®”~”> may
lead to the discovery of microbiome markers that
give hints on novel diagnostic and therapeutic
approaches, as we demonstrated in our study.

Materials and methods
Data collection and study population

All the data used in this study are publicly available
and were downloaded from the NCBI SRA reposi-
tory databases. We collected the whole metagen-
ome sequencing (WGS) data spanning CDI
patients (CDI+), CDI- individuals not taking anti-
biotics (CDI-/ABX-), and healthy individuals who
volunteered to take antibiotics (CDI-/ABX+). We
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summarized the source and description of the data-
sets in Table 2. We used the clinical data from
Smillie et al.,'” including 19 rCDI patients aged
between 7 and 90 years enrolled in an FMT treat-
ment study involving 3 healthy donors. We also
used data from Duan et al."” encompassing 5 CDI
patients, 4 CDI negative diarrhea patients (CDnD)
and 5 CDI negative controls (CDnC). Furthermore,
we used the data from Milani et al.*’ In this study,
Milani et al. evaluated the composition of gut
microbiome from 5 CDI+ elderly patients, 5 CDI-
patients with extra-intestinal infectious diseases
taking antibiotics, and 5 CDI- patients suffering
from other extra-intestinal noninfectious diseases.
We also used data from Kim et al.'® comprising 26
CDI+ patients and 60 healthy individuals. We also
included the rCDI patients previously studied by
Watson et al.”®> This cohort included 10 rCDI
patients who were treated with antibiotics 4 times
per day for a period of 10 days prior to undergoing
the FMT procedure. Watson et al. aimed at evalu-
ating the drivers of the human gut colonization
post-FMT and presented longitudinal data for the
ten rCDI cases and for two donors sampled up to
a year post-FMT.”> Another FMT dataset we used
comes from Podlesny and Fricke,”* which studied
the dynamics of strain engraftment post-FMT. The
study involved eight rCDI cases who have had at
least three CDI recurrences and received at least
three courses of antibiotics prior to FMT treatment.
These patients received fecal transplant from eight
related CDI- donors. The CDI patients in these
studies were treated with antibiotics or had prior
exposure to antibiotics. To study the potential con-
founding impact of antibiotics on gut microbiome,
we collected data from Palleja et al., which studied
the impact of antibiotics in 12 healthy individuals
who volunteered to take a cocktail of 3 last resort
antibiotics (meropenem, gentamicin, and vanco-
mycin) for 4 days,”” and collected gut microbiome
data up to 180 days after the intervention. Finally,
we collected the data from another intervention
study that used a second-generation cephalosporin,
cefprozil on 18 healthy volunteers for 7 days, and
collected the gut microbiome data up to 90 days.”
Finally, we also studied cohorts from two different
non-CDI EMT studies. Data from Li et al.>
included fecal metagenomes from five metabolic
syndrome patients who received fecal transplant

from three lean healthy donors. This cohort also
included five individuals who received an autolo-
gous FMT [i.e., the same individual receives fecal
transplant from their own stool]. Lastly, we col-
lected data from Lee et al., who studied microbiota
colonization in FMT using two unrelated healthy
individuals who received fecal transplant from the
same donor.”* A detailed description of the studied
cohorts is provided in supplementary Table TS10.

Data preprocessing and preparation

We only considered and used the whole metagen-
ome sequencing paired-end data generated using
[llumina sequencing technology. For each study,
NGS metagenomic reads were downloaded from
the NCBI SRA repository using the SRA Toolkit
fastq-dump command. The quality control check
was done using FastQC software”” and reads were
trimmed when necessary using Trimmomatic-0.39
using the following parameters LEADING:3
TRAILING:3 MINLEN:36 along with the corre-
sponding adapters used for each specific study.”

Estimation of the abundance of non-redundant C.
difficile genomes

We collected the complete genomes of 87 C. difficile
strains (supplementary materials, Table S9) from
the NCBI database. We excluded other genomes
that were partially assembled. Bowtie2 with the
default settings was used for reads mapping,”” and
samtools was used to count the number of mapped
and unmapped short reads to each genome in an
input sample. The number of mapped reads to the
C. difficile genomes was normalized by the total
number of all reads as in Equation 2:

D O
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where ¢ is the normalized reads count, g; is the
number of reads mapped to genome i, N is the
number of genomes, and U; is the number of
unmapped short reads in the sample. This normal-
ized read count was then used to compare CDI+
cases and CDI- controls and those taking
antibiotics.

(2)



Functional and taxonomic profiling

The functional profiling was done using the high
quality reads from each study. We used the soft-
ware HUMAnN3.*' This functional profiler was
selected because of its ability to stratify community
functional profiles according to contributing spe-
cies and it has shown high accuracy in detecting
and quantifying species contributions to commu-
nity functional profiles compared to others.
HUMAnNNS3 profiles genes, pathways, and modules
from metagenomes using native UniRef90 annota-
tions from ChocoPhlAn species pangenomes.”®
HUMAnNNS3 then reports the relative abundance
of each gene and biopathway detected in the com-
munity and provides a stratified contribution from
the species profiled using MetaPhlAn3.*' This
allows us to use this stratification to determine the
relative abundances of the contributing species in
the community by summing up all the normalized
relative abundances (in copies per million (cpm)
units) of the pathways that the respective species
contributes to the community.

Calculation of the relative abundance of the species
in functionally informed taxonomic profiles

The relative abundance of the species derived from
the functionally informed profiles was calculated
and determined as a linear sum of the species con-
tributions to the various pathways detected in the
functional profile of the sample: f(species) =
>_ji—1(pjlpj € P) where P is the set of all pathways
detected in the sample and p; denotes any pathway
that species j contributes to. In a more formal way,
for a species i, its functionally informed relative
abundance is calculated as indicated in Equation 3:

p
=) ap (3)
p

where a;y, is the fraction of reads assigned to species i
and to the pathway p. It is important to note that
functionally informed profiles are reliant on the func-
tional annotations of the microorganisms.
Additionally, there are a few limitations to this
approach. First, the implementation of this method
in this work does not take into account that genes may
be contributing to various molecular pathways which
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could inflate the estimated abundance of the contri-
buting taxon. Secondly, its implementation here is
also based on HUMANN3 which uses a reference-
based approach for functional profiling. Therefore,
the findings will be reliant on the quality and quantity
of the used references.

Comparison to other taxonomic profiling
approaches

We conducted a benchmarking comparison
between our method with Metaphlan3*' and
Kraken2.”” Kraken2 is a profiler that uses pat-
tern-match or exact match of k-mers facilitated
by classification algorithms, while Metaphlan3 is
a homology-based approach that uses specific
gene markers for inferring taxonomic abun-
dances. We compared these approaches on real
data from two cohorts, Smillie et al.'” and Li
et al.>® datasets. We further used the Spearman
correlation metric to compare their estimates.
The results indicated that the functionally
informed taxonomic profiles correlate better
with Metaphlan3 profiles (between 0.70 and
0.80) compared to Kraken2 ( < 0.60), as shown
in Supplementary Figure S8.

Integration of taxonomic and functional profiles
from multiple studies

Samples from different cohorts were joined using
the humann_join_tables command of the
HUMAnNNS3 pipeline. Ultimately, the integrated
data were used as input for downstream machine
learning classification and predictive analyses.

Machine learning analyses
Linear discriminant analysis

To evaluate microbial feature distinction
between CDI patients and CDI- negative con-
trols including those taking antibiotics, data
were divided in three categories, namely, CDI+,
CDI-, and ABX+ groups. To detect potential
batch effect and technical variations due to spe-
cific factors such as sample handling or geogra-
phy, data were categorized based on that specific
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variable  (geography, sample preparation
(cohort), etc.). Then, we use the LDA module
in the sk-learn python package®’ with n_compo-
nents set to 2 to perform the LDA on the inte-
grated data. The variation among the data was
subsequently measured by the sum of the varia-
tions explained by the two linear discriminants.

Regression and classification analyses

In order to learn the relationship between the fecal
metagenome and CDI, we used a binary logistic
regression (LR) model. In this supervised learning
task, we considered N input/output pairs of train-
ing instances, {(x®) y@)}, for i=1,2,...,N,
where x{) € R™ is an m-dimension feature vector
representing the species relative abundances, while
y € {0,1} is a class label, where a sample is
labeled 0 (e.g., if it is CDI+) or 1 (e.g., if it is CDI-
). We used customized python scripts to build an
LR classifier that outputs p(y|x, 0), where 0 repre-
sents parameters of the LR model (i.e., the weights
w and the intercept b). Further, we used logistic
LASSO regression (LASSO-LR) for feature selec-
tion and identification of the species associated
with the host condition (e.g., CDI+ or CDI-). The
samples were grouped into classes depending on
the task of the binary classification, e.g., for the
model to classify CDI+ vs CDI-, the CDI- class
consisted of samples from the CDI-/ABX- and the
CDI-/ABX+ human subjects; for the model to clas-
sify ABX+ vs ABX-, the ABX+ class included sam-
ples from the CDI+ and the CDI-/ABX+ subjects,
the ABX- class consisted of only samples from the
CDI-/ABX- subjects. We used LASSO-LR using the
LogisticRegressionCV module in the sk-learn and
Yellowbrick®  python  packages.*”  Hyper-
parameters tuning and optimization were done
using gridSearchCV with a 5-CV. The solver [ib-
linear with the II penalty was the best optimizer
and was used for the LASSO-LR model with a 5-CV
and the maximum number of iterations set to
10000. This optimizer was then used along with
the selectFromModel module to select the non-
zero coeflicient microbial features (species or path-
ways) for further prediction and classification ana-
lyses. The customized scripts should be accessible at
https://github.com/Enzabe/GiMicro.

Comparison of functional profiles

For the comparison of functional profiles, the relative
abundance of each detected pathway was averaged in
the integrated data based on CDI clinical status. We
used a 2-tail t-test to determine the difference
between functional abundance in diseased vs non-
diseased gut microbiomes using the python scipy.
stats module. We classified the different pathways
into biological processes based on the MetaCyc data-
base of metabolic pathways and enzymes and the
BioCyc collection of Pathway/Genome Databases.®!
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