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Abstract

Predation can both reduce prey abundance directly (through density-dependent effects)
and indirectly through prey trait-mediated effects. Over the years, many studies have
focused on describing the density-area relationship (DAR). However, the mechanisms
responsible for the DAR are not well understood. Loss and fragmentation of habi-
tats, owing to human activities, creates landscape-level spatial heterogeneity wherein
patches of varying size, isolation and quality are separated by a human-modified
“matrix” of varying degrees of hostility and has been a primary driver of species
extinctions and declining biodiversity. How matrix hostility in combination with trait-
mediated effects influence DAR, minimum patch size, and species coexistence remains
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an open question. In this paper, we employ a theoretical spatially explicit predator—
prey population model built upon the reaction-diffusion framework to explore effects
of predator-induced emigration (trait-mediated emigration) and matrix hostility on
DAR, minimum patch size, and species coexistence. Our results show that when trait-
mediated response strength is sufficiently strong, ranges of patch size emerge where a
nonlinear hump-shaped prey DAR is predicted and other ranges where coexistence is
not possible. In a conservation perspective, DAR is crucial not only in deciding whether
we should have one large habitat patch or several-small (SLOSS), but for understand-
ing the minimum patch size that can support a viable population. Our study lends more
credence to the possibility that predators can alter prey DAR through predator-induced
prey dispersal.

Keywords Predator-induced emigration - Trait-mediated emigration - Density—area
relationship - Reaction diffusion model - Ecological release - Dispersal release

Mathematics Subject Classification 92D40 - 35J25
1 Introduction
1.1 Background and motivation

Predators have both direct (density-mediated) and indirect (trait-mediated indirect)
effects on prey populations (Werner and Peacor 2003; Cronin et al. 2004; Holt and
Barfield 2012; Ohgushi et al. 2012). As an example, most predator—prey studies are
concerned with the rate of prey consumption by a predator and those effects on prey
density (a density-mediated effect), as opposed to predator influence on the phenotype
of the surviving prey (a trait-mediated indirect effect; see Werner and Peacor 2003;
Ohgushi et al. 2012; Irwin 2012). In fact, it is now generally accepted that ecological
communities are replete with trait-mediated indirect effects arising from phenotypic
plasticity and these effects are important to community dynamics (Schmitz 2003;
Werner and Peacor 2003; Holt and Barfield 2012). These trait-mediated indirect effects
are also expected to contribute strongly to many phenomena that traditionally have
been solely attributed to density-mediated effects (Werner and Peacor 2003; Holt and
Barfield 2012; Ohgushi et al. 2012).

Trait-mediated behavioral responses to predators can affect the dynamics of a pop-
ulation significantly (see Werner and Peacor 2003; Holt and Barfield 2012; Ohgushi
et al. 2012). One such effect is trait-mediated dispersal, in which the prey changes its
dispersal patterns due to the presence of a predator, which can, in turn, modify popu-
lation dynamics and species interactions (see Cantrell and Cosner 2018, for example).
This idea has been considered in empirical studies in the predator—prey context (though
scarcely), where increased predation risk was shown to increase emigration rates of
prey. For example, Cronin et al. (2004) found evidence of predator-induced emigra-
tion in a spider (predator) and planthopper (prey) system, and even concluded that
at high predator density, the predator had a greater impact on prey density through
induced emigration than consumption (also see Sih et al. 1992; Hakkarainen et al.
2001; Peckarsky 1996).
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The loss and fragmentation of habitats due to anthropogenic activities has been a
growing problem over the past several centuries (e.g., Heilman et al. 2002; Ewers et al.
2013; Uchida and Ushimaru 2014). This fragmentation creates landscape-level spatial
heterogeneity wherein patches of varying size, isolation and quality are separated by
a human-modified “matrix” of varying degrees of hostility. Studies of trait-mediated
predator effects at the landscape scale have focused on quantifying the spatial vari-
ation in predation risk (i.e., the “landscape of fear”, sensu Laundré et al. 2001) and
habitat use by prey (e.g., Matassa and Trussell 2011; Laundré et al. 2014; Sand et al.
2021). However, to our knowledge, trait-mediated indirect effects of predators on prey
populations, and their consequences for density-area relationships (DARs), minimum
patch size, and species coexistence have not been addressed in the context of this
landscape heterogeneity.

Matrix composition or hostility is an important component of a landscape and
can have profound effects on species movement and boundary behavior, persistence
of a single species (e.g., Haynes and Cronin 2003; Fonseka et al. 2020a; Goddard
et al. 2019; Cronin et al. 2019a, b) and coexistence of interacting species (e.g. a host-
parasitoid system in Cronin (2007) and a competitive system in Cantrell et al. (1998)
and Cantrell et al. (2004)). In fact, matrix quality degradation has been shown to
cause a reversal in competitive dominance in a theoretical model of two competitive
species (see Cantrell et al. 1998, 2004; Acharya et al. 2023). How matrix hostility
in combination with trait-mediated effects influence DAR, minimum patch size, and
species coexistence remains an open question.

Over the years, many studies have focused on describing the density-area relation-
ship (Bender et al. 1998; Bowers and Matter 1997; Connor et al. 2000; Hambéck and
Englund 2005). However, the mechanisms responsible for the DAR are not well under-
stood (Jackson et al. 2013). A better understanding of mechanistic causes of DARs
underpins basic ecological theory and is important for development of appropriate
conservation plans and improving species-area distribution predictions (Jackson et al.
2013; Matter 1999). In most metapopulation models, an implicit assumption is made
that density does not vary with patch size, i.e. a neutral DAR (Hanski 1999). However,
non-neutral DAR result in animals clustering in small, intermediate, or large patches,
which in turn changes the relative importance of different size patches. This change
could potentially alter metapopulation predictions of persistence (Matter 1999). From a
conservation perspective, the relationship between reserve size and population density
is central to the single large or several-small (SLOSS) debate (Simberloff and Abele
1982; Matter 1999; Bowers and Matter 1997; Heilman et al. 2002; Lindenmayer et al.
2015; Mccarthy et al. 2005). The density-area relationship is also intrinsically linked
to the species-area relationship (SAR) (see e.g., Matter 2000; Buckley and Rough-
garden 2006). In fact, the literature addressing DAR is relatively small compared to
addressing SAR (Buckley and Roughgarden 2006).

The simplest a priori expectation is that, for habitat specialists, restricted to habitat
fragments or patches, population density should increase with patch area, i.e. a pos-
itive DAR (Debinski and Holt 2000). Several meta-analysis studies have been done
to generalize DAR, but have found inconsistent results across taxa and experiments.
To move beyond correlative analyses and search for underlying mechanisms, a deeper
understanding of DAR is needed (Hambick and Englund 2005). Notwithstanding, sev-
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eral studies provide evidence for nonlinear DARs and link them to ecological release
(i.e., the density-compensation hypothesis; MacArthur 1972). For example, Buckley
and Roughgarden (2006) observed a hump-shaped DAR in Anolis lizards inhabiting
the Grenadines islands—islands with area below a certain threshold showed a positive
DAR, whereas islands with area above this threshold exhibited a negative DAR. They
found that habitat diversity exhibited a positive relationship with insular area and sug-
gested that increasing avian predation or competition with habitat diversity can account
for this nonlinear DAR. Wright (1981) and Wright et al. (1984) found essentially the
same result for Anolis lizards inhabiting the West Indies Islands. Goddard et al. (2023)
modeled DAR via a Lotka-Volterra reaction diffusion model with absorbing bound-
ary conditions in scenarios that qualitatively matched these empirical studies. It was
shown that competitive release as patch size decreased to one of the competitor’s min-
imum patch size generated model predictions of an overall hump-shaped DAR which
is qualitatively similar to those observed in nature.

In this paper, we propose that trait-mediated dispersal via predator-induced emigra-
tion (PIE) (or, simply, trait-mediated emigration) can have profound effects on DAR,
minimum patch size, and species coexistence, ultimately causing an overall hump-
shaped DAR to arise in prey. Moreover, we propose that matrix hostility will also play
an integral role. We employ a theoretical spatially explicit population model built upon
the reaction diffusion framework to test these predictions.

1.2 Model formulation

We propose a model designed to explore effects of trait-mediated emigration similar
to what was observed in the empirical study of Cronin et al. (2004). Suppose that a
predator—prey system inhabits a single focal patch Q¢ = {¢x | x € Q2}. Here, patch
size is represented by £ > 0, 2 = (0, 1) or 2 C R” having unit measure (e.g.ifn = 2
then the area of €2 is one) and smooth boundary with n = 2, 3. The patch is surrounded
by a hostile matrix, denoted by Qy = R"\Qo, with an assumption that organisms
experience exponential decay at fixed rate (say, So > 0). Denote the boundary of ¢
by 929, u(t, x) as the predator’s density, and v(z, x) as the prey’s density for time ¢
and spatial location x within the patch. In order to disentangle direct (consumptive)
from indirect (trait-mediated) effects, we assume that the predator is a generalist with
consumptive effect on this prey being negligible. This approach closely follows that
of empirical studies which have used an analogous approach to partition density- from
trait-mediated effects; for example, Oswald (1998) glued the mouthparts of spiders
together to prevent them from consuming prey while allowing them to affect prey
dispersal. Our main goal here is to show the varied consequences of trait-mediated
emigration on system dynamics. Thus, both species obey logistic growth laws, the
predator exhibits density-independent emigration (DIE), and prey exhibit intraspecific
DIE and trait-mediated emigration via a positive relationship between predator density
and emigration (+DDE). In this way, an increase in the predator density will cause an
increase in prey emigration rate, which in turn will cause higher mortality for prey as
they move back and forth between the patch and hostile matrix.
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An unbiased random walk is assumed inside patch and matrix with a biased random
walk on the patch/matrix interface. Discontinuity between the density in the patch and
matrix is allowed at the interface and continuity in the flux is maintained (see e.g.
Maciel et al. 2013; Ovaskainen and Cornell 2003; Ovaskainen 2004). Both species
recognize the patch/matrix interface and modify their random walk movement prob-
ability (i.e., probability of an organism moving at a given time step in the random
walk process), random walk step length (i.e., distance that an organism moves during
a given time step), and probability of remaining in the patch (say «;). Patch dispersal
is equivalent to organisms reaching the patch/matrix interface, leaving the patch with
probability 1 — «;, and entering the matrix. Note that they still have the opportunity
to re-enter the patch from the matrix at the interface. Following the derivation given
in Cronin et al. (2019a), a model describing this situation is:

u; = DiAu + riu(l —u); t>0,xeQ

v; = DroAv + vl —v); t>0,xeQ

u(0, x) = up(x); x e 0
v(0, x) = vo(x); x € Qo

Diar 3 + St 1 —ailu = 0; t>0,x €9

Daay ()52 + S5 [1 —an(@)]v=0; 1> 0,x € 3Q.

We remark that (1) will exactly model the study system for a one-dimensional patch
in the sense that steady states of (1) and their stability properties will be exactly
the same as those of the study system (see Appendix C of Cronin et al. 2019a and
references therein), while providing a reasonable approximation of the study system for
a simply connected, convex patch in two- or three-dimensions. Here, D; > 0 denotes
patch diffusion rate, 7; > O patch intrinsic growth rate, u#((x), vo(x) initial population
density distributions in the patch, «; the probability of an individual remaining in
the patch upon reaching the boundary (i = 1 for u and i = 2 for v), and carrying
capacities have been normalized to one. The outward normal derivative operator is
denoted by Bi' From the derivation in Cronin et al. (2019a), Sl?" > 0 is the effective
matrix hostility, has units of length by time, and can assume different forms depending
upon the patch/matrix interface assumptions. A given relationship between density and
emigration can now be included in the model by selecting appropriate «;’s (see, for
example, Cantrell and Cosner 2007, 2006; Cronin et al. 2019a, 2020, 2019b; Harman
et al. 2020; Fonseka et al. 2020b; Goddard et al. 2019). Here, we choose | = % and
ar(u) = % where M > 0 is a parameter with units of density. Notice that in
absence of predators, prey emigration rate is 50%.

Non-dimensionalization of both parameters and variables by “scales” or units
allows mathematical representation of analogous biological scenarios using a sim-
plified model with fewer parameters. Although several rescalings are possible, we
follow Cronin et al. (2019a) and choose,

& i =rt. 2)

X =

~1 =
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Fig.1 Plot of predator density (u) versus prey (v) emigration rate for various trait-mediated effect strengths:
B = 0 (black), 8 = 1 (blue), B = 20 (red), B = 100 (green)

Applying this scaling and dropping the tilde, (1) becomes

u,:%Au+u(l—u); t>0,xe
v = %Av—i—rov(l —v); t>0,xeQ
u(0, x) = up(x); xeQ )
v(0, x) = vo(x); x e
g—';)—f—ﬁyluzo; t>0,x €0
S—Z + «/Xyzg(u)v =0; t>0,x €0
with corresponding steady state equations:
—Au =iu(l —u); Q 4
g Shyiu = 0; 9 @
and
—Av = Arv(l —v); Q s
W Vingy =0; 49 )

_ rt? _n _ D _ 1o R I _ 53
Where)n—Dl,ro—rl,Do—Dl,r—Do,yl— == V2 = ==,
1Dy 1D1 Dy

and g(u) = Pu + 1 (here, B = %) are all unitless. We note that S measures trait-
mediated effect strength. In particular, prey emigration rate is constant for § = 0,
increases slowly with respect to predator density and to a maximum well below 100%
for small S-values, and increases to near 100% for even small predator densities for
large B-values. Figure 1 shows predator density (x) versus prey (v) emigration rate
for several B-values. Also, recall that 2 has length, area, or volume of one. For fixed
r1, 2, D1, Dy, the composite parameter A is proportional to patch size squared, yj
represents combined matrix hostility towards # from matrix permeance and hostility,
y> combined matrix hostility towards v.
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'3

Notice that r can be written as r = ?—12 and interpreted as a means to compare
Dy

the two species by their growth-to-diffusion (G-D) ratio, defined as the ratio of patch

intrinsic growth rate to patch diffusion rate. There are three cases for r: (1) if r = 1,

then both G-D ratios are the same, (2) if » > 1 then v’s G-D ratio is greater than u’s,

and (3) if r < 1 then ©’s G-D ratio is greater than v’s.

1.3 Structure of the paper

We will present some preliminary mathematical results in Sect. 2. In Sect. 3, we state
and prove our main results, followed by discussion of their implications. Finally, we
give concluding remarks in Sect. 4.

2 Mathematical preliminaries

In this section, we provide two main mathematical tools which we will employ to
analyze the model (3). The first tool is a theorem providing complete dynamics of
single species model where emigration from the patch is assumed to be a generic
function of patch size via the composite parameter, A, namely:

w,:%Aw—}—f(w); t>0,xeQ
w(0, x) = wo(x); xeQ (6)
W pM)w =0; t>0,x €dQ

with steady state equation
—Aw = Af(w); Q
Jw . (7)
Gy T rM@w = 0; 9Q

where & > 0, wp : 2 — [0, 00) is a smooth function, f is a function that exhibits
logistic-type growth behavior in satisfying
(H1): f : [0, o0) — R is a smooth function with

(a) f(0)=0and f/(0) >0
(b) Thereisa K > 0 such that: f(u) > 0; (0,K), f(K)=0, f(u) <0; (K, o0)
(©) f"(s) <O0fors [0, K]

and pu(A) : 92 — [0, 00) is a smooth function for all A € [0, co). For convenience
of presentation, we assume that K = 1. However, this assumption will not cause a
qualitative change in our analysis. In what follows, we will show that the complete
dynamics of (6) can be determined via study of stability properties of the trivial solution
of (7). This, in turn can be determined via sign of the principal eigenvalue o (%, (£t(1))
of

®)

—Ap =i f'(O0)p =g Q
Gy RO = 0; 99
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with corresponding eigenfunction ¢ which can be chosen such that ¢ > 0; . Notice
that (8) is the linearization of (7) about the trivial solution. We also recall the classical
Robin boundary eigenvalue problem,

—A¢ = ERP; Q

9 Z_ 0 )
T b(x)p =0; 0RQ.
For fixed R > Oand b(x) > 0; 9%, itis well known that (9) has aprlnc:lpal eigenvalue,
which we will denote as E| (R, b), with corresponding eigenfunction ¢ that can be
chosen such that qb > 0; Q (see Cantrell and Cosner 2003, for example). We will
also denote E ED (R) > 0 as the principal eigenvalue of (9) with Dirichlet boundary
condition and recall that for fixed R > 0, we have that 1) E 1(R,0)=0,2) E 1(R, b)
is increasing in b in the sense that if b (x) < by(x); 92 then E1 (R, b)) < E1 (R, by),
and 3) E(R,b) — (EID(R))_ when b(x) = by is constant and by — o00. (see
Cantrell and Cosner 2003). In the special case that b(x) = VAy and y > 0, we will
write E1(R, y) = E 1(R, x/x)/ ). Also, we recall the property

E (1,

)
f
R (10)

Ei(R,y) =

1
as proved in Cronin et al. (2020), denote EP = EP (1) and with EP(R) = D , and
recall part (D) of Lemma 2.7 from Acharya et al. (2023)

Lemma1 Fixy; > 0andy, > O then there exists an unique r*(y1, v2) > 0 such that,

(i) ifr <r*(y1,y2) then E1(1, 1) < E1(r, y2)

(ii) ifr = r*(y1, y2) then E\(1, y1) = E1(r, y2)
(iti) ifr > r*(y1, y2) then Ei(1, y1) > E1(r, y2)

(v) if y1 > yathenr*(y1, y2) <1

(v) if yi = ya thenr*(y1, y2) = 1

(vi) if y1 < y2 thenr*(y1, y2) > 1.

2.

Lemma 1 provides a connection between G-D ratio (r = %) and combined matrix

Dy
hostility (y1 & y») and minimum patch size of the species in the absence of the other.

To see this, we recall our definition of A = ”( giving predator minimum patch size

as 0] =/ w and prey in the absence of predators as (5 = ./ M (see

Cronin et al. 2019a). Here, we consider stability in the Lyapunov sense (e.g., see
Pao 1992) and state a lemma from Goddard II and Shivaji (2017) which provides a
connection between stability of the trivial solution of (7) and sign of the principal
eigenvalue o (A, (X)) of the eigenvalue problem:

{;w —f'(0)p =5¢; Q an

2+ 0P =5¢; 9
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with corresponding eigenfunction ¢ which can be chosen such that ¢ > 0; Q (see
Amann 1976 for existence of such a principal eigenvalue).

Lemma 2 (Goddard I and Shivaji (2017)) Let & (A, (X)) be the principal eigenvalue
of (11). Then the following hold:

(A) If o (A, t(A)) > O then the trivial solution of (7) is stable. Furthermore, if the
trivial solution is isolated from other solutions of (7) then the trivial solution is
asymptotically stable.

(B) If o (A, (X)) < O then the trivial solution of (7) is unstable.

Note that the argument given in Lemma 5 of Appendix 2 in Goddard et al. (2018) goes
through here yielding sgn (o (A, (1))) = sgn (o (A, (X1))). Thus, it suffices to only
consider the sign of o (A, ((1)).

We can now extend the results in Goddard et al. (2018) to the case of (6) and prove:

Theorem 3 Suppose that (H1) holds and p(X) is a smooth nonnegative function. Then
we have the following:

(A) If o (A, u(X)) > 0 then w = 0 is globally asymptotically stable and no positive
solution exists for (7).

(B) If o (A, u(X)) < O then w = 0 is unstable and there exists a unique globally
asymptotically stable positive solution w (A, w(X)) for (7). Moreover, the following
properties of w(A, w(X)) hold:

(i) w, p(A) <1; x€Q

(ii) Let Ay be a solution of El (f'(0), w(X)) = A. Then if o (A, u(A)) — 0~ as
A — )»T, (A — A7), then w(i, u(X)) — 0FonQash — )»T (A — A7)

(iii) If o (A, w (X)) < O for all . > Ay (for some Ay > 0), then w(A, u(A)) — 1~
uniformly on every closed subset of Q2 as A — o0.

(iv) w(k, w(X)) is a decreasing function of i, in the following sense: if ;L1 (X)(x) <
p2(2)(x) then w(k, i (A)(x)) = w(i, ua(2)(x)); x € L.

(v) Let \* > XM** and pn(A*)(x) < u(A*)(x); x € Q. Then w(A™, u(A*))(x) >
wA™*, w(A))(x); x € Q.

A proof of Theorem 3 is provided in Sect.2.1.

Thus, the sign of o (A, u (1)) and Theorem 3 give complete dynamics of (3) by
making appropriate choices of w(x) and f(w), noting that fj(u) = u(l — u) and
f2(v) = rv(l — v) both satisfy (H1) with fl/(O) = 1 and f2/(0) = r, respectively.

In particular, for fixed A > 0, if f(w) = w(l — w) and w1 (A)(x) = Viyiix e
d%2 then the unique positive solution of (4) is given by u(A) = w(i, u1(L)) (see
Goddard et al. 2018 for details). In this case, comparing (8) with (9) and using the
fact that principal eigenvalues are unique, we have the following characterization of
o (&, p1(2)):

oG () = By (1) = 4, (12)

which when o (%, £1(})) = 0 has the unique solution A = E{(1, y1) = El(l, «/Xyl)
(again, see Goddard et al. 2018 for details). Thus, we must also have:

oA, n1(A)) >0 ifand only if A < Eq(1, 1)
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20 Page 10 of 31 J.T.Cronin et al.

o(h, u1(A)) <0 ifand only if A > E(1, y1). (13)

If for fixed A > 0 we have u(A) = 0, f(w) = rw(l — w), and u(A)(x) =
ur(A)(x) = ﬁyg; x € 0L2 (using the fact that g(0) = 1) then the unique positive
solution of (5) is v(A) = w(X, ua(A)). Again, comparing (8) with (9) and using the
fact that principal eigenvalues are unique, we have the following characterization of
o (&, u2a(2)):

o pa() = rEy (r, ﬁyz) —r, (14)

which when o (A, u2(A)) = 0 has the unique solution A = E(r, y») = El (r, \/Xyz).
Thus, we must also have:

o (A, u2(X)) =0 ifand only if A < Eq(r, y2)
o (A, u2(X)) <0 ifand only if A > Eq(r, y2). (15)

In the case when A > E{(1,y;) implying that u(}) exists, v(A) is found in a
similar manner, i.e., using this u(A) with f(w) = rw(l — w) and u3z(A)(x) =
\/Xyz(ﬂu()»)(x) + 1) we have that the unique positive solution of (5) is v(A) =
w(X, u3(A)). A characterization of o (A, n3(A)) is much more delicate, and we will
postpone that discussion until Sect. 3.

Also, let g ()) be the principal eigenvalue of

—A¢o — Ardo = oogo; 2
{ ¢o=0; 0Q (16)
with corresponding eigenfunction ¢g > 0; Q with ||¢g]| = 1. We now state a Lemma

that gives comparisons between o (A, u2(1)), o (A, u3(1)), and og(A). Its proof is
given in Sect. 2.2.

Lemma4 For fixed yi,y2,r > 0 and B > 0 we have that o (A, ur(X)) <
o(h, n3(d) < oo(d) forall » > Ei(1, y1).

Secondly, we recall a method to study the structure of positive steady states of (3) in
the special case of 2 = (0, 1) and w(1)(0) = w(A)(1). This method given in Theorem
5 is referred to as a time map analysis (or quadrature method) and is proved in Cronin
et al. (2019b). Note that in this case, Lemma 5.1 in Cronin et al. (2019b) ensures
symmetry of w(X, u(A)) about x = % implying that w(A, w(2)(0) = w(i, w(A)(1).

Theorem 5 (Cronin et al. (2019b)) A positive solution, w(A, (X)), of (7) with p =
lwi, L)oo, ¢ = wk, w(A)(0) = wk, w(A))(1) exists if and only if A > 0,
p € (0, 1), and q € [0, p) satisfy:

A= 2(/,3 L)z (17)
g VF(p)— F(s)

2MF (p) — F()] = [k(W)(0)]* ¢* (18)

and
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where F(s) = [ f(t)dt.

Remark 1 For p € (0, 1), since f(p) > 0, it can be shown that the improper integral
in (17) is convergent.

We employ the following procedure to produce bifurcation diagrams of positive
solutions for (4)—(5) via Theorem 5. Fixing r, y1, 2> > 0, and B8 > 0, we let p; =
#; i =1,..,nforsomen > 1. Setting p = p;, we solve equation (18) for ¢ using
the FindRoot command in Mathematica (Wolfram Inc., ver. 13.1). The values of
q and p are then substituted into (17) to find the corresponding value of A. We then
employ a shooting method via NDSolve to numerically approximate the solution,
u or v. To calculate average density, we then employ NIntegrate to approximate
d = fol w(, nw(A))(x)dx (recall that ||2|| = 1) where w = u or w = v. Repeating
this procedure for p = p;,i = 2, ..., n, we obtain (X, d) points generating a bifurcation
diagram of A vs. d (average density) for positive solutions of (4)—(5).

2.1 Proof of Theorem 3

Suppose that (H1) holds and (1) is a smooth nonnegative function.
(A) Further assume that o (A, (1)) > 0. By Lemma 2, the trivial solution of (7)
is stable. We will now show that there is no positive solution of (7) in this case.
To the contrary, assume that w(X, (X)) is a positive solution of (7). Note that
w(h, w(A)(x) < 1; x € Q. Using Green’s Second Identity we have:

/—Aw¢+A¢wdx:/ ——¢+—nwds. (19)
Q

But, the right-hand-side of (19) is clearly equal to zero and thus:

0= / —Awg + Apwdx = f AF ) — 0 (. 1) w — A f (O)gw
Q Q
= /Q [Af ) = 3f O)w — o (. 1)) w] px

= fQ [A[fw) = FOw] — o (. n(0) w] pdux.
(20)
Now, define H(s) := f(s) — f'(0)s. By (HI), it is easy to see that H(0) = f(0) =0
and H'(s) = f'(s) — f'(0) < O fors > 0 since f”(s) < 0; [0, 1]. Thus, H(s) <
0; (0, 1]. This fact combined with w > 0; Qando (A, n(A)) > 0 give a contradiction.

Hence, (7) has no positive solution. Since ¢ = 0 is a solution of (7) it is also a
subsolution. Next, let Z = N for N > 1 giving that:

—AZ —Af(Z) > 0; Q

3z
T LX) Z > 0; 9 1)
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since f(Z) < Ofor Z > 1 and u(X)(x) > 0;x € 9K. This implies that Z is a
strict supersolution of (7). The lack of a positive solution combined with a global
supersolution Z = N for all N > 1 ensures that the trivial solution is globally
asymptotically stable (see, e.g., Pao 1992).

(B) In this case, assume that o (%, (1)) < 0. By Lemma 2, the trivial solution of (7)
is unstable. We will first show existence of a positive solution to (7) using the method
of sub-supersolutions (see, e.g., Pao 1992). Note that since f is smooth, Taylor’s
Theorem ensures that given a y > 0 there is a constant Cy, € (0, y) such that:

14 Cv
FO+y) = fO) + Oy + %yz, (22)
and using the fact that f(0) = 0 we have
4 C
#yz = () — f(O)y. (23)

We note that from (HI1), there exists m*, M* > 0 such that —m* < f"(u) <
—M*; [0, 1]. Now, let ¥ = m¢, where ¢ is the eigenfunction normalized such that
l¢lloc = 1 which corresponds to o (A, (X)) and m > 0 is to be chosen later, and
consider:

[=—Ay —Af () =mo (b, u() ¢ +mhf'(0)¢ — Lf (mp)
=mo (k, (1)) — L[ f (m¢) — f'(0)mg]

1 Cm
=mo (b, t(R)) ¢ — A [M <m¢)2}

af Cp
= m¢ [o (o (1) — %‘”m«p} Q Q4

and
9 d
% + )XY = m? mu () (x)¢
n an
= —mpuA)(x)$ + mu(r)(x)p
=0; 9. 25

—20 (A, 1n(M)

v then we have that:

Hence, if we choose m| :=

A
o (. p(h) = —%m* (26)
or equivalently,
A
o (b, p() < Tmf” (Cmg) ¢ @7)
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implying that I < 0 and ¥ = m¢ is a strict subsolution of (7) for all m < m (recall

that [|¢ ||, = 1). We choose m; := ;fﬁg% giving that:
Amy o
ok, p) = T(—M )mﬁm {#} (28)

or equivalently, N
my
0 (O () 2 == f" (Cnag) 29)

implying that / > 0, ¥ = mo¢ is a supersolution of (7), and ¥ = m¢ is a strict
supersolution of (7) for any m > m». Also, by a previous argument, Z = N for any
N > lisastrict supersolution of (7). Itis easy to see that yy < Z; Q by takingm ~ 0,
thus the method of sub-supersolutions (see, e.g., Pao 1992) guarantees existence of a
solution to (7), w(A, w(i)).

Next, we will show that (7) has at most one positive solution. Assume to the contrary
that w; and w; are both positive solutions of (7). Since Z = N, (N > 1) is a global
supersolution, we can assume that w; < wy < I;x € Q. By Green’s Second Identity,
we have that:

811)1 311)2
—Awiwy + Awrwidx = ——wy + —wds. (30)
Q e On an

But, we also have that:

8w1 awg
———wy + —wids = Q) wiwz — uw) (x)wiwads
a0 n a0
=0, 3D

giving:

0=/ —Aw1w2+Aw2w1dX=/ [Af(w)wz — Af(w2)wy]
Q Q

=/Aw1w2[f(wl) B f(wz)]dx
Q

w1 w2
<0 (32)

since (H1) implies that @ is a decreasing function for s € [0, 1] and wy, wy, A
are positive. This contradiction implies that w; = w, and (7) has a unique solution
whenever o (A, u(})) < 0.

(1) A straightforward application of the maximum principal and the fact that f(s) < 0
for s > 1 implies that w(A, (1)) (x) < I;x € Q.

(ii) Without loss of generality, assume that o (A, u(A)) — 0~ as A — AT. Since
oA, ur) < 0 for A &~ A; and A > Aj, the argument above guarantees exis-
tence of a unique positive solution of (7), w(X, (X)), which satisfies w(A, u(r)) <

ﬁ‘;%%ﬁ Q. But, whenever o (A, (1)) = 0, comparing (8) and (9), along
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20 Page 14 of 31 J.T.Cronin etal.

with uniqueness of the principal eigenvalue, will ensure that A; > 0 is a solution
of E1(f'(0), w(A)) = A (see Cronin et al. 2020) and ¢ = ¢ > 0; Q. Thus, as
o (&, (X)) — 07 we must have ming {¢} — 0. This and the fact that M* > 0
implies that as A — AT, we have w(i, ur)) < ;i‘;%%¢ — 0t; Q.

(iii) Assume that o (A, u(X)) < 0 for all A > X,, for some A, > 0. The above
argument guarantees existence of a unique positive solution of (7) for all . > A;. For
A > EP, itis well known that

—Aw =Arf(w); Q (33)
w=0; a2

has a unique positive solution, w, such that & — 1~ uniformly on all closed subsets
of Qas A — oo and %—’:7’ < 0; 9% (e.g., see Cantrell and Cosner 2003). But since w
satisfies the differential equation in (7) and

~ ~

ow - Jw
=B =
on an

<0; 39, (34)

we also have that for A > E ID , W is a strict subsolution of (7) and w(A, u(A)) €
[@,1]; x € Q. Thus, as A — oo we have that w(A, w(A)) — 17 uniformly on all
closed subsets of 2.

(iv)Fixx € Q,let 1 (A)(x) < pa(X)(x); 9€2, and denote w; (1) as the unique positive
solution of (7) with w(X) = u; (1), withi = 1, 2. Now we substitute w1 into (7) with
n(r) = pua(i) giving:

— Awp —Awy f(wy) =0; Q (35)

and

0
E MWy = —u G wr + () @) wy

an
= wi [H2 (W) (x) — pn1 (1) (x)]
> 0; 9.

Thus, w; is a supersolution of (7) with w(A) = ua(X) and Z = N,for N > lis a
strict supersolution of (7). Uniqueness of the positive solution of (7) guarantees that
w1 (A)(x) = wa(r)(x); x € Q, giving that w(X, (X)) is a decreasing function of .
(v) Let A* > A™ > 0 such that o (A*, u(A*)), o (A™, w(A*)) < 0 with w(A*)(x) <
w(A**)(x); Q. Denote w, wy as the unique positive solutions of (7) for A*, A**,
respectively. Then, w; satisfies:

— Awy = 2" f(wr) = —Awy — A" f(w)) =0; Q (36)
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and

9 0
Gy U 2 T 0w = 0; 0. 37)

Thus, w is a supersolution of (7) with A = A**. A standard comparison principle and
uniqueness of positive solutions for (7) give that wi > wy; €2, as desired. O

2.2 Proof of Lemma 4

Letyy, 2,7 > 0and 8 > O be fixed. For all . > E(1, y1), we have that ;1 (A)(x) =
Vs < Vays (Bu(h, x) + 1) = uz(A)(x); x € 9. Since o (A, (1)) is increasing
in u (see, e.g., Cantrell and Cosner 2003), we have that o (A, uz2(2)) < o (X, u3(1))
forall A > Ei(1, y1).

Now, fix u(1)(x) > 0; 92 and note that by Green’s Second Identity we have

0 0
/ — Adod + Apodx = / _9% —¢¢od (38)
Q i 09

But, it is easy to see that

fQ —Ago¢p + Apgodx = /Q (00(2) + Ar) o — (0 (&, ju(1)) + Ar) podx

= fQ (oo(A) — o (&, u(A))) peodx (39
and
oo 09 / d¢o
_o%¥0 99 ——od 0 40
/39 ¢ + d) i  On dds = @0

since 3‘% < 0; 9, ¢9 =0; 922, and ¢, P9 > 0; Q2. Combining (38)—(40) yields,

fQ (00(1) — & (k. (V)) dx > 0 @1)

implying that o (A, (X)) < op(X) for all non-negative functions p(A). O

3 Results

In this section, we provide dynamics of the model (3) over patch size for three
cases: (1) E1(1,y1) < Ei(r,y2) (i.e., predator has smaller minimum patch size),
(2) E1(1,y1) > E((r,y2) (i.e., prey has smaller minimum patch size), and (3)
Ei1(1,y1) = Eq(r, y2) (i.e., predator and prey have equal minimum patch size). We
also provide a pictorial description of these results and present numerically generated
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density vs. average patch density plots (i.e., DAR plots) following the procedure out-
lined in Goddard et al. (2023). This DAR procedure assumes that population densities
are near their equilibrium and employs bifurcation curves of positive steady states of
the model (3) for 2 = (0, 1) for each case. In Sect. 3.1 we provide corresponding bio-
logical implications with proofs of our main results presented in Sect. 3.2. Throughout
this section, we will denote u™ = w(A, ;1 (A)) as the unique positive solution of (4)
in the absence of v and v* = w(A, w2 (X)) as the unique positive solution of (5) in the
absence of u. We first state a theorem that describes when u* and v* exist.

Theorem 6 Fix y1, y» > 0 and r > 0. Then the following hold.

(1) If» < E|(1, y1) thenu™* = 0 is the only nonnegative solution of (4) and is globally
asymptotically stable. Moreover, if A > E1(1, y1) then the trivial solution is unsta-
ble, u* = w(i, u1())) is the globally asymptotically stable positive solution of
(4), and if v is established in the patch and near its equilibrium, v* = w(A, uz (1)),
then (0, v*) is unstable.

(2) If » < E(r, y2) then v* = 0 is the only nonnegative solution of (5) and is
globally asymptotically stable. In the absence of u, the trivial solution is unstable
and v* = w(k, ua(X)) is the globally asymptotically stable positive solution of
S) forall » > E(r, y2).

The proof of Theorem 6 follows immediately from Theorem 3 and (12)—(15).

Case 1: E1(1, y1) < E(r, y2) (Predator has smaller minimum patch size):

Fix y1, y2 > 0. Then for r < r* we must have E (1, y;) < E|(r, ) (see Lemma 1)
and the following result holds.

Theorem7 Fix y1,y» > 0. Then for r < r* and B > 0 there exists a ,| €
D D
(E](r, Y2), ETI) and Ly € |:X1, E7‘> such that:

(1) For . € [El(r, 12), M), (8) has no positive solution, i.e., (u*,0) is globally
asymptotically stable.

(2) For A € (A2, 00), (4)—(5) has a unique globally asymptotically stable solution,
(u, v) and (u™, 0) and (0, v*) are unstable.

Fig.2 gives a pictorial representation of Theorem 7 and Fig.3 illustrates DAR via
bifurcation curves of positive solutions of (4) - (5) as patch size varies for different
B-values.

Since consumptive effects are not included in our model, Theorem 7(1) reveals that
predator exclusion of prey for A € [E 1(r, ¥2), A1) is due solely to trait-mediated
emigration. We define this phenomenon as trait-mediated exclusion and note that is
analogous to competitive exclusion in competitive systems. Although our numerical
results for the case when 2 = (0, 1) show that A; = A;, in a general domain we cannot
rule out A1 < A, with multiple regions of coexistence and trait-mediated exclusion
for . € (A1, A2). The exact dynamics of the model in this range of A-values is most
likely dependent upon the geometry of €2.

Case 2: E1(1, y1) > E1(r, y2) (Prey has smaller minimum patch size):

Fix y1, 2 > 0. Then for r > r* we must have E(1, y1) > E{(r, y») (again, see
Lemma 1) and there exist critical trait-mediated effect strength thresholds 0 < 81 < B
such that the following results hold.

@ Springer



Predator-induced prey dispersal can cause hump-shaped... Page 17 of 31 20

(A) (B) © D) (E)

v cannot

Unconditional invade: vyi}h Trait-mediated Dynamics can vary, Coexistence

. small initial | exclusion of v depend on Q
density
*,0) is (u*,0) is stable, (0,v*) is unstable. (", 0), (0,v") are unstable.
stable. (0,v*) is unstable.
Neither u nor v

can invade Q u invades/persists
with small initial !
density . ; Y
(0,0) is stable. v invades/persists on its own
- A
E:(1,v1) E (1, 72) A A2 g

A~ Patch Size Squared

Fig.2 Pictorial description of Theorem 7

0.6

0.2
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j=1
~
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0 ! Ps 10 15 20
Ex(Lyy)  Ei(ry2) B

A~ Patch Size Squared

Fig.3 Density-area relationship predicted by the model (3) for various trait-mediated effect strengths, i.e.,
B-values. The blue curve represents both («, 0) and the #-component of the coexistence state, red represents
(0, v), and purple represents the v-component of the coexistence state. Solid purple is 8 = 0.1, dashed is
B =0.5,dotted is B = 1, and dot-dashed is B = 5. Here, r = 1, y; = 0.5, and y» = 1.5

Theorem 8 Fixyy,y» > 0. Thenforr > r*, B < fo,and A € (E((1, y1), 00), (4)—(5)
has a unique globally asymptotically stable solution, (u, v), and (u*, 0) and (0, v*)
are unstable.

Fig.4 gives a pictorial representation of Theorem 8 and Fig.5 illustrates DAR via a
bifurcation curve of positive solutions of (4) - (5) as patch size varies for a fixed 8 ~ 0.

Theorem 9 Fix y1,y> > 0. Then for r > r* and B € (B1, B2) there exists a A €
D
<E1(1, Y1s ETI) such that:

(1) Forx € (E((1, y1), 00), (4)—(5) has a unique globally asymptotically stable solu-
tion, (u, v) and (u*, 0) and (0, v*) are unstable.

(2) For . € (E((r,y2), A1), v's DAR is at least hump-shaped, i.e., DAR is overall
increasing on (E1(r, v2), E1(1, y1)) and overall decreasing on (E1(1, y1), A1).
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(0,0) is stable. v invades/persists on its own
A
Ey (,72) E;(1,71) E

A~ Patch Size Squared

Fig.4 Pictorial description of Theorem 8
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Fig.5 Density-area relationship predicted by the model (3) for weak trait-mediated effect strength: 8 < B.
The blue curve represents both («, 0) and the u-component of the coexistence state, red represents (0, v),
and purple represents the v-component of the coexistence state. Here, 8 = 1,r = 1,y = 1.5, andy, = 0.5

Fig.6 gives a pictorial representation of Theorem 9 and Fig.7 illustrates DAR via
bifurcation curves of positive solutions of (4) - (5) as patch size varies for a fixed

B € (B1, P2).
Notice the hump-shaped DAR for v in Fig. 7.

Theorem 10 Fix yy,y» > 0. Then forr > r* and B > B, there exist ;;i = 1,2,3,4
D
satisfying E1(1, 1) <A <Ay <A3 <A < ET‘ such that the following hold:

(1) For A € (E1(1, y1), A1) and ) € (hg, 00), (4)—(5) has a unique globally asymp-
totically stable solution, (u, v), and (u*, 0) and (0, v*) are unstable.

(2) Fori € (A3, A3), (5) has no positive solution, i.e., (u*, 0) is globally asymptotically
stable.

(3) For . € (E((r,y2), A1), v's DAR is at least hump-shaped, i.e., DAR is overall
increasing on (E1(r, v2), E1(1, y1)) and overall decreasing on (E1(1, y1), A1).
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Fig.6 Pictorial description of Theorem 9
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Fig.7 Density-area relationship predicted by the model (3) for intermediate levels of trait-mediated effect
strength: B € (B, B2). The blue curve represents both (1, 0) and the u-component of the coexistence state,
red represents (0, v), and purple represents the v-component of the coexistence state. Here, § = 20,7 =
I,yp=15,and y» =0.5

Fig.8 gives a pictorial representation of Theorem 10 and Fig.9 illustrates DAR via
bifurcation curves of positive solutions of (4) - (5) as patch size varies for a fixed
B> Pa.

Again, notice the hump-shaped DAR for v in Fig.9. For the one-dimensional
patch examples illustrated in Figs. 5, 7, and 9, we numerically estimated critical trait-
mediated strength thresholds as g1 ~ 1.75 & B2 =~ 29.375 and plotted predator
density-prey emigration curves (i.e., u vs. 1 —az(u)) in Fig. 10 for the 8’s employed.
Notice that the grey shaded region in Fig. 10 represents density-emigration curves for
weak trait-mediated effect strength 8 € (0, B1), green shaded for intermediate trait-
mediated effect strength 8 € (81, B2), and red shaded for strong trait-mediated effect
strength 8 € (B2, 0c0). We note that although our numerical results for the case when
Q = (0, 1) show that A1 = A, and A3 = A4, in a general domain we cannot rule
out A1 < A2 and A3 < A4 with multiple regions of coexistence and trait-mediated
exclusion for A € (A1, A2) and/or for A € (A3, A4). The exact dynamics of the model
in this range of A-values is most likely dependent upon the geometry of 2.

@ Springer



20  Page 20 of 31 J.T.Cronin et al.
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Fig. 8 Pictorial description of Theorem 10
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Fig.9 Density-area relationship predicted by the model (3) for high levels of trait-mediated effect strength:
B > B>. The blue curve represents both (1, 0) and the u-component of the coexistence state, red represents
(0, v), and purple represents the v-component of the coexistence state. Here, 8 = 35,r =1, y; = 1.5, and
y2=05

Case 3: E((1, y1) = E(r, y») (Predator and prey have equal minimum patch
size):

Fix y1, 2 > 0. Then for r = r* we must have E(1, y1) = E1(r, y») (again, see
Lemma 1) and the following result holds.

Theorem 11 Fix yy, y» > 0. Then for r = r* we have that:

D
(1) Given a Ay € (El(r, 12), ETI) there exists a f1 > 0 and \i, Ay satisfying
D
Ei(r,y) <A1 < Ap < X2 < E71 such that (5) has no positive solution and
(u*, 0) is globally asymptotically stable for A € (A1, A2) and for 8 > Bi.
D
(2) For all B > 0, there exists A3 € (El(r, 12), E71> such that for A € (A3, 00),

(4)—(5) has a unique globally asymptotically stable solution, (1, v) and (u*, 0)
and (0, v*) are unstable.

@ Springer



Predator-induced prey dispersal can cause hump-shaped... Page 21 of 31 20
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Prey (v) Emigration Rate
[=]

0.0 0.2 0.4 0.6 0.8 1.0
Predator Density (u)

Fig. 10 Predator density-prey emigration relationships for varying trait-mediated effect strength, i.e., § = 0
in dot-dashed black (i.e., density independent emigration), § = 1 in solid black, 8 = 20 in solid green,
and B = 35 in solid red. The grey shaded region represents predator density-prey emigration relationships
for weak trait-mediated effect strength 8 € (0, B1) with dashed black representing B = 1, green shaded
region for intermediate trait-mediated effect strength 8 € (81, B2) with dotted black representing g = 7,
and red shaded region for strong trait-mediated effect strength g € (8,, 00)

(A) (B) (©) (D) ®)
Unconditional | Dynamics can vary, |  Trait-mediated | Dynamics can vary, G~
extinction depend on Q exclusion of v depend on Q
(0.v%) is unstable. (", 0) is stable, (0,v") is unstable. (u*,0),(0,v") are unstable.
(0,v") is unstable.
Neither u nor v
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density . : . . -
(0,0) is stable. v 1nvade§/per51sts on its own
i ! A
0 Ei(1,71) A A2 A3 E

A~ Patch Size Squared

Fig. 11 Pictorial description of Theorem 11

Figure 11 gives a pictorial representation of Theorem 11 and Fig. 12 illustrates DAR
via bifurcation curves of positive solutions of (4) - (5) as patch size varies for different

B-values.
Again, we note that although our numerical results for the case when Q2 = (0, 1)
show that A1 = E(1,yy) and A, = A3, in a general domain we cannot rule out

E1(1,y1) < A1 and X2 < A3 with multiple regions of coexistence and trait-mediated
exclusion for A € (E(1, y1), A1) and/or A € (A2, A3). The exact dynamics of the
model in this range of A-values is most likely dependent upon the geometry of €2.

3.1 Biological implications

We first reiterate the fact that our model assumes direct effects (consumptive) are
negligible. Certainly in a real-world predator—prey system direct effects play a cru-
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Fig. 12 Density-area relationship predicted by the model (3) for various trait-mediated effect strengths, i.e.,
B-values. The blue curve represents both (i, 0) and the u-component of the coexistence state, red represents
(0, v), and purple represents the v-component of the coexistence state. Solid purple is 8 = 1, dashed is
B =5, dotted is B = 10, and dot-dashed is B = 15. Here, r = 0.5, y; = 4.47662, and y, =1

cial role in determining coexistence. However, our main goal in this current work is
to disentangle direct and indirect effects and focus solely on consequences of trait-
mediated emigration. In our model assumptions, the parameter 8 = % represents
trait-mediated emigration effect strength in that it affects how quickly prey (v) emi-
gration rate increases as predator density (#) increases (see Fig. 1). In other words,
when B8 = 0, emigration is independent of u’s density. For 8 ~ 0, presence of u has
little effect on v’s emigration rate, whereas for 8 > 1, emigration rate approaches
100% even for small densities of u.

The model predicts coexistence for patch sizes large enough such that A >
Er—‘D — 61(B) for some §1(B) > 0, regardless of the trait-mediated emigration effect
strength (recall that A = E ID is the principal eigenvalue of Laplace’s equation with
absorbing boundary conditions and corresponds to minimum patch size for a immedi-
ately lethal matrix). In this case, sufficiently large patches develop a correspondingly
large core region where the chance of an individual encountering mortality at the
patch/matrix interface is very small. Exactly the opposite effect occurs for patches
with A < min{E (1, y1), E1(r, y2)} where the model predicts that neither species is
able to survive in the patch. In this case, the patch is so small that a large percentage
of the population enter the hostile matrix and face mortality there.

In the case that the predator has a smaller minimum patch size requirement (i.e.,
Case 1: E1(1,y1) < Ei((r,y2)), the model predicts that whenever trait-mediated
emigration is present, there is a range of patch sizes with A € [E 1(r, y2), A1) (for
some A1 = A1(B) > Ei(r,y2)) where prey are able to colonize the patch when
alone, but predicted to go extinct in the presence of the predator, i.e., trait-mediated
exclusion. Since consumptive effects are not included in our model, this effect is due
solely to trait-mediated emigration. Mechanistically, trait-mediated emigration causes
an increase in prey emigration probability due to predator presence, which in turn,
causes a larger proportion of the population to emigrate into the hostile matrix and
encounter mortality there, increasing minimum patch size requirements for prey.
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We also make note that (ii) from Sect. 3.2.3 holds in this case, giving that for fixed

D
Ao < ET‘, taking 8 > 1 will ensure trait-mediated exclusion of prey for a range
of X\ around this Ag. Thus, it is easy to see that the upper limit of the trait-mediated

emigration region of A, A1(8), is increasingin 8 and A1 (8) — ET‘D as B — oo. In other
words, the length of the region of patch sizes for which trait-mediated exclusion is
predicted to occur is an increasing function of trait-mediated emigration effect strength
and has a maximal range which is approached as this strength goes to infinity. Thus,
prey minimum patch size is a function, not only of G-D ratios () and combined matrix
hostilities (y1, ¥2), but also predator density and trait-mediated effect strength. Figure 3
illustrates the increasing nature of this trait-mediated exclusion region as the trait-
mediated emigration strength is increased. We expect that patch geometry will also
play a significant role in determining if there are multiple regions of coexistence and/or
trait-mediated exclusion occurring for A € (A1, A2) from Theorem 7 (see Goddard et al.
2023 where this was the case in a competitive L-V model with absorbing boundary
conditions). However, exploration of such effects are outside of the scope of this work.

When prey have a smaller minimum patch size requirement (i.e., Case 2:
Ei(1,y1) > E((r, y2)), trait-mediated emigration strength plays a vital role in deter-
mining community structure. As indicated in Theorems 8 and 9, when trait-mediated
emigration strength is not too strong (i.e., B < B2) the model predicts coexistence
for all patch sizes with A > Ej(1, y1). However, when trait-mediated emigration
strength is sufficiently strong (i.e., 8 > B>), at least one range of patch sizes emerges
where trait-mediated exclusion is predicted by the model (see Theorem 10 and Figs. 8
and 9). Interestingly, for sufficiently strong trait-mediated emigration strength (i.e.,
B > P1), the model predicts an overall hump-shaped DAR for prey for patch sizes
with A € (E1(r, y2), A1) with apex patch size corresponding to A = E (1, y1) (see
Theorems 9 and 10 and Figs. 8 and 9). The “overall” modifier is employed here since
we cannot guarantee that prey DAR is strictly increasingon A € (E1(r, y2), E1(1, y1))
and strictly decreasing on (E(r, y2), A1). Also, the range of patch sizes for which
a hump-shaped DAR is predicted is bound to a finite range patch sizes with corre-

D
sponding A € <E 1(r, v2), 571) Mechanistically, this hump-shaped DAR arises from

interaction with trait-mediated emigration and differences in minimum patch size
requirements of both prey and predator. Essentially, what we coin as a dispersal release
occurs at A = E(1, y1), which corresponds to the predator’s minimum patch size. In
other words, for patches with A > E(1, y;) butA = E (1, y1), as patch size decreases
an overall decrease in predator density causes a release in dispersal via reduction in
emigration due to presence of predators. When trait-mediated emigration strength is
sufficiently strong, positive effects on prey density via dispersal release overcome
negative effects on prey density caused by a decreasing patch size, giving rise to an
overall increasing DAR for decreasing patch size when A € (E (1, y1), A1).

A similar hump-shaped DAR has been observed in competitive systems (which
only included direct, consumptive effects) both in empirical studies (see e.g., Buckley
and Roughgarden 2006) and in theoretical studies with competitive models employing
absorbing boundary conditions (see Goddard et al. 2023). In those studies, a primary
competitive release was predicted to occur when the competitor with a larger minimum
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patch size requirement lost its ability to colonize the patch when rare at its minimum
patch size. With competitive release as the primary mechanism, Goddard et al. (2023)
showed theoretical examples of hump-shaped DAR occurring for arbitrarily large
patch sizes, as well as examples of complex geometry creating multiple hump-shaped
DARSs as patch size varies. We see a similar hump-shaped DAR being predicted in our
model, but with a different mechanistic cause. Since this trait-mediated emigration

e . . . EP
effect is limited to patch sizes with corresponding . < —-, we do not expect to

D
see hump-shaped DAR for large patch sizes (i.e., those with A > ET‘). However, we
conjecture that multiple hump-shaped DAR could be possible for patches with non-

convex geometry and patch sizes with A < ET'D, as was observed in Goddard et al.
(2023).

Finally, in the case that predator and prey have equal minimum patch size require-
ments (i.e., Case 3: E1(1,y;) = Ei((r,y2)), the model predicts that whenever
trait-mediated emigration is present and sufficiently strong, there is a range of patch

sizes with A € [A1, Ap) (for some E{(r,y2) < A1 < A3 < —) where prey are able
to colonize the patch when alone, but predicted to go extinct in the presence of the
predator. Also, the model predicts coexistence for patch sizes large enough such that

EP . . . .
A > A3 for some A3 € | Ay, 7‘) regardless of the trait-mediated emigration effect

strength (see Theorem 11 and Figs. 11 and 12). In our one-dimensional patch example,
we found that A; = E(r, y2) and Ao, = A3. However, in a general domain, we cannot
ensure that this is always the case.

3.2 Proof of main results
In this section, we present proofs of our main results.
3.2.1 Proof of Theorem 7

Fix y1, 72 > 0, 8 > 0, and r < r* implying that E1(1, y1) < E1(r, y2).

(1) By Theorem6,u (E(r, y2)) (x) > 0O; Qandthus u3(1)(x) = \/X)/z Bur)x)+1) >

Vays = (W) (x) for A = E|(r, y2). Also, by (15) we have that o (A, 2 (1)) = 0
for A = Eq(r,y2). Thus, by Lemma 4, 0 = o (X, u2(12)) < o(x, uz(r)) for
A = E((r, y2). By continuity of o (%, (X)) with respect to u (see, e.g., Cantrell
and Cosner 2003), there exists a Ay > E{(r, y2) such that o (A, u3(1)) > 0 for
VS [E1 (r, ¥2), A1). Theorems 3 and 6 now give that (5) has no positive solution
for A < A1, implying that (u*, 0) is globally asymptotically stable.

D
(2) Since op(r) = 0 when A = ET‘, Lemma 4 implies that o (A, u3(1)) < op(A) =0
D
for A = E—] Again by continuity of o (%, (X)) with respect to u, there exists a
D
A € Al, such that o (A, u3(A)) < O for A € (Ag, ) Theorems 3 and 6

now give the result.

O
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3.2.2 Proof of Theorem 8

Fix y;,» > O and let r > r*, B > 0, and A € (E((1,y1),00). By
(15), oA, u2(A)) < O for A > Ei(1,y1) > Ei(r,y2). Now, define § :=

min ppmin, g {u(d)(x)} > 0. Thus, we have
7»€|:E1(1,)/1),71:|

w3 (x) = VAy (Bu(h)(x) + 1) > /Ay» (B8 + 1). But, by choosing B ~ 0, we
can make u3(A) &~ «/Xyz = 2 (A). By continuity of o (A, ((A)) with respect to p,

D
we can choose 8 ~ 0 such that o (A, u3(1)) < Ofor A € | E1(1, y1), ET] . Also, the

same argument as in (2) of the proof of Theorem 7 ensures that o (A, u3(1)) < 0 for

EP .
A > —L. Theorems 3 and 6 now give the result. O

3.2.3 Proof of Theorems 9 and 10

Fix yi,y2 > 0. Then for r < r* we must have E (1, y;) < E;(r, y»). First, we
D

establish that for all 8 > 0, o (A, u3(2)) < O for A =~ Ei(1,y)) and A = ETI To
that end, for a fixed 8 > 0, Theorem 6 gives that u(1) = 0 is the only nonnegative
solution of (4) for A < E((1, y1). Thus, u3(A) = w2 (X) implying that o (A, u3z(X)) =
o (A, u2(X)) < Ofori € (Eq1(r, y2), E1(1, yl)] (see (14) for the sign of o (A, £2(1))).
Since o (A, u3(Ar)) < 0 for A = E(1, y1), continuity of o (A, (X)) with respect to
w implies that there exists a A; > E(l, y1) such that o (%, u3(1)) < 0 for A €
[E 1(L, y1), A1). Also, the argument given in the proof of Theorem 7 (2) still holds

D
in this case implying that there exists a A4 € [k 1 ETI) such that o (A, u3(2)) < 0

for A € (A4, 00). Theorems 3 and 6 now give that (4)—(5) has a unique globally
asymptotically stable positive solution, (u, v), and (u*, 0), (0, v*) are both unstable
for A € (E1(1, y1), A1) and A € (A4, 00) which establishes (1) from Theorem 10.

D
Secondly, for a fixed A € <E 1(L, y1), E7‘> we note the following:

(i) If B = 0 then u3(A) = p2(A) implying that o (A, u3z(X)) = o (A, u2(2)) < 0 by
(14) and since A > E1(1, y1) > E1(r, y2). Continuity of o (A, ;(A)) with respect
to 1 again implies that o (A, u3(A)) < O for this fixed A and 8 ~ 0.

(i) SinceA > E{(1, y1), Theorem 3 and (12)implies thatu(1)(x) > 0; Q.Comparing
(9) with (8) we have that:

Ey (00 () + Ar,Vaya (BuG) + 1) = 1. (42)
If o (X, u3(X)) = 0 then (42) becomes

£ (Ar, Viya (Bu(h) + 1)) —1, (43)

@ Springer



20  Page 26 of 31 J.T.Cronin et al.

where employing (10) gives an equivalent form

Ei (1, Lnuc +1)

=A. (44)
,
Since El (R, b) is decreasing with respect to R, if
B (1 LraBuiy + 1)
<A (45)

r

then we must have that o (A, u3(1)) < 0 in order for (42) to hold. Similarly, if

E (1 Lmaucn + 1)

r

> A (46)

then we must have that o (A, u3(1)) > 0. Recall that E 1(R, D) is strictly increasing

in b and approaches —- EP as min, g {b(x)} — oo. Thus, since A < E— there exists a
B* = B*(A) > Osuch thata(k 13(A)) > Oforthis A (in fact, forasmall neighborhood
around A) and for 8 > B*(A). We also note that for A > TD, (45) implies that
o(A, u3())) < Oforall 8 > 0.

Third, it is easy to see that u3(A)(x) = «/Xyz (Bu(X)(x) + 1) is strictly increasing
inBfork > Ei(1, y1).By(),0 (A, u3(r)) < Ofor 8 = 0andby (ii) o (A, u3(1)) > 0

D
for B > 1 for every fixed 1 € (El(l, Y1), ET‘), hence there must exist a 8, > 0
such that:
(a) if B < Bothena (A, u3(X)) <Oforall A > E(r, y2);
. D
(b) if B = By then there exist A} € <E1(l,y1), E—l) withi = 1,2, ....,n (n € N)

such that o (A, u3(A)) = 0 for A = )»6 and o (A, u3(1)) < Ofor A > E1(1,y1)
and A # Al;

D
(c) if B > B then there exist Ao, A3 € (El(l, Y1), ET‘) with A1 < Ay and A3 < A4
such that o (A, u3(A)) > 0 for A € (A2, A3).

Theorems 3 and 6 combined with (a) establishes (1) from Theorem 9 and combined
with (c) establishes (2) from Theorem 10.

It only remains to show that DAR for v is overall hump-shaped on (E (7, y2), A1).
For B > f», without loss of generality, we can assume that A, A3 are the smallest
such A’s that satisfy o (A, u3(x)) > 0 for A € (X2, A3) in (c) and o (A, u3(2)) = 0
for A = A1 (such a choice is possible since o (A, u3(r)) < 0 for A € (E{(r, y2), A1)
and o (A, u3(A)) > 0 for A € (12, 13)). By Theorem 3, the unique positive solution
of (5) satisfies |[v(A)|looc — 0T as A — Ay and v(A)(x) = 0 is the only nonneg-
ative solution of (5) for A € (A2, A3). Also, [v(M)|lec — 0T as A — Ei(r,y2)T.
The fact that v(k,x) > 0; Q for A € (E{(r, 12), A1) and v(X, x) is a decreasing
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function of 3 immediately establishes an overall hump-shaped DAR for v since we
have v(X)(x) is overall increasing on (E1(r, y2), E1(1, y1)) and overall decreasing
on (E1(1, y1)), A1). The modifier “overall” is purposely employed here since proving
that v(A, x) is monotone in A remains an open problem. This establishes (3) from
Theorem 10.

Finally, for 8 = B,, the previous argument shows that DAR for v is overall hump-
shaped on (E (7, ¥2), A1). But, Theorems 3 and 6 give that u(A) = O and v(}) > O; Q
for o = E1(1,y1). Define § := min, g {v(E(1, y1))(x)} > 0. Notice that § is
independent of g since u(A)(x) = 0 for A = E(1, y1). By continuity of v(A, x) with
respect to B, there exists a 81 € (0, B2) such that v(r1, x) < &; Q for B € (B1, B2)
and ensuring that v’s DAR is overall decreasing on (E1(1, y1), A1). This establishes
(2) from Theorem 9 and completes the proof. O

3.2.4 Proof of Theorem 11

Fix y1, 2 > 0. Then for r = r* we have that E1(1, y;) = E|(r, y2). For a fixed
D
ro €| E1(r, ), ETI , (i1) from the proof of Theorem 10 establishes (1). Also, (2)

immediately follows from the proof of Theorem 7 (2). m]

4 Summary and conclusion

In this paper, we have employed a model built upon the reaction diffusion framework
to demonstrate that trait-mediated emigration and matrix hostility in a predator—prey
system can have profound effects on DAR, minimum patch size and species coexis-
tence, ultimately causing an overall hump-shaped DAR to arise in prey. The model
includes a boundary condition designed to model effects of differential matrix hostility
and behaviorial response to habitat edges between predator and prey, and to model
trait-mediated emigration in prey. In order to disentangle direct (consumptive) and
indirect (trait-mediated) effects on community structure, we made an assumption that
the generalist predator’s consumptive effect on prey is negligible. Thus, we do not
expect our model to exactly match that of any particular real-world predator—prey sys-
tem. However, empirical studies have used an analogous approach to partition density-
from trait-mediated effects; for example, Oswald (1998) glued the mouthparts of spi-
ders together to prevent them from consuming prey while allowing them to affect prey
dispersal. Our main goal here is to show the varied consequences of trait-mediated
emigration on system dynamics. Our results are based on study of certain eigenvalue
problems and sub-supersolutions in the general patch case and time map analysis in
the one-dimensional patch case.

Our analysis covered three cases in which prey had larger, smaller, or equal mini-
mum patch size requirements as the predator based upon permeability and hostility of
the matrix. In the case that the predator has a smaller minimum patch size requirement,
we showed there exists arange of patch sizes for which trait-mediated exclusion of prey
occurs for any trait-mediated strength. In this case, as trait-mediated effect strength
increased, prey minimum patch size increased. However, when prey has a smaller
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minimum patch size requirement, trait-mediated effect strength was required to be
sufficiently large to ensure trait-mediated exclusion of the prey occurred. The model
also predicted an overall hump-shaped prey DAR for sufficiently strong trait-mediated
effect strength, due to a dispersal release occurring around the predator’s minimum
patch size. Using computationally generated DAR curves in the one-dimensional patch
case, we explored qualitative behavior necessary to ensure such a hump-shaped DAR
occurs. Our results indicated that predator density-prey emigration rate relationship
needs to increase quite quickly towards 100% emigration as predator density increases
even for small predator density in order to ensure a hump-shaped prey DAR occurred.
Such a prediction is similar to one observed in a diffusive Lotka-Volterra competition
model with absorbing boundary conditions in Goddard et al. (2023), though with a dif-
ferent mechanism behind the hump-shaped DAR. We have thus identified two different
mechanisms capable of producing theoretical predictions of nonlinear DARs.

Trait-mediated predator effects leading to changes in DAR shape have rarely been
investigated empirically. One exception is the study by Buckley and Roughgarden
(2006) who suggested that avian predators may be responsible for the nonlinear DAR
observed for Anolis lizards. Our study lends more credence to the possibility that
predators can alter prey DAR through predator-induced prey dispersal. Given the
plethora of empirical studies that have reported strong trait-mediated predator effects,
sometimes even stronger than density-mediated effects (Sih et al. 1992; Hakkarainen
et al. 2001; Peckarsky 1996; Cronin et al. 2004), it is likely that these indirect effects
play an important role in shaping DARs in nature. This is an important knowledge gap,
particularly in the area of conservation biology. Not only is DAR a key consideration
in the single large or several-small (SLOSS) debate for reserve design (Simberloff
and Abele 1982; Matter 1999; Bowers and Matter 1997; Heilman et al. 2002; Linden-
mayer et al. 2015; Mccarthy et al. 2005), but also it is critical for understanding the
minimum patch size that can support a viable population (Bender et al. 1998; McCoy
and Mushinsky 2007). DARs can also be relevant to integrative pest management
programs where native populations of beneficial natural enemies can be promoted by
protecting or creating appropriately sized native habitats adjacent to agricultural lands
(Landis et al. 2000; Jonsson et al. 2008).

A natural extension of our model is to include direct (consumptive) effects. We are
currently pursing such a model in a forthcoming manuscript. Another extension of
these results would be a numerical exploration of prey DAR in nonconvex domains
such as the one studied in Goddard et al. (2023) to see if multiple hump-shaped
DARs occur by varying patch size. We also note that trait-mediated emigration as
modeled in the prey species here ultimately produces a single species model with a
nonlinear emigration function of patch size via the composite parameter, A. Thus, a
single species whose growth satisfies our general logistic-type growth hypotheses that
exhibits a nonlinear patch size-emigration rate relationship can also be studied using
our framework.
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