A Hardware-in-the-loop Wireless System Design:
Benchmarking NFV Network Services

Dillon J. Horton, Thai T. Vu, Tu N. Nguyen, Kun Suo, Ahyoung Lee, Selena He, and Yong Shi
Department of Computer Science, Kennesaw State University, Marietta, GA 30060, USA.

Abstract—5G/6G network slicing provides a method to split
network infrastructure into self-contained slices, each comprising
various virtual network functions (VNFs) mapped onto physi-
cal nodes. Developing robust resource allocation algorithms to
efficiently embed VNFs into the available nodes of a network
has been a significant focus of research into network slicing.
A key component of many of these mapping algorithms is the
need for accurate measurements of the resource and bandwidth
requirements of the VNFs. This problem is further compounded
by the performance impacts of collocating multiple VNFs on
one physical node. Competition between collocated VNFs for
shared hardware resources can lead to performance degradation
and an inability to meet their service level agreements (SLAs).
To tackle this, we propose a novel VNF profiling framework
for benchmarking a set of VNFs, accounting for the effect
of collocation on their performance, namely Collocation-Aware
Function Mapping (CAFM). Unlike prior research, which mostly
relies on simulations, we conduct comprehensive experiments on a
real-world deployment environment based on the POWDER plat-
form to benchmark collocated VNFs. The experimental results
demonstrate that the CAFM framework can accurately detect
and mitigate collocation issues causing performance degradation,
ensuring that VNFs can meet their SLAs more effectively.

Index Terms—VNF, NFV, Network slicing, Benchmarking.

[. INTRODUCTION

Network Slicing and VNFs. Network slicing is a 5G/6G
technology that allows physical infrastructure to be logically
split into multiple network slices [1]. A key component of
implementing network slicing is Network Function Virtual-
ization (NFV) architecture. NFV seeks to replace network
functions traditionally implemented through special-purpose
equipment with ones implemented as software running on
general-purpose machines [2]. Each slice consists of a set of
Virtual Network Functions (VNFs), which together provide
a service or set of services. Each set of VNFs is embedded
into the physical infrastructure based on their requirements
and the available resources of the physical nodes as illustrated
in Fig. 1. Prior research in 5G/6G networks has examined
optimizing the performance of these network slices through
optimal mapping of VNFs [3], [4], often relying on measure-
ments of computing resources including CPU and memory
usage, as well as network resources such as network traffic.
To best optimize slice performance, these algorithms rely on
the accurate profiling of the resource requirements of each
VNF [5], [6].

We thank the anonymous reviewers for their suggestions and feedback.
This research was in part supported by US NSF under Grants: CNS-
2103405, AMPS-2229073, CPS-2103459, SHF-2210744, and CNS-2244450.
Corresponding author: Tu N. Nguyen.

0ss Slice NFV MANO
C 1
NFV
| Orchestrator
VNFs ™
SLas | @
: : A
Network Slice H Network Slice H '
—— Profiler - -'

2 ; i VNF H
| Y i H
'_] "=-_‘ NFVI ;
| Virtualization Layer |

. I i v
LY]
\ Lt LT hod

i ip P Manoger [
Physical Infrastructure

Fig. 1. Network slicing in an NFV architecture.

VNF Profiling. Prior work looked at collecting the mea-
surement data through VNF profiling platforms [6], [7]. These
systems monitor and benchmark VNFs, then use the data to
generate VNF profiles. VNF profiles are defined by computa-
tional models which describe the performance characteristics
and resource requirements of VNFs. These profiles can then
be given to NFV Management and Orchestration systems
(MANO) (Fig. 1), which use this data to create deployments
of VNFs and manage resources to ensure that each VNF can
meet their service level agreements (SLAs) [1], [2].

Collocation and Performance Degradation. Due to the
limited number of physical machines, VNFs often need to
be collocated with other VNFs on the same machine. This
leads to challenges as collocated VNFs compete for hardware
resources causing performance degradation which ultimately
reduces Quality of Service (QoS) [£]. For this work, we use
the packet throughput of each VNF as our QoS indicator. The
impact of performance degradation can be seen in Fig. 2,
which shows the normal throughput of each tested VNF
(Fig. 2(a)) as well as the maximum throughput drop seen
by each VNF during experiments where it was collocated
(Fig. 2(b)). Throughput drop in this case is the percentage
decrease in the throughput of a VNF when it is collocated,
compared to the ideal when tested in isolation. To maintain
the SLAs, NFV orchestration schemes need to address per-
formance degradation caused by collocation. Although there
exist methods mitigating the performance degradation due to
collocation, they mostly rely on prediction or isolation with
limitations [2], [9], [1]. Prediction algorithms often inaccu-
rately estimate extra resource needs, and methods isolating
collocated VNFs can be ineffective or lead to poor resource
utilization. Furthermore, these works do not clearly define how
prediction can be utilized in VNF mapping.

Our Contribution. To address the drawbacks of the above
prediction and isolation methods, we propose a hybrid VNF
mapping framework, namely Collocation-Aware Function
Mapping (CAFM), which incorporates and improves upon cur-
rent performance prediction algorithms in order to efficiently
create optimized VNF deployment configurations. We make
the following contributions:

« We implement a performance prediction methodology based
on prior work which uses a multivariate contention vector
to predict VNF performance. We test the prediction in a
real NFV cloud environment in order to ensure accuracy of
predictions.

« We propose a novel VNF mapping algorithm, which incor-
porates performance prediction in order to minimize colloca-
tion induced performance drops. Additionally, we combine
VNF performance prediction and mapping contributions to
form our novel framework, CAFM.

« We implement an example use case experiment, which
evaluates the proposed methodology’s impact on mapping
effectiveness and final configuration performance. Unlike
previous simulation based work, we take steps to ensure
the experiment accurately represents the real-world environ-
ment these VNFs would be deployed in. We compare the
final performance and efficiency to standard VNF mapping
techniques.

Organization. The rest of this paper is organized as follows.
Section II provides a background on VNF mapping algorithms,
VNF benchmarking, performance prediction, motivation, and
the problem. The system model and solution are presented
in Section III. Section IV describes the system design and
implementation. The experiment and evaluation are provided
in Section V. Finally, Section VI concludes this paper.

II. PRELIMINARY

In this section, we provide background information on NFV
architecture and the algorithms for mapping VNFs onto physi-
cal infrastructure. Additionally, we conduct an in-depth review
of related work on performance benchmarking and prediction.

A. Background

NFV Architecture. Consider the NFV architecture depicted
in Fig. 1, comprising four primary subsystems: (1) NFV Man-
agement and Orchestration (NFV MANO), (2) NFV Infrastruc-
ture (NFVI), (3) Virtualized Network Functions (VNF's), and
(4) Operation Support System (OSS). The NFV MANO (Man-
agement and Orchestration) system manages the life-cycle of
network slices and the VNFs comprising them, determining
the deployment of VNFs and the allocation of resources from
the underlying NFVI. The NFVI consists of pools of hardware
resources abstracted and logically partitioned by a software
virtualization layer. The VNF component encompasses all
VNFs to be deployed, along with relevant information about
them, such as the requirements set by their SLAs. Lastly, the
OSS (Operations Support System) is responsible for initiating
the creation of new slices and provides all the information

E

| (#Firewall 1

g

2 8
¥ 8 8 8 2 3

g
5

Throughput (Kpps)
Throughput Drop(%)

=
=

(a) Normal throughput.

(b) Max observed throughput drop.
Fig. 2. Comparison of throughput and throughput drop of tested VNFs.

stored in the VNF component. Our proposed framework fits
within the NFV MANO component of the NFV architecture
and seeks to facilitate the effective use of profiling and
performance prediction data in deployment decisions.

VNF Mapping Algorithms. NFV MANO systems rely on
VNF mapping algorithms to efficiently and effectively map
VNFs onto physical infrastructure [3], [4]. These algorithms
are diverse and employ various methods and data to determine
service placement. A popular approach involves using the
computational and network resource requirements of a VNF
to decide its placement [5]. However, much of the current
literature overlooks the impact of collocation and resource
contention on the final performance of a VNF. While a few
works attempt to account for collocation, they often use
ineffective performance prediction models and fail to properly
integrate them with VNF mapping algorithms.

Sources of Contention. To accurately measure shared
resource contention, it is important to understand which re-
sources VNFs are competing for. In NFV architectures, it is
common practice for VNFs to be deployed on dedicated cores
to help prevent CPU-related resource contention. Thus, the
main sources of contention are the resources shared among
cores. We focus on three sources of memory contention [%],
(101, [15].

« Last Level Cache (LLC). While each core has dedicated

L1 and L2 caches, the LLC is shared between cores and

thus is a source of contention for VNFs.

« Packet 1/0. Many commonly used Intel architectures im-
plement Data Direct I/O (DDIO) as part of optimizations
for packet I/O. DDIO isolates a portion of the LLC to
be dedicated for packets being processed by the system.
Contention arises when the number of packets exceeds the
available space in the cache.

« Main Memory. Lastly, collocated VNFs compete for the
limited memory bandwidth of the shared system.

B. Motivation

Benchmarking VNFs to determine their requirements for
deployment using these algorithms is generally done in two
ways: using Isolated benchmarking and using performance
prediction. Below, we examine each approach.

VNF Benchmarking Tools. Some prior work exists fo-
cusing on benchmarking VNFs [13], [14]. Rosa et al. de-
veloped a VNF and NFV benchmarking framework called

VNF Pool

NFV MANO

Profiler Data Perfor

Predictor
| 2y
VNF Performance e H
Commﬁon* Data e o 1
TestServer | | e e i
Node 1 Node2 | Node n
e |we gy =
o]
Test Environment Deployment Configuration

Fig. 3. System design of proposed framework (CAFM).

“gym”, which focused on automating the benchmarking pro-
cess for VNFs [13]. Other approaches employed machine
learning techniques to verify the results of performance pre-
dictions [14]. However, these systems were designed without
considering the impact of collocation on VNF performance,
and instead, they focused on these VNFs in isolation. As
such, their benchmarking data could lead to an ultimately
inaccurate portrayal of a service’s performance once it is
deployed. One way to prevent collocation from affecting the
VNF benchmarks is to try the isolation of deployed VNFs.
This can be accomplished by leveraging Intel’s Memory Band-
width Allocation and Cache Allocation Technology (CAT)
to try and fully isolate the memory and cache resources of
collocated VNFs [11]. However, this often fails to fully isolate
resources and previous work has found that isolation can lead
to inefficient resource utilization [%].

Performance Prediction. A key aspect of performance
prediction is its ability to predict the impact of collocation on
performance for multiple VNFs. The concepts of a VNF’s con-
tentiousness and sensitivity are critical to accurate performance
prediction of collocated VNFs [£], [9], [15]. Contentiousness
is a measure of how much a VNF will impact the performance
of collocated VNFs through the usage of shared hardware
resources. Conversely, sensitivity is a measure of how much
a VNF will be impacted by collocated contentious VNFs.
The metrics used to measure contentiousness and sensitivity
can vary between algorithms but they consist of one or more
metrics associated with shared resources, such as cache or /O
buffer usage [2], [9].

Early work focused on predicting contention through a
single metric. BubbleUp measures the contention through the
working set size of the VNF [9]. Dobrescu et al. is another
such work and instead measures contention through the cache
access rate [10]. However, only measuring a single metric
gives an incomplete picture of resource contention, which
can impact the accuracy of the prediction. When measuring
the accuracy of these prediction models on newer hardware,
they were found to have some prediction errors as high as
70% [2]. Manousis et al. improved upon these earlier works
by considering several contention-related metrics to determine
the sensitivity and impact of each VNF. [£]. Although this
led to a significant improvement in prediction accuracy, higher

error rates were still observed for larger numbers of collocated
services. The presence of prediction errors means service
providers using this data need to be more conservative in
resource allocation to ensure compliance with service level
agreements (SLAs). This could lead to under-utilization and
inefficient usage of the allocated resources.

ITI. SYSTEM DESIGN AND PROPOSED SOLUTION

As a part of the NFV architecture (Fig. 1), our proposed
CAFM framework consists of three main components as
depicted in Fig. 3, which are as follows: the profiler, the
performance prediction algorithm, and the VNF mapping
algorithm. We expand on the work of [¢] to build or profiler
and performance prediction model. We additionally propose a
novel heuristic VNF mapping algorithm (LPPD) for applying
the generated prediction models to the VNF mapping problem.
We explain each of the components in depth below.

A. Profiler

The goal of the VNF profiler is to generate profiles which
describe resource usage characteristics and SLA constraints
of the VNF. The profiler takes as input a set of VNFs and
their expected network traffic level and outputs a profile
for each VNE The profiler gathers data on the CPU and
memory requirements of the VNF. In order to provide the
necessary data for the prediction algorithm, the profiler also
needs to determine the contentiousness and sensitivity of each
VNEF. Each profile is generated offline prior to the runtime
deployment of each VNF. Exactly what metrics are collected
during profiling and how they are used is dependent upon the
chosen performance prediction algorithm. For profiling and
performance prediction, we use an improved version of the
prediction algorithm proposed in [5]. We modify the algorithm
by reducing the number of metrics composing the contention
vector of our server architecture and using mixed packet size
traffic in order to better simulate real deployment scenarios.
We find the models are just as accurate while being generated
more quickly due the reduced number of metrics (Section §V).

TABLE I
CoOLLECTED PCM METRICS AND THE SOURCES OF CONTENTION THEY
ARE RELATED TO.

PCM Metric Description LLC | Packet 'O Memory
IPC Num. Instructions v
L3MISS LLC miss rate v v
L3HIT LLC hit rate v
L2MISS Cache access rate v
READ Memory read v v
WRITE Memory write v v

Measuring Contentiousness. Contentiousness is the
amount of pressure a VNF applies to the shared resources
of the node it is deployed on. Resource contention occurs in
three main areas, the LLC, Packet I/O, and main memory.
Prior work has shown that using a single metric is not
sufficient to accurately measure contention [£], [10]. As such,
we select a series of hardware metrics to characterize the
contentiousness of a VNF in these three areas. We collect

these metrics using the Intel PCM framework, an API designed
to collect data from the hardware’s performance monitoring
units (PMUs) [16]. The collected metrics are shown in Table I,
along with the sources of contention they are intended to be
representative of. Together, these metrics form a vector that
measures the contentiousness of a VNF. It is important to note
that the contentiousness of a VNF also changes in the presence
of competition (i.e., a VNF will have higher contentiousness
when collocated with several other VNFs). As such, we
implement the contentiousness composition method proposed
in [8]. The profiler profiles the target VNF when running
solo, as well as when collocated with a variable number of
synthetic VNFs. When the performance predictor needs to
know the contentiousness vector of a VNF, it first checks
how many VNFs it will be collocated with and then takes
the average contention vector from the profiler experiments
with that number of collocated VNFs.

Measuring Sensitivity. Sensitivity is a measure of how
a VNF reacts to the presence of competition for shared
resources. To characterize sensitivity, we seek to create a
model which takes a VNF and the contentiousness vector of
its collocated competitors as input and outputs the predicted
performance of the VNF when collocated with that competi-
tion. In order to build this model, we use the contentious-
ness vectors and collected performance data from our real
experiments. This requires testing a large set of collocation
configurations which are representative of the competition the
VNF might have when deployed. To this end, we develop a
synthetic competitor VNF, which can apply a variable amount
of stress on the shared resources of the node. The synthetic
competitor implementation is discussed in Section IV. The
profiler collects VNF throughput data under various competitor
configurations and contention vectors, used as training data for
our gradient boosting regression model. Each VNF’s unique
response to resource contention requires individual sensitivity
models built before deployment.

B. Performance Predictor

The performance prediction algorithm is built largely off
the sensitivity models generated by the profiler. Under some
scenarios, this is quite simple. For instance, given two VNFs,
F, and F}, where we need to predict the expected performance
drop of F, when collocated with Fy, we simply plug the
contentiousness vector of V}, into the sensitivity model for Fj,.
However, adding a third collocated VNF F,. complicates the
prediction. In order to predict the performance of F, when
collocated with both other VNFs, the prediction algorithm first
combines the two contentiousness vectors V3 and Vj, to form
the vector VP, This can be done by taking the sum or average
of each metric in the component vectors depending on the
metric. The vector V,? can then be plugged into the sensitivity
model to get the predicted performance drop of Fj,.

C. VNF Mapping

Once the sensitivity models for each VNF have been trained,
they can be passed to the VNF mapping algorithm, along

Algorithm 1: Lowest Predicted Performance Drop
Input : A set of K VNFs F = {F}} and a set of P
physical nodes N = {N;}
Output: A set of mappings M = {M;} from VNFs to nodes

1 begin

2 for i=1;i1<K;i=1i+1)do

3 Dmin < 999 p Initialize with a large number

4 for (j=1;i<P; j=j+1)do

5 if N; has the minimum required CPU and
memory resources for F; then

6 D} <+ Predict(F;, N;).

7 if D} < Dpin then

8 | Dmin + D5 M; < mapping(F;, N;).

9 Return M

with the set of physical infrastructure nodes they can be
deployed on. We propose a Lowest Predicted Performance
Drop (LPPD) algorithm (Algorithm 1), which incorporates the
prediction models to ensure high QoS under collocated scenar-
ios. For each VNF, the algorithm takes a greedy approach to
find the node with the lowest average predicted performance
drop and maps the VNF to that node, updating the available
resources based on VNF resource. The algorithm continues
until all VNFs have been mapped to a node and outputs
the set of mappings as the configuration to be used during
deployment. It is important to note that predicting performance
drop involves both the performance drop of the VNF being
mapped as well as all VNFs currently on the node that would
be affected by the addition of a new collocated VNF.

IV. EXPERIMENT DESIGN AND IMPLEMENTATION

In this section, we first design a POWDER-testbed-based
NFV system. We then implement the proposed CAFM frame-
work and configure tools for collecting and analyzing experi-
mental results.

A. Experiment Design

1) POWDER Testbed. We utilize POWDER [12] to compare
the performance of the NFV services in an environment
similar to a real-world deployment. The POWDER testbed
is a flexible infrastructure that enables a wide range of
software defined experiments.

2) OpenStack. In order to better emulate real-world NFV
architectures, we run our experiments using OpenStack,
a commonly used cloud-computing platform [19]. Using
POWDER, we configure an OpenStack deployment with
one dedicated control node and one or more compute
nodes. Each node has a 2.4 GHz, 64-bit Intel Quad Core
Xeon E5530 processor and 12GB of RAM [12].

3) Service Selection. We test five widely used network ser-
vices: Snort, Suricata, Ntop, Firewall (Click), and Flowstats
(Click). These services were chosen to provide a wide
range of resource usage in order to generate varied con-
tentiousness vectors and sensitivity models.

B. Performance Prediction Experiment

Offline profiler. Here, we discuss our implementation of the
offline profiler. The goal is to collect a representative set of
VNF performance data which can train an accurate sensitivity
model for performance prediction. This data is collected
through accessing the hardware’s PMUs. The exact PMUs
available are hardware-dependent. The hardware specifications
such as cache size, will also impact the results of offline
profiling. Consequently, the profiler takes as input a VNF,
its configuration, the expected traffic profile, and the server
architecture of the cluster it will be deployed on. For our
offline profiling scenario, we use the control node and one
compute node configured through OpenStack. We implement
and test five VNFs through the following software.

« Snort. Snort is an open-source intrusion detection system
(IDS). We run Snort configured with the community rule
set of roughly 400 rules [17].

 Suricata. Suricata is an open-source network analysis and
threat detection software. We run Suricata in IDS mode,
configured with the Suricata 5.0.10 rule set [12].

» Click. Click is a modular router designed to run various
packet processing/routing tasks [20]. We configure Click to
implement two VNFs. The first is a simple stateless firewall
with roughly 1000 sequential rules. The second is a program
to provide flow statistics on the captured traffic.

« Ntop. Ntop is an open-source traffic and security network
traffic monitoring software. We configure Ntop to perform
deep packet inspection on test network traffic [21].

Additionally, we implement a synthetic competitor VNF to
cover a wide range of contentiousness vectors. The synthetic
competitor is a configurable VNF, which can stress each of
the shared resources to a variable degree. We generate various
configurations of the synthetic VNF in order to fully cover the
contentiousness vector space. When under test each VNF is
deployed as a VM on the compute node along with a variable
number of synthetic competitors. We test each VNF with real
traffic captured and replayed using the Tcpreplay tool.

C. VNF Mapping Experiments

Unlike prior work, which relies on simulations, we conduct
experiments on a real-world deployment environment for a
use case of the CAFM framework. Using the POWDER, we
run the experiments with one control node and 20 compute
nodes, set up through OpenStack. We run our proposed LPPD
algorithm and continually provide random VNFs from our set
of implemented VNFs to minimize performance degradation.
Additionally, we compare it to the performance of a traditional
resource-based algorithm which does not account for colloca-
tion running in the same scenario [5]. This algorithm sorts the
nodes by available resources and deploys the VNF to the node
with the most available resources. The algorithm is tested with
a variable number of VNFs from 10 to 80.

V. EXPERIMENTAL EVALUATION

We analyze the performance of experiments running on the
POWDER. We first examine results from the profiler’s con-
tention data collection and discuss the challenges of modeling
VNF sensitivity. We then discuss the accuracy of our model in
predicting the collocation-induced performance drop of a VNE
Finally, we examine a use case where the CAFM framework
is used to deploy a set of VNFs in a real cloud environment.

A. Prediction Model

IFirewall 3| {mmFirewall
101 INtop mm Ntop
ISnort 15| Snort

I Suricata
10 | == FlowStats

Ei;iié

(b) Signed Prediction Error.

Bl ISuricata
IFlow Stats

Prediction Error (%)

Prediction Error (%)

0

(a) Average prediction error.

Fig. 4. Prediction error for VNF performance drop predictions.

Prediction Accuracy. Before testing our mapping algo-
rithm, we need to ensure the accuracy of our chosen prediction
model. Fig. 4 shows the overall prediction error for five tested
VNFs. From Fig. 4(a), we find that our prediction model is
accurate, with an average prediction error of 5.6%. Fig. 4(b)
shows the signed prediction error where a negative value
represents the predicted performance drop being lower than
the actual and a positive value represents the predicted perfor-
mance drop being higher than the actual. The model does not
appear to show a significant skew for under- or over-prediction
across VNFs. However, this does not mean that the model
does not produce skewed prediction models for individual
VNFs. For instance, the model seems to consistently under-
predict the performance drop of Suricata and Ntop. This could
lead to potential SLA violations when deployed. We can help
reduce this error by continuing to collect performance data
after deployment and using it to slowly update and improve the
model overtime. A natural concern is the possibility of greater
performance degradation due to the overhead of deploying
a performance monitoring tool. However, the performance
monitoring tool does not need to measure the contentiousness
of the VNFs deployed on the node, as this data would have
already been collected during profiling. It only needs to collect
the throughput data to see the real performance drop. This
new collected data can be fed back to the profiler, allowing
the sensitivity model of each VNF to be periodically updated
over the lifetime of deployment. This helps improve the overall
accuracy of the model as new VNFs are added to the network.

VNF Mapping Experiment. Fig. 5(a) shows the results
from our VNF mapping experiment on the real system. We find
the mappings generated by our collocation-aware algorithm
(LPPD) consistently outperform the mappings generated by
the purely resource based algorithm with an average through-
put of 91.8% compared to an average throughput of 90.1%.

Relative Performance (%)
5

Relative Performance (%)
5

olf— LPPD | olf— LPPD b
—— Resource Based —— Resource Based
--- Ideal - Ideal
&0 T T i i plr—r—r—7T— | |
20 40 B0 B 1,000 1,500 2,000 2,500 3,000 3500 4,000

Number of VNFs Number of VNFs

(a) Real experiment (20 nodes). (b) Large scale experiment (1000
nodes).

Fig. 5. The relative performance of deployed VMs compared to the ideal of
them running in isolation.

Due to the limited size of the real system, we additionally
test the algorithm in a simulated environment with 1000
nodes to verify the usability of the algorithm in large scale
cloud networks, the results of which are shown in Fig. 5(b).
The performance improvements are greater in the large scale
experiment with the LPPD showing an average throughput of
93.1% and the resource based algorithm showing an average
throughput of 90.4%. The benefit of the LPPD algorithm is
greatest when the number of VNFs is between 60% and 90%
of the maximum capacity of the network. Deployments with
a low number of VNFs will be running VNFs in isolation or
collocated with only a single other VNF with low resource
contention leading to prediction becoming less important.

We observe that the impact of prediction error is dependent
on the skew of the prediction error. To examine this, we run
the LPPD algorithm with only two VNF types. We artificially
modify the prediction error of two chosen VNFs and measure
the impact on overall performance for different skews and
levels of error (Fig. 6). We find that prediction error has a much
greater impact on mapping algorithm when two VNFs in the
pool have opposite skews. This is due to the fact that opposite
skews push the algorithm to heavily favor the performance
of one VNF over the other, causing it to mistakenly ignore
overall more efficient deployments.

VI. CONCLUSION

Developing robust resource allocation algorithms to effi-
ciently embed VNFs into the available nodes of a network
has been a significant focus of research into network slic-
ing. We have proposed the CAFM framework for combining
performance prediction and VNF mapping. The framework
consists of a profiler for benchmarking VNFs, a performance
predictor for predicting the impact of collocation and a VNF
mapping algorithm (LPPD) for using the prediction model
to generate VNF deployments minimizing collocation-induced
performance drop. We have successfully implemented our
framework in a real cloud environment using POWDER and
OpenStack, demonstrating how VNFs are deployed in a real-
world setting. The numerical results show that the LPPD
algorithm can reduce the total performance drop of the system
compared to traditional VNF mapping methods.

ey <3

E af INo Skew E af INo Skew

2 ol 0Same Skew @ wl 0Same Skew |l
2 IDifferent Skew E UDifferent Skew
E /W -
g 5

‘E 86 . © oask .
Sl] ﬂ;g...]
E B2 8 S o .
= =

= = o

5 10 15
Prediction Error (%)

10 15

5
Prediction Error (%)

(a) 20 nodes and 70 VNFs. (b) 1000 nodes and 3500 VNFs.
Fig. 6. Demonstration of how VNF performance changes with prediction
error skew. Deployments we generated using LPPD.

REFERENCES

[1] S. Zhang, “An overview of network slicing for 5g,” IEEE Wireless
Commun., vol. 26, no. 3, pp. 111-117, 2019.

[2] B. Chatras, et al., “Nfv enabling network slicing for 5g,” in JEEE ICIN
2017, 2017, Conference Proceedings, pp. 219-225.

[3] K.J. Ambarani, et al., “Enforcing resource allocation and vnf embedding
in ran slicing,” in JEEE GLOBECOM, 2021, Conference Proceedings.

[4] C. Hernandez-Chulde, et al, “Vnf placement over autonomic elastic
optical network via deep reinforcement learning,” in IEEE ICC, 2023,
Conference Proceedings, pp. 422-427.

[5] W. Attaoui, ef al., “Vnf and cnf placement in 5g: Recent advances and
future trends,” IEEE Trans. Netw. Service Manag., 2023.

[6] N. Ferdosian, et al, “Profile-based data-driven approach to analyse
virtualised network functions performance,” in J[EEE ISCIT 2023, 2023,
Conference Proceedings, pp. 306-311.

[7] S. Moazzeni, et al., “A novel autonomous profiling method for the
next-generation nfv orchestrators,” IEEE Trans. Netw. Service Manag.,
vol. 18, no. 1, pp. 642-655, 2021.

[8] A. Manousis, et al., “Contention-aware performance prediction for
virtualized network functions,” in ACM SIGCOMM, 2020.

[9] J. Mars, et al., “Bubble-up: Increasing utilization in modern warehouse

scale computers via sensible co-locations,” in IEEE/ACM MICRO, 2011.

Dobrescu, Mihai, et al.,, “Toward predictable performance in software

Packet-Processing platforms,” 9th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 12), pp. 141-154, 2012

[11] V. R. Chintapalli, et al, “Nfvpermit: Toward ensuring performance

isolation in nfv-based systems,” IEEE Trans. Netw. Service Manag.,
vol. 20, no. 2, pp. 1717-1732, 2023.

[12] J. Breen et al, “Powder: Platform for open wireless data-driven exper-

imental research,” in WiNTECH, 2020.

R. V. Rosa, et al, “Take your vnf to the gym: A testing framework

for automated nfv performance benchmarking,” IEEE Commun. Mag.,

2017.

[14] X. Vasilakos, et al, “ion-profiler: Intelligent online multi-objective

vnf profiling with reinforcement learning,” IEEE Trans. Netw. Service

Manag., 2024.

L. Tang, et al., “Contentiousness vs. sensitivity: improving contention

aware runtime systems on multicore architectures,” ACM EXADAPT,

2011, Conference Proceedings, pp. 12-21

Intel, “Intel Performance Counter Monitor,” [Online]. Available: https:

llgithub.com/intel/pcm. [Accessed: June 20, 2024].

Snort, “Snort: Network Intrusion Detection & Prevention System,”

[Online]. Available: https://www.snort.org. [Accessed: June 20, 2024].

Suricata, “Suricata: Open Source Network Threat Detection Engine,”

[Online]. Available: https://suricata.io/. [Accessed: June 20, 2024].

OpenStack, “OpenStack: Open Source Cloud Computing Software,”

[Online]. Available: https://www.openstack.org/. [Accessed: June 20,

2024].

E. Kohler, et al., “The click modular router,” ACM Trans. Comput. Syst.,

vol. 18, no. 3, pp. 263-297, 2000

[21] Ntop, “Ntopng,” [Online]. Available: https://github.com/ntop/ntopng.

[Accessed: June 20, 2024].

[10]

[13]

[15]

[16]
[17]
(18]

[19]

[20]

https://github.com/intel/pcm
https://github.com/intel/pcm
https://www.snort.org
https://suricata.io/
https://www.openstack.org/
https://github.com/ntop/ntopng

	I Introduction
	II Preliminary
	II-A Background
	II-B Motivation

	III System Design and Proposed Solution
	III-A Profiler
	III-B Performance Predictor
	III-C VNF Mapping

	IV Experiment Design and Implementation
	IV-A Experiment Design
	IV-B Performance Prediction Experiment
	IV-C VNF Mapping Experiments

	V Experimental Evaluation
	V-A Prediction Model

	VI Conclusion
	References

