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Abstract—Haplotype inference with pure parsimony (HIPP)
problem seeks to reconstruct a minimum set of haplotypes that
explain a given set of genotypes observed from a population. This
important problem is known to be NP-hard. In this paper, we
explore the potential of quantum computing in retrieving optimal
solutions for HIPP. We investigate several approaches to encode
HIPP into quadratic unconstrained binary optimization (QUBO),
which can be solved on quantum annealers. Further, we propose
a new QUBO for HIPP, termed QHI, exploiting the structure of
HIPP to reduce the QUBO size. Our comprehensive experiments
on the state-of-the-art D-Wave annealer indicate comparable
solution quality for quantum annealing approaches compared to
classical simulated annealing. They also validate the effectiveness
of our proposed QHI formulation in both solution quality and
size.

Index Terms—Haplotype inference, Quantum annealing

I. INTRODUCTION

A haplotype (haploid genotype) is a group of alleles in an
organism that can be used to infer various important infor-
mation including ancestry or demographic history. However,
it is difficult to obtain direct information on the haplotypes
with current high-throughput sequencing methods. Haplotype
inference methods aim to infer haplotypes from the genotype
data, i.e., each genotype is detached into two haplotypes.
Given a set of genotypes, the haplotype inference with pure
parsimony (HIPP) uses the parsimony criterion to identify a
set of the fewest possible haplotypes such that each genotype
in the set can be explained by one pair of haplotypes.

Many methods have been proposed to solve this important
problem. Gusfield [1] proposes an Integer Programming (IP)
formulation for the HIPP that considers all possible pairs of
haplotypes, leading to the worst-case of an exponential large
formulation. Later, the polynomial-size models were proposed
by [2]-[4]. However, there is no clear efficient approach to find
exact solutions for the problem as the problem is shown to be
NP-hard [1]. Other methods proposed for the problem include
boolean satisfiability (SAT) and [5], pseudo-boolean optimiza-
tion [6], local search [7], and swarm optimization [8]. These
algorithms are, however, not guaranteed to produce an optimal
solution. The recent exponential growth in quantum computing
with a record number of breakthroughs [9]-[13] has opened
new venues for solving NP-hard optimization problems. By
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encoding information using quantum bits (qubits), quantum
computing can leverage the superposition of states [11] as
well as quantum mechanics phenomena such as entanglement
and quantum tunneling to explore exponential combinations of
states at once. QC has paved the way for faster, more efficient
solutions to large-scale, real-world optimization problems that
are challenging for classical computers [9], [11].

In this paper, we explore approaches to solve HIPP using
quantum annealing (QA), a method to search for global
minimum using quantum fluctuation [14]. QA is currently
the only quantum computing approach that provides a large
enough number of qubits for real-world problems from life
science [15], scheduling for car manufacturing [16] and many
others [17], [18]. Will quantum annealing be also effective for
haplotype inference?

We begin with the exploration of existing QUBO formu-
lations for HIPP including the standard approach to convert
the integer linear programming (ILP) [1] into QUBO [19]
using penalties. We also adopt a QUBO in Cao et al. [20]
for the set cover with pairs (SCP) problem that admits HIPP
as a special case. Finally, we propose an efficient method,
called Quadratic for Haploptype Inference or QHI. Our method
transforms the ILP in [1] by iterative aggregating size-k groups
of variables in each constraint to save on the size of the
resulting QUBO, for some integer k£ > 2. Our formulation also
leverages the preprocessing techniques in [1] to reduce the size
by eliminating trivial constraints and haplotype candidates.

We provide a comprehensive evaluation of all the QUBO
formulations on the latest D-Wave’s quantum annealer ad-
vantage [21]. In addition, we also benchmark the QUBO
formulations using the classical simulated annealing (SA) to
seek evidence of quantum advantage. Finally, we analyze the
efficiency of the proposed formulations in terms of the number
of variables and physical qubits.

Organization. The rest of the paper is organized as follows.
We introduce the HIPP and QA in section II. Section III
presents QUBO formulations including our QHI formulation.
The experiment results are shown in section IV. Finally,
section V concludes with our discussion and future directions.

II. PRELIMINARIES

We present the preliminaries on the Haplotype Inference
(HIPP) problem and background on solving optimization prob-
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Fig. 1: Steps to solve Haplotype Inference using quantum annealing. In phase 1 (orange blocks), we find the set of pairs for
each genotype and create QUBO graph for each problem instance. In phase 2 (green blocks), we embed the QUBO graph into
physical QPU and find the optimal solutions through quantum annealing.

lems with quantum annealing (QA).
A. Haplotype Inference with Pure Parsimony Problem

As humans inherit a set of chromosomes from each parent,
a genotype (a set of observed genetic variations) at a particular
site may contain information from both parental chromosomes.
However, directly observing the separate contributions of
each parent (haplotypes) remains challenging. HIPP seeks
to determine the minimal number of haplotypes that can
explain a given set of genotypes, using the principle of
parsimony—that is, explaining the data with the least number
of unique haplotypes. Mathematically, HIPP can be visualized
as a combinatorial optimization problem, where the goal is
to minimize the number of haplotypes while satisfying the
constraints imposed by the observed genotypes.

Given [ sites of interest on the chromosome. Each site
is either homozygous (if two haplotypes of a pair share
the same value) or heterozygous (they are different). For
simplicity, we assume that genotypes are depicted as sequences
containing elements with values 0, 1, or 2. Here, values 0 and
1 signify homozygous sites, with 0 for the wild-type allele
and 1 for the mutant. The value 2 indicates heterozygous
sites. Consequently, haplotypes are represented by sequences
consisting of values 0 or 1.

Definition 1 (Haplotype Inference [22]). Given n geno-
types G = {91,92,...,9n}, each represented as a length
| string g; € {0,1,2}! and m candidate haplotypes H =
{h1,ha, ..., hy}, each represented as a string h; € {0,1},
such that each genotype can be explained by a pair of
haplotypes. A pair of haplotypes h;,h; € H can explain a
genotype g if and only if each position p € [1..1] satisfies:

0 when h;p, = hj, =0,
1 when h;p=h;, =1,
2 when h;p+hj, = 1.

Gt,p =

Definition 2 (Haplotype Inference by Pure Parsimony (HIPP)).
Given a collection of genotypes, a solution to the HIPP
problem seeks a set of haplotypes that explains the genotypes
using the fewest possible distinct haplotypes.

An example of the problem is shown in Fig. 1. First,
we find all pairs that are associated with one genotype in
the set. Genotype 221 could be explained by (001,111) and
(101,011). Whereas genotype 212 could be explained by
(011,110) and (111,010). The optimal solution is to select
H = {Hy, Hy, Hg} to cover all genotypes.

HIPP is an NP-hard problem [1]; thus, we often need to
rely on exact approaches with exponential running time like
branch-and-bound or polynomial-time heuristics that may have
exponentially bad performance guarantees [23].

B. Integer Program Formulation by Gusfield [24]

The HIPP problem can be formulated as an integer linear
programming (ILP) [24]. Let «; € {0, 1} be binary variables in
which x; = 1 iff haplotype H; is selected for 1 < ¢ < m. The
objective is to minimize the number of selected haplotypes,
ie, min) " x;.

For each genotype g¢:,t € [1,n], we define a set P; that
contains all pairs of haplotypes (H;, H;) that can explain
genotype g, 1.€.,

P, = {(4,)|(H;, Hj) explains g;}.

Further, let p;;,i,7 € [1..m] be binary variables indicating
whether or not the pair (H;, Hj) is selected. The constraints
x; > pi; and x; > pg; are to enforce that p;; = 1 iff z; =
x; = 1, i.e., both the haplotypes must be selected. For each
genotype g;, we need to ensure one pair of haplotypes that
explain g; is selected, i.e., Z pij = 1. The complete ILP

(4,5)€Py
for HIPP by Gusfield [24], referred to as ILP¢, is shown below
in equations (1)-(3).

m
min ij (1)
j=1
st. pij < x; and pi; < wj 1<4,5<m (2
> pij=1 1<t<n Q)

(2,7)€P:



C. Quantum Annealing and QUBO

Quantum Annealing (QA) provides an approach for finding
near-optimal solutions for NP-hard problems that can be
encoded into a quadratic unconstrained binary optimization
(QUBO) [19]. A QUBO minimizes a quadratic polynomial
over binary variables

Qx) = Z QijTiT g,

i,j€[1..n]

x* = arg min
x€{0,1}n

where x = (21, ,x,) € {0,1}™.
By changing variables z; = Si; L a QUBO can be easily
converted back and forth to an Ising Hamiltonian [25]

H(s)= =Y hisi— Y _ Jisisj=—h"s —s"Js (4
i=1

ij=1

Here, each discrete variable s; €= {—1,+1} represents the
site’s spin. Each assignment of spin value s € {—1,+1}",
called a spin configuration, is associated with an energy of the
system; h; is the external magnetic field at site ¢ and J;; is the
coupling strength between sites ¢ and j. Then, minimizing the
QUBO is equivalent to finding the lowest energy state, called
the ground state, of the Hamiltonian.

In the optimization approach on D-Wave Quantum anneal-
ers [21], each variable s; is assigned a value from the set
{—1,41}, indicating the site’s spin. The energy of a system
is associated with a spin configuration, which is described by
a spin value s from {—1,+1}". The external magnetic field
at a specific site is represented by h;, while J;; denotes the
coupling strength between sites ¢ and j.The optimal solutions
of the optimization problem, represented using QUBO, are
encoded within the ground states of the Hamiltonian. The
ground state of a Hamiltonian is associated with the spin
configuration of the lowest energy and can be searched for
using the quantum annealing process. The objective is to
minimize the Quadratic Unconstrained Binary Optimization
(QUBO) to determine the Hamiltonian’s ground state.

The Ising Hamiltonian is then mapped to the quantum
processing unit (QPU), which is a fixed hardware graph. Due
to the limited connectivity in the QPU, each logical spin
may be mapped to multiple physical spin qubits, with strong
coupling strength among them, through a process called minor-
embedding [25]. The success probability in obtaining optimal
solutions with QA hinges on formulating effective QUBOs
and optimizing QA solver parameters such as chain strength,
annealing time, and so on [21].

III. HIPP QUBOS FOR QUANTUM ANNEALING

We investigate three different QUBO formulations for HIPP.
The first approach, named DI, is a direct transformation of
ILP¢ in Eq. 1 into QUBO. The second formulation is a QUBO
for the Set Cover with Pairs by Cao et al. [20]. Lastly, we
propose a new QUBO, called QHI*, that repeatedly forms
penalties on groups of k variables in the constraints.

A. A Direct Penalty-based Approach (DI)

We follow the standard approach in [26] to transform ILPg
into an equivalent QUBO. Consider a binary integer linear
programming (ILP)

minimize c'x
subject to Ax <b,
x € {0,1}"

where ¢ € R", b € R™ are vectors and A € R"*" is a matrix.
We can transform the above ILP into a QUBO by introducing
binary slack variables s to obtain the equivalent equalities

Ax+Bs=bDb

and convert all the (hard) constraints into (soft) penalties to
obtain a QUBO

c'x + \|Ax + Bs — b3,

where ||.||2 denotes the norm 2 and A > 0 is a sufficiently large
constant. Thus, the constraints in Eq. 3 on the explanation of
genotypes can be converted into a soft penalty

Alg(

where A\; > 0 is a sufficiently large constant.

For the constraints in (2), we adopt a more succinct encod-
ing into penalties of the inequality < y into a penalty x —zy
in [19] to obtain the second penalty term

Ay Y

1<i<j<m

(pij — PijTi + Pij — pz‘jl‘j) )
Thus, we obtain a direct conversion of the ILPs into QUBO

Qpr = iﬂ:j-l-/h Zn: ( Z Dij — 1>2
j=1

t=1 " (i,j)€P:

A2 Z Z (2pij — pijwi — pijz;)  (6)
i=1 j=1+1
While the transformation of (QQp; is simple, its major
disadvantage is the large number of variables, up to O(n*) in
the worst case. To cope with the limited number of qubits on
existing quantum devices, we will explore two more efficient
QUBOs with significantly smaller sizes of O(n?) variables.

B. Set Cover with Pairs approach [20] - SCP

Since HIPP can be seen as a special case of the Set
Cover with Pairs (SCP) problem [27], QUBO formulations
for SCP can also be adapted to solve the HIPP. We continue
by presenting the definition of SCP, a generalization of the
NP-hard Set Cover problem [28], how HIPP can be mapped
to SCP, and the QUBO formulation for SCP.

Definition 3 (Set Cover with Pairs (SCP) [28]). Let U be a
ground set of elements and let S be a set of objects, where
each object i has a non-negative cost w;. For every pair (i, j),
let Q(i,7) be the collection of elements in U covered by the



pair (i,7). The set cover with pairs (SCP) problem asks to
find a subset A C S of minimum cost ), , w; such that
U(i,j)eA QU,j)=U

The HIPP is a special case of SCP with the set of objects
S =H ={hy,...,hp}, uniform unit cost w; = 1,7 = 1..m,
and coverage function Q(i,j) = {g:} for haplotype pair
(i,j) € P.. In fact, the ILP for SCP in Cao et al. [20] is
similar to the below ILP for HIPP in Lancia et al. [23].

m
>
j=1
s.t. Dij < ZT; and Dij < Z;

Z pij=>1
(4,7)EP:
Note that the above ILP for SCP/HIPP shares the same
objective and the constraints p;; < x;,z; with ILPg in
Eqgs.(2)-(3). The only difference is that the equality in Eq. (3) is
changed into an inequality in Eq. (7). Thus, we allow multiple
pairs of haplotypes that explain the same genotype.

Cao et al. [20] proposed an Ising Hamiltonian formulation
for the set cover with pair problem using logical operators.
Specifically, to enforce the logical OR operation V for s, =
51V s, we will use the below equivalent Ising [20]

1<4,5<m
1<t<n (@

1

and to enforce s; < so, e.g.,
will convert into

— 054207 + 0505 — 20507 — 2050%),

the constraints in Eq. (2), we

1

(I —
4 (
Let N; = |P;| and let (i, ;) be the k*" pairs in P; for k =
1...N¢. We also write pgk) in place of p;;. The constraint in
Eq. (7) can be encoded as

of + 05 —0i03).

\V pi=1, ®)
(4,5)€P:
or, equivalently,
Y, ifi=1,
s = LDyl o < < Ny — 1,
1, if i = N;.
where sgi),i = 1,..., Ny are auxiliary binary variables to

break the long V operator in Eq. (8) into elementary V operator
that can be translated into Ising Hamiltonian.

Denote by T the set of triples z = y V z needed to
encode the above long logical V operator. We convert the Ising
Hamiltonian in [20] into an equivalent QUBO, minus constant
terms, as follows

QSCP:Z-T?j‘F)\l Z (x+y+2+zy—2yz — 227)

j=1 (z,y,2)€T

Z (2pij — pijTi — DijT;). ©))

1<i<j<m

+ A2

C. QUBO for HIPP through k-binding (QHI)

We present a new QUBO formulation for ILPs, aiming to
simultaneously reduce the formulation size and improve the
solution quality. For an integer k > 2, we will divide variables
in constraint (3) into groups of size at most k. For each ¢ =
1,...,n constraint (3) Z -1 pgl) = 1 will be transformed into

a set of roughly _t equalities.
4l if i =1,
i i 1 i(k—1)41
st = E +Z]((z (k- 1)+2p§) if 2 <i <[]
1 ifi=] k]\_’ ]
(10)
where sii) are binary auxiliary variables. Remark that this

formulation is possible due to the equalities in the constraint
(3) in ILPg. The same a%)g)roach would not work for the ILP
of SCP as the value of s;’ can be as large as k in that case.

Each equality of the form s = Zi;l y; is then transformed
into penalty as

)\1((5 - iyv)z - Z yiyj)-

1<i<j<k

(1)

The extra term >, ., ;< ¥iy; allows a zero-penalty when
either one or two of y; equal one, by setting s = 1. This
relaxes the constraints and leads to a higher probability of
finding optimal solutions in our experiments.

Let Ty = {(s,y)} denote the set of equalities of form s =
Y1 + Y2 + ... + yi in Eq. (10). Our proposed QUBO formula,
QHI¥, can be written as

ix]—Jr/\l > ((s—iyi)Q— > yiyj)

(5,y)€Ty 1<i<j<k
+ A2 Z (2pij — Pijri — PijTj)- (12)
1<i<j<m

We show below the minimum penalties to preserve optimal
solutions in the proposed QUBO QHI*.

Lemma 1. For A1 > 2 and Ay > 2, any optimal solution
(x,p,s) of the QUBO in Eq. (12) induces an optimal solution
(x) for Haplotype Inference problem in Eq. 1 and vice versa.

We omit the proof due to the space limit.
Variable Reduction. We apply the haplotype reduction tech-
nique in [1] to reduce the QUBO size. For each set P, we
remove all of p;; (except one if it makes IP; empty) such that
both haplotype h; and h; can only create genotype g;.

IV. EXPERIMENTS

We perform experiments to compare the effectiveness of
different QUBO formulations and the performance of QA
versus its classical counterpart SA for HIPP.



A. Setup

System. We present experimental results on D-Wave Ad-
vantage [21], the latest quantum annealer from D-Wave. The
D-Wave Advantage system 4.1, an AQC with 5627 qubits,
is based on Pegasus architecture. Each qubit is connected via
internal coupling to 12 other qubits while has 3 connections for
two external couplers and one odd couplers. For the simulated
annealing, we run on Intel Core 17 (2.60GHz) machine.

Datasets. The dataset containing 20 instances is generated
using Gusfield’s method [1]. First, we generate m’ = 10
‘ground truth’ haplotypes for each test using Hudson’s soft-
ware [29]. Secondly, the haplotypes are randomly paired to
create a random set of n € (m’/2,2m’] genotypes data by the
coalescent process, modeling a reproduction rate smaller than
2.0 [24]. From the generated genotypes, we find all possible
candidate haplotypes.

Methods. We compare three QUBO formulation methods
presented in Section III, namely, DI, SCP, and QHI¥, with
k = 2 as the default value. We run each formulation with two
different QUBO solvers, simulated annealing, and quantum
annealing. Both are from D-Wave’s Ocean SDK.

Parameters. We use the default minorminer in D-Wave’s
Ocean SDK to find the minor-embedding of QUBO onto
the Pegasus hardware graph. The chain strength prefactor is
reduced to 0.15 to lower the noise level. For the D-Wave
annealer, we set the annealing time to 150us with 1000
samples, i.e., a total annealing time of 0.15s. For the simulated
annealing, we set the number of sweeps equal to 100 and the
number of runs to 1000.

Postprocess and Error-correction. The annealing results
do not always satisfy all the constraints, meaning some haplo-
types must be added to explain all genotypes. Our post-process
finds the second haplotype if the first haplotype is already in
the set. Otherwise, we pick an arbitrary pair of haplotypes.
Not only does the postprocessing provide an effective error
correction but also enables the lowering of the penalties A; and
Ag to the minimum values of 2.0 for all QUBO formulations.

Metrics. For evaluation of the formulation’s size and the
embedding, we report the problem size (m -+ N- the number of
haplotypes plus the number of pairs), the number of variables
(#Var), and the number of non-zeros (#NonZ) in the QUBO
formulations; the number of qubits (#Qubits) and the max
chain length (MaxLen).

For the evaluation of solution quality and runtime, we have
the optimal gap - the ratio between the best solution and the
optimal one, the percentage of finding at least one optimal
solution in one run (%Solve), the percentage of finding an
optimal solution in each run (%Opt) and the average time to
obtain the first optimal solution (TTS).

B. Results

a) Comparison between DI, SC'P, and QHIk: We show
#Qubits, %Solve, and %Opt with quantum annealing using
SCP, DI, QHI? in Table I. DI requires more physical
qubits than SCP. The number of qubits in QHI? is on average
15% less than the other two due to the variable reduction

Formulation DI SCP QHI?
#Var 1189 1654 142.0
#NonZ 573.8 4182 365.6
#Qubits 248.2 2405 206.5
9oSolve 10.0 95.0 100.0
%0Opt 0.08 6.73 10.17

TABLE I: Comparision between DI, SCP, and QHI>
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Fig. 2: Comparison of (Left) Number of physical qubits and
(Right) The optimality gaps for each test case.

technique. In terms of success probability, the fraction of test
cases in which optimal solutions are found, Q HI? find optimal
solutions in all 100% test cases while SCP and DI can find
optimal solutions in 95% and 10% of test cases, respectively.

Formulation  Penalty 1 2 3 4
#Vio.t 427 0.025  0.0007 0
QHI? %Solve 95 100 100 90
%Opt 49.63  49.92 1349  6.79

TABLE 1II: Relation of penalty values and solution quality
using Simulated Annealing. {#Vio. is the average number of
violated constraints.

b) Setting Penalties: As shown in Table II, the success
probability decreases as the penalties go higher. The best
penalty value is 2, the minimum value to guarantee the optimal
QUBO formulation inducing an optimal solution of HIPP.
Setting penalty factors A\; and Aq less than 2 results in violation
of constraints and lower success probability.

k 2 3 4 5 6
#Var 1420 1277 1202 1169 1159
#NonZ 365.6 354.6 359.0 366.6 3775
#Qubits  206.5 1972 190.7 184.8 190.4

MaxLen 3.8 4.0 4.0 3.9 4.1

TABLE III: Comparison of the number of variables (#Var),
non-zeros (#NonZ), and qubits (#Qubits) with QHI*.

c) Group size k for QHI*: We report QUBO sizes of
different k values for QHI” in Table III. The minimum number
of terms used in formulations is 354.6 with QHI®. As expected,
k increase will reduce the number of variables. However, it is
surprising that the number of physical qubits increases when
k > 4. This indicates the complexity associated with higher k&
makes it harder to embed the QUBO onto the hardware graph.

d) Quantum Annealing vs. Simulated Annealing: We
report TTS for quantum annealing and simulated annealing
with the formulations QHI? in Table 3. Simulated annealing’s
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Fig. 3: Time to solution (ms) of Simulated Annealing (SA)
and Quantum Annealing (QA) with QH I?

TTS is on average 5.67 ms, while the annealing time for QA
is 7.11 ms. However, the curve shows that QA runs faster on
larger instances, indicating that we need to investigate more
to verify the quantum speedup for this problem. The time to
solution %, for QA takes into account the initial programming
time (¢,,04) for each problem; the annealing time ({4nnealing)
and the readout time (¢,cqd0ut) for each sample. Therefore, it
does not include the access time and the time to embed the
QUBO into the hardware graphs.

V. CONCLUSION

We investigate three QUBO formulations for the HIPP prob-
lem. Both the QUBO in [20] and our proposed QHI* method
outperform the direct conversion of the ILPs for HIPP [22].
Overall, our proposed method QHI* gives the best success
probability in finding optimal solutions while requiring fewer
qubits. Compared to classical simulated annealing, quantum
annealing has shown promising speed-up, ignoring commu-
nication and minor embedding costs. Future development in
both hardware and software for quantum annealing can further
expand this gap towards a true quantum advantage.
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