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ABSTRACT
Microarchitectural attacks on CPU structures have been studied
in native applications, as well as in web browsers. These attacks
continue to be a substantial threat to computing systems at all
scales.

With the proliferation of heterogeneous systems and integra-
tion of hardware accelerators in every computing system, modern
web browsers provide the support of GPU-based acceleration for
the graphics and rendering processes. Emerging web standards
also support the GPU acceleration of general-purpose computation
within web browsers.

In this paper, we present a new attack vector for microarchitec-
tural attacks in web browsers. We use emerging GPU accelerating
APIs in modern browsers (speci�cally WebGPU) to launch a GPU-
based cache side channel attack on the compute stack of the GPU
that spies on victim activities on the graphics (rendering) stack
of the GPU. Unlike prior works that rely on JavaScript APIs or
software interfaces to build timing primitives, we build the timer
using GPU hardware resources and develop a cache side channel
attack on Intel’s integrated GPUs. We leverage the GPU’s inherent
parallelism at di�erent levels to develop high-resolution parallel
attacks. We demonstrate that GPU-based cache attacks can achieve
a precision of 90% for website �ngerprinting of 100 top websites. We
also discuss potential countermeasures against the proposed attack
to secure the systems at a critical time when these web standards
are being developed and before they are widely deployed.

CCS CONCEPTS
• Security and privacy ! Side-channel analysis and counter-
measures.
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1 INTRODUCTION
Microarchitectural side channel attacks leak sensitive data through
unintended side-e�ects of program execution observed through
shared microarchitectural resources. Attacks have been developed
on a variety of microarchitectural structures including di�erent
levels of cache [28, 37, 38, 47, 56, 59–61], branch predictors [24],
random number generators [23], and others [17, 34]. These attacks
continue to be a substantial threat to computing systems at all
scales where trusted software can be co-located with untrusted or
compromised software on the same hardware resources.

Caches (especially the cross-core shared Last-Level Cache (LLC))
have served as the most important microarchitectural structure
to implement timing side channels. In a cache side channel, a spy
application �rst brings the shared cache to a known state, waits
for the victim application to execute, and then measures the access
time to the shared cache to observe contention from the victim
application’s activities, which are potentially correlated to its secret
data due to some data-dependent software or hardware implemen-
tation details. To distinguish the cache hits from cache misses in a
cache attack, a high-resolution timer is required.

Although attacks from native applications can be very dangerous,
side channels, speci�cally timing attacks have been recently studied
in JavaScript, as well. Most of these attacks use JavaScript’s timer [8]
to carry out timing measurement [16, 45, 54]. To protect against
these timing attacks, all major browsers limited the resolution of
the timer [1, 18, 62]. As a result, the timer is not precise enough to
distinguish cache hits from misses.

Several works propose some timing primitives in JavaScript to
recover high-precision timers [26, 35, 36, 50]. Gras et al. [26] pro-
pose two mechanisms (shared memory counter and time to tick)
to craft a high-resolution timer in JavaScript. They use a dedicated
JavaScript web worker for counting through a shared memory area
(SharedArrayBu�ers [39] interface) between the main JavaScript
thread and the counting web worker. To respond to these attacks,
major browser vendors disabled the SharedArrayBu�ers interface
in JavaScript [4]. This interface has been recently re-enabled for
secure contexts only (same-origin) [39]. Some recent works devel-
oped coarse-grained cache attacks using the limited low-precision
timer in JavaScript. Shusterman et al. [52] use the low-precision
timer to implement a cache occupancy channel on LLC; a coarse-
grained Prime+Probe attack inwhich thewhole LLC is being probed.
Although no spatial information on the victim’s accesses can be ex-
tracted by cache occupancy channels, these coarse-grained attacks
have been shown to be e�ective for the aggregate measurement of
the victim’s activities (such as website �ngerprinting).
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Until recently, most of the microarchitectural side channel at-
tacks have been demonstrated on CPUs. However, modern com-
puting systems are increasingly heterogeneous, combining CPUs
along with general-purpose or specialized accelerators to perform
application-speci�c computations o�ering higher performance and
signi�cant power advantages. Graphics Processing Units (GPUs) are
the most widely used accelerators with market penetration into a
wide range of end-user systems, edge devices, autonomous systems,
large-scale HPC clusters, and clouds to enhance the performance
of both multimedia and computational workloads. Recent work
demonstrated that GPUs in user devices and cloud-based systems
are also vulnerable to microarchitectural covert and side channel
attacks in native applications [22, 32, 33, 41, 42].

New web standards are increasingly making it possible for web
pages to task GPUs on client devices to improve the browsing ex-
perience. This includes WebGL [11] which brings GPU-accelerated
3D graphics to the web. Frigo et al. [25] use WebGL timing APIs
to implement a Rowhammer attack on DRAM through integrated
GPUs in mobile SoCs. In response to this attack, both Chrome and
Firefox disabled the WebGL timer [40], which was re-enabled in
same-origin later.

Unlike WebGL which is designed only for graphics applications,
new GPU-accelerating APIs have emerged to support GPU acceler-
ation of both graphics and computations in modern web browsers.
We demonstrate that these emerging GPU-accelerating APIs on the
web (such as WebGPU [12] which is called the ”future web stan-
dard” for both accelerated graphics and compute processes) can
o�er unique opportunities for attackers. Starting from a malicious
webpage, a remote attacker without special access to the system
can launch an attack that executes on the compute stack of GPU
and spies on the rendering process of a victim user.

In this paper, we study a novel attack vector for microarchitec-
tural side channels in JavaScript through WebGPU which exposes
the general-purpose compute capability to attackers, enabling them
to spy on the rendering process. We demonstrate that the GPU’s
unique architecture and capabilities enable an attacker to (1) build
a high-resolution timer on hardware resources that can not be
easily disabled like software interfaces such as JavaScript timer,
SharedArrayBu�er, and WebGL API; (2) develop a low-noise GPU-
based cache occupancy channel to spy on the victim’s activities
(across the compute and graphics stack of the GPU – "cross-stack"
attack); and (3) leverage the GPU’s inherent parallelism to achieve
high-resolution cache attacks.

We also discuss potential countermeasures to secure the systems
against this class of attacks. Understanding the type of access pro-
vided to the attacker through these GPU-accelerated extensions
can help us design these emerging interfaces to reduce the threat
posed by these attacks, at a critical time when these web standards
are being developed and before they are widely deployed.

In summary, the paper makes the following contributions:
• We implement a high-resolution timer using GPU hardware
resources in the web browser that does not rely on any
JavaScript software interfaces and can bypass all the existing
mitigations against microarchitectural attacks in major web
browsers.

• We identify a new low-noise leakage vector (the GPU’s inter-
nal L3 cache) to develop cache attacks in web browsers. The

Figure 1: Architecture of Intel SoC

GPU’s internal L3 cache serves as the highest (and smallest)
level of cache where the compute and rendering accesses in-
terfere, enabling high-resolution cross-stack attacks within
the GPU (where the rendering process is executed). It is also
not a�ected by noise from CPU applications.

• We develop a remote cache occupancy channel through the
WebGPU API on Intel-based systems and demonstrate an
end-to-end website �ngerprinting attack. We evaluate the
use of two machine learning techniques, Nearest Neighbor
and Random Forest, and a deep learning model for �nger-
printing websites based on the cache access timing traces
collected while being loaded and rendered by the GPU.

• We leverage the GPU’s parallelism at di�erent levels to de-
velop parallel attacks and increase the resolution of our cache
occupancy channel.

2 BACKGROUND
We consider Intel integrated GPUs (iGPUs) in our attacks as the
case study, as Intel dominates with more than 60% of the graphics
card market [2] in desktop PCs and laptops, given that almost all
Intel CPUs include an integrated GPU.

In this section, we introduce the Intel integrated GPU architec-
ture and web-based GPU accelerating APIs to provide the back-
ground necessary to understand our attack.

2.1 Architecture of Intel Integrated GPUs
Most of Intel’s CPUs in laptops and desktops have integrated GPUs
on the same die as the CPU, which provides graphics, compute,
media, and display capabilities. Integrated GPUs accelerate the real-
time rendering process and multimedia heavy workloads without
the need for a separate (bulky, expensive, and power-hungry) dis-
crete GPU. Its underlying compute architecture also o�ers general-
purpose compute capabilities with teraFLOPS performance. Figure 1
shows the overall architecture of an Intel System-on-Chip (SoC).
The iGPU is on the same die as the CPU and connected to CPU
cores and the rest of SoC components with a ring interconnect:
a bidirectional 32-byte wide data bus. The CPU and iGPU share
the Last-Level Cache (LLC), system agent, and memory subsystem.
The system agent bundles the memory management unit, memory
controller, display controller, and other I/O controllers [29].

The iGPU consists of a number of slices, each slice has a num-
ber of subslices, and each subslice has of a number of Execution
Units (EUs). These modular building blocks enable the creation of
many product variants with di�erent architectures for a variety of
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platforms (e.g. Intel HD Graphics, UHD Graphics, Iris Graphics, Iris
Plus Graphics, and Iris Xe Graphics). Figure 2 shows the internal
architecture of a Gen9 integrated GPU (Intel HD Graphics 530) with
a single slice that is composed of three subslices for a total of 24 EUs.
Each subslice is equipped with private L1 and L2 sampler caches
that are used only in the graphics stack for read-only memory fetch
of sampling the textures and image surfaces. There is an L3 cache
shared across all subslices and used for both computational and
graphics stacks.

The dataport in each subslice is a memory load/store unit that
supports e�cient read/write operations for a variety of general-
purpose bu�er accesses and dynamically coalesces scattered mem-
ory operations of threads in an SIMD-width of threads into fewer
operations over non-duplicated 64-byte cache line requests. All
samplers and dataports have their own separate memory interfaces
to the L3. In Gen9-based Intel iGPU architectures, the L3 cache
size is 768KB per slice, which can be allocated as Shared Local
Memory (SLM) or as a data cache. Shared local memory is a highly
banked data structure in the L3 complex that supports programmer-
managed data for sharing among EU hardware threads within the
same subslice. In Gen9-based architectures, the shared local mem-
ory size is 64KB per subslice, accessible from all 8 EUs in the subslice.
Gen9.5 Graphics architecture introduces some light enhancements.

Unlike Gen9 Graphics architectures, in Gen11 iGPUs [30] the
shared local memory (SLM) is integrated close to the EUs. Therefore,
SLM and main memory accesses are split and the SLM tra�c does
not interfere with the L3/memory access through the sampler unit
or the dataport. In Section 4, we build our customized timer using
SLM in the GPU’s hardware and we believe this separated access
pathway in Gen11 architecture enables the attacker to build a more
reliable and noise-free customized timer in the GPU’s SLM without
interfering with the cache accesses.

Furthermore, in Gen11-based architectures, 8 subslices (in total
64 EUs) are clustered in a single slice, and the size of the L3 cache
is increased to 3 MB for the application data cache and graphics
pipeline. Despite the larger L3 cache size in Gen11 architecture,
more subslices provide a higher level of parallelism. We develop
our attack on three recent iGPU architectures: Gen9, Gen9.5, and
Gen11 architectures.

2.2 Native GPU Programming APIs
Massively parallel GPUs accelerate graphics workloads, as well as
general-purpose computations. In native applications, GPUs are
programmed through OpenGL [7] or OpenGL-ES[6] APIs on the
graphics stack. The programming language on the computational
stack is mostly OpenCL [5] (and CUDA [3] for Nvidia GPUs).

Since our attack is developed using the computational stack of
GPUs, in this subsection we provide the necessary background on
general-purpose programming on GPUs. GPUs operate in Single-
Instruction Multiple Data (SIMD) mode, such that in each cycle,
multiple threads are executing the same instruction on multiple
data in parallel. Each GPU application consists of some GPU kernels
and each GPU kernel launches a large number of threads grouped in
workgroups (that are further divided into wavefronts). Workgroups
are assigned to subslices in a round-robin manner. Within each
subslice, there is a local thread dispatcher, which dispatches the

Figure 2: Architecture of Intel graphics Gen9

SIMD-width (wavefront) of threads from that workgroup to EUs to
be executed in parallel. Shared local memory is shared across all
threads within a workgroup and is private to the workgroup.

2.3 Web-based GPU Programming APIs
Modern web browsers have started to support GPU-based hard-
ware accelerations for high-performance and e�cient rendering
processes. This includes WebGL [11] which is based on OpenGL-ES
and is a cross-platform API to bring GPU-accelerated 3D graphics
to the web.

WebGPU: Although WebGL is designed only for graphics appli-
cations, the recent trend to integrate both graphics and compute
APIs in native applications (e.g. Vulkan [10]) has led to emerg-
ing JavaScript APIs such as WebGPU, which is called the "future
web standard" for both accelerated graphics and compute. There-
fore, WebGPU [12] supports the use of general-purpose compute
functionality within web browsers. WebGPU is available today
in Chrome 113 on ChromeOS, macOS, and Windows, with other
platforms coming soon [13].

A WebGPU-based application is a part of a JavaScript program
that is able to launch a compute GPU kernel (called a shader) to be
executed on the GPU. Like native general-purpose programs, this
GPU shader consists of a number of workgroups (groups of threads)
that are assigned to di�erent subslices and will be scheduled on
EUs for execution.

2.4 GPU-based Rendering in Web Browsers
With GPUs now an integral part of every end-user computing de-
vice, web browsers have started to use this underlying hardware
more e�ectively to achieve better performance and power savings
in screen rendering. Using the GPU to composite the contents of a
web page can result in signi�cant speedups. GPU-based hardware
acceleration for rendering is enabled in all major web browsers by
default (even without enabling WebGL or WebGPU APIs). The web-
site’s content is o�oaded to GPU memory, fetched by GPU sampler
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units (passing through L3 and also L1 and L2 sampler caches), pro-
cessed on the GPU, and �nally dumped in the framebu�er (graphics
memory), and rendered on the screen.

This GPU-based rendering process leaves some footprints on
GPU’s internal microarchitectural structures (e.g. caches) and pro-
vides an opportunity for the attackers to spy on users’ browsing
and other activities through the shared resources within the GPU.

In this paper, we use WebGPU APIs to launch our attack and
we show that exposing GPU hardware acceleration for general-
purpose computations through APIs such as WebGPU provides
a strong leakage vector for developing remote microarchitectural
attacks that can spy in the JavaScript sandbox and bypass all existing
mitigations against microarchitectural attacks in JavaScript.

2.5 Cache-based Side Channel Attacks
Caches have been shown to serve as the most well-known medium
for microarchitectural covert and side channel attacks. Many vari-
ants of cache-based side channels have been studied in native ap-
plications [28, 37, 38, 60, 61], as well as in JavaScript [45, 51, 52].

Depending on the system architecture, system support, and the
attacker’s ability, several techniques have been studied to develop
cache-based side channels. One of the most well-known techniques
is the Prime+Probe attack, which is implemented in three steps: (1)
the attacker Primes the shared cache by accessing its own data from
the memory and �lling a speci�c cache set, (2) the attacker waits
for the victim application to do some memory accesses, and (3) the
attacker Probes the cache by accessing its own data and measuring
the access time. A high latency shows a cache miss, indicating that
the victim has accessed this cache set and evicted the attacker’s
data. However, low latency is interpreted as "no access" from the
victim. Usually, the access pattern of the victim process is correlated
to some secret information that will be leaked by cache-based side
channel attacks.

In Prime+Probe attacks, in addition to having access to a high-
resolution timer to track cache hits/misses, the attacker needs to
focus on some speci�c cache set to probe the victim’s activity. To
achieve this, the pre-attack step will be to reverse-engineer the
address mapping and �nd the eviction set (a group of addresses
that are mapped to the same cache set for prime and probe steps).
A more coarse-grained Prime+Probe attack is also possible (called
a cache occupancy channel), in which the attacker primes and
probes the entire cache and monitors the victim’s cache activity
over the whole cache size. Cache occupancy channels may not be
accurate enough for extracting the secret information from some
applications (e.g. encryption); however, they have been shown to
be very e�ective in tracking user activities on the web (e.g. web-
site �ngerprinting [52]) in which the rendering process leaves a
large footprint all over the entire cache. Cache occupancy channels
relieve the attackers from �nding the eviction sets in restricted
environments such as JavaScript with no system support, no notion
of pointers, and limited access to high-resolution timers.

In this paper, we �rst develop a cache occupancy channel within
the iGPU through theGPU’s internal L3 cache, launched in JavaScript,
and then, we show how the GPU’s inherent parallelism (and the
GPU-based high-resolution timer) enable the attacker to increase
the resolution of cache occupancy channels.

3 THREAT MODEL
GPU and CPU have their own cache hierarchies. In integrated
heterogeneous systems, the CPU and GPU share the LLC and the
systemmemory. Most prior works on remote cache-based side chan-
nel attacks in JavaScript target CPU caches (mostly LLC). Modern
web browsers provide GPU acceleration for screen rendering. Some
recent works develop microarchitectural attacks on the CPU side
and use WebGL timing APIs or Javascript timers to target the ren-
dering process on GPU [20, 53, 57]. Unlike prior work, we develop
our attack within the GPU where the rendering process is executed
(using a WebGPU-based spy also running on GPU).

Our threat model considers end-to-end side channel attacks
in JavaScript through WebGPU. We develop a cache occupancy
channel attack on the GPU’s internal L3 cache. Our attack assumes
that the attacker uses WebGPU to launch a process on the compute
stack of the GPU and spies on the web browser’s rendering process
that is also accelerated by GPU hardware on the graphics stack (it
is enabled by default in major web browsers).

A possible scenario where such an attack may be possible is that
a remote attacker without special access to the system designs a
malicious website using the WebGPU API; once visited by a victim
user, the attack gets launched and executed on the GPU and spies
on the rendering process of the victim user. Figure 3 shows our
threat model in comparison with prior work.

We do not assume any system support such as huge pages (to fa-
cilitate extracting eviction sets which are required in Prime+Probe
attacks), and also do not rely on any support from JavaScript or We-
bGPU APIs for the timing mechanisms. We assume all existing and
potential JavaScript and browser mitigations against microarchi-
tectural attacks are in place, including disabled JavaScript/WebGL/
(potential) WebGPU timers [1, 18, 40, 62], disabled “SharedArray-
Bu�er" [4], as well as enabled “site-isolation" patch [9] against
transient execution attacks in JavaScript. We develop our attack
and show its e�ectiveness in the presence of all these mitigations.

Experimental Setup: We developed and validated our attacks
on four di�erent Intel-based machines with di�erent GPU gen-
erations and models, OSes, and browser versions: (1) a MacBook
Pro with i7-6700HQ CPU and HD Graphics 530 (Gen9 Graphics
architecture), (2) a MacBook Pro with I5-7360U CPU and Iris Plus
Graphics 640 (Gen9 Graphics architecture), (3) a Dell laptop with i7-
11800H CPU and UHD Graphics 620 (Gen9.5 Graphics architecture)
with Linux OS, and (4) a Dell laptop with I5-11320H CPU and Iris
Xe Graphics (Gen11 Graphics architecture) with Windows 11 OS.
We use WebGPU in the experimental versions of Google Chrome,
speci�cally, Google Chrome Canary on macOS and Windows and
Google Chrome Dev on the Linux-based system to develop our
attack. To cover all Graphics architectures with di�erent OSes, we
report the classi�cation results for one Gen9 Graphics architecture
(�rst con�guration on macOS), one Gen9.5 Graphics architecture
(third con�guration on Linux), and one Gen11 Graphics architecture
(fourth con�guration on Windows).

Current integrated GPUs do not support running multiple com-
putation kernels from separate contexts concurrently and therefore
no noise is expected on the compute stack of the GPU. Unlike prior
work, our attack is also not a�ected by the noise on the CPU side,
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Figure 3: Our threat model (compared with prior work)

as it is completely developed within the GPU.

Comparison with prior work: Until recent years, all JavaScript-
based microarchitectural attacks have been developed on the CPU
side (targeting large LLC or DRAM) and have used JavaScript soft-
ware interfaces to build high-resolution timers [26, 45, 50–52].

Most GPU-based microarchitectural attacks are developed in
native code [22, 32, 33, 42]. Several recent works proposed GPU-
based attacks in browsers that create contention on the graphics
stack of GPU and measure the time of GPU tasks on the CPU side
using software interfaces (WebGL timer or JavaScript timer) [20,
53, 57].

As shown in Figure 3, our attack is developed completely within
the GPUwhere the rendering is processed. We uniquely identify the
GPU’s internal L3 cache as the highest and smallest level of cache
where the compute and rendering accesses interfere (details in Sec-
tion 4). Our cross-stack attack uses the emerging general-purpose
compute capability for the web (supported only by WebGPU in
JavaScript) to build the timer using GPU hardware resources (de-
tails in Section 4) and spy on the rendering process within the GPU.
Our attack does not rely on any software interfaces/APIs for build-
ing the timer. It is not impacted by the noise from other processes
on the CPU side. Moreover, any noise generated by the memory
accesses of the attack code itself is isolated from the rendering
process (victim) since the spy is on the compute stack of the GPU
(details in Section 4). By leveraging the GPU’s parallelism and our
customized high-resolution timer, we increase the resolution of our
cache occupancy channel (details in Section 7).

Table 1 compares our threat model, our attack leakage resource,
and our high-resolution timing mechanism with the most relevant
microarchitectural attacks in web browsers or GPU-based attacks
in native code targeting web browsers.

Figure 4: The separated pathways of the Spy (compute) and
Victim (graphics) accesses (interference at the L3 cache)

4 ATTACK PRIMITIVES
In this section, we present our attack vector while explaining the
primary ingredients necessary for our attack.

4.1 Why GPU’s Internal L3 Cache?
As discussed in earlier sections, Intel iGPUs have three levels of
internal cache, as well as LLC that is shared with the CPU. As
shown in Figure 4, L1 and L2 are read-only sampler caches, private
to each subslice and dedicated to the graphics stack. The GPU’s
internal L3 cache is shared across all subslices within the slice and
supports caching all memory accesses from the graphics stack (L1
and L2), as well as read/write memory accesses from the compute
stack (routed through the dataport). We build our attack on the
GPU’s L3 cache for the following reasons:

• GPU’s L3 cache is the highest level of cache and the smallest
one on which the graphics and compute memory accesses
interfere. We exploited these separate memory access path-
ways to monitor the screen rendering process through the
L3 cache using a compute spy.

• Since memory requests from the compute spy are directly
served by L3, to develop side channel attacks on L3 from
a compute context, the attacker does not need to evict any
higher level of caches, and it simpli�es the attack signi�-
cantly.

• Unlike the LLC, the GPU’s internal L3 cache is not a�ected
by the noise from the processes running on the CPU cores.

• Prior work [22] has shown that the GPU’s L3 cache address
mapping does not include index hashing, which simpli�es
our high-resolution parallel attacks (presented in Section 7),
in which each thread probes a portion of cache (all in paral-
lel).

L3 Cache Structure: In Gen9-based Intel iGPU architectures, The
L3 size is 768 KB per slice that can be allocated as application L3
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Table 1: Microarchitectural attacks in web browsers or (from GPU native code targeting web browsers)

Attack Processor Leakage resource Timing mechanism
Oren et al. [45] Side channel CPU LLC JavaScript Timer (Software)

(Prime+Probe)
Gras et al. [26] Side channel CPU LLC SharedArrayBu�er (Software)

(Prime+Probe & Evict+Time)
Schwarz et al. [50] Covert channel CPU DRAM SharedArrayBu�er (Software)
Shusterman et al. [51] Side channel CPU LLC JavaScript Timer (Software)

(Cache Occupancy)
Shusterman et al. [52] Side channel CPU LLC JavaScript Timer (Software)

(Cache Occupancy)
Wu et al. [57] Side channel from CPU All rendering resources JavaScript timer (Software)

(CPU,GPU,and screen bu�er)
Naghibijouybari et al. [42] Side channel in GPU (from Graphics/Compute GPU’s memory allocation –

native code to browsers) & Performance counter (* no timing *)
Frigo et al. [25] Rowhammer from iGPU (Graphics) to DRAM DRAM WebGL timer (Software)

Cronin et al.. [20] Side channel from CPU to GPU GPU contention using WebGL JavaScript timer (Software)

Laperdix et al. [53] Side channel from CPU to GPU GPU’s EUs WebGL timer (Software)
WebGPU-SPY Side channel in iGPU (cross-stack) GPU’s L3 cache Hardware-based timer
(This work) (from Compute to Graphics stack) (Cache Occupancy) within GPU

data cache, bu�er for graphics pipeline, or shared local memory
(SLM). The typical allocation for application data cache is 512 KB
per slice. The L3 cache size is increased to 3MB in Gen11 iGPU
architectures.

Shared local memory is integrated into the L3 fabric with the
size of 64KB per subslice. Based on Intel documentation [29, 30]
and reverse engineering results of prior work [22], The L3 is 64-
way set-associative, partitioned into 4 banks (2 bits for address
mapping) of each 128 KB. Each bank is further partitioned into 8
sub-banks (3 bits for address mapping) and each sub-bank has 32
sets which require 5 bits in the address bits for address mapping.
As a result, a total of 10 bits (5 bits for cache set + 2 bits for cache
bank + 3 bits for sub-banks) determine the set of the L3 in which
a cache line resides. These bits are the least signi�cant bits of the
address after accounting for the cache line o�set bits–that is, there
is no index hashing in L3. This simpli�es the cache attacks in a
restricted JavaScript environment with no notion of pointers and
no information about the cache address mappings. An attacker
with a single thread can probe the whole bu�er of L3 cache size
to implement a cache occupancy channel, and in an optimized
scenario, an attacker can leverage GPU parallelism and launch
multiple threads, each probing a portion of the whole bu�er, all in
parallel to increase the resolution of the attack.

4.2 Building High-Resolution Timer
Our attacks do not rely on JavaScript, WebGL, or (potential) We-
bGPU timing interfaces. We also do not assume the support of
software interfaces like “SharedArrayBu�er" or “O�ScreenCanvas"
in JavaScript that facilitate the building of high-precision timers in
the absence of timing APIs, as all of these interfaces have been al-
ready disabled or restricted in response to prior microarchitectural
attacks in JavaScript.

Instead, we build our customized high-resolution timer by ex-
ploiting the GPU’s shared local memory in hardware that cannot
easily be disabled like software interfaces (e.g. SharedArrayBu�er)
as a quick patch. All GPUs have shared memory in hardware, which
is a critical resource to enable massively parallel computations, and
disabling access to this shared memory leads to a large performance
overhead.

We leverage the idea proposed in [22] that built a customized
timer for a native CPU-GPU attack. We show that WebGPU exposes
this high-resolution hardware-based timer by enabling general-
purpose computation in JavaScript. To build the timer, we de�ne a
counter value stored in the shared local memory that is private to
a subslice and can be accessed by all threads of a workgroup that
is assigned to that subslice. We launch a workgroup of 96 threads,
in which 64 threads (64/32 = 2 wavefronts, we call these “counting
threads") increment the counter value in the shared memory and
just 1 single thread in the third wavefront (we call it the “attacker’s
thread" is active and accesses the memory for priming/probing the
cache. All these three wavefronts execute in parallel. To measure
the access time, the attacker’s thread reads the counter value as
timestamps before and after the access. Figure 5 shows the im-
plementation of our customized timer on the GPU’s shared local
memory.

Note that the maximum number of threads per workgroup is 256.
Unlike [22] which uses one wavefront as the attacker’s wavefront
and 224 remaining threads (7 wavefronts) as counting threads, we
have observed that 64 threads for counting achieve a reasonable
timing accuracy to track cache hits/misses. In Section 7, we discuss
how saving the remaining threads helps us speed up the attack.

Despite the limited programming support on the current exper-
imental versions of WebGPU (e.g. lack of volatile memory type
and proper barrier instructions to synchronize the threads within
a workgroup), we were able to build the customized timer on the
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Figure 5: Customized timer on WebGPU

Figure 6: Customized timer characterization in Gen11 iGPU

compute stack of GPU using WebGPU that is precise enough to
determine the L3 cache hits vs. misses, as shown in the histogram
in Figure 6. We also observed that the separate access pathways
to SLM and the L3 cache in Gen11 architectures provide a more
reliable timer with a lower noise level.

5 CACHE OCCUPANCY CHANNEL
In this section, we develop a WebGPU-based cache occupancy side
channel attack. Cache occupancy has previously been implemented
on the LLC in native code for covert channels and measuring co-
resident activities [19, 49], as well as in JavaScript on the CPU
side [52], which has been shown to be very e�ective for conducting
website �ngerprinting.

We demonstrate a novel attack vector through the iGPU which is
(1) faster, given that the GPU’s L3 cache is smaller than LLC (e.g. in
our target Gen9-based system, the L3 is 1/16 of the LLC size), (2) has
higher quality, since the attack is developed within the GPU where
the rendering is processed and is not impacted by the noise from
the CPU applications, and (2) achieve higher resolution, since the
attacker can build parallel attacks by leveraging GPU parallelism
at di�erent levels and high-resolution timer that is built by GPU’s
hardware resources.

In our cache occupancy channel, the attacker allocates a bu�er
the size of the GPU’s L3 cache (e.g. 256KB in our Gen9 system)

and launches a GPU compute shader with 1 single workgroup.
This workgroup consists of 3 wavefronts (96 threads), in which
64 threads (�rst two wavefronts) are used for building the timer
and just 1 single thread (the attacker thread) in the third wavefront
is active, as shown in Figure 5. The attacker thread accesses the
whole bu�er repeatedly in a loop and measures the access time.
The victim’s memory accesses evict the attacker’s bu�er from the
cache, introducing delays for the attacker’s next access. Thus, the
time to access the attacker’s bu�er is roughly proportional to the
number of cache lines that the victim uses.

Due to instruction-level parallelism (ILP) on the GPU, we ob-
served that the timing instructions may overlap with their previous
instructions and even return before the previous instruction �n-
ishes. To lower the e�ect of instruction-level parallelism on GPU
and ensure the in-order execution of the critical part of the code,
we used some dummy instructions that are dependent on the crit-
ical memory access and timing instructions, making the timing
measurement instructions arti�cially dependent on the memory
access instructions. We also ensure that these dummy instructions
do not interfere with either timing or memory accesses, and as a
result, do not add noise to our experiments. We access the bu�er
in a pointer-chasing manner and randomly permute the order of
elements in the bu�er to minimize the cache prefetching impact.

To validate our attack, we launch the attack to collect the cache
access timing traces when a user is visiting some websites. We
call the cache access timing trace a “memorygram" (like prior
work[45, 52]).

Our Observations: We collected the timing measurements over 5
seconds for each visit to each website. However, we noticed that
the GPU shader program of our cache occupancy channel that is
repeatedly accessing the large array saturates the GPU resources,
and is long enough for the iGPU that the victim user can notice
the rendering slowdown. To overcome this challenge, we launch
hundreds of very short GPU shader programs, each accessing the
whole bu�er once and recording the time (that was measured inside
the GPU shader using our customized timer and does not include
the shader launching overhead). Although it has the overhead of
launching a shader program for each point of memorygram and
lowers the resolution (sampling rate) of the attack, it does not
impact the rendering process of the victim. In Section 7, we show
how we can leverage GPU parallelism to increase the resolution of
our cache occupancy channel.

Figure 7 shows the extracted memorygrams by our cache occu-
pancy channel using 1 single attacker thread on a single subslice.
The X-axis is the iteration number of probing the bu�er over time
(256 iterations), and the Y-axis is the access time (counter value)
of the whole bu�er. The Y-axis for all plots ranges from 80000 to
120000. We observe that (1) every website has a unique memory-
gram due to the di�erent number of objects and di�erent sizes of
objects being rendered, and (2) memorygrams of each website are
similar across several trials.

6 WEBSITE FINGERPRINTING
To evaluate the e�ectiveness of our GPU-based cache occupancy
channel, we implement a website �ngerprinting attack on the Alexa
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Figure 7: Memorygram of 5 websites (5 visits of each)

top 100 websites. In such an attack scenario, a victim visits di�er-
ent websites in the web browser and the attacker’s goal is to �nd
out which websites the victim has visited (through the cache occu-
pancy channel). In this section, we describe our data collection and
machine-learning based classi�cation approaches.

6.1 Data Collection
We evaluate the website �ngerprinting attack on the front pages
of the top 100 websites ranked by Alexa. Our GPU-based cache
occupancy channel runs on a web browser tab in Google Chrome
Canary or Google Chrome Dev with the “WebGPU" �ag enabled.
We open a website in another tab and we collect the memorygram
traces for 5 seconds. The website is left open for an additional 10
seconds, after which the tab is closed and a new tab opens and
displays a new website. We visit the top 100 websites 100 times
each and collect the memorygrams (in total 10000 memorygrams
on each machine). A memorygram is the trace of the cache access
latency measured over a given time period, while the website is
being rendered. The sampling rate for this basic attack is 50Hz and
the average attack time is 5 seconds.

6.2 Machine learning based classi�cation
After collecting the memorygram samples, we need to train a Ma-
chine Learning (ML) classi�er to identify the di�erent websites
based on the memorygram time series. The base accuracy rate of
this prediction method is 1% for website �ngerprinting of 100 web-
sites (closed-world setting). We construct features from the full time
series signal and use traditional machine learning classi�cation,

similar to [42]. We also evaluate our attack using a Deep Learning
(DL) based classi�er, similar to some of prior works [51, 52, 57].

In particular, for the ML-classi�ers, we computed seven statis-
tical features for the memorygrams collected through the cache
occupancy channel, including minimum, maximum, mean, standard
deviation, skew, and kurtosis. These features are easy to compute
and capture the essence of the distribution of the time series values.
The skew and kurtosis capture the shape of the distribution of the
time series. Skew characterizes the degree of asymmetry of values,
while kurtosis measures the relative �atness of the distribution
relative to a normal distribution. We computed these features sepa-
rately for the �rst and the second half of the time series recorded for
each website. We further divided the data in each half into 4 equal
segments and measured the 6 features for each segment as well.
This process resulted in the feature set consisting of 60 features.
We then used these features to build the classi�cation models based
on two standard machine learning algorithms, namely K Nearest
Neighbor (KNN) and Random Forest (RF). We also validated the
classi�cation models using the standard 10-fold cross-validation
method.

For the DL-based classi�er, we used the open-source LSTMmodel
and methodology from prior work [51]. In this case, the feature
extraction was done inside the neural network and did not require
additional preprocessing steps.

Table 2: Classi�cation results of cache occupancy channel

Classi�er Precision F1-Score Recall
Gen9 KNN 69.3% 68.2% 68.2%

RF 72.3% 71.9% 71.1%
LSTM 70.8% 71% 71.2%

Gen9.5 KNN 68.4% 69.2% 69%
RF 71.6% 71% 71.3%
LSTM 69.2% 70.3% 70.3%

Gen11 KNN 70.4% 70.2% 70.9%
RF 73.1% 72.8% 71.8%
LSTM 71.1% 71% 70%

To evaluate the performance of our classi�ers, we computed the
precision (%A42), recall ('42), and F1-Score (�1). %A42 and '42 refer
to the accuracy of the model in rejecting the negative classes and
in accepting positive classes, respectively. Low recall leads to high
rejection of positive instances (false negatives) while low precision
leads to high acceptance of negative instances (false positives). �1
represents a balance between precision and recall. Table 2 shows the
classi�cation results on 3 machines with 3 di�erent generations of
iGPU, CPU, and OSes (the details of con�gurations are in Section 3)
in website �ngerprinting of the Alexa top 100 websites.

7 PARALLEL ATTACKS
In the basic version of the attack (Section 5), in addition to 64
timing threads, the attacker launches one single extra thread to
access the whole bu�er of L3 size and measures the access time in
a speci�c time period (5 seconds). The attacker process uses only
one subslice of the GPU to spy on the victim process and needs to
launch one GPU shader for each probe, which lowers the resolution
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of our attack. In this subsection, we optimize our cache occupancy
channel by leveraging massive GPU parallelism.

As shown in Figure 8, we introduce 3-level parallelism to speed
up the cache occupancy channel and monitor the victim’s activity
with a higher resolution:

A) Thread_level parallelism: Each wavefront has 32 parallel
threads. We can take advantage of thread-level parallelism on the
GPU to have all 32 threads of each wavefront active during the
probe process. Therefore, every single thread in the attacker’s wave-
front is responsible for probing 1/32 of the whole bu�er.

B) Wavefront_level parallelism: As discussed in earlier sections,
shared local memory is private to a workgroup within the subslice,
and the maximum number of threads in a workgroup is 256 threads.
Since we used just two wavefronts (64 threads) for counting, the
remaining 6 wavefronts can be active and utilized as the attacker’s
wavefronts (each with 32 threads), further speeding up the attack.

C) Workgroup_level Parallelism: In another level of parallelism,
the iGPU has more than 1 subslice (speci�cally 3 subslices in Gen9
and Gen9.5 architectures and 8 subslices in Gen11 architectures).
We can take advantage of this to further speed up our attack. For ex-
ample, we launch 3 workgroups (that are assigned to three subslices
in a round-robin fashion) and build one instance of the timer (using
64 threads of each workgroup) in each subslice. The remaining
threads/wavefronts of each workgroup are responsible for probing
a portion of the L3 cache size bu�er (e.g. 1/3 of bu�er size in Gen9).

By leveraging all three levels of the aforementioned optimiza-
tion approaches, ideally 1 single attacker thread is responsible for
probing 1/(# of subslices * 6 wavefronts * 32 threads within a wave-
front) of the whole bu�er of L3 size in each launch of a GPU shader
program: that will be 1/(3*6*32) of 256KB in Gen9 and Gen9.5 archi-
tectures. This gives us higher sample rates and as a result, a higher
resolution cache occupancy channel on GPU’s L3 cache.

Our Observations:We �rst experimented with the thread_level
parallelism. We launched the GPU shader with a single workgroup
with 3 wavefronts for a total of 96 threads. We increased the number
of active threads in the attacker’s wavefront one by one and studied
its impact on the memorygram traces. We observed an increase
in the resolution of memorygrams (monitoring the access latency
more frequently in the same period of time) without adding noise
for up to 8 active threads (as shown in Figure 9). However, we ob-
served that leveraging more than 8 active threads added noise to the
collected memorygrams. This e�ect is due to the limited number of
Execution Units (EUs) in each subslice (8 EUs per subslice). Within
an EU, memory operations are all dispatched via "send instructions"
that are executed by the "send unit", and each EU is equipped with
just one single send unit. If the attacker has more than 8 threads, the
self-con�ict and contention between these threads to be scheduled
on the EUs and send units will add delay to the execution and lead
to a higher noise level.

This e�ect also can be seen in wavefront_level parallelism within
the subslice. Ideally, we can launch 8 wavefronts (256 threads) in a
workgroup, use 2 among them for timing, and have 6 remaining

wavefronts, each with 32 threads for probing the L3 cache. However,
the limited number of EUs within each subslice limits the attacker’s
ability. In the best-case scenario, to achieve a low-noise and high-
resolution attack, the attacker can have up to 8 active threads in
each subslice. It can be organized in several con�gurations (e.g. 4
wavefronts each with 2 active threads, or 1 wavefront with 8 active
threads, ...).

Since each subslice has its own shared local memory and 8 EUs,
we can take full advantage of workgroup_level parallelism. To
achieve this, in Gen9-based architectures with 3 subslices, the at-
tacker needs to launch 3 workgroups, each with one instance of the
timer within the subslice and 8 active attack threads. Each work-
group probes 1/3 of the L3 size bu�er, as a result, each thread within
that workgroup probes 1/(3*8) of the bu�er (all in parallel). These
parallel attacks enable the attacker to probe the whole L3 cache at
a higher rate and lead to a higher resolution of memorygrams in a
given time period. Our parallel attack could achieve up to a 170Hz
sampling rate in an average attack time of 3 seconds.

7.1 Website Fingerprinting using Parallel
Attacks

Based on our observations, we evaluate two versions of our parallel
cache occupancy channels for website �ngerprinting: thread_level
parallel attack (1 workgroup with 8 active threads) and also work-
group_level + thread_level parallel attack (3 workgroups in Gen9
and Gen9.5 and 8 workgroups in Gen11, each with 8 active threads).
In this subsection, we report the traditional ML and LSTM classi�ca-
tion results for both of these two parallel attacks on three machines.
Similar to the ML classi�cation for the simple attack in Section 6, we
construct seven statistical features for the memorygram collected
through the parallel channels on Alexa 100 top websites. These
features are minimum, maximum, mean, standard deviation, skew,
and kurtosis.

Table 3: Classi�cation results for thread_level parallel cache
occupancy channel

Classi�er Precision F1-Score Recall
Gen9 KNN 80.4% 79.6% 79.2%

RF 83.5% 82.5% 81.4%
LSTM 84.9% 84.5% 84.8%

Gen9.5 KNN 80.1% 79% 79.4%
RF 83.6% 83.1% 83%
LSTM 83.4% 83% 83%

Gen11 KNN 79.8% 79.6% 78.8%
RF 81.3% 81% 81.2%
LSTM 82% 81.8% 82%

For the ML classi�ers, we computed the features separately for
the �rst and the second half of the time series recorded for each web-
site. We further divided the data in each half into 8 equal segments,
and measured the 6 features for each segment as well, resulting in
108 features.

Table 3 and Table 4 show the precision (%A42), recall ('42), and
F1-Score (�1) of the classi�cation models for thread_level parallel
attack and workgroup_level+thread_level parallel attack, respec-
tively (all for the Alexa top 100 websites). Although the traditional
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Figure 8: Three levels of GPU parallelism

Figure 9: Memorygrams of "www.google.com" website with
thread_level parallel attack.

Table 4: Classi�cation results for workgroup_level +
thread_level parallel cache occupancy channel

Classi�er Precision F1-Score Recall
Gen9 KNN 82.3% 80.1% 79.8%

RF 85.2% 84.9% 84.5%
LSTM 86.6% 86.2% 86%

Gen9.5 KNN 81.8% 81% 81%
RF 86.4% 86% 86%
LSTM 87.4% 87.2% 87.2%

Gen11 KNN 86.3% 86.1% 86%
RF 88.4% 88.1% 88.1%
LSTM 90.6% 90.4% 90.4%

ML classi�ers outperformed the LSTM model (Section 6) for our ba-
sic attack, we observed better classi�cation results using the LSTM
classi�er in our high-resolution parallel attacks.

7.2 Sensitivity to browser window size
We considered full-screen browser windows in our experiments
in Sections 6 and 7. We also checked if the attack generalizes
across window sizes, given that di�erent users may have di�er-
ent size browser windows. We observed that changing the win-
dow size results in a similar signal for most websites, and for
responsive websites that have dynamic content or do not scale
with window size, there is some variance in memorygrams. We
trained the LSTM model using full-screen data collected by work-
group_level+thread_level parallel attack on Gen11 architecture and
tested with window sizes of 50% and 70% of the screen width. We
observed average accuracy of 78% and 84%, respectively using the
LSTM classi�er. We believe performance can also be improved by
training with measurements taken at di�erent window sizes.

7.3 Evaluation in Open-World Setting
The reported classi�cation results in previous sections were all on
the datasets collected in a closed-world setting (100 traces of every
Alexa top 100 website). We also wanted to check the accuracy of
our attack in an open-world setting. For this, we collected the traces
following the methodology stated in prior works [52, 57]. In this set-
ting, the attacker monitors access to a set of sensitive websites, and
is expected to classify them with high accuracy. Additionally, there
is a large set of non-sensitive web pages, all of which the attacker
is expected to generally label as “non-sensitive” [52]. Datasets in
this setting consist of the closed-world dataset (containing 10000
traces, 100 traces for each website) plus 5000 other websites. The
base accuracy rate of this prediction method is about 33%. Since
LSTM classi�cation performed better on our parallel attacks, we
evaluated our workgroup_level+thread_level parallel attack using
LSTM in open-world setting. The classi�cation results are shown
in Table 5.

Table 5: Classi�cation results of workgroup_level +
thread_level parallel attack in Open-World Setting

Classi�er Precision F1-Score Recall
Gen9 LSTM 87.3% 87.3% 87.4%
Gen9.5 LSTM 86.5% 86.1% 86.1%
Gen11 LSTM 89.8% 89.8% 89.6%

8 POSSIBLE DEFENSES
Our cache occupancy channel attack in this paper introduces a
new attack vector for microarchitectural attacks in JavaScript that
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are enabled by emerging GPU-accelerating web interfaces. We
believe the secure design of these web standards is very important
at this time before they are widely deployed in critical computing
platforms and application domains.

To defend against this new class of attacks, mitigations can
be designed at di�erent levels of software and hardware: (1) at
the microarchitectural level, (2) at JavaScript runtime, accelerated
extensions, and permission models, and (3) at the GPU driver level.

At the hardware and microarchitectural level, we believe classes
of defenses that have been developed against other microarchi-
tectural covert and side channels could potentially be applied to
mitigate our attack. The most well-known technique is static or
dynamic partitioning of caches[21, 31, 46, 48, 58]. Since we build
our customized timer using hardware resources (shared local mem-
ory) available on GPU, although disabling the timer or restricting
access to it is not straightforward, reducing the resolution of the
timer, or adding noise to the timer can be possible by limiting the
throughput of atomic operation execution.

Some potential mitigations at the JavaScript and GPU driver
levels include:
Heuristic pro�ling in JavaScript to detect and prevent the
attack: Our attack accesses memory in a very particular pattern
that can be detected. As part of optimization mechanisms, modern
JavaScript runtime already analyzes the runtime performance of
code, thus it could be possible for the JavaScript runtime to de-
tect pro�ling-like behavior from executing code, and modify its
response accordingly (e.g., by temporal or spatial partitioning or
applying some permission restrictions in accelerated extensions).

Note that any defense design on JavaScript has to be re�ected
or applied to the WebGPU API as well, to e�ectively mitigate our
proposed attack on GPU.
Partitioning through the GPU device driver: The approach
partitions the resources (such as L3 cache sets/ways) between secu-
rity domains for di�erent processes. With OS support, the device
driver will be provided with information on memory allocations
and memory mapping. Thus during the GPU process initialization
in JavaScript, before allocating any GPUmemory for an application,
the driver assigns some dedicated partitions of GPU caches to a
given process, and all future memory allocations for that process
will be mapped to that partition.

This approach will be uniquely possible in CPU-GPU systems.
While a CPU program may access millions of memory objects, the
unique programming model and disciplined memory model on
GPUs limit the number of bu�ers used in a GPU kernel. The pro-
grammers also have to provide detailed information about memory
bu�ers, such as size and read-only attributes. As opposed to CPU
memory objects which can be freely allocated and deallocated dur-
ing runtime, GPU memory bu�ers are mostly allocated before a
shader program launches and deallocated after completion. This
makes the partitioning feasible at the driver level in the GPU ini-
tialization step (before the GPU shader program execution).

9 RELATEDWORK
In this section, we organize the discussion of the most related work
into two categories: (1) microarchitectural attacks and defenses in
JavaScript, and (2) GPU-based microarchitectural attacks in native

code. Then we compare the classi�cation accuracy of our attack
with prior website �ngerprinting attacks in both categories.

9.1 Microarchitectural Attacks and Defenses in
JavaScript

Many prior works studied timing side channel attacks in JavaScript.
In this subsection, we review only the microarchitectural side chan-
nel attacks in JavaScript and those works that built high-resolution
timers in JavaScript, since these are the most related works to our
attack.

Oren et al. [45] implemented a JavaScript-based Prime+Probe
attack on the last level cache on Intel CPUs to spy on the user’s
mouse movements and network activities. To protect against this
timing attack, all major browsers limited the resolution of the
timer [1, 18, 62]. This low-precision timer has been shown to be
su�cient for conducting some types of attacks. Gruss et al. [27]
proposed a memory page deduplication timing attack to identify
which websites the user currently has open. However, to distinguish
cache hits from cache misses in a cache attack, a high-resolution
timer is required. Several works proposed some timing primitives
in JavaScript to recover highly accurate timestamps [26, 35, 36, 50].
Lipp et al. [36] proposed a keystroke interrupt-timing attack im-
plemented in JavaScript using a counter as a high-resolution timer.
Kohlbrenner et al. [35] studied the clock-edge technique. Gras et
al. [26] proposed two mechanisms (shared memory counter and
time to tick) to craft a high-resolution timer in JavaScript. They
used a dedicated JavaScript web worker for counting through a
shared memory area (SharedArrayBu�ers [39] interface) between
the main JavaScript thread and the counting web worker. Schwarz
et al. [50] also used similar techniques to build a high-resolution
timer and implement a new DRAM-based covert channel between
a website and an unprivileged app. To respond to these attacks, ma-
jor browser vendors disabled the SharedArrayBu�ers interface in
JavaScript [4] which has been recently re-enabled for same-origin
only.

Some recent works developed coarse-grained cache attacks us-
ing the limited low-precision timer in JavaScript. Shusterman et
al. [52] used the low-precision timer to implement a cache occu-
pancy channel on LLC. The same group [51] also developed cache
occupancy channels without using JavaScript features, instead us-
ing DNS response time as a timer. All of these attack models are on
the CPU, providing a di�erent attack vector than our threat model.

In recent years, some timing side channels have been proposed
on the graphics stack of the GPU in JavaScript. Frigo et al. [25] used
WebGL timing APIs to implement a Rowhammer attack on inte-
grated GPUs in mobile SoCs. They used the WebGL timer to �nd
the contiguous areas of physical memory to conduct the Rowham-
mer attack. As discussed earlier, in response to this attack, both
Chrome and Firefox disabled the WebGL timer [40], which is re-
enabled for secure contexts only. Laor et al. [53] presented a device
identi�cation technique that uses the WebGL API in JavaScript to
access the GPU and execute a sequence of drawing operations. The
attacker measures the speed of each EU as a �ngerprint. They use
the (re-enabled) WebGL timer to measure the time of drawing com-
mands. Cronin et al. [20] developed website �ngerprinting using
GPU contention attack from CPU in ARM SoCs. They used WebGL
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Table 6: Classi�cation accuracy comparison of website-�ngerprinting attacks on Alexa top websites

Attack Accuracy (%) # of Websites
Naghibijouybari et al. [42] *native code* side channel (GPU memory API and perf. counters) 90.4 - 93 (94) 200 (100)
Oren et al. [45] side channel (LLC) 88.6 8
Shusterman et al. [52] side channel (LLC) 70-90 100
Shusterman et al. [51] side channel (LLC) 87.5 100
Wu et al. [57] side channel (from CPU to all rendering resources) up to 88 100
Cronin et al. [20] side channel (from CPU to GPU) up to 90.3 100
WebGPU-SPY side channel (GPU’s L3 cache) up to 90.6 100
(This work)

to launch GPU kernels and measured the time on the CPU side
through JavaScript timer. Wu et al. [57] also used the low-precision
JavaScript timer to measure the aggregate contention on all render-
ing resources (on the CPU, GPU, and screen bu�er). This attack is
also developed on the CPU and targets the rendering process. Our
WebGPU-SPY attack has the same average attack time of 3 seconds
as [57], with a higher sampling rate (up to 170Hz in our parallel
attack compared with 10-60Hz in [57]).

In Section 3 (Table 1), we compared our threat model with prior
microarchitectural attacks in JavaScript.

9.2 Microarchitectural Attacks on GPUs (native
code)

Microarchitectural side-channel attacks have been extensively stud-
ied in native code on di�erent resources on CPUs. Some recent
works demonstrate that GPUs are also vulnerable to microarchi-
tectural covert and side-channel attacks. Most of these works have
been proposed on discrete GPUs with dedicated memory. Jiang
et al. [32, 33] present architectural timing side channel attacks on
GPUs by exploiting key-dependent memory coalescing behavior or
shared memory bank con�icts. Ahn et al. [14] propose Trident, a
GPU cache-based timing channel to recover all AES keys. Wang and
Zhang [55] propose a pro�ling-based side-channel attack to fully
recover the AES encryption secret key. Naghibijouybari et al. [41]
develop several types of covert channels on di�erent resources
within a GPU. Nayak et al. [44] develop a similar microarchitec-
tural covert channel on another resource, the GPU’s shared last level
translation lookaside bu�er(TLB). Ahn et al. [15] exploit the con-
tention on the GPU’s on-chip interconnects (shared between SMs)
to build microacrhitectural covert channels within discrete GPUs.
Naghibijouybari et al. demonstrate a series of end-to-end GPU side
channel attacks covering the di�erent threat scenarios on both
graphics and computational stacks, as well as across them [42, 43]
in native applications. Dutta et al. [22] develop microarchitectural
covert channels in Intel-based integrated CPU-GPU systems across
the CPU and iGPU through shared LLC and on-chip ring intercon-
nect. All of these microarchitectural attacks have been proposed in
native applications.

9.3 Website Fingerprinting
Some of the discussed prior work in subsections 9.1 and 9.2 exploit
microarchitectural side channel attacks to implement website �n-
gerprinting. In Section 3, we conducted a thorough comparison of
our threat model with these website �ngerprinting attacks, which

is presented in Table 1. We have also detailed the distinct charac-
teristics of our attacks in comparison to these previous works in
subsections 9.1 and 9.2.

For a comprehensive evaluation, we compare the classi�cation
accuracy between our attacks and those from other studies in Ta-
ble 6. Our attack achieved precision in the closed-world setup that
is comparable to the precision reported in [20]. However, in an
open-world setup, our WebGPU-based attack outperformed theirs,
reaching a success rate of 89.8% compared to their 81.4%. It is im-
portant to note that the target of the attack in [20] was ARM-based
SoCs, which constitute a di�erent platform than our work and
other existing research. The comparison in Table 1 reveals that our
WebGPU-Spy attack exhibits comparable performance to the native
GPU attacks. Through the exploitation of WebGPU, which grants
low-level access to the GPU’s hardware, and by targeting the GPU’s
internal L3 cache, the attacker gains the ability to monitor the �ne-
grained leakage occurring within the GPU (where the rendering
task is processed) through the compute stack.

10 CONCLUDING REMARKS
In this paper, we identi�ed the GPU’s internal caches (speci�cally
L3 cache) as a new attack vector for remote microarchitectural
attacks in web browsers. We exploited the separate memory access
pathways of graphics and compute stacks to monitor the screen
rendering process through the L3 cache using a compute spy and
developed a basic cache occupancy channel within the GPU. Then,
we optimized our attack by leveraging the GPU’s inherent paral-
lelism at di�erent levels to achieve high-quality and high-resolution
cache occupancy channel.

As computing systems are increasingly heterogeneous and ac-
celeration APIs are becoming available through web interfaces,
studying this new class of remote attacks is essential and critical
to understanding how microarchitectural attacks manifest beyond
just the CPU in widely used systems. We believe this work paves
the way for future work studying the vulnerabilities exposed by
the emerging web standards and helps us securely design these
interfaces to reduce the threat posed by these attacks.
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