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Abstract—Beyond 5G and future 6G aim to address rising
energy demands as the world becomes more interconnected.
LoRaWAN network is an energy-efficient IoT solution, but
frequent retransmissions can quickly deplete sensor batteries.
Efficient traffic management and collision avoidance are crucial.
Initially, LoRaWAN used ALOHA for multi-access, causing
increased network collisions. The recent innovation of Channel
Activity Detection (CAD) has emerged to tackle these issues.
CAD enhances multi-access by sensing channel activity before
transmission. Although an improvement, CAD is not foolproof.
Our paper introduces enhancements to CAD through the Deep
Deterministic Policy Gradient-based Algorithm (DDPG CAD).
To assess CAD functionality, we develop LoRaCAD, a dedicated
simulator. We also conduct a thorough comparative analysis of
scheduling strategies, considering energy efficiency, latency, and
packet delivery ratio.

Index Terms—LoRaWAN, deep deterministic policy gradient,
channel activity detection, energy efficient.

I. INTRODUCTION

5G and 6G networks aim to provide high-capacity, high-
speed, ubiquitous, and green communication to improve
coverage and energy efficiency. Some applications, such as
smart agriculture, prioritize energy efficiency and extended
coverage range over high-speed connectivity, where low-
energy and long-range networks are crucial. LPWAN is a
low-power, wide-area coverage technology. LoRaWAN, a
major LPWAN tech, supports long-range and minimal energy
consumption. It uses the ALOHA multiple access technique,
leading to collisions and congestion. Duty cycle restrictions
allow devices to transmit for 1-10% of the time, causing
high latency. Massive IoT exacerbates these challenges due
to increased network traffic.

Efficient channel sensing techniques like Channel Activity
Detection (CAD) and Lightweight Carrier Sensing (LCS)
can help overcome communication challenges. An optimal
scheduling algorithm reduces collisions and selects transmis-
sion parameters for better spectrum usage and lower power
consumption. In LoRaWAN, scheduling involves selecting
transmission parameters that define signal characteristics.
To improve results, CAD and LCS can be combined with
scheduling strategies. A CAD-enabled simulator is needed to
investigate channel-sensing-based scheduling strategies. Our
study compared existing LoRa simulators as shown in Table
I. Based on the studies of various simulators we observed

• Channel Activity Detection (CAD): Existing simulators
did not support the CAD simulation.

• LoRa Gateway with energy module: Current simulators
cannot furnish gateway details, such as battery level, to
prevent battery exhaustion attacks [1].

• LoRa Gateway with load handling: The current simula-
tors do not consider device scalability limitations.

• Integration of scheduling algorithms: Developing a sim-
ulator seamlessly incorporating reinforcement learning-
based algorithms is essential, eliminating users’ need for
intricate network knowledge.

LoRaWAN uses an efficient channel sensing technique
called Channel Activity Detection (CAD) to reduce energy
consumption. However, CAD has limitations when operating
on busy channels, leading to delays and potential collisions.
A new method in [6] called LCS based on CAD has been
introduced to enhance network scalability and reduce energy
consumption. A CSMA-based multi-access technique is pro-
posed in [7] to mitigate collisions for both short and long
messages, especially during periods of high traffic, thereby
lowering energy consumption. In [8], energy consumption
is impressively reduced by 177%, presenting a mathemat-
ical energy efficiency model in multi-gateway LoRa. The
model optimally allocates frequency channels, spread factors,
and transmission power. Based on our literature review,
limitations of existing simulators, and understanding of the
requirements in LoRaWAN scheduling strategies, we propose,

• We developed a LoRa Simulator based on Channel
Activity Detection (LoRaCAD) to assess the effective-
ness of reinforcement learning (RL)-based scheduling
strategies with channel sensing.

• We designed a scheduling strategy based on RL,
specifically employing the Deep Deterministic Policy
Gradient Algorithm with Channel Activity Detection
(DDPG CAD), which is proposed to optimize the se-
lection of transmission parameters.

• DDPG CAD also enhances the functioning of CAD by
predicting the number of CAD repetitions.

• We assessed the performance of our algorithm by com-
paring the outcomes with studies in Table II.

The remainder of this paper is organized as follows. We
give a network system model and formulate a research idea
in II. We submit the structure of the solution in section III



TABLE I: Comparative Study of Simulators
Features NS3 [2] FloRa [3] LoRaSim [4] LoRa-MAB [5] LoRaCAD
Language C++, Python C++ Python Python Python

Energy Model ✓ ✓ ✓ ✓ ✓
Adaptive Data Rate Support ✓ ✓ x x ✓

ACK Support ✓ ✓ x x x
Imperfect SF ✓ ✓ x ✓ ✓

Signal Capture Effect ✓ ✓ ✓ ✓ ✓
Device Class A A A A A

Multi-Gateway ✓ ✓ ✓ x x
Channel Activity Detection x x x x ✓

Gateway Load x x x x ✓
Machine Learning Algorithm Integration x x ✓ ✓ ✓

and give implementation details of the scheduling algorithm
DDPG CAD and simulator LoRaCAD, followed by evalua-
tion results in IV and conclusion V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1: Overview of LoRaWAN Architecture.

Our LoRaWAN network under consideration has N sen-
sors, one Gateway, and one network server. It is a star
topology network with all sensors connecting to the Gateway,
which connects to the network server (Fig. 1). We focus our
scope of research on communication between sensors and the
LoRaWAN gateway. The US-based LoRaWAN has 72 uplink
and eight downlink channels, also known as central frequency
(CF), two bandwidths (BW), four coding rates (CR), 16
transmission powers (TP), and six spread factors (SF), [9]
which count to 55,296 transmission settings. These are still
limited settings in massive IoT if they transmit simultane-
ously. Moreover, LoRaWAN uses the ALOHA technique for
multi-access. Proper scheduling of transmission parameters is
required to optimize the network’s data rates, airtime, and en-
ergy consumption. Thus, optimizing transmission parameters
can improve LoRaWAN’s energy efficiency. Another aspect
is channel activity detection (CAD), which performs channel
sensing for a preamble to check channel idleness.

CAD is an energy-efficient way to transmit sensor data by
sensing channels before transmission. Before CAD operation,
SF and BW are selected, and CADMode is enabled and
inaccessible for 32

BW ms. Then for next 2SF

BW ms actual sensing
takes place and results are processed in 2SF ∗BW

1750e3 ms. The
end of CAD processing is denoted by CADDone interrupt
when we can check CADDetected interrupt for results about
channel idleness [10]. If CADDetected is true, if the channel
is busy, then the packet for which transmission was under
consideration is dequeued from the buffer and appended to
the end of the queue. If the CADDetected is false, then
transmission starts at an immediate moment. We observe a
few issues in this.

1) Collision for CADDetected = false: Fig. 2a shows
a scenario of CAD when two or more devices with the
same SF and BW perform cAD simultaneously on the same
channel. Both devices detect that the channel is idle using
CADDetection, start transmitting instantly, and end up in a
collision. Massive IoT aggravates this issue.

2) Waiting time increase for CADDetected = true: Fig 2b
shows a scenario when the channel is busy, and other devices
perform CADDetection on this channel, they have to wait for
transmission to be completed. Moreover, the packet trying to
transmit is enqueued in the buffer and made to wait till others
finish. This causes starvation for devices in busy networks.

Hence, we propose to design a new CAD strategy to
improve multi-access using a scheduling algorithm using RL.
Existing simulators (see Table I) lack CAD functionality
and gateway load management, essential features for eval-
uating CAD-based algorithms and scheduling strategies in
LoRaWAN networks.

III. PROPOSED SOLUTION

In this paper, we propose a twofold solution as discussed,

A. Scheduling Algorithm with Improved CAD: DDPG CAD

We have proposed a deep deterministic policy gradient RL
(DDPG) algorithm that intelligently optimizes the selection
of transmission parameters to avoid overlap and lower energy
consumption by avoiding collisions. The state includes the
location of devices, the data size they have to transmit, and
the gateway load limit. The action consists of transmission
parameters and CAD retries performed after the channel is
found busy. The reward factor is −1 ∗ energy consumption
since we aim to minimize the energy by maximizing the
rewards. The transmission parameters are responsible for
energy-efficient schedule generation. Input to the algorithm
is a set of all sensor join requests with their information,
such as locations or identifiers.

1) Solution to existing CAD issues: Two key issues are
identified and solved in Fig. 2. To address these challenges,
we introduce two enhancements to CAD using our algorithm:
The number of CAD repetition predictions and the introduc-
tion of randomized transmission delays. Fig. 3(a) illustrates
how the randomized timer introduces delays in CAD checks
and enriches the likelihood of successful transmission even



(a) Idle Channel. (b) Busy Channel.

Fig. 2: Issues with existing CAD in LoRaWAN: Devices start transmitting instantly after identifying the idle channel and
lead to collision (Fig. 2a). Delayed packet transmission if the channel is busy (Fig. 2b).

(a) Variation due to Randomized Timer. (b) Variation due to Number of CAD Repetitions.

Fig. 3: Solution to issues with existing CAD in LoRaWAN: Variation in Randomized Timer before CAD allows transmission
devices identify other devices ready to transmit even if number of CAD repetitions are same (Fig. 3a). If not the same, then
different CADs detect busy channels (Fig. 3b).

when the number of CAD repetitions remains the same.
In Fig. 3(b), we demonstrate the effectiveness of predicting
different numbers of CAD operations to prevent collisions. If
a randomized timer initiates CAD processes simultaneously,
unequal CAD checks ensure that devices with a higher
number (e.g., device 2) can avoid collisions. If the channel
is persistently busy, we limit the CAD operation to a defined
number of repetitions. After that, the packet is enqueued.

2) Scheduling transmission parameters: Transmission pa-
rameter selection affects energy consumption in LoRaWAN.
The SF defines a number of chips forming a symbol. This
increases the transmission duration and the time the power
amplifier continues to power the transmitter. BW specifies
the number of symbols transmitted in a given time for an
increase in BW, ToA, and energy consumption for the sensor
decreases. Higher values of CF increase ToA [11]. Similarly,
the coding range and transmission power can be scheduled
to obtain different signal quality and control energy.

B. CAD-based Simulator: LoRaCAD

LoRaCAD has two primary functions: enabling CAD func-
tionality in sensors and facilitating gateway load management.
Three main elements are the - GW sensors and the environ-

ment. Within LoRaCAD, three-channel groups are available:
64 upstream channels (125KHz BW) and eight upstream and
eight downstream channels (500KHz BW). Devices utilize
these by selecting one channel as CF in transmission param-
eters. Other transmission parameters are scheduled according
to the required signal and traffic conditions. The Network
Server hosts the scheduling algorithm, offering the flexibility
to integrate various scheduling algorithms and conduct com-
parative analyses. The Gateway module defines a limit of the
device connections to the Gateway to manage the gateway
load. CAD operations are managed within the transmission
module using the parameter that allows the specification
of the maximum number of CAD operations. LoRaCAD
operates as a multithreaded simulator, each device functioning
as an individual thread. When the thread starts executing,
it requests a connection to the gateway. The connection is
accepted if the gateway limit is not reached. The devices
also notify the gateway of their locations. Gateway combines
information about all devices and sends it to a network server
to schedule the transmission parameters for all these devices.
The transmission parameters are notified to devices using
MAC commands. The device uses parameters for the packet
that it wants to transmit. We show the method of transmission



TABLE II: State of the art Algorithms

Algorithm Performance Parameter
ADR MAX [12] Energy and PDR
ADR AVG [13] Energy and PDR
NO ADR [13] Energy and PDR
ADR Lite [14] Energy and PDR
LP-MAB [15] Energy and PDR
LoRa ADR+ [13] Energy and PDR
LoRa ADR++ [16] Energy and PDR
ASA [17] Latency
DPST [17] Latency and Energy

in Fig. 3. Any new scheduling strategy to be tested is stored
on the network server and is referenced using the properties
section.

IV. PERFORMANCE EVALUATION

We evaluate the DDPG CAD algorithm on LoRaCAD and
compare results with algorithms mentioned in Table II. We
analyze average energy consumption per device, packet deliv-
ery ratio (PDR), and average latency. We set the environment
using parameters as per the Table III. We evaluate algorithms
mentioned in urban and suburban areas. The difference lies
in network parameters altering the network traffic, path loss,
distance from gateways, and range [13].

A. Discussion on the Simulation Results

Our evaluation is presented in two stages. First, we evaluate
the performance of LoRaCAD with the existing simulator,
LoRaSim. Second, we compare the existing algorithms with
our DDPG CAD on LoRaCAD. This shows the performance
improvement of DDPG CAD in the LoRa environment.

1) Comparison of LoRaCAD with LoRaSim: We assessed
the performance of the LoRa-RL scheduling algorithm, as
detailed in [18], on both LoRaSim and LoRaCAD plat-
forms. Through these comparative evaluations, we aim to
show the importance of having a CAD-enabled simulator
to get a broader and more accurate picture of the network.
It also helps us understand how channel sensing improves
performance. Additionally, it helps evaluate ML/RL models
with CAD-related predictions before emulating or deploying
them in the network. LoRaSim uses packet retransmissions
to handle losses, collisions, and lack of acknowledgment. Lo-
RaCAD, on the other hand, employs carrier sensing through
CAD to reduce collisions and retransmissions, leading to
lower energy consumption. The disparity in energy consump-
tion is evident in Fig. 4a due to the significantly lower energy
expenditure in CAD operations compared to retransmissions.
LoRaSim discards packets after a specified number of retrans-
missions, while LoRaCAD detects channel activity before
transmission and initiates a CAD retry after a shorter backoff
time. Our RL model predicts a maximum number of CAD
retries. The channel is sensed before each retransmission until
the packet is transmitted successfully or the retransmission
limit is exhausted, increasing the probability of success.
Hence, we observe in Fig. 4b that we gain a increase in
PDR for LoRaCAD. We observe that increase in devices also

TABLE III: Simulation parameters.
Parameter Value

Bit Rate Reference in [9]
Number of Device 1,000

Transmission Power Reference in [9]
Gateway load Limit 120 connections

Signal to Noise Ratio Reference in [19]
Reference Distance 40.0
path loss exponent 2.08

mean path-loss at d0 127.41
CAD Backoff Timer 2ms

Network Area (Min)(X0, Y0) (0,0)
Network Area (Max)(XM , YM ) (1,000,1,000)
Gateway Location (LGX , LGY ) (500,500)

increases the latency in Fig. 4c. LoRaCAD latency improves
because CAD is faster than retransmission.

2) Comparison of DDPG CAD with existing scheduling
strategies: We evaluate DDPG CAD using urban and subur-
ban scenarios with parameters in [13]. The network is denser
in urban environments than in rural areas, causing higher
collision probabilities. This emphasizes the significance of
channel sensing-based scheduling. Conversely, in rural en-
vironments, the longer distances cause signal attenuation
and loss. This necessitates an increased transmission power.
Fig. 5a, Fig. 5b compares PDR (%) for various state-of-
the-art algorithms to our proposed algorithm. CAD retries
until an idle channel is found, or max retries are exhausted
when the channel is busy. This process repeats before every
retransmission. This reduces the possibility of collision and
packet loss, increasing the PDR. Thus, our algorithm is
a better solution for applications where data accuracy and
reliable transmission are more critical.

Fig. 5c and Fig. 5d evaluate energy consumption for
various algorithms to our proposed DDPG CAD algorithm.
The ADR++ consumes the lowest energy of all of them. More
energy is consumed for channel sensing and retrying, which is
less so in ADR-based algorithms. But DDPG CAD consumes
lower energy as compared to other existing algorithms. This
makes our algorithm a better choice in unreliable networks
to gain energy efficiency.

V. CONCLUSION

We have identified and addressed two pivotal challenges to
improve the energy efficiency of sensors in a star topology for
extensive IoT applications. The first is collisions in dense net-
works, while the second involves optimizing gateway load. To
tackle these, we propose an innovative scheduling algorithm
called the Deep Deterministic Policy Gradient Algorithm with
Channel Activity Detection functionality (DDPG CAD). This
algorithm enhances Channel Activity Detection (CAD) by
resolving existing CAD-related problems. We have developed
LoRaCAD, a specialized simulator crafted to evaluate the
performance of our energy-optimized scheduling algorithm.
We compare energy and PDR metrics with state-of-the-art
solutions in urban and rural environments. Our observations
reveal a remarkable PDR of 87%, represent a substantial
6% advancement over the LoRa ADR++. Even with these
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(b) PDR comparison
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(c) Latency Comparison

Fig. 4: Performance evaluation of LoRa-RL to transmit 10KB data using LoRaSim and LoRaCAD simulators.
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(a) PDR: Urban
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(b) PDR: Rural
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(c) Energy: Urban

100 150 200 250 300 350 400 450 500

Number Of End Devices

0

2

4

6

8

10

12

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J)

ADR_MAX

ADR_AVG

NO_ADR

ADR_Lite

LP-MAB

LoRa_ADR+

LoRa_ADR++

DDPG_CAD

(d) Energy: Rural

Fig. 5: Packet Delivery ratio and Energy Consumption for an increasing # of sensors. (Packet length = 20B)

enhancements in the context of massive IoT, our solution
maintains lower energy consumption than most alternative
algorithms. Energy consumption is at least 40% lower than
most algorithms (except LoRa ADR++).
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