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Abstract—Network function virtualization (NFV), a novel net-
work architecture, promises to offer a lot of convenience in
network design, deployment, and management. This paradigm,
although flexible, suffers from many risks engendering interrup-
tion of services, such as node and link failures. Thus, resiliency
is one of the requirements in NFV-enabled network design for
recovering network services once occurring failures. Therefore, in
addition to a primary chain of virtual network functions (VNFs)
for a service, one typically allocates the corresponding backup
VNFs to satisfy the resiliency requirement. Nevertheless, this
approach consumes network resources that can be inherently
employed to deploy more services. Moreover, one can hardly
recover all interrupted services due to the limitation of network
backup resources. In this context, the importance of the services
is one of the factors employed to judge the recovery priority.
In this paper, we first assign each service a weight expressing
its importance, then seek to retrieve interrupted services such
that the total weight of the recovered services is maximum.
Hence, we also call this issue the VNF restoration for recovering
weighted services (VRRWS) problem. We next demonstrate the
difficulty of the VRRWS problem is NP-hard and propose an
effective technique, termed online recovery algorithm (ORA), to
address the problem without necessitating the backup resources.
Eventually, we conduct extensive simulations to evaluate the
performance of the proposed algorithm as well as the factors
affecting the recovery. The experiment shows that the available
VNFs should be migrated to appropriate nodes during the
recovery process to achieve better results.

Index Terms—network function virtualization (NFV), node
resource, recovery, virtual network function (VNF), weighted
service.

I. INTRODUCTION

The introduction of network functions virtualization (NFV),
an advanced network architecture, has received widespread
advocation from network operators. With this technique, they
can significantly reduce many sorts of costs, such as capital
expenditures (CAPEX) and operating expenditures (OPEX)
[1], [2]. In addition, by means of replacing network functions
running on proprietary hardware, such as firewalls, instruction
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detection systems, load balancers, and spam protection, with
virtual network functions (VNFs) implemented by software
running on general-purpose hardware, such as industry stan-
dard high volume servers, switches, and storage, the NFV
facilitates network deployment, upgrading, and maintenance
because installing a software apparently is simpler than de-
ploying dedicated hardware. This character of NFV also con-
tributes to shortening the time to market of new services. By
consolidating hardware for processing network functions, NFV
can assist with saving space for placing network appliances
and power consumption [3], [4]. These benefits are ever
meaningful in the context that the requirement for network
services is ever increasing along with the appearance of 5G,
the next mobile network generation, and the proliferation of
mobile devices.

Despite presenting multiple advantages, the NFV has to
cope with many risks that can significantly affect the network
performance, one of which is the failure of network nodes
[5], [6]. There are many reasons inducing this problem.
Firstly, the servers employed to install and perform VNFs may
suffer interruption due to several reasons, such as hardware
errors and overload. Secondly, software implementing network
functions may contain bugs leading to unexpected behavior
beyond the VNF specification [7]. As a result, in the NFV
environment, they are also called hardware and software
failures, respectively. Both hardware and software failures are
reasons causing the failure of a VNF, which will lead to the
failure of the service requiring that VNF because a network
service is a sequence of multiple VNFs [8]–[10]. The situation
will be worse if a hardware failure occurs at a node hosting
many VNFs of different services. In such a case, many services
will be unavailable due to the failure of only one node [11].

Because hardware failure is typically more serious than
software failure, we consider node failure in this paper as
hardware failure. In practice, the probability of failures is very
low but not equal to zero, which means failures may happen at
any time, although rare. Hence, we need to preserve solutions
to guarantee that the services will not be interrupted if there
are some failures arising in the substrate network. Because
continuity in the delivery of services is crucial, especially for
critical applications, the solutions to recover the services from
failures are significant. Therefore, resilience is one of the strict
requirements of an NFV-enabled network [7].

The intuitive technique for recovering services from node
failure to guarantee the resilience of networks is to deploy
backup VNF instances for primary instances. If the failure
happens at a node, the primary VNF instances at the failed
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node will be replaced by the corresponding backup VNF
instances [12]–[16]. This solution is efficient for large-scale
physical networks with substantial redundant resources after
deploying services. Nevertheless, this condition is difficult to
hold because the number of network services is ever-increasing
while the network resources are limited. Installing backup
VNF instances for too many services will consume a lot of
network resources, which results in confining the deployment
of new services. Furthermore, we cannot ensure that nodes
hosting the backup VNF instances never fail. Services are still
interrupted in the circumstance that the primary and backup
VNF instances fail simultaneously due to the failure of the
corresponding nodes [17]. In another approach, one can predict
the failures before they actually occur, then makes appropriate
decisions for both primary and backup VNF instances [18].
However, the prediction inherently is not always accurate
and timely. Therefore, this method is also efficient in several
particular conditions only.

Quality of Service (QoS) requirement is also a significant
factor for a network shared by multiple services. The QoS
indicates some criteria the network operators need to satisfy
for a service, including service recovery priority levels once
failure arises. The customers who need to deploy their ser-
vices over NFV-enabled networks and the network operators
will consolidate the QoS requirement over the Service Level
Agreement (SLA) [7], [19]. Different services require different
QoS, in which the services with higher QoS, such as emer-
gency telecommunication services, network control services,
and real-time services, are typically more critical than ones
with lower QoS, such as e-mail and web surfing. In terms
of the resilience requirement, the more critical the services,
the higher the recovery priority. Network operators apparently
need to guarantee the QoS for different services according to
the SLA. Nonetheless, because network resources are limited
and shared between multiple services, it is challenging to
recover all failed services while still ensuring the operation
of non-failure services. In this paper, we employ weights to
present the critical levels of services and aim to recover failed
services such that the total weight of the recovered services is
maximum.

Constructing NFV-enabled networks with resilience ability
is an issue attracting the attention of researchers. However,
the aspect of the service importance has not been investigated
thoroughly. Furthermore, the method of deploying backup
VNF instances has been shown to consume a particular amount
of network resources and still be able to fail in some situations.
In this paper, we propose a novel technique for recovering
interrupted services without needing the backup VNF in-
stances and take the importance of services into consideration
concurrently. The following are the significant contributions
of the paper.

• We propose the VNF restoration for recovering weighted
services (VRRWS) problem for the first time. The ur-
gency of services is one of the crucial factors in the
service level agreement (SLA) between customers and
network operators; it needs to be considered thoroughly
during both the deployment and recovery of services, par-
ticularly when network resources are limited. In this pa-

per, we take the importance into consideration to recover
interrupted services. In addition, We also demonstrate that
the VRRWS problem is NP-hard.

• Different from prevalent methods, we propose an online
approach to recover interrupted services engendered by
hardware failure at network nodes without necessitating
backup resources. This approach can assist to bridge the
challenges of resource limitation and backup node failure.
We first suggest the method for recovering services with
a single failed VNF. On that basis, we then propose the
approach to recover services with multiple failed VNFs.

• We conduct extensive simulations to evaluate the per-
formance of the proposed algorithm and the factors
influencing the recovery. According to the experiments,
migrating available VNFs hosted by non-failure nodes is
necessary to accomplish a better result of the recovery.

The rest of the paper is organized as follows. Section
II presents related works. Section III illustrates the system
model, formally states, and demonstrates the hardness of the
VRRWS problem. The algorithm is proposed in Section IV
and analyzed in Section V. Section VI displays the experiment
results. Eventually, Section VII is the conclusion.

II. RELATED WORK

NFV is an advanced technique yielding a lot of convenience
in deploying, operating, managing, and maintaining network
services. Therefore, since its emergence, this technique has
attracted the attention of many researchers. Due to the flex-
ibility in installing VNFs, one out of the issues they are
first interested in is optimizing the deployment of services
over the physical network from many perspectives. Study
[20] considers the aspect of cost and network utilization.
Specifically, the authors propose an ILP model to minimize
operating expenditures and maximize network utilization. The
authors in [21] investigate the VNF placement in the joint
problem of resource assignment and traffic routing. They first
introduce a queuing-based model matching all the characters
of 5G networks, then propose a heuristic algorithm, called
MaxZ, to solve the problem. In addition, studies [22] and
[23] present remedies to minimize bandwidth consumed by
services. Study [24] seeks to minimize the computational
resource and the risk of bottlenecks on network links. Work
[25] attempts to minimize resource utilization while satisfying
the quality of services.

Furthermore, due to the diversity of services running over
the network, the latency requirement is also a significant issue
that needs to be satisfied. Work [26] investigates the issue
of network service deployment towards minimizing resource
consumption while guaranteeing the latency of services. Ac-
cordingly, the authors suggest a two-stage solution to tackle
the problem. In the first step, they determine deployment paths
using a depth-first search-based algorithm. Afterward, they
seek to reuse as many VNFs as possible for assigning VNFs
by applying a greedy-based algorithm. Study [27] attempts to
tackle the placement and routing of service function chains
while ensuring the deadline of services. The authors propose
four heuristic algorithms to solve the problem based on a
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virtual layer graph constructed from the physical network and
the constituent of services.

Network services always suffer from interruption with a
specific probability due to many reasons, such as software
errors, hardware malfunction, and link failure. Therefore,
sustaining the continuity of services is one of the crucial
issues in NFV-enabled networks [17], [28]. Accordingly, many
approaches were proposed to protect network services from
interruption. The prevalent technique is to leverage redundant
resources of the network to place the backup VNF instances.
In [29], by means of sharing backup instances, the authors
seek to minimize resource consumption while guaranteeing a
particular availability of services. Study [30] proposes surviv-
able virtual networks for single facility node failure in which
the backup paths are shared on physical links to reduce the
backup resources.

Moreover, many plans are proposed for backup. Study
[17] takes both backup computing and transmission resources
into consideration. Accordingly, the authors seek to diminish
backup computing capacity once multiple random facility
node failures arise by means of sharing backup transmission
resources among various services. With this approach, they can
guarantee a reasonable probability of unsuccessful protection
owing to inadequate backup computing capacity. In [10], the
authors propose a backup strategy on top of redundant VNFs
in which they leverage the diversity of the redundant VNFs
to ensure reliability while satisfying the latency requirement
of services. Study [18] employs machine learning algorithms
to predict failures that may happen in the network; thereby,
one can proactively deploy backup VNFs to guarantee the
continuity of services when the failures actually occur. This
approach is efficient in some situations, especially when the
prediction is correct.

In addition, study [31] considers both software and hardware
reliability. The authors believe that in addition to the backup
phase, the construction phase also affects the reliability of
services. Therefore, they first build the service function graph
(SFG) that aggregates all the services based on software
reliability. Afterward, they map the SFG to the physical
network and evaluate the service reliability again, taking the
hardware reliability into account. Finally, backup instances
will be deployed for services that do not satisfy the relia-
bility requirements. Hardware and software failure models are
also concretely analyzed in [15]. The authors then suggest
approaches to minimize the whole latency of all service flows.
Coupled with the fact that allocating backup resources con-
sumes a specific amount of network resources, the efficiency
of resource utilization will be reduced significantly when a
large amount of resources are reserved for the backup.

Although the VNF migration incurs a particular cost and
delay, this is inevitable due to some issues, such as server
maintenance [32], network device failure [33], energy saving
[34], and traffic management [35]. In [32], the authors consider
the trade-off between the latency during the maintenance of
servers and the migration cost to decide if a VNF installed
on the server should be migrated to another active server. In
[33], the authors seek to retrieve multicast applications from
disruption engendered by multiple node/link failures in which

the links cannot be recovered, and hence, the failed VNFs
must be migrated to other nodes while guaranteeing the end-
to-end delays of the multicast trees. Coupled with the fact that
the fewer servers are active, the less energy is consumed, the
authors in [34] attempt to consolidate VNF instances in as
few servers as possible. They propose a migration policy for
the VNF instances in which the trade-off between the energy
saving attained from the consolidation and the alleviation
of revenue caused by the QoS degradation during the VNF
instance migration is considered.

In short, the above studies investigate the service deploy-
ment and recovery problems in NFV-enabled networks under
many different aspects. Nevertheless, this paper is the first
work that takes the importance of services, a crucial term in the
service level agreement (SLA) between customers and network
operators, into consideration to the best of our knowledge.

III. PRELIMINARIES

In this section, we first describe the system model we are
working on, including the physical and virtual networks. We
then formally present the problem and show that its difficulty
is NP-hard.

A. System Model

In this study, we describe the physical network, the location
used to deploy network services, by an undirected graph
G = (N,L), where N and L are the sets of nodes and links,
respectively. Each link in L is a physical line connecting two
nodes in N . Each node in the physical network can be a type
of general-purpose hardware on which VNFs can be installed,
such as high-volume servers, storage, and switches. Each node
also possesses a limited number of computational resources
(such as central processing units) representing its capacity.
The capacity of node n is denoted by its cap property, namely
n.cap. At a specific time, several VNFs installed on node n
will occupy a particular number of the node resources, and the
residual resource of n is denoted by its rr property, namely
n.rr. Finally, the set of VNFs hosted by node n is described
by its V property, namely n.V .

For the virtual network, we describe the set of services
deployed over the physical network by S = {s1, s2, ..., sk}.
Each service in set S is assigned a weight indicating its
critical level according to the QoS requirement stipulated in
the SLA agreed between customers and the network operator.
Accordingly, the higher the weight, the more critical the
service. The weight of service si is indicated by its w property,
namely si.w. Moreover, though there are many types of service
function chaining in practice, a service is assumed to be a
sequence of multiple network functions implemented by VNFs
[15], [26], [31], [36]. VNFs are launched in network nodes,
and a service is deployed by letting its traffic pass through the
nodes hosting its VNFs according to a particular sequence of
the VNFs. Therefore, suppose that the j-th VNF of service
si is vi,j , we denote service si by an ordered set of VNFs,
namely si = {vi,1, vi,2, ..., vi,m}, where m is the number of
VNFs required by service si (or the length of the service). We
suppose that the latency of transmitting data on all physical
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TABLE I
NOTATIONS SUMMARY

Notation Description

G
The physical network, including the sets of nodes and
links

N The set of network nodes
L The set of network links

S
The set of services deployed over the physical network
successfully in the initial state

NF The set of failure nodes

P
The set of plans describing the strategy for recovering
an interrupted service

C The set of candidate nodes

H
The table indicating the shortest paths in terms of
number of hops between two nodes of the network

P.V
The V property of strategy P indicating the set of
VNFs that were already considered by P

n.V
The V property of node n indicating the set of VNFs
hosted by node n

n.cap
The cap property of node n indicating the maximum
number computational resources that node n possesses

n.rr
The rr property of node n indicating the residual
resources of node n

vi,j The j-th VNF of service i

v.res
The res property of VNF v indicating the resources
required by VNF v

v.n
The n property of VNF v indicating the node hosting
VNF v

η(vi,j , vi,j+1)
The constraint on the number of hops between two
successive VNFs vi,j and vi,j+1

s.w
The w property of service s indicating the weight of
service s

pvm The plan to install VNF v on node m

µ
The maximum number of available VNFs that must be
migrated to recover an interrupted service

links is identical, and hence, we can express the latency by
the number of hops. In this study, as stated in Definition 1,
we restrict the number of hops between successive VNFs of a
service to a hop constraint for guaranteeing the latency of the
service, and use η(vi,j , vi,j+1) to denote the hop constraint of
two adjacent VNFs vi,j , vi,j+1 of a service function chain.
Each VNF installed on a node will consume a number of
the node resources indicated by the res property of the VNF,
namely vi,j .res for VNF vi,j . Furthermore, each VNF also
possesses the n property, namely vi,j .n for VNF vi,j , which
indicates the node hosting the VNF. We summarize crucial
notations utilized in this paper in Table I for convenience.

Definition 1. Two adjacent VNFs vi,j , vi,j+1 of a service
function chain is said to have a hop constraint, denoted by
η(vi,j , vi,j+1), only if the number of hops between the two
nodes hosting the VNFs in the substrate network does not
exceed η(vi,j , vi,j+1).

Finally, the status of the network is monitored by a con-
troller located in the management and orchestration (MANO)
layer. Therefore, the controller can detect the failure of phys-
ical nodes and make plans to recover interrupted services
incurred by the node failure. In addition, the controller can also
install VNFs on physical nodes, activate a VNF by assigning
computational resources to the VNF instance, and deactivate
a VNF by releasing computational resources from the VNF
instance.

1,1v

1,2v
1,3v

2,1v

2,2v 2,3v

1.n V

2.n V

3.n V

4.n V
5.n V 6.n V

1,1v 1,2v 1,3v

2,1v 2,2v 2,3v

1 :s

2 :s

1n

2n

3n

4n 5n 6n
Computational resource

Failed node

1,1 1,2( , ) 1v v = 1,2 1,3( , ) 1v v =

2,1 2,2( , ) 1v v = 2,2 2,3( , ) 1v v =

Fig. 1. An example of the system model.

Figure 1 illustrates an example of the system. The phys-
ical network comprises 6 nodes, described by set N =
{n1, n2, n3, n4, n5, n6}, and 7 links. Each node is a general-
purpose hardware with the ability to host VNFs, such as
servers, switches, and storage. The square next to each node
denotes its computational resource. Accordingly, all nodes of
the physical network possess one unit of the computational
resource, except node n4 with two units; hence, ni.cap = 1
for all ni ∈ N\{n4} and n4.cap = 2. The set of services that
have been deployed over the network is S = {s1, s2}, where
each service is an ordered chain of three VNFs, expressed by
s1 = {v1,1, v1,2, v1,3} and s2 = {v2,1, v2,2, v2,3}. Each VNF
consumes one unit of computational resource for operation,
that is, vi,j .res = 1 for all vi,j ∈ si and si ∈ {s1, s2}. The
hop constraints between two VNFs are all one hop, which
means η(vi,j , vi,j+1) = 1 for all i, j ∈ {1, 2}. In the original
state, s1 is deployed over nodes n1, n4, and n2; and s2 is
deployed over nodes n3, n4, and n5. Therefore, the resource of
all nodes is occupied, except node n6, which means ni.rr = 0
for all ni ∈ N\{n6} and n6.rr = 1. In addition, the set
of VNFs hosted by each node is completely determined,
that is, n1.V = {v1,1}, n2.V = {v1,3}, n3.V = {v2,1},
n4.V = {v1,2, v2,2}, n5.V = {v2,3}, and n6.V = ∅.

B. Problem Definition
We suppose that in the original status of the system, the

services in set S are deployed successfully over the physical
network. However, due to malfunctions of hardware, some
network nodes are failed resulting in the interruption of some
services. The set of failed nodes is expressed by NF ⊆ N .
Based on the elements of set NF , we can determine the
interrupted services. Because backup VNF instances are not
deployed in this model, we carry out the recovery by deploying
the interrupted services on top of the residual resources of
nodes and the current status of the network. The recovery of
a service is defined as follows.

Definition 2. A service is recovered if its failed VNFs can be
reinstalled on the non-failure nodes while guaranteeing the
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structure of the service and the availability of other services
that are not affected by the failure of network nodes.

According to Definition 2, in addition to the recovery, we
need to guarantee the requirements of the structure and the
availability of services. Nevertheless, it is hard to satisfy these
demands to recover all failed services due to the limitation of
the residual resources; hence, we aim to maximize the total
weights of the recovered services in this study. Therefore, we
call this issue the VNF restoration for recovering weighted
services (VRRWS) problem. The VRRWS problem is formally
stated as follows.

INSTANCE: Given a physical network described by undi-
rected graph G = (N,L), a set of services deployed success-
fully on the network, termed S, and a set of failed nodes,
termed NF , where NF ⊆ N .

TASK: Maximize
∑

si∈SR
si.w, where SR ⊆ S is the

set of services that can be recovered from the interruption
engendered by the failure of nodes in NF .

Accordingly, we formulate the VRRWS problem as follows.
maximize:

∑
si∈SR

si.w
subject to: ∑

v∈n.V

v.res ≤ n.cap ∀n ∈ N (1)

dist (vi,j , vi,j+1) ≤ η (vi,j , vi,j+1) ∀vi,j ∈ si,

∀si ∈ (S\SF ) ∪ SR

(2)

SR ⊆ SF (3)

where dist (vi,j , vi,j+1) denotes the distance, in terms of the
number of hops, between the two physical nodes hosting vi,j
and vi,j+1; SF is the set of failed services induced by the
failure of nodes in NF . Constraint (1) means that the total
computational resources consumed by the VNFs installed at
a node must not exceed the node capacity. Constraint (2)
describes the hop constraint between two adjacent VNFs of
the running services in set S\SF and the recovered services
in set SR.

Taking the system in Fig. 1, for example, in which node n2

is failed due to a malfunction, which indicates NF = {n2}.
Because n2.V = {v1,3} and v1,3 ∈ s1, VNF v1,3 is failed and
only service s1 is interrupted. Therefore, the task is to find an
approach to migrate VNF v1,3 and the other VNFs, if required,
to the other nodes to recover service s1 while guaranteeing the
availability of service s2. Figure 2 shows a solution to recover
service s1, where VNFs v2,3, v2,2, v2,1, v1,1, and v1,3 are
migrated to nodes n6, n5, n4, n3, and n1, respectively.

After determining plans for recovering interrupted services,
the VNFs that need to be migrated will be installed on the new
locations (nodes) accordingly. The corresponding VNFs at the
old locations will be deactivated by releasing computational
resources from the VNF instances, and the new VNFs will
be activated by assigning computational resources to the new
VNF instances [37] concurrently. Eventually, the traffic of
the services affected by the recovery will be orientated to
traverse through the new locations. As presented above, the
VNF migration is inevitable and apparently suffers from a
particular latency. From the perspective of internet service
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2,1v 2,2v 2,3v

1.n V

3.n V

4.n V
5.n V 6.n V
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3n

4n 5n 6n
2n

2.n V

1,1v 1,2v 1,3v

2,1v 2,2v 2,3v

1 :s

2 :s

1,1 1,2( , ) 1v v = 1,2 1,3( , ) 1v v =

2,1 2,2( , ) 1v v = 2,2 2,3( , ) 1v v =

Fig. 2. A solution to recover service s1.

providers, they expect to recover interrupted services as soon
as possible, and hence, many researches have concentrated on
optimizing the migration latency [32], [35], [38]. The detail
of these techniques is beyond the scope of this study.

C. Hardness of the VRRWS Problem

In this subsection, we first present a subproblem of the VR-
RWS problem, termed reduced VRRWS (RVRRWS) problem.
Afterward, we demonstrate that the difficulty of the RVRRWS
problem is NP-hard over Lemma 1. Finally, the hardness of
the VRRWS problem is shown in Theorem 1. The RVRRWS
problem is stated as follows.

INSTANCE: Given a physical network described by undi-
rected graph G = (N,L), where N = {n1, n2} and L = {l}, a
set of services deployed successfully over the network, termed
S, where each service consists of only one VNF, and a set of
failed nodes NF = {n2}.

TASK: Maximize
∑

si∈SR
si.w, where SR ⊆ S is the

set of services that can be recovered from the interruption
engendered by the failure of nodes in NF .

The Knapsack problem [39] is employed to show the
hardness of the RVRRWS problem and is presented as follows.

INSTANCE: Given a set of items described by I and a
knapsack. Each item Ii in I owns a value and a weight
expressed by its v and w properties, that is, Ii.v and Ii.w,
respectively. The knapsack possesses a specific capacity in-
dicating the maximum total weight of items it can contain,
termed W .

TASK: Maximize
∑

Ii∈R Ii.v subject to
∑

Ii∈R Ii.w ≤W ,
where R ⊆ I
Lemma 1. The RVRRWS problem is NP-hard.

Proof. The knapsack in the Knapsack problem can be judged
as node n1 in the RVRRWS problem, in which the capacity
W of the knapsack can be treated as the residual resources of
node n1, that is, n1.rr. Suppose that SF is the set of services
that are interrupted due to the failure of node n2. Each item in
set I of the Knapsack problem can be treated as an interrupted



6

service in set SF of the RVRRWS problem, where the value
of the item can be treated as the weight of the service, and the
weight of the item can be treated as the consumed resources of
the VNF of the service. Obviously, the Knapsack problem is
also the RVRRWS problem. According to [39], the Knapsack
problem is NP-hard, hence is the hardness of the RVRRWS
problem. This completes the proof.

Theorem 1. The VRRWS problem is NP-hard.

Proof. Coupled with the fact that the RVRRWS is a sub-
problem of the VRRWS, and the difficulty of the RVRRWS
problem is NP-hard according to Lemma 1, the hardness of the
VRRWS problem is NP-hard. This completes the proof.

IV. PROPOSED ALGORITHM

In this section, we propose an online technique to recover
the interrupted services due to the failure of several nodes
in the physical network. We seek to restore a failed VNF
by migrating it to a non-failure node with a proper residual
resource while guaranteeing the structure of the recovered
service as well as the availability of the non-failure services.
Coupled with the fact that the failure may occur at disparate
nodes in the network concurrently, there may be multiple
failed VNFs incurring the interruption of the same service.
Therefore, we first show the method for restoring a single
VNF based on the available VNFs of the same service. On
that basis, we suggest a procedure to retrieve an interrupted
service by means of restoring all its failed VNFs. Eventually,
we propose a technique, dubbed online recovery algorithm
(ORA), to recover interrupted services induced by the failure
of a set of network nodes.

The rationale behind the proposed method is to leverage
the computation resource redundancy of some nodes in the
network to relaunch failed VNFs incurred by the failure of
nodes while guaranteeing the operation of available services
running over the network. Accordingly, a failed VNF will be
migrated to an available node. If the computation resource of
the node is insufficient to launch the failed VNF, we need
to migrate available VNFs being installed at the node to
other available nodes, and such VNFs are treated as failed
VNFs that need to be retrieved. Nevertheless, different from
the original failed VNF, it is imperative that we ensure the
successful recovery of these VNFs to sustain the availability of
the running services. A failed VNF is recovered successfully if
we can find a proper node with enough computation resources
to install the last available VNF affected by the migration of
the failed VNF. For an interrupted service with multiple failed
VNFs, we will retrieve the service by recovering the failed
VNFs one by one. Eventually, if there are multiple interrupted
services in the network, the ORA considers restoring these
services one by one, and services with higher weights are
prioritized for recovery first. We next describe the proposed
method in detail, including the illustrated example.

A. Restoration of a Single Failed VNF

In this subsection, we propose the RESTORE procedure to
restore a single failed VNF that is vi,j in the instance. We

1: procedure CANDIDATENODES(vi,j , G,H, S)
2: Let vi,x and vi,y be the preceding and the next

available VNFs of vi,j in the corresponding chain
3: C ← ∅
4: Let A be the set of nodes a such that H(vi,x.n, a) ≤

η(vi,x, vi,x+1)
5: Let B be the set of nodes b such that H(vi,y.n, b) ≤

η(vi,y−1, vi,y)
6: if x = j − 1 and y = j + 1 then
7: C ← A ∩B
8: else if x = j − 1 then
9: C ← A

10: else if y = j + 1 then
11: C ← B
12: else
13: if A ̸= ∅ then
14: C ← A
15: else
16: C ← B
17: end if
18: end if
19: return C
20: end procedure

first search for the candidate nodes to reinstall the failed
VNF over the CANDIDATENODES procedure. Accordingly,
the procedure returns a set of nodes (C) that satisfy the
hop constraint between the node hosting the failed VNF and
the nodes on which the preceding (vi,x) and the next (vi,y)
available VNFs in the corresponding sequence of the service
are being installed. In the CANDIDATENODES procedure, H
is a table indicating the minimum distance, in terms of the
number of hops, between two nodes in the physical network
(G). Table H is implemented by applying the Floyd-Warshall
algorithm [40]. In the case that the preceding and the next
VNFs of the failed VNF are both available (x = j − 1 and
y = j+1), the candidate nodes must fulfill both hop constraints
between the failed VNF and the preceding and next VNFs. In
the situations that the failed VNF is either the first or the
last VNF of the sequence, or two or more successive VNFs
are failed, only one out of the preceding and next VNFs is
available (either x = j − 1 or y = j + 1), and hence, the
candidate nodes need to satisfy the hop constraint between
the failed VNF and the available VNF only. In the cases that
the available preceding and the next VNFs are not adjacent
to the failed VNF, we need to determine the candidate nodes
temporarily.

Taking Fig. 1, for example, node n2 is failed, inducing the
failure of VNF v1,3. Because VNF v1,3 is the last VNF of
service s1, only the preceding VNF v1,2 being installed on
node n4 is available. Because η(v1,2, v1,3) = 1, the number
of hops between a candidate node for restoring v1,3 and node
n4 must not exceed 1. Therefore, the set of the candidate nodes
is C = {n1, n3, n4, n5}. Because node n2 is failed, it is not
counted as a candidate node.

After finding out the candidate nodes, we next determine
a proper strategy to restore the failed VNF with the aim of
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recovering the interrupted service. Because an available VNF
placed on a non-failure node may be replaced by a failed VNF
for the proposed technique, restoring the failed VNFs may
impact the availability of other VNFs. Thus, we seek to find
the best strategy to deploy the interrupted service again over
the physical network by considering each candidate node in set
C. In the RESTORE procedure, a plan to install VNF vi,j on
node m is indicated by p

vi,j
m , and the strategy for recovering

a service from interruption is determined by a set of plans
denoted by P . For each node m in set C, if the residual
resource of the node is sufficient to launch the failed VNF
(m.rr ≥ vi,j .res), plan p

vi,j
m will be appended to the current

strategy, then the best strategy will be updated. Strategy X
(PX ) is better than strategy Y (PY ) if |PX | < |PY |, where
|PX | and |PY | are the numbers of plans in strategies X and
Y , respectively. If |PX | = |PY |, we need to consider the first
plans of PX and PY , say pvnX

and pvnY
, and the node hosting

the next VNF of v in the sequence, say q, to decide which
strategy is better, that is, if H(nX , q) < H(nY , q), strategy X
is better than strategy Y . Accordingly, if the current strategy
(P ) is better than the best strategy (Popt), the best strategy
will be replaced by the current one. Afterward, the residual
resource of the current candidate node and the status of the
physical network are also updated based on the current best
strategy. If the residual resource of the candidate node is not
adequate to launch the failed VNF, we can remove one VNF
being installed on the node to release a particular amount of
the node resource. If the total of the residual resource and the
released resource satisfy the requirement of the failed VNF,
we can allocate the node to the failed VNF and consider the
removed VNF to be a failed VNF that also needs to be restored
by a strategy. To this end, we call the RESTORE procedure
again, taking the removed VNF as the input. That is the
reason the RESTORE procedure is implemented according to a
recursive manner. The recursion will end when no more VNF
is removed from a candidate node. After finding out the proper
node to reinstall the failed VNF, the corresponding plan will
be added to the current strategy. Thereby, the number of plans
in a strategy also indicates the number of VNFs that need to
be installed or migrated from their original nodes to recover
an interrupted service. Hence, in other words, strategy A is
better than strategy B if strategy A migrates fewer available
VNFs than strategy B.

In order to avoid endless loops engendered by continuously
removing the same VNF in the recursion, if a VNF is already
in P.V , which is the set of VNFs in strategy P , it will not
be taken into consideration for removing again. In addition, in
order to diminish the complexity of the RESTORE procedure,
we confine the number of available VNFs that need to be
migrated over value µ. While considering the plan of installing
the failed VNF, a strategy is infeasible if the number of its
plans exceeds µ+ 1.

Taking Fig. 1, for example, we consider each node in turn in
the set of candidate nodes (C) determined from the previous
step to explore the best strategy to recover service s1 while
guaranteeing the availability of s2. The first node in set C
is considered, which is n1. However, n1 is hosting v1,1, and
thus, its residual resource is insufficient to reinstall v1,3. To

1: procedure RESTORE(vi,j , G,H, S, t, µ, P, Popt, Gopt)
2: if t > µ then
3: return {Popt, Gopt}
4: end if
5: C ← CANDIDATENODES(vi,j , G,H, S)
6: for each m ∈ C do
7: if m.rr ≥ vi,j .res then
8: Append p

vi,j
m to P

9: if Popt = ∅ or P is better than Popt then
10: Popt ← P
11: Gopt ← G
12: Allocate node m for VNF vi,j and update

m.rr and m.V in Gopt

13: end if
14: Remove p

vi,j
m from P

15: else
16: if Popt ̸= ∅ and |Popt| ≤ t then
17: continue
18: else
19: for each v ∈ m.V do
20: if v /∈ P.V and m.rr+v.res ≥ vi,j .res

then
21: Gtmp ← G
22: Allocate node m for VNF vi,j , re-

move VNF v from m, and update m.rr and m.V in Gtmp

23: Append p
vi,j
m to P

24: {Popt, Gopt} ← RESTORE(v,
Gtmp, H , S, t+ 1, µ, P , Popt, Gopt)

25: Remove p
vi,j
m from P

26: end if
27: end for
28: end if
29: end if
30: end for
31: return {Popt, Gopt}
32: end procedure

be able to launch v1,3 into n1, v1,1 must be pushed out of
n1. Then, node n1 is allocated to reinstall VNF v1,3, and v1,1
becomes a failed VNF that needs to be restored. Therefore,
the current strategy is P = {pv1,3

n1 }. We next seek to restore
the current failed VNF, v1,1. Likewise, the set of candidate
nodes for reinstalling v1,1 is {n1, n3, n4, n5}. The first node
in the set, n1, is considered for reinstalling v1,1. Nonetheless,
n1 is hosting v1,3 that belongs to the current strategy P , we
ignore n1 and deliberate the next node in the candidate node
set, n3. The VNF that is being hosted by n3, that is v2,1, will
be pushed out to reinstall v1,1. The current strategy becomes
P = {pv1,3

n1 , p
v1,1
n3 }, and v2,1 becomes the next failed VNF

that needs to be restored. Repeat this process until no more
VNF is pushed out, we acquire the first strategy for recovering
service s1, that is, P1 = {pv1,3

n1 , p
v1,1
n3 , p

v2,1
n4 , p

v2,2
n5 , p

v2,3
n6 }. Like-

wise, for candidate node n3, we obtain the second strategy,
P2 = {pv1,3

n3 , p
v2,1
n4 , p

v2,2
n5 , p

v2,3
n6 }. For candidate nodes n4 and

n5, we cannot find any feasible strategy. The two feasible
strategies are illustrated in Fig. 3. In the figure, a dashed square
describes a VNF that is dropped from its original node to
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1: procedure RESTOREVNFS(V,G,H, S, µ)
2: Gopt ← G
3: while V ̸= ∅ do
4: Let v be the first VNF in V
5: Popt ← ∅; P ← ∅
6: {Popt, Gopt} ← RESTORE(v, Gopt, H , S, 0, µ, P ,

Popt, Gopt)
7: if Popt = ∅ then
8: return {false, ∅}
9: end if

10: Remove v from V
11: end while
12: return {true,Gopt}
13: end procedure

reinstall a failed VNF, and a dashed arrow describes a plan
to restore a failed VNF. According to the procedure, between
the two strategies, P2 is selected as the final solution because
it is better than P1. In addition, if we confine the length of
a strategy by setting the value of µ as 3, P2 is the unique
feasible solution.

B. Restoration of Multiple VNFs

The interruption of a service may be induced by the failure
of multiple VNFs. By means of applying the RESTORE
procedure iteratively, we can restore the failed VNFs one by
one, thereby recovering the interrupted service. The algorithm
is concretely described over the RESTOREVNFS procedure,
where V is the set of the failed VNFs. For each iteration,
the first VNF in V is considered to restore by the RESTORE
procedure. If the strategy returned from the RESTORE proce-
dure (Popt) is not empty, it means that the failed VNF can
be restored successfully. We then update the current status
of the physical network, remove the first VNF in V , and
repeat the process for the remaining VNFs in V . If Popt is
an empty set, the failed VNF cannot be restored, and hence,
the corresponding service also cannot be recovered from the
interruption.

C. Service Recovery Algorithm

In this subsection, we propose an algorithm to recover the
interrupted services induced by the failure of a set of nodes,
expressed by NF , by applying the above procedures. The
algorithm is presented concretely in Algorithm 1. Because
there are constraints on the number of hops between two
successive VNFs of the same service, we first implement a
table indicating the shortest path, in terms of hops, between
two nodes in the physical network employing Floyd-Warshall’s
algorithm [40]. This table assists with rapidly searching the
shortest path between two nodes without using Dijkstra’s
algorithm repeatedly. From the set of failure nodes, we can
determine the failed VNFs, thereby inferring the set of inter-
rupted services, denoted by SF ⊆ S. We seek to maximize
the total weight of the recovered services by recovering the
interrupted services one by one in the descending order of

weights. If all the VNFs of a service are failed, we consider
deploying the service again by the technique proposed by [41].

For another service with at least one available VNF, we form
a corresponding set of failed VNFs with the order according
to the service sequence. The recovery is then conducted by
restoring the failed VNFs in the set one by one from the first to
the last VNF. According to the procedure stated above, finding
the candidate nodes for reinstalling a failed VNF requires
determining precisely at least one adjacent VNF that is still
available. Nevertheless, this requirement cannot be satisfied
to restore the first failed VNF if more than one of the first
consecutive VNFs in the original sequence of the service are
failed. Hence, we divide the set of failed VNFs into two
subsets to bridge this situation. The first set, termed Vfront,
involves the first k (k ≥ 1) VNFs if the first k consecutive
VNFs of the service are failed. The set of the remaining failed
VNFs is denoted by Vrear. By means of applying this method,
we can guarantee that the last VNF in Vfront and the first
VNF in Vrear are always adjacent to an available VNF. We
then restore the VNFs in Vfront by restoring the last one
first. Based on the VNFs that were restored successfully, we
restore the remaining VNFs. If all the VNFs in Vfront are
restored successfully, we next restore the VNFs in Vrear. It is
worth noting that the RESTOREVNFS procedure restores each
failed VNF in turn according to a specific order originating
from the first VNF in the set of failed VNFs. In order to
apply the RESTOREVNFS procedure for restoring VNFs in
Vfront from the last VNF, we reverse Vfront to obtain set
V r
front with the first element being the last VNF in Vfront.

Afterward, the recovery is conducted on V r
front and Vrear.

If all the VNFs in V r
front and Vrear are fixed, the service is

successfully recovered.
We take the following example to clarify the algo-

rithm. Suppose that the original chain of a service is
{v1, v2, v3, v4, v5, v6} in which v1, v2, v3, v5, and v6 are
failed; thus, sets Vfront, V r

front, and Vrear are {v1, v2, v3},
{v3, v2, v1}, and {v5, v6}, respectively. The RESTOREVNFS
procedure is applied for V r

front first, and according to the
procedure, VNF v3 is considered restoring first based on
the unique available VNF of the service, v4. If v3 is fixed
successfully, it will be available and become the basis for
restoring v2. The process will be repeated to restore the
remaining failed VNFs in V r

front and then Vrear.

V. ALGORITHM ANALYSIS

In this section, we first present the time complexity of CAN-
DIDATENODES, RESTORE, and RESTOREVNFS procedures
over Lemmas 2, 3, and 4, respectively. On that basis, the time
complexity of the ORA is shown in Theorem 2. In addition,
we employ κ, ζ, ℓ, and ρ to denote the number of physical
network nodes, the maximum resources that a node possesses,
the maximum length of services, and the number of services
deployed over the physical network, respectively. Moreover,
logκ stands for log2κ.

Lemma 2. The time complexity of the CANDIDATENODES
procedure is bounded in O(κlogκ).
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Fig. 3. Feasible strategies for example in Fig. 1 when candidate nodes are n1 in (a) and n3 in (b), respectively.

Algorithm 1 ORA (G,NF , S, µ)
1: Construct table H by applying Floyd-Warshall algorithm

to G
2: Let SF be the set of interrupted services inferred from

NF

3: ωtotal ← 0
4: while SF ̸= ∅ do
5: Let si be the service with the highest weight in SF

6: conti← true
7: Let Vfront = {vi,1, vi,2, . . . , vi,k} be the set of the

first k consecutive failed VNFs in si and Vrear be the set
of the remaining failed VNFs in si

8: Gtmp ← G
9: if Vfront ̸= ∅ then

10: if k = |si| then
11: Apply [41] to deploy si again based on the

current status of the network
12: else
13: Let V r

front be the reverse of Vfront

14: {conti,Gtmp} ← RESTOREVNFS(V r
front,

Gtmp, H , S, µ)
15: end if
16: end if
17: if conti then
18: {conti,Gtmp} ← RESTOREVNFS(Vrear, Gtmp,

H , S, µ)
19: end if
20: if conti then
21: ωtotal ← ωtotal + si.w
22: G← Gtmp

23: end if
24: SF ← SF \ {si}
25: end while
26: return ωtotal

Proof. In the CANDIDATENODES procedure, because H is
inferred from the Floyd-Warshall algorithm [40], H is a
table with κ rows and κ columns, where κ is the number
of network nodes. Therefore, both Lines 4 and 5 require at
most O(κ) time to complete. We next sort sets A and B

into the same specific order, which takes at most O(κlogκ)
time for each set, where logκ stands for log2κ. In doing
so, the intersection of A and B (Line 7) requires at most
O(κ+ κ) = O(κ) time to complete [42]. Eventually, the time
complexity of the CANDIDATENODES procedure is bounded
in O(κ)+O(κ)+O(κlogκ)+O(κlogκ)+O(κ) = O(κlogκ).
This completes the proof.

Lemma 3. The time complexity of the RESTORE procedure is
bounded in O((κζ)µ(κlogκ+ κζ)).

Proof. It is worth noting that the RESTORE procedure is called
for the first time by the RESTOREVNFS procedure, where the
initial value of instance t is always equal to 0. Thus, according
to the condition at Line 2, the RESTORE procedure will call
itself at most µ times. We employ T (µ) to denote the time
complexity of the RESTORE procedure when it calls itself µ
times. It is apparent that T (0) = O(κlogκ + κζ), where κ is
the number of network nodes, and ζ is the maximum resources
that a node can own, because Line 5 needs at most O(κlogκ)
to complete according to Lemma 2; the loop between Lines 6
and 30 repeats at most κ times, and the loop between Lines
19 and 27 repeats at most ζ times. We will prove that

T (µ) = O((κζ)µ(κζ + κlogκ)) (4)

holds by means of using induction.
For the case that µ = 1, the RESTORE procedure calls itself

once. Likewise, Line 5 needs at most O(κlogκ) time according
to Lemma 2, and the loop between Lines 6 and 30 repeats
at most O(κζT (0)) times. Therefore, T (1) = O(κlogκ) +
O(κζT (0)) = O(κlogκ + κζ(κlogκ + κζ)) = O(κζ(κζ +
κlogκ)). Hence, (4) holds for µ = 1.

Suppose that T (µ − 1) = O((κζ)µ−1(κζ + κlogκ)) holds.
Line 5 requires at most O(κlogκ) time according to Lemma 2,
the loop between Lines 6 and 30 repeats at most O(κζT (µ−
1)) times. Thus, T (µ) = O(κlogκ) + O(κζT (µ − 1)) =
O(κlogκ + (κζ)µ(κζ + κlogκ)) = O((κζ)µ(κζ + κlogκ)).
Hence, (4) also holds for µ. This completes the proof.

Lemma 4. The time complexity of the RESTOREVNFS pro-
cedure is bounded in O(ℓ(κζ)µ(κlogκ+ κζ)).
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Proof. In the RESTOREVNFS procedure, the loop between
Lines 3 and 11 repeats at most ℓ times, where ℓ is the maxi-
mum length of services. Moreover, the time complexity of the
RESTORE procedure inside the loop is O((κζ)µ(κζ+κlogκ))
according to Lemma 3. Therefore, the time complexity of the
RESTOREVNFS procedure is O(ℓ(κζ)µ(κζ + κlogκ)). This
completes the proof.

Theorem 2. The time complexity of the ORA is bounded in
O(κ3 + ρ(ρ+ ℓ(κζ)µ(κζ + κlogκ))).

Proof. In Algorithm 1, the time complexity of the Floyd-
Warshall algorithm is κ3 [40]. The loop between Lines 4 and
25 iterates at most ρ times. Inside the loop, determining the
service with the highest weight (Line 5) needs at most O(ρ)
time. The time complexity of the RESTOREVNFS procedure
is O(ℓ(κζ)µ(κlogκ+ κζ)) according to Lemma 4. Therefore,
the time complexity of the ORA is O(κ3+ρ(ρ+ℓ(κζ)µ(κζ+
κlogκ))). This completes the proof.

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to evaluate
the performance of the proposed algorithm, ORA, and factors
affecting the resiliency of the physical network.

A. Simulation Setting

In this subsection, we set the default values for parameters
employed in the experiments. If these parameters are not
further mentioned in the simulation scenarios, they will get
the default values.

1) Network Topology: The physical networks are generated
randomly employing the Erdos-Renyi model [43]. We set
the probability of generating network edges to ln|N |/|N | to
ensure the network is connected, where |N | is the number
of nodes, and ln|N | is the natural logarithm of |N |. The
maximum available resource of a node is restricted to 10
units. The failure at nodes arises randomly with the number
indicated by α× |N |. By default, N and α are set to 500 and
0.3, respectively. In addition, to demonstrate the applicability
of the proposed method for different network models, we
also conduct simulations using the Barabasi-Albert (BA) [44],
another popular network model.

2) Network Services: In this study, a service consists of
multiple VNFs forming a chain with a particular order. It is
worth noting that the services are deployed successfully over
the physical network before the failure of nodes engenders the
interruption. The number of deployed services is set to β×|N |.
The number of VNFs (or the length) of services varies from
1 to λ. In addition, the resource required by each VNF alters
from 1 to γ units. The hop constraint between two adjacent
VNFs varies from 1 to σ. Finally, the weight of services varies
from 1 to δ. The values of β, λ, γ, σ, and δ are set to 0.5, 8,
5, 2, and 10 by default, respectively.

3) Comparison: From the detail of the proposed algorithm,
µ is a significant parameter indicating the influence of the
recovery of interrupted services on the available services.
Therefore, in experiments, we evaluate the performance of the
ORAs with different values of µ, which are 1, 2, 3, and 4. In

addition, we also implement a greedy-based algorithm, hence
named GBA, for the comparison. In the GBA, we seek to
recover the interrupted services without affecting the available
services. In more detail, if the residual resource of a candidate
node is not adequate for reinstalling a failed VNF, we will
consider the other candidate nodes without removing any VNF.
By means of using the GBA, the location of the available
services will not be changed. In other words, the GBA is also
the ORA with µ = 0.

4) Performance Metrics: We assess the performance of
the algorithms with respect to two metrics, the number of
restored VNFs and the total weight of the recovered services,
in which the latter expresses the resiliency of the network.
Only when a service is successfully recovered, the failed VNFs
are considered to be restored successfully. A higher value of
these metrics means a better performance of the algorithm.
In the experiments, we investigate the dependence of the two
metrics on the number of network nodes (|N |), the number
of failed nodes (α), the number of deployed services (β), the
length of services (λ), the resource required by VNFs (γ), the
hop constraint between two adjacent VNFs (σ), and the weight
of services (δ).

B. Experiment Results

Main observation: In all scenarios, the ORA, though with
any µ, is always better than the GBA. This is because the
ORA allows adjusting the location of VNFs of the available
services. Therefore, there are multiple options for recovering
the interrupted services. This is also the reason why the ORA
with a higher µ is better than the one with a smaller µ.

1) Impact of Network Scale: The network scale in this sce-
nario is indicated by the number of nodes. In this experiment,
we vary the number of nodes from 100 to 1000 to study the
effect of the network scale on the total weight of the recovered
services. From the simulation results, shown in Fig. 4, both
the number of the recovered VNFs and the corresponding total
weight increase almost linearly with the number of physical
network nodes. This is because the increment of the number
of nodes results in the increment of network resources, that is,
the number of physical links and the node resource. Therefore,
there will be more options to reinstall failed VNFs and recover
interrupted services. In addition, Fig. 5 shows the simulation
results when α is set to 0.4. From the figures, the results nearly
cannot be improved when the number of nodes exceeds 600.
This is because though the computing resources are sufficient
to reinstall failed nodes, the hop constraint cannot be satisfied.
Moreover, the number of restored VNFs and the total weight of
recovered services are also decreased significantly compared
with the case of α = 0.3. This is because the number of
failed nodes is increased while the number of services is kept
constant.

Among the algorithms, the performance of the ORAs is
better than that of the GBA. This is shown more clearly in
large-scale networks. Among the ORAs, the difference in the
results is not substantial, particularly between µ = 2, µ = 3,
and µ = 4. This indicates that with large-scale networks, we
can consider employing a proper value of µ for the recovery
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weight of the recovered services on the network scale when α = 0.3.
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to reduce the time complexity while obtaining an acceptable
result.

2) Impact of Failed Nodes: In this set of simulations, we
vary the number of failed nodes by changing the value of
α from 0.1 to 0.6 while keeping the other parameters in
order to evaluate the influence of the failed nodes on the
recovery. Because the number of nodes is 500, the number
of failed nodes varies from 50 to 300. The simulation results
are displayed in Fig. 6. From the figure, we can observe that
when α increases from 0.1 to 0.4, the number of repaired
VNFs and the total weight tend to increase but decrease once
α exceeds 0.4. This is because the increment of the failed
nodes engenders an increase in the failed VNFs. This renders
the number of interrupted services not only increased but also
complicated to recover. In addition, it is worth noting that the
number of network nodes is held unchanged. Hence, the total
available resource of nodes significantly decreases when the
number of failed nodes increases. As a consequence, when
the number of failed nodes is low, the network has sufficient
resources, and the interrupted services are straightforward to
recover, which improves the total weight as well as the number
of repaired VNFs. Nevertheless, when the number of failed
nodes is too large, both the values are not only not enhanced
but also degraded.

3) Impact of Services: In this experiment, we tailor the
number of services deployed over the network before the
failure by altering β from 0.1 to 1. This indicates the number
of services varies from 50 to 500. Fig. 7 shows how the
number of repaired VNFs and the total weight of the recovered
services change with the number of services deployed over
the network. There are two definitive trends, the upward trend
when β varies from 0.1 to 0.5 and the downward trend when
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Fig. 6. Dependence of (a) the number of restored VNFs and (b) the total
weight of the recovered services on the number of failed nodes.
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Fig. 7. Dependence of (a) the number of restored VNFs and (b) the total
weight of the recovered services on the number of services deployed over the
network.

β changes from 0.5 to 1. We can interpret this point as
follows. With the low values of β, the services are sparsely
deployed over the network and occupy fewer node resources.
Therefore, the available node resources are still large enough
to recover the interrupted services. Moreover, the influence of
the node failure on the services is not critical, which renders
the interrupted services easy to be recovered. Hence, the ORA
curve with µ = 1 nearly coincides with the ORA curves
with µ = 2, µ = 3, and µ = 4. This also explains why
the total weight of the recovered services is relatively low
with the low values of β. When β increases, the density
of the services is more crowded; thus, the failure of nodes
renders the interruption more serious. Meanwhile, the available
node resources are ever-decreasing due to the increase in the
resources occupied by services. As a result, when β increases
to a particular threshold, the resiliency of the network will
decrease, which degrades the number of repaired VNFs and
the total weight of the recovered services.

4) Impact of the Length of Services: To investigate the
influence of the length of services on the total weight of the
recovered services, we change λ from 4 to 12. The simulation
results are shown in Fig. 8. The performance of the ORAs
is demonstrated clearly in this experiment. While the GBA
cannot improve the total weight of the recovered services, the
ORAs can enhance the total weight until λ reaches 7 (µ = 1)
or 8 (µ = 2, 3, 4). Because the number of failure nodes is kept
constant and any failure of the VNFs will induce the interrup-
tion of services, the longer the services, the higher possibility
of failure. Therefore, the number of interrupted services will
increase with the length of the services. That is the reason
we can improve the total weight of the recovered services by
means of applying ORAs. Nevertheless, the services with more
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Fig. 8. Dependence of (a) the number of restored VNFs and (b) the total
weight of the recovered services on the service length.

VNFs also indicate that the node resources occupied by the
services increase. Therefore, when λ increases to a threshold,
the available node resources are insufficient to recover all the
interrupted services, which engenders the degradation of the
total weight of the recovered services.

5) Impact of the Resource Requirement of VNFs: To eval-
uate the resiliency of the physical network according to the
resource requirement of VNFs, we vary the value of γ from
1 to 10. This indicates that the average resource of nodes
required for installing VNFs increases with γ. From the
simulation results, shown in Fig. 9, we can observe different
tendencies of the two performance metrics once increasing γ.
While the number of repaired VNFs continuously decreases,
particularly with a faster pace when γ alters from 4 to 8, the
total weight of the recovered services can be improved until γ
reaches 3 (with GBA) or 5 (with ORAs) and then definitively
decreases. The results can be interpreted as follows. Because
the resources of network nodes are fixed and limited to 10, the
increment of the average resource required by VNFs renders
the number of VNFs hosted by each node decreased, which
means the VNFs will be broadly placed over the network.
Therefore, when γ increases, the failure of nodes will increase
the possibility of interrupted services. Moreover, with the
low values of γ, the node resources are still sufficient to
recover almost the interrupted services. Hence, the total weight
of the recovered services will be enhanced. Nevertheless,
when the average resources claimed by VNFs increase beyond
a specific threshold, the deployment of services causes the
node resources to exhaust rapidly. As a result, the available
resources are inadequate to recover all the interrupted services,
which reduces both the number of recovered services and the
total weight. It is worth noting that a high value of γ renders
the failed VNFs not trivial to repair due to the restriction of
node resources. Thus, coupled with the fact that the interrupted
services will increase significantly once increasing γ, we can
still improve the total weight of the recovered services though
the number of repaired VNFs is not enhanced.

6) Impact of the Number of Hops between Two VNFs:
In this set of simulations, we evaluate the resiliency of the
network according to the restriction on the number of hops
between two VNFs by altering σ from 1 to 5. The experiment
results in Fig. 10 show that both the number of repaired VNFs
and the total weight of the recovered services are improved
once increasing σ. It is worth noting that a larger σ renders the
restriction on the number of hops between two VNFs looser,
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Fig. 9. Dependence of (a) the number of restored VNFs and (b) the total
weight of the recovered services on the resource requirement of VNFs.
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Fig. 10. Dependence of (a) the number of restored VNFs and (b) the total
weight of the recovered services on the number of hops between two VNFs.
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Fig. 11. Dependence of (a) the number of restored VNFs and (b) the total
weight of the recovered services on the service weight.

which assists in increasing the number of candidate nodes for
failed VNFs. This provides more options to repair failed VNFs
when increasing σ, hence improving the number of repaired
VNFs and the total weight of the recovered services.

7) Impact of the Service Weight: In this experiment, we
vary δ from 4 to 16, which means increasing the average
weight of services. It is worth noting that the weights of
services do not significantly affect the fixing process of failed
VNFs. Therefore, the number of repaired VNFs is nearly kept
unchanged, while the total weight of the recovered services is
substantially improved when increasing the average weight of
services. The results of the experiment are displayed clearly
in Fig. 11.

8) Experiment with the Barabasi-Albert (BA) network
model: In this experiment, the network employed to conduct
the simulation is generated randomly using the BA model, in
which the number of edges that are preferentially attached
to existing nodes with high degree is set to 2. Similar to
section VI-B1, we vary the number of nodes from 100 to 1000
to evaluate the impact of network scale on the total weight
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Fig. 12. Dependence of (a) the number of restored VNFs and (b) the total
weight of the recovered services on the network scale using the Barabasi-
Albert (BA) network model.

of recovered services. The other simulation parameters get
the default values. It is worth noting that the BA network
model has power-law degree distribution that causes some
nodes to get more connections than the rest of the nodes in
the network. As a result, such nodes are typically selected to
launch VNFs for many services, and hence, if these nodes are
failed, it is not trivial to recover the services due to two key
reasons. The first one is that many services will be interrupted
because these nodes are hosting many VNFs. The second
one is that the remaining available nodes, although, possess
enough capacity to reinstall failed VNFs, the distances in
terms of hops between them are very long. These reasons
render that the total weight cannot be improved as shown
in Fig. 12. They also engender that the total weight of the
recovered services decreases considerably compared with the
Erdos-Renyi network model.

VII. CONCLUSION

In this paper, the VNF restoration for recovering weighted
services (VRRWS) issue is proposed for the first time, in
which we consider retrieving interrupted services that are
induced by node failures via restoring failed VNFs without
necessitating backup resources. The objective of the problem
is to maximize the total weight of the recovered services.
We first demonstrate that the hardness of the problem is
NP-hard, then propose a heuristic algorithm, named online
recovery algorithm (ORA), to address the issue. We then
conduct extensive simulations to assess the performance of the
proposed algorithm and the factors affecting the recovery. The
experiment indicates that migrating available VNFs is essential
to enhance the recovery result.

There are many directions for developing the problem in
the future. Firstly, the solution to the VRRWS problem with
more complicated service function chain models, such as
directed acyclic graphs [45], will be investigated. Secondly,
during service recovery, in addition to an efficient strategy for
restoring services from interruption, minimizing the downtime
of services is also a significant problem. Many studies have
proposed useful techniques for optimizing VNF migration
latency, as stated in the previous section. Therefore, future
research will consider the joint optimization problem of max-
imizing the total weight of recovered services and minimizing
the maximum migration latency concurrently by combining
our method with these proposed techniques.
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