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ABSTRACT

Malware analysis tasks are as fundamental for modern cyberse-

curity as they are challenging to perform. More than depending

on any tool capability, malware analysis tasks depend on human

analysts’ abilities, experiences, and practices when using the tools.

Academic research has traditionally been focused on producing

solutions to overcome malware analysis technical challenges, but

are these solutions adopted in practice by malware analysts? Are

these solutions useful? If not, how can the academic community

improve its practices to foster adoption and cause a greater impact?

To answer these questions, we surveyed 21 professional malware

analysts working in different companies, from CSIRTs to AV compa-

nies, to hear their opinions about existing tools, practices, and the

challenges they face in their daily tasks. In 31 questions, we cover

a broad range of aspects, from the number of observed malware

variants to the use of public sandboxes and the tools the analysts

would like to exist to make their lives easier. We aim to bridge the

gap between academic developments and malware practices. To do

so, on the one hand, we suggest to the analysts the solutions pro-

posed in the literature that could be integrated into their practices.

On the other hand, we also point out to the academic community

possible future directions to bridge existing development gaps that

significantly affect malware analysis practices.

Note: This is the author’s public version of the paper.
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1 INTRODUCTION

Malware is a major security concern nowadays and the academic

literature is full of works presenting strategies to better perform

malware-related tasks, from threat hunting [39] to triaging [33],

and from machine learning training [21] to detection rule genera-

tion [57]. Despite the significant contributions academia made to

the field, not all proposals made by academia are adopted in prac-

tice. In fact, many complain about academically-proposed ideas not

being practical [12]. As a research community, we would like to

cause the greatest positive impact possible, which in the malware

analysis case means that people will be more protected if we can

facilitate malware analysts’ lives. Thus, we want to understand

what malware analysts need in terms of scientific developments.

In this work, we present an analysis of the malware analysis

practices and the developments proposed in the literature. Our

goal is to help academic researchers guide their efforts toward

more practical solutions and to help professionals find the best

proposals that fit their real-world needs. To do so, we first rely

on the available literature to systematize the practice of malware

analysis, pointing out the challenges analysts face in their daily

tasks. We identified key points related to the challenges that are

not covered in the current literature works, such as prevalence

rates for analysts facing certain conditions (e.g., malware variants),

and how often they adopted tools proposed in the literature (e.g.,

graph-based binary comparison). Further, we developed a set of 31

questions to collect data about these previously not-characterized

aspects. We systematized these questions in a survey (Appendix C)

that was applied to 21 professional malware analysts actuating in

different security fieldsśfrom CSIRTs to AV companies. Based on

the analysts’ answers, we prepared a second round (follow-up) of

questions (Appendix D) to clarify any remaining imprecision. Upon

it, we present a critical discussion on how to move the field forward.

Among our discoveries about the challenges for multiple mal-

ware analysis practices, we highlight that: (1) a significant part of

malware analysis tasks are performed manually, such that develop-

ing automation mechanisms is a promising avenue to contribute to

the field; (2) existing automation tools such as automatic tracing

via public sandboxes are not enough because they are not config-

urable and do not provide fine-grained information about analysis

outcomes, such that developing methods to explain malicious paths

is key to streamlining automation procedures; (3) decompilers are

very popular tools among analysts, but significant developments are

still possible in this domain; and (4) Many State-Of-The-Art (SOTA)

solutions described in the academic literature are still not wide-

spread in practice, such that they need to be transitioned to practice

to help analysts. We expect that pointing out and quantifying these

limitations might foster future malware research (App. G).
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In summary, this paper’s contributions are as follows:

• We characterize the typical malware analysis workflow re-

garding multiple challenges.

• We present a survey on how 21 professional malware ana-

lysts tackle these challenges in practical scenarios.

• We point out existing development gaps and future develop-

ment opportunities to bridge them.

This paper is organized as follows: In Section 2, we present the

challenges in a typical malware analysis workflow; In Section 3,

we present our methodology to survey how professional analysts

tacklçe these challenges; In Section 4, we present a profile of the sur-

veyed professionaçs; In Section 5, we discuss the analyses practices

reported by the surveyed professionals; In Section 6, we discuss the

surveyed professionals’ opinions about existing analysis tools; In

Section 7, we point out future directions on the field; In Section 8,

we present related work to better position our contributions; In

Section 9, we draw our conclusions.

2 WHAT DOES A MALWARE ANALYST DO?

We refined an existing Systematic Literature Review (SLR) on mal-

ware analysis [12] (see details in Appendix A) to systematize the

tasks performed by analysts (Appendix B) and their challenges.

We here present the existing Knowledge Gaps (KGs) to be bridged

whenever an aspect is not properly addressed in the literature.

The Analyst Role. The Malware Analyst is the professional re-

sponsible for collecting, triaging, understanding, and reporting new

threats. To provide insights about the threats, analysts employ mul-

tiple security analysis strategies, mainly reverse engineering [65].

Whereas reverse engineering is a critical step of themalware analyst

task, professional malware analysts often perform other company

tasks, such as training and recruiting new professionals. The time

analysts have to analyze a sample is a key challenge to understand-

ing threats, such that giving analysts tools that reduce their analysis

load is key if analysts are in time-struggling conditions. KG1: It

is currently unclear which fraction of the malware analyst job is

dedicated to reverse engineering tasks.

The Analysis Group.Malware analysts might work in teams or

individually [56]. When working in teams, analysis data must be

shared between the analysts, such that developing collaborative

solutions might increase analysts’ productivity. KG2: It is unclear

how often analysts work in teams and individually.

The Analysis Request.Whereas some analysts might start their

own research endeavors, in most cases analysts are some company’s

employees who start analysis procedures based on the company’s

requests. Thus, the samples they have to analyze usually come from

different sources, depending on the type of company. The context

of infection might shape the attacker’s strategies [11] and having

information about that might facilitate analysis and proper threat

identification. KG3: It is unclear how much knowledge analysts

have about the context of the samples they analyze.

The knowledge to run analyses. Malware analysis requires spe-

cialized knowledge. For instance, analysts must have a solid under-

standing of binary internals. Ideally, even specialized knowledge

like this should be widely available to enable the formation of new

analysts [44]. The more analysts enter the field, the more analysis

procedures tend to scale [40] and incident response tends to be

faster. A main academic goal is to develop strategies to provide an-

alysts access to this knowledge. KG4: It is unclear if the knowledge

required to perform malware analysis is accessible to students.

The feeling about maliciousness. To understand an attack you

have to think like an attacker. This famous saying summarizes well

most of the analysis challenges faced by analysts. In addition to

technical knowledge, malware analysts must develop intuitions

about how malware behaves [10, 46]. Intuition can be developed

over time, but seniority is a scarce resource for companies, such that

developing tools to transition knowledge from seniors to juniors is

a key research contribution. KG5: It is unclear how experience and

expertise are distributed in malware analysis teams.

Keeping up withmalware evolution.Malware evolves fast since

attackers often develop new ingenious ways to bypass detection

mechanisms. This fast evolution requires malware analysts to keep

studying to stay updated with new attackers’ practices [2]. Part of

the skill updates of malware analysts comes from the practice and

information sharing with other analysts and teams [49]. Part of the

new knowledge might come from academia, which also produces

vast material about malware analysis. Ideally, academics would

like to apply the developed scientific knowledge to the practice of

malware analysis. KG6: It is unclear how malware analysts keep

updated and if academic knowledge reaches them.

Selecting representative samples to analyze. Whereas some

malware samples easily reveal their tactics, other malware samples

only reveal patterns when combined. Aspects such as the reuse

of code and the evolution of techniques can only be characterized

by analyzing a set of samples from a given family. Thus, in some

analysis cases, the malware analyst might collect additional samples

to analyze in addition to the one initially requested to expand the

conclusions enabled by the analysis procedures. Understanding

the sample’s reuse is important to develop better solutions for the

sample’s correlation [17]. KG7: It is unclear how often and when

analysts enrich their analyses with additional malware samples.

Saving samples for the future. As some analyses require ad-

ditional samples, it is expected analysts store some samples they

deemed interesting from previously to be eventually used in future

ones. This procedure should happen in a structured manner, with

the AV company storing the samples according to well-defined cri-

teria. In practice, however, it might also happen that the AV analyst

might store the samples him/herself, according to some personal cri-

teria. Academic research could contribute to establishing guidelines

and storage practices for the samples. KG8: It is unclear how often

analyzed samples are stored by analysts and/or AV companies.

Selecting where to analyze. Different malware samples require

different strategies to be analyzed, thus different tools. Even in-

side the same category of tools, there might be multiple possible

solutions. For instance, whereas sandboxes are popular solutions,

the characteristics of public [74] and private (e.g., AV-owned) sand-

boxes might make the difference for some types of samples. Also,

different employers have different policies. Some allow the collected

samples to be uploaded to public sandboxes, where they will be

shared with a large community of researchers [25]. In turn, some

companies cannot reveal information about infected customers, so

they require the use of a private sandbox, with no data sharing.

Understanding analysts’ choices, requirements, and constraints is
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key for academia to develop better analysis platforms. KG9: It is

unclear how often analysts opt for public and/or private sandboxes.

The variants that keep going.Malware samples do not always

appear alone, they might also appear as variants [61], that impose

extra analysis work. Ideally, variants should be filtered by good

triage systems, but it does not always happen in practice, such

that analysts might sometimes recognize constructions previously

seen in other analyzed samples. If the re-analysis of variants is

a significant problem, academic research should focus more on

developing better triage strategies. KG10: It is unclear how often

analysts inspect malware variants that could have been triaged.

The need formanual tasks.Althoughmany tools are available for

malware analysis, it is common that analysts need to make manual

adjustments to tools and binaries to make malware samples run.

Ideally, manual adjustments should be minimal, because manual

work means scalability limits. In practice, however, analysts might

experience different scenarios, with a large manual effort if tools

are not appropriate [29]. It is a relevant academic research goal

to overcome the limits of existing approaches to allow analysis to

scale if it is identified as a bottleneck. KG11: It is currently unclear

to which extent malware analysis requires manual work.

Themalware analysis that becomesmultiple.Modern malware

is not unitary but is usually composed of multiple layers [13]. Each

layer might be implemented using a different technology, which re-

quires a different strategy [67] and thus tool to be inspected. Ideally,

all malware stages should be analyzed in a smoothly integrated

environment. However, integrating multiple technologies is hard,

such that malware analysts might need to treat each malware stage

as a totally new analysis step. Developing integration strategies to

present a uniform view of code for multiple technologies is a signif-

icant academic research topic that must be boosted to help malware

analysts if they struggle to analyze multi-stage malware. KG12: It

is unclear how malware analysts handle multi-stage malware.

The hard tasks. Not all malware analysis tasks are equal. Mal-

ware creators use constructions to purposely complicate reverse

engineering, thus tasks such as unpacking, deobfuscation, and find-

ing execution triggers require knowledge and time from the an-

alysts [59]. Once again, it limits scalability, as junior researchers

might not have the expertise to do so and seniors are in limited

numbers and time availability. If this becomes a bottleneck for the

analysis process, academic research should focus more on devel-

oping solutions to automate unpacking [28], deobfuscation [62],

and to make these tasks feasible for junior analysts. KG13: It is

currently unclear how much malware analysts struggle with a lack

of skills or lack of time to perform complex analysis tasks.

When to stop analyzing. Knowing when to stop analyzing a

sample is as critical as knowing how to start analyzing it. There is

an ideal amount of analysis. Analysts should not under-analyze the

sample under the risk of missing hidden behaviors. They should also

not over-inspect the sample, as it limits scalability with a task that

does not produce new results [31]. To avoid under-analysis, analysts

might re-run analysis proceduresmultiple times. Academic research

might produce solutions to help identify the amount of information

present in different traces to contribute to the identification of the

ideal amount of analysis. KG14: It is unclear how many analysis

runs are performed and what is their stop criteria.

Extending analyses to other environments. A natural deriva-

tion of the amount of analysis discussion is the amount of traces

to consider. Sandboxes have their results widely tied to the envi-

ronment, such that the execution in different sandboxes leads to a

different amount of data [30]. Academic research might help iden-

tify how much information one can extract from a binary via new,

proper metrics. KG15: It is unclear how often analysts use different

sandboxes to analyze the sample.

Identifying when malware does not run. A key reason for an-

alysts changing sandboxes is when a malware sample does not

run (or evade) a given sandbox [8]. To overcome evasion routines,

analysts have to change the sandboxes’ default configurations. Aca-

demic research should provide solutions to automatically identify

the root cause of evasions.KG16: It is unclear what analysts change

in the sandboxes and how they choose which sandbox to use.

When having multiple traces, the analysts face the challenge of

identifying which of the traces are correct and which information

to consider from each trace [6]. Academic research should provide

solutions to automatically compare them.KG17: It is unclear which

strategy analysts use to compare traces from multiple sandboxes.

Waiting for analysis results. Some analysis procedures take sig-

nificant time [31]. For instance, sandbox execution requires analysts

to run samples for a fewminutes, a time that is hard to reduce as the

samples need to actually run. Tracing might become even slower

when emulation layers are considered [22]. Academic research can

focus on developing solutions for fast emulation and instrumenta-

tion to limit waiting time to the minimum value possible: the actual

running time. KG18: It is currently unclear how much analysts are

bothered by slow execution environments.

What to do with analysis results. A malware analysis does not

stop when an analyst reaches a given program state in the debugger.

Somemight even say that is where the analysis begins. Analyses are

valued by the outcomes they produce. The most common analysis

outcomes are reports [69] and signatures [57]. Academic research

could contribute to these steps by developing automatic summa-

rization and signature writing tools, depending on analysts’ needs.

KG19: It is unclear how often analysts write reports or signatures.

The effort to write defenses. When writing signatures, analysts

need to find a balance between matching capabilities and perfor-

mance. In the first case, one wants to detect the biggest amount of

malware possible. In the latter, one does not want to delay scans

for a long. Writing performance-efficient signatures is hard (e.g.,

regex might end up in loops), such that academic research could

provide solutions for effective signature writing [16]. KG20: It is

currently unclear how much effort analysts put into controlling the

performance of the generated signatures.

Selecting the best tool for each task. Different malware sam-

ples require different tools to be analyzed. Each tool implements a

different analysis strategy/technique, thus they present different

pros and cons [43]. Analysts end up developing a feeling on how

and when to use each tool, but there is no guarantee that these

are the best use cases possible. Academic research should provide

formal guidance on tool evaluation and selection to better help an-

alysts. KG21: It is currently unclear how much and when malware

analysts use the different tools and techniques.

Setting up the analysis tools.More than selecting a tool to use,

analysts often have to select complements to them. For instance, in



RAID ’24, September 30–October 2, 2024, Padua, Italy Marcus Botacin

addition to mastering a good debugger solution, analysts also have

multiple plugins in their toolchains to complement the debugging

experience. These plugins and extensions often add heuristics and

analysis capabilities that are not native to the solutions. Some of the

extensions present significant scientific challenges that would be

worth investigating by academic research, such as creating different

representations for the same data (e.g., assembly debugging vs.

decompilation [14]). KG22: It is unclear how analysts rate the solu-

tions they use and which ones they would like to have.

Preparing for the future. The goal of malware analysis is to

prepare us for a more secure future. Thus, malware analysts are

also preparing themselves for the future, as they learn with samples

and also with training. Academic research should be a key partner in

preparing analysts for the future, providing solutions for problems

yet to come, and developing next-gen solutions. This should be

ideally coupled with the malware analysts’ needs and expectations.

KG23: It is unclear what analysts expect for the future.

3 METHODOLOGY

We surveyed professional malware analysts to bridge the KGs pre-

sented in Section 2. We here present our survey methodology.

Recruitment.We reached out to malware analyst teams‘ leaders

and asked them to share our survey invitation with their teammem-

bers. We clearly expressed that filling out the survey was voluntary,

optional, and not a job-related activity. We also reached out to indi-

vidual malware analysts who cooperated with our research team in

the past. Most invitations were performed by email. Some analysts

reached out to us via social networks, through which we sent them

the invitation. The recruitment consisted of a brief description of

the project followed by a link to access the survey platform online.

The survey has been open for responses from Jan-Mar/23.

Selection criteria. We included in our survey only professional

malware analysts, thus maximizing representativity and reducing

noise. The analysts are identified as professionals by their managers

or our research team. Since we did not post any public link on any

Internet webpage (as previous work did [70]), we ensured that our

survey was distributed only inside the malware analysis community.

Despite not publicly posting our survey, we received the same

number of valid responses (21) as the largest previous work [73].

We show a replication study with additional participants in App. H.

The Survey. Our survey consisted of 31 questions (Appendix C)

divided among multiple research areas. Whereas some questions

were worth additional clarification, we tried to minimize the num-

ber of questions to maximize the likelihood of receiving complete

survey responses. The survey is composed of alternative questions

and open-response questions. We always placed open questions

after alternative questions to try to minimize the introduction of

biases. The survey was completely anonymous, but the partici-

pants had the opportunity to voluntarily deanonymize themselves.

We identified cases of (i) participants who remained anonymous;

(ii) participants who directly disclosed their identity; and (iii) par-

ticipants who were indirectly and partially anonymized by their

managers (sending us a confirmation message that their whole

team has filled out the survey). The survey was approved by our

university’s IRB (2022-1327).

Follow-Up. Based on the compiled survey answers, we prepared

a second survey (Appendix D) with questions aiming to obtain a

better understanding of blurry points and to ask the respondents to

better elaborate their open answers. This follow-up survey was sent

only to the participants who voluntarily deanonymized themselves

and thus agreed to receive additional questions.

Survey Limitations: This research presents the same limitations as

any research with human subjects; Although we tried to minimize

any suggestions effect, analysts might be biased towards responses

depending on the writing of the question and different analysts

might have different anchors for scaling their responses.

4 PARTICIPANTS

We here characterize the professional malware analysts who re-

sponded to our survey to position our work as relevant for profes-

sionals in the field and present the first evaluation of the field based

on the characteristics of representative stakeholders for the field.

4.1 Professional Background

Where do the respondents work? Characterizing the respon-

der’s occupation is important to evaluate if our survey reached

the target audience and thus ensure representativity. Although the

filling of our survey was anonymous, we were able to identify the

occupation of all survey responders (Table 1), as (i) some of them

disclosed their identities; (ii) some of them indirectly disclosed their

occupation when answering the open questions; or (iii) their man-

agers confirmed that their teams answered the survey. We highlight

that for these cases identifying one’s occupation or organization

does not imply that we identified the individual professional inside

the organization that answered the survey.

Table 1: Analysts’ occupation.

# Role Company Obs.

1 CISO Non-Security

1 Threat Hunter Intelligence Agency

1 Leader Government CSIRT

1 Member Bank CSIRT

4 Consultant Independent Ex AV analysts

5 Analyst Sec. Consultancy 2 companies

8 Analyst AV company 4 AV companies

Table 1 shows that the survey achieved representants of multiple

sectors (public and private). Naturally, the survey has a bias towards

respondents working in AV companies, which is likely the main

occupation role for malware analysts. The survey reached both pro-

fessionals who currently work for AV industries as well as former

AV analysts (now consultants). The survey also reached leaders of

organizations, which also provided the survey the opportunity to

hear professionals who work with multiple malware sources due

to their positions. We conclude that the survey population is not

representative of any particular scenario, but diverse enough to

provide multiple views of the malware analysis scenario and thus

characterize the general needs of malware analysts.

How much malware analysis do analysts perform? Character-

izing the analysis tasks performed by the analysts is key both to

evaluating representativeness as well as to understanding the role
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of the malware analysis job. Table 2 classifies analysts’ responses to

the job characterization question as: Full-time malware analysts;

Most tasks are malware analysis; a Reasonable number of tasks

are malware analyses; Eventual performance of malware analy-

sis; or they Never perform malware analysis. We notice that no

respondent never performs malware analysis, which shows that

our survey actually reached professionals in the malware analysis

field. However, we notice that the majority of analysts (86%) do not

perform only malware analysis, although it might be their job title.

Table 2: Analysts’ Malware Analysis Tasks Frequency.

Category Full Most Reasonable Eventual Never

Answers 3 (14%) 5 (24%) 6 (29%) 7 (33%) 0 (0%)

We discovered that occupation is a moderate determinant fac-

tor for the amount of malware analysis tasks an analyst performs.

The overall Pearson correlation between occupation and amount

of tasks is 0.54. This shows that whereas occupation is important,

the scenario also plays a key role. Whereas one could hypothesize

that AV analysts would be busier with malware analysis, the corre-

lation between only doing malware analysis and working for an

AV company is only 0.24 (weak), as many consultants stated that

they work full-time with malware analysis as well. If we consider

both full-time and most-time classes, the Pearson correlation is 0.69

(high), because all AV analysts fit this category.

How are the malware analysis teams organized? Understand-

ing the scenario in which malware analysts actuate is key to design-

ing proper solutions. Table 3 categorizes analysts’ actuation as: the

analyst is part of a Team and they analyze the samples Together

(TT); the analyst is part of a Team, but works Individually on

samples (TI); and the analyst is an Independent Individual (II).

Table 3: Analysts’ Type of Tasks vs. Analysis Teams.

Category TT TI II

Answers 1 (5%) 16 (76%) 4 (19%)

We notice that most professionals (81%) are part of a team, which

provides insights that collaboration tools are required to allow the

professionals to share information. However, most of them (76%)

perform individual tasks, such that real-time collaboration is not

necessarily the goal of the tools to be developed. We observe no sig-

nificant different distribution of responses among job occupations.

How much context about sample capture do analysts have?

The amount of information an analyst has about the sample to be

analyzed changes the way the analyst starts approaching the prob-

lem. Also, the analyst might be more familiar with the techniques

used by malware known to come contexts than with malware for

other contexts. Table 4 categorizes responses by collection type:

Regional threats; Local threats; or the source is Unknown.

Table 4: Knowledge on Samples’ Collection Context.

Category Regional Local Unknown

Answers 11 (52%) 3 (14%) 7 (33%)

We notice the majority (52%) of participants report analyzing

samples belonging to a specific region, which is somehow against

our initial hypothesis that most analysts would analyze general

malware. This finding reinforces the importance of developing

regionalized studies about malware trends [11].

The second most popular (33%) analysis type involves the sam-

ples collected from diverse sources [68], thus with no infection

context. This is the usual case for those working as an outsourced

security team for other companies. The less popular scenario (14%)

is the analysis of local samples (e.g., collected in the internal net-

work). The small number of professionals in this category is ex-

plained by the fact that not all companies can afford a local security

team, thus they end up outsourcing their analysis events, boosting

the previously mentioned category.

The correlation between professionals working in CSIRTs and

the analysis of local threats is 1.0, as one could hypothesize since

it is the nature of the job. The correlation for AV company pro-

fessional s is 0.61 with regional threats and 0.52 with collected

samples. The correlation for consultancy professionals is 0.81 and

0.37 respectively.

Despite the significant statistical number pointing out the impor-

tance of regional datasets, one analyst reported that context does

not matter for the reverse engineering process. In the follow-up,

the analyst clarified that: łThe importance of the context depends on

the goal. Context matters for incident response and threat intelligence,

not for rule generation. I just detect it.ž

4.2 Professional Skills

How did the analysts learn malware analysis?Malware ana-

lysts learn to analyze malware via different methods and under-

standing these methods is important to foster good training and

education. Whereas previous works [70, 73] looked at participants’

degrees, they did not assess specifically how and at each educa-

tion level they learned the malware analysis skills. Whereas many

professionals might have formal training in computer science, the

aspects specific to malware analysis procedures might have been

learned in different ways. Table 5 summarizes how this survey’s

participants learned malware analysis techniques. We made explicit

in the survey question that the point was about learning malware

analysis and not what were their highest degrees. The responses

are categorized as: Post-Grad in the field (PG); a Major in the field;

Industry Certification; Work Experience: or Self-Taught.

Table 5: Analysts’ Strategies for Learning Malware Analysis.

Category PG Major Cert. Work Self

Answers 2 (10%) 0 (0%) 0 (0%) 10 (48%) 9 (42%)

We notice that the majority of the analysts learned malware

analysts by themselves (The ones that reported self-taught and

working experience account for 90% of all cases). Only 10% of the

analysts had formal, academic training in malware analysis. This

result is in line with the scarce number of malware analysis courses

available in most university’s course catalogs [63] and it shows

that the academia is not exploring its full education potential in

the field. The lack of better educational strategies was voluntarily

pointed out by the analysts as an aspect to be addressed to move

the field forward (Section 7). The path to move forward is tied

to increasing the security background of CS professionals. The
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An important reason mentioned by analysts to not rely on public

infrastructure (e.g., public sandboxes) is that some AV companies

do not allow the sharing of the samples with the community, the

default option in these services [71]. AV companies tend to offer

their own sandbox solution to analysts. All (100%) of the analysts

who reported using a company-provided sandbox work for AV

companies. On the other hand, public CSIRTs tend to not have

restrictions for sharing samples [26]. The only individual reporting

to perform most tasks on public service works for a CSIRT.

What are the malware analysts’ relation to public sandboxes?

The previous finding about the use of self-host analysis procedures

led us to investigate the malware analysts’ relation to public in-

frastructure. We asked specifically about their relation to public

sandboxes, as it is likely the most popular type of public malware

analysis tool. Table 10 shows responses broken down by analysts’

opinions about these services: if they like them or not; and if their

use is allowed or not by their employees. We notice a divide be-

tween those who like (52%) and do not like/use (48%) these services.

Whereas the case of analysts disallowed to use these services has

already been discussed in the previous question, there was still a

remaining question: Why are most analyses self-hosted even for

the analysts that report to like public sandboxes?

Table 10: Use of public sandboxes.

Category Like Dislike Disallow

Answers 11 (52%) 6 (28%) 4 (20%)

The answer to this question is a frequent complaint of analysts

about these services: the lack of configuration [42]. Most of these

public services do not allow configuring the analysis environment at

a fine-grained level, a task that is left for their self-hosted tools. We

also notice that the type of analysis task performed by the analyst

also shapes their opinion about the sandboxes. In the opinion of

an analyst: łThey work for detection but not for responsež, Detection

tasks might require less environmental configuration. The simple

fact of observing an IOC might be enough for detection, whereas it

might not suffice for understanding the sample. As another analyst

said: łAutomated sandbox is just for the high-level, not to get the

details. It saves time to show what I should look forž. In this sense,

a frequent complaint is that sandboxes do not allow the analysts

to understand how the malware did a given action. Explaining

malicious paths [45, 47] is a key open academic research problem

to be addressed in the malware analysis domain.

How often do malware analysts recognize malware variants?

We asked the analysts how often they notice that the samples they

receive to analyze are variants of some malware samples they previ-

ously analyzed. Table 11 shows analysts’ responses broken down by

frequency. We notice that most analysts (52%) often receive variants

to analyze and only a single analyst reports rarely receive malware

variants to analyze. This result shows that the triage mechanisms

can still be improved. The identification of similar constructions is

still a significant research challenge [32].

Table 11: Malware Variants Re-Analysis Rate.

Categories Very Often Sometimes Rare

Answers 11 (52%) 9 (43%) 1 (5%)

How much of the analyst’s work is manual? We asked ana-

lysts to rate how much of their work involves manual analysis.

Table 12 shows the survey’s results broken down by the amount

of work: Fully-automated analysis; Half-automated analysis; and

Mostly-Manual analysis. We notice that none of the malware an-

alysts reported the use of fully automated solutions to malware

analysis, which suggests that the investigation of strategies to fully

automate malware analysis tasks is a significant goal for academic

research. The limited use of automation reported by analysts cor-

roborates the impressions of the industry on the sector [51].

Table 12: Analysis Automation Rates.

Category Fully Half Manual

Answers 0 (0%) 11 (52%) 10 (48%)

We observe a practical divide (52%-48%) between researchers

who use some automation and those who mostly do manual work.

In both cases, however, manual analysis is required to some ex-

tent, which allows us to conclude that all samples (100%) require

manual intervention. Ideally, analysis solutions should be more

automated to alleviate the analyst’s load and scale the procedures.

Also, automation tends to reduce errors, as it makes procedures

more deterministic. A main explanation for the lack of full automa-

tion is the lack of configuration support in many sandboxes, which

forces analysts to configure their own environments.

Whereas the industry is in favor of automation and many ana-

lysts recognize that their job involves huge manual efforts, not all

analysts are in favor of automation. One analyst reported that žI

like automation, but I don’t trust it. I recheck everythingž. This claim

is not a suspicion about the companies providing sandbox, but

a sandbox engineering perspective clarified in the follow-up sur-

vey: žAutomated everything is problematic. Sandboxes do not reach

100% coverage because of the arms race. The maintenance work is

high to keep up with new TTPs. It is not sustainable many times.ž.

The challenge to keep up with automation is also reflected in the

limits pointed to many tools: łMost automation tools are useless

because they do not cover variantsśex: plugins for single familiesž.

The development of strategies to easily expand automation tools is

a significant research challenge to be addressed by academia.

How do malware analysts handle multi-stage malware? The

lack of automation identified in the previous response might pose

significant extra work especially in cases where the malware sam-

ples have multiple attack layers. We asked the analysts how they

handled these cases. Table 13 shows the responses broken down ac-

cording to the number of used tools and their integration: Multiple

tools Automatically integrated (MA); Multiple tools, treating

stages Individually (MI); Multiple tools, Manually pasting data

from one to another (MM); with a Fully-Automated (FA) tool; or

if they only analyze Single-Stage (SS) malware.

Table 13: MultiStage Handling.

Categories MA MI MM FA SS

Answers 1 (5%) 14 (66%) 4 (19%) 2 (10%) 0 (0%)

The lack of automation is reflected in the handling of multi-

stage malware. Most tools (90%) do not handle the whole analysis
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Table 14: Number of Typical Analysis Runs.

Category A1 SM TC AC

Answers 0 (0%) 8 (38%) 8 (38%) 5 (24%)

report that they typically run more, but not always. This result

shows that many analysts are aware of the possibility of multi-

path malware, but do not have an established investigation method,

basing the investigation of additional samples on their łfeelingž

about the need for additional inspection. Malware analysts would

benefit from the development of solutions that point out the need

for additional investigation and metrics to evaluate if the malware

was properly explored (e.g., coverage [35]).

Do malware analysts test different sandboxes? We asked ana-

lysts if they run the samples in the same or multiple sandboxes to

confirm the analysis results. Table 15 shows results broken down

by usage frequency: Always One sandbox (A1); Typically one, but

Sometimes More than one sandbox (SM); Typically a Couple of

sandboxes (TC); and Always a Couple of sandboxes (AC).

Table 15: The Use of Different Sandboxes by Analysts.

Category A1 SM TC AC

Answers 1 (5%) 8 (38%) 9 (42%) 3 (15%)

Most analysts (95%) are aware that malware behavior might dif-

fer from one sandbox to another and that analyzing in multiple

sandboxes might be an interesting strategy to spot diverting be-

havior. However, only a few of them (14%) have multiple sandbox

executions as an established methodological practice. In compar-

ison to the previous case, fewer analysts run multiple sandboxes

in comparison to the number of analysts who run samples mul-

tiple times in the same analysis session. An important academic

contribution would be to formalize guidelines and criteria for the

validation of malware results via structured methodologies [48].

What do malware analysts change in the analysis environ-

ment? Previous results pointed out that analysts: (i) want more

fine-grained configuration in their sandboxes, and (ii) do not have

uniform criteria to decide to pursue deeper samples investigation.

We then question what analysts want to change in the sandbox

environment and if there is a uniform criterion for that. We asked

the analyst about the most typical changes sandboxes enable to

understand if and how they are used. Table 16 shows the results

broken down by motivation: Changing Operating System (OS);

Architecture; Both; or None.

Table 16: Environment Configuration by the Analysts.

Category Both Arch OS None

Answers 5 (24%) 2 (10%) 0 (0%) 14 (66%)

Most analysts (66%) do not vary any of these most popular sand-

box parameters. Instead, they prefer to change the sandbox solution

as a whole to verify if different results appear due to the use of dif-

ferent collection mechanisms. Among the analysts that change the

sandbox settings, most (24% of total) change both OS and architec-

ture. A few of them change only the architecture. They report being

particularly concerned about x32 vs. x64 malware. The emerging

threat of multi-platform malware [34] was voluntarily expressed

by one of the analysts as a concern for the future (see Section 7).

What multipath exploration strategies do malware analysts

use? Previous results pointed out that analysts are aware that

malware samplesmight havemultiple execution paths. Even though

there is no uniform way of checking for that among analysts, they

end up doing this verification in some cases. Thus, we would like to

understand which tools and technical strategies analysts use when

they do so. Table 17 shows results for both the rate of analysts that

responded to have performed multipath exploration at least once

and the frequency in which the tools were used in these cases.

Table 17: Most-Used Path Exploration Strategies.

Category Fuzzing Symbolic Concolic Forced Manual

Answers 9 (42%) 7 (33%) 5 (23%) 14 (66%) 19 (90%)

Rate 35% 41% 29% 49% 73%

As one could hypothesize due to the limited level of automation,

most analysts (90%) relied upon manual sample inspection to dis-

cover new paths. No technique was used by the analysts in more

than 50% of the samples. This result shows that many of the tech-

niques reported in the literature for multipath exploration still need

to be transitioned to practice and popularized among analysts to

cause a real impact in the malware analysis field. Transitioning re-

search to practice is very important because althoughmany of these

techniques are well-described in the academic literature [7, 35, 55],

no commercial sandbox solution implements them.

How do malware analysts compare multiple traces? When

malware analysts find multiple paths in a sample or run the same

sample in multiple sandboxes they need to compare the results

to give a final verdict. We asked them how they perform such a

comparison. Table 18 categorizes strategies as: considering All

Versions; based on IOCs; or comparing their Graphs.

Table 18: Most-Used Trace Comparison Strategies.

Category All Traces IoCs Graphs

Answers 6 (28%) 13 (62%) 2 (10%)

Most analysts (62%) report base their comparison on the IOCs [3],

i.e., if the IOCs are different in the multiple sandboxes or tools, then

the sample has hidden paths. Comparing only the IOCs facilitates

the analyst’s work because it allows comparison to be performed

at a high level. The comparison of malware traces at a low level

(e.g., instruction level) is still an open research problem. Another

significant part of the analysts (28%) does not verify differences in

the traces. Instead, they just consider all of them together. When

signatures are written, they write signatures to cover all the traces

at the same time, without differentiating specific root causes of

divergence. Only 10% of the analysts reported using some graph

algorithm. Graph-based program comparison is an aspect widely

studied in academic research [41, 54, 60] and that has the potential

to help the practice of malware analysis if properly transitioned.

5.3 Analysis Procedures Performance

How fast are the tools used by the analysts? Previously, the

analysts revealed complaints about the configuration of popular
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solutions like sandboxes, what do they think about the performance

of these solutions? Also, since the majority of the analysts run

tools on their own machines, are the performance of these tools

compatible with the analysis requirements? We asked analysts to

evaluate the performance of the tools they use. Table 19 shows the

responses broken down by analysts’ opinions: Tools are Slow, and

could be Faster (SF); Tools are Slow, but this is Intrinsic to the

malware analysis problem (SI); or the tools are Fast Enough (FE).

Table 19: Analysts’ Perception About Tools Performance.

Category SF SI FE

Answers 10 (47%) 3 (15%) 8 (38%)

We notice that the analysts are divided, which leads to two dif-

ferent but complementary conclusions: On the one hand, most

analysts (62%) believe that the tools are slow, which suggests that

increasing the performance of analysis tools would be very appre-

ciated by the field, thus being an important research direction. On

the other hand, if we consider that 15% of the analysts believe that

the slowness is inherent to the tool and that 38% believe that the

tools are already fast enough, we have that 53% of the analysts

do not envision significant changes toward performance improve-

ment. In sum, performance seems to be a desirable but secondary

characteristic of the analysis tools for most analysts.

How useful would it be for malware analysts to have faster

sandboxes? The practical divide found in the previous answer re-

quires a deeper investigation to understand what are the analyst’s

impressions of performance. To gain more insights about perfor-

mance characterization, we asked analysts how useful it would

be to them to have faster sandboxes. We investigated sandboxes

because it is likely the most popular malware analysis solution and

there is rich academic literature on the topic. Table 20 shows the

responses according to the usefulness levels: Very Useful; Useful

only in Specific cases; or it makes No Difference.

Table 20: The Usefulness of Faster Sandboxes.

Category Very Specific No Diff

Answers 10 (48%) 11 (52%) 0 (0%)

All analysts agree that faster sandboxes would be beneficial,

but they disagree to the extent. The practical divide (48%-52%)

remains between those who believe it is very useful and useful only

in specific cases. The correlation between those who previously

answered that tools are slow and the ones who now reported that

faster sandboxes would be very helpful is high (0.76).

5.4 Analysis outcome performance

What are the typical analysis outcomes?We asked the analysts

about the types of outcomes of their analysis procedures. Table 21

summarizes the results. We notice that producing reports is a key

malware analysis task, being performed by 90% of the analysts.

Table 21: Most-Frequent Analysis Outcomes.

Category Both Reports Signatures

Answers 10 (48%) 9 (42%) 2 (10%)

Another 58% of all analysts also produce signatures, which was

revealed to be an important procedure. The importance of signa-

tures for malware analysts highlights the fact that this task is not

often covered in the academic literature. Whereas multiple propos-

als tackle malware analysis and detection via machine learning,

automatic signature generation still needs to be more studied and

developed by academia. We found no correlation between signature

writing and working in AV companies, such that analyst working

in other types of companies also write signatures and write reports.

How important is performance in the writing of signatures?

Malware analysts have to make multiple project decisions when

writing signatures. We asked the analysts how important is per-

formance when writing signatures. Table 22 shows the responses

broken down by the importance reported by the analysts: Same

priority for accuracy and performance; Accuracy comes First; or

Only Accuracy matters. We notice that most analysts (80%) care

about performance, such that efficient signature matching should

be an important academic research topic (e.g., efficient YARAmatch-

ing [16]). However, as for tool performance, a significant part of

the analysts (67%) consider performance a secondary aspect, not

only for the tools they use but also for the signatures they write.

Table 22: Required Properties for Signature Generation.

Category Same Acc. First Only Acc.

Answers 7 (33%) 10 (47%) 4 (20%)

We highlight the fact that even analysts who reported in the

previous question to not write signatures were allowed to answer

about the characteristics of the signatures they write. The inter-

pretation for that is that whereas in the previous question they

were answering about their typical experience, in this question

they answered about their experience as a whole, which might

have involved the writing of signatures in other epochs.

6 TOOLS EVALUATION

What are the tools most used by malware analysts? The tools

used by the analysts significantly shape the analysis practices and

they are also the most direct way research outcomes can be tran-

sitioned to practice. Thus, it is key to understand which tools are

used by the analysts. We asked the analysts to rank the usage of

different tools. Table 23 shows the rate of analysts that reported

using each tool and the rate of samples analyzed using them.

Analysts’ responses ranged from 0% to 100% for all tools but

AntiViruses (AVs). The use of AVs illustrates how the use of tools is

shaped by the scenarios. The only professionals to largely use AVs in

the analysis procedures were the CSIRT analysts (correlation=1.0).

This use is explained by the need for collecting information (e.g.,

labels) for incident response. In turn, AV analysts rarely use AVs

in their investigations (correlation=-0.95). This is explained by the

fact that the AV analysts are creating the detectors themselves.

The most used solution used by analysts is a disassembler. In-

terestingly, this is not the most studied subject in the academic

literature, even though it presents multiple challenges [4, 52]. The

second most popular solutions are decompilers, another class that

presents key challenges [14, 72] to be addressed by future research.

How do malware analysts rate debuggers?We delve into the

details of the different tools to understand how academic research
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Table 23: Tools Usage.

Category Similarity Hash Debugger Sandbox Decompiler Unpacker AntiVirus Disassembler

Answers 16 (76%) 18 (86%) 20 (95%) 19 (90%) 19 (90%) 11 (52%) 20 (95%)

Rate 47% 57% 58% 61% 49% 58% 66%

can be transitioned to the practice of malware analysis. We started

our investigation with debuggers, one of the most popular tools in

this field. We asked analysts how they rate the use of debuggers.

Table 24 shows analyst’s responses broken down by the level of

satisfaction: (i) they are essential but require the analyst to perform

Repetitive tasks; (ii) they are essential and Enough for the analysis

procedures; or (iii) they are Not Essential for malware analysis.

Table 24: Analysts’ Perception about Debuggers Usefulness.

Category Repetitive Enough Not essential

Answers 15 (71%) 4 (19%) 2 (10%)

Most analysts (90%) perceive debuggers as essential for malware

analysis at some level. Although essential, 71% of the analysts be-

lieve that the debuggers could be better, especially in avoiding repet-

itive tasks. Whereas the academic literature has multiple proposals

for new debuggers, only a few of them are focused on malware

analysis [27, 50], and most do not focus on usability for analysts,

an open development field.

How do the malware analysts rate the role of debugging plu-

gins? Since the analysts previously reported that debuggers can be

enhanced, we investigated how they rate the use of plugins. Debug-

ger plugins are popular for malware analysis because they increase

usability, analysis capabilities, and reduce repetitive tasks. Develop-

ing plugins will be the most straightforward manner to transition

academic research to practice. We asked analysts to rate the use of

plugins. Table 25 shows responses broken down by the satisfaction

level: Plugins are Essential for malware analysis; Plugins help in

Specific cases; or Plugins make No Difference.

Table 25: TheRole of Debugger Plugins forMalwareAnalysis.

Category Essential Specific No Difference

Answers 9 (42%) 12 (48%) 0 (0%)

We notice that all analysts (100%) agree that plugins help to some

extent. However, in another practical divide (42%-48%), most ana-

lysts believe that plugins help only in specific tasks, whereas many

ones can be performed using the native debugging capabilities.

The correlation between those who believe that debuggers require

repetitive tasks and those who believe that plugins are essential is

significant (0.62), thus explaining the different views analysts have

about debuggers. An analyst summarized the relation with plugins

as: łPlugins are amazing, but they should be part of the tool.ž and

exemplified: Current plugins to disasm Go or LLVM are non-nativež.

This shows that the path to move the field forward in the analyst

views is to integrate features from the plugins into the debuggers

designed specifically for malware analysis.

How do the malware analysts rate the role of decompilers?

Since analysts referred to decompilers as one of the most useful

tools for their tasks, we asked the analysts to better detail their

experience with decompilers. Table 26 shows responses broken

down by the satisfaction level: Decompilers are Very Useful; Useful

in a Minor part of the cases; or Not Useful at all.

Table 26: The Role of Decompilers in Malware Analysis.

Category Very Minor Not Useful

Answers 17 (81%) 4 (19%) 0 (0%)

All analysts agree that decompilers are useful tools for their

tasks. Most (81%) agree that decompilers are very useful, which is

somehow surprising since current decompilers still present many

drawbacks [14], that must be addressed by academic research. We

can understand this result as the benefit brought by a solution being

proportional to the complexity of the problem they address, i.e.,

decompilation is hard, but reading assembly code is also hard for

humans [19], so even small decompilation advancements cause

significant advances in malware analysis.

A known limitation of most decompilers is in the generation of

functional code. In many cases, the decompiled code is readable but

not compilable. Whereas this is a major problem for multiple fields,

malware analysts explain that this drawback has to be put in the

context of the malware analysis task: łIt is useful to get a snippet

code from malware to use externally. For that, function correctness is

important, but whole code correctness is not.ž. In this sense, academic

research developments might focus more on making parts of the

decompilation functional [14].

On the exception side, those who do not consider decompilers

very useful justify their preferences on the amount of information

displayed by the disassemblers. As explained by one of the analysts:

łIn most cases, the disassembly is enough. I use decompilers only to

speed up analyses, but they are not really required to understand the

malware. The disassembly tells me more information, such as calling

convention and use of XORsž.

What new tools would malware analysts like to exist? Once

we identified the limits of existing tools for the practice of malware

analysts, we gave a step ahead and asked the analysts which tools

they would like to exist to help with their tasks. The complete

answers are presented in Appendix E.

We classified analysts’ answers in two groups: (1) Engineering So-

lutions., i.e., solutions that require implementation developments,

but whose basis are already established; and (2) Scientific Solu-

tions, i.e., solutions that require new knowledge development, even

though their final outcome might be a product. Analysts’ requests

fitting these two categories highlight that not only academic re-

search need to be transitioned to practice, but also there is room

for improvement on the existing tools used by the analysts.

The common source for the need for new scientific developments

is the request for more automation. Analysts request automatic

ways to (1) Configure symbolic executors; (2) Select Sandbox Hooks;

(3) Dump memory artifacts; and (4) Identify functions in binaries.

All these tasks require new research developments because they all

require the bridge of the semantic gap between the data collection
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and the data interpretation. In other words, they are cross-domain

applications. These solutions require not only being able to handle

the malware sample but also to infer what the analyst considers

as łinterestingž about them. The emerging AI developments have a

significant potential to address these challenges.

7 FUTURE INSIGHTS

This work’s goal is to identify which developments academic re-

search needs tomake to contribute to the future of malware analysts.

We asked analysts’ opinions, as follows.

What do malware analysts think the role of AI in malware

analysis is? We started our investigation with the use of Artificial

Intelligence (AI), since it is a growing trend in the security field

and it was voluntarily expressed by some analysts as an important

concept. We asked the analysts what will be the role of AI in the

future of malware analysis. Table 27 shows the responses catego-

rized by the reported impact: AI Solves the problem; AI Helps to

solve, but not completely; or AI causes No Change to the field.

Table 27: Analysts’ Impressions about AI usage.

Category Solve Help No Change

Answers 1 (5%) 19 (90%) 1 (5%)

We notice that most analysts recognize the potential of AI but

are cautious about their real impact. Only one analyst thinks that

AI will have no impact in the field. Also, only one analyst thinks

that AI will completely solve the malware analysis problems. Most

analysts (90%) think that AI will help, but not completely solve the

problem. The major reason for that pointed out by the analysts is

that they think someone will still have to feed and train AI models

and discover new malicious features (their thoughts are detailed in

the next question).

What domalware analysts think about the future of malware

analysis? The analysts freely commented about the multiple as-

pects of malware analysts they considered important for the future.

The complete analysts’ responses are presented in Appendix F. We

here summarize the reasoning flow of most analysts as follows:

(1) From analysts to intelligence. Multiple analysts mention

that analyzing individual malware samples is not enough.

The analysis products must evolve from individual analysis

to intelligence (e.g., data correlation) to allow the detection

and prediction of attacks at scale. AI plays a key role in it.

(2) AIs will not replace humans.Multiple analysts agree that

AI has a key role in moving the field forward, but most of

them agree that human analysts are still required. The main

reason for that is the need to update AI with the latest attack

movements, that only humans can spot.

(3) We need better education of human analysts. The an-

alysts that will feed AI with data must be well-prepared to

recognize unknown constructions. Most analysts agree that

we need better training since now.

8 RELATED WORKS

Human-Focused Cybersecurity. The ultimate goal of any cy-

bersecurity system is to protect the human stakeholders affected

by the given system. Whereas cybersecurity research has initially

put an almost exclusive focus on technical aspects of the studied

system, the field has made progress toward the investigation of the

human aspects involved in the system’s operations, which is key

for addressing security risks in a broad sense. It is essential to ac-

knowledge how human factors play a key role in the security field.

Even concepts such as malware, this paper’s topic, are not agnostic

to human definitions, as shown by recent research that investigates

how humans and machines classify malware differently [5].

Malware analysis is a task that largely relies on human decisions

and each human being approaches reverse engineering problems

very differently [70]. A study showed that the decisions made by

reverse engineers during their (non-malware analysis) reversing

tasks are varied to the point of some preferring to start analysis

onwards whereas others prefer backwards [36]. This same behavior

diversity is likely to be found in malware analysts reverse engi-

neering malware samples. Understanding how humans perform

security tasks is not only important as a way of developing base

knowledge on how humans operate, but it can also lead to concrete

improvements to practical tools. For instance, evaluations in how

humans decompile [19] can be used to develop improvements on

the readability of code produced by decompilers [23].

Malware Analysis Landscape. Whereas investigating the mal-

ware analysts’ practices is key to enhancing them, a few works

present comprehensive evaluations of the current malware analysis

landscape. An industry survey [51] recently presented findings to

support that security companies need more automation in their

malware analysis practices. Whereas this result provides some inter-

esting direction for research in the field, it does not cover the needs

of human analysts, as they were not individually interviewed. In

this sense, the closest work to ours is the survey with 21 malware

analysts [73] that investigated their malware analysis practices,

such as how they use sandboxes. Whereas providing valuable in-

sights about the field, the work does not focus on the tools the

analysts would like to be developed to help in their practices.

Security Tools Landscape.Whereas evaluating how security ex-

perts interact with state-of-the-art security tools is essential to

identifying how to make the tools better, the current literature is

limited in evaluation reports. Our literature review found: (i) an

analysis of offensive tools capabilities [66], which certainly pro-

vides some general insights but that lacks usability evaluations; and

(ii) an HCI-focused evaluation of reverse engineering tools [38] that

identified several limitations in existing tools (e.g., lack of analysis

methods selectors) but that is not focused in malware analysis.

9 CONCLUSION

We investigated the practice of malware analysis by surveying 21

professional analysts and presented a critical analysis of the survey

results to pinpoint current challenges and existing development

opportunities from a research perspective (App. G). We discovered

that: (1) Most malware analysis tasks are performed manually, such

that developing automation mechanisms is a promising avenue to

contribute to the field; (2) existing automation tools (e.g., public

sandboxes) are not enough because they are not configurable and

do not provide fine-grained information about analysis outcomes,

such that developing methods to explain malicious paths is key

to streamlining automation procedures; (3) decompilers are very
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popular tools among analysts, but significant developments are still

possible in this domain; and (4) Many SOTA solutions described in

the academic literature are still not widespread in practice, such

that they need to be transitioned to practice to help analysts.
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A LITERATURE REVIEW

To identify the knowledge gaps in malware practices in a represen-

tative way, we relied upon a Systematic Literature Review (SLR)

strategy. More specifically, we refined a previous SLR on malware
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Table 28: Paper Selection. Paper distribution per year (2000 ś 2018) and per venue for the Original [12] and the Refined SLR.
Venue/Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total

O R O R O R O R O R O R O R O R O R O R O R O R O R O R O R O R O R O R O R O R

USENIX 1 0 0 0 0 0 0 0 0 0 1 0 1 0 6 2 2 0 3 1 7 1 8 1 10 1 12 0 9 2 7 0 9 3 13 1 6 0 95 12

CCS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4 1 6 0 6 0 7 0 11 0 9 2 11 1 14 0 2 0 11 2 6 0 89 6

ACSAC 0 0 0 0 0 0 0 0 2 0 3 2 2 0 4 0 4 1 1 0 3 0 8 0 10 3 7 0 10 0 6 1 3 1 7 0 8 0 78 6

IEEE S&P 0 0 1 0 0 0 0 0 0 0 1 0 3 2 2 1 1 0 0 0 0 0 10 0 17 2 12 0 3 0 6 1 4 2 5 1 3 1 68 11

DIMVA 0 0 0 0 0 0 0 0 0 0 4 1 4 0 3 0 8 0 2 0 3 0 0 0 8 1 4 1 8 1 7 0 7 2 5 1 4 2 67 9

NDSS 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 3 0 3 1 3 1 3 0 2 0 4 0 5 0 4 1 9 1 7 0 3 1 49 5

RAID 0 0 0 0 1 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 3 0 5 1 5 1 3 0 4 1 3 0 3 0 31 3

ESORICS 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 2 1 1 0 0 0 0 0 2 0 3 0 3 0 0 0 1 0 1 1 0 0 14 3

Total 1 0 1 0 1 0 0 0 3 0 11 4 15 2 17 3 24 3 16 2 22 2 36 1 63 7 56 4 54 5 47 3 39 10 52 6 33 4 491 55

(5) If working with a team, the analyst syncs with the team the

samples to be analyzed.

(6) Upon starting to analyze, an analyst might collect additional

(often similar) samples to enrich the analysis procedure.

(7) The analystmight recognize the sample is a variant of previously-

analyzed samples. Specific actions might be taken in this case

to speed up analyses.

(8) The analyst starts reversing each sample.

(a) The analyst starts the investigation by the first malware

stage.

(i) The analyst performs the first analysis run.

(A) Unpack, Deobfuscate, and Find the triggers for each

sample.

(B) Use the appropriate tool for each task.

(C) Extract the IOCs.

(ii) Compare the results from multiple runs.

(iii) If the results are not coherent, perform an additional

run. Otherwise, stop.

(b) The analyst verifies if the malware has a next stage to

analyze. If so, repeat the process.

(9) Having analyzed all samples, the analyst is ready to report

the outcomes.

(10) The analyst decides if the sample will only be reported or if

a new signature is required.

(11) The analyst might collect more samples (e.g., variants) to

amplify the impact of the analyses (e.g., more comprehensive

signatures).

(12) The analyst writes the reports and the signatures.

(13) As the process is finished, the analyst and/or the company

might store the analyzed sample for future queries.

(14) By the end of the process, the analyst is more experienced,

and this experience is shared with other analysts to build

more robust malware analysis teams.

C SURVEY QUESTIONS

The invited participants were asked to initially sign the consent

form and then were presented to the following blocks of questions:

C.1 Professional Background (PB)

• PB1. łConsidering your daily job tasks. How often do you

perform malware analysis tasks?ž

ś (A) I’m a full-time malware analyst.

ś (B) Most of my tasks, but not all, are malware analysis

tasks.

ś (C) A reasonable number of my tasks are malware analysis

tasks.

ś (D) I eventually do malware analysis tasks.

ś (E) I don’t do malware analysis tasks.

• PB2. łHow do you characterize your current work/job?ž

ś (A) I’m part of a team and we analyze samples together.

ś (B) I’m part of a team, but we analyze samples indepen-

dently.

ś (C) I’m an independent researcher.

• PB3. łHow much context about the malware collection do you

often have about the analysis?ž

ś (A) I’m part of a team that analyzes regionalized/focused

threats, thus I know the context of the infection.

ś (B) I’m part of a local analysis team that analyzes threats to

our own company thus I know howmalware was collected.

ś (C) I work with samples collected from a 3rd-party, thus I

never know where they came from.

C.2 Professional Skills (PS)

• PS1. łHow did you learn to analyze malware?ž

ś (A) Post-grad in the field.

ś (B) Bsc in the field.

ś (C) Certification.

ś (D) Experience working (B.Sc. in another field).

ś (E) Self-taught.

• PS2. łHow long have you been working as a malware analyst?ž

ś Open answer.

• PS3. łHow do you get updated about new malware analysis

developments? Rate accordingly:ž

ś (A) Academic Papers [0-100]

ś (B) White Papers/Blog posts [0-100]

ś (C) Youtube Videos [0-100]

ś (D) Security events [0-100]

ś (E) Training [0-100]

C.3 Analysis Practices (AP)

• AP1. łDo you collect more samples than the one you are ana-

lyzing to perform the analysis tasks?ž

ś (A) I often collect more samples, to write better/broader

signatures.

ś (B) I often collect more samples, to measure the impact on

reports.

ś (C) I sometimes collect more samples, to understand how

a new technique works.

ś (D) No, I only analyze the requested samples.

• AP2. łDo you store the analyzed samples for further queries?ž

ś (A) They are always stored by the company I work for.



What do malware analysts want from academia? A survey on the state-of-the-practice to guide research developments RAID ’24, September 30–October 2, 2024, Padua, Italy

ś (B) They are always stored by me.

ś (C) They are eventually stored by me, just as a curiosity.

ś (D) They are never stored.

• AP3. łWhere and Who hosts analysis procedures?ž

ś (A) Mostly on my own computer.

ś (B) Mostly on public web services.

ś (C) Mostly on company-provided sandboxes.

• AP4. łWhat’s your relation with public malware analysis sand-

boxes?ž

ś (A) My employer allows using it, but I don’t like using it.

ś (B) My employer allows using it, and I like using it.

ś (C) My employer doesn’t allow me to use it.

• AP5. łHow often do you see malware variants to the point of

recognizing that you analyzed a similar construction before?ž

ś (A) Rarely, the company triage system does a good job.

ś (B) Sometimes, but it is more common to see different

families of malware.

ś (C) Very often, there are too many variants out there to

be analyzed.

• AP6. łHow much of your work involves manual tasks? (e.g.,

debugging vs tracing)ž

ś (A) Most of my work is manual.

ś (B) Around 50% manual and 50% automated.

ś (C) I run fully automated analysis pipelines.

• AP7. łHow do you handle multi-stage/multi-format malware?ž

ś (A) With multiple tools, but mostly via automatedly inte-

gration.

ś (B) With multiple tools, but treating each stage as a com-

pletely new analysis.

ś (C) With multiple tools, but manually copy-pasting data

from one tool to another.

ś (D) With a single tool that handles all formats at once.

ś (E) I only analyze a single infection vector.

• AP8. łConsidering your skills, how much do you struggle doing

the following tasks?ž

ś (A) Unpacking malware [0-100]

ś (B) Identifying triggers [0-100]

ś (C) Deobfuscating malware [0-100]

• AP9. łConsidering your available time, how much do you

struggle doing the following tasks?ž

ś (A) Unpacking malware [0-100]

ś (B) Identifying triggers [0-100]

ś (C) Deobfuscating malware [0-100]

C.4 Analysis Accuracy (AA)

• AA1. łHowmany runs of a sample do you typically do on sand-

boxes and debuggers? It doesn’t count restarting the debugger

to set breakpoints or so. It means complete analysis sessions.ž

ś (A) Always one.

ś (B) Typically one, but sometimes more.

ś (C) Typically a couple of runs.

ś (D) Always multiple runs.

• AA2. łHowmany different dynamic analysis systems (sandbox,

debuggers, so on) do you typically run a sample?ž

ś (A) Always one.

ś (B) Typically one, but sometimes more.

ś (C) Typically a couple of runs.

ś (D) Always multiple runs.

• AA3. łWhen you change the analysis environment, do you

change the sandbox execution environment across the runs?ž

ś (A) Always test multiple Architecture (32/64) and OS ver-

sions (e.g., Windows).

ś (B) Always test multiple architectures, but no OS versions.

ś (C) Always test OS versions, but no architectures.

ś (D) Neither OS nor architecture (single environment).

• AA4. łWhich techniques do you use for discovering new mal-

ware paths? Rate the amount of use.ž

ś (A) Fuzzing [0-100]

ś (B) Symbolic Execution [0-100]

ś (C) Concolic Analysis [0-100]

ś (D) Forced Execution [0-100]

ś (E) Manual Inspection [0-100]

• AA5. łWhen you perform multiple malware runs, how do you

compare the different traces?ž

ś (A) Based on the IoCs.

ś (B) Graph-based comparison.

ś (C) Multiple versions are considered regardless of the dif-

ferences.

C.5 Analysis Procedures Performance (APP)

• APP1. łHow do you rate the overall performance of the tools

that you use?ž

ś (A) They are slow, but it’s intrinsic to the malware nature.

ś (B) They are slow, and they could be improved.

ś (C) They are fast enough.

• APP2. łSpecifically about sandboxes, how do you think making

tracing faster would help your work?ž

ś (A) Very helpful.

ś (B) Makes a difference only in specific cases.

ś (C) Makes no difference.

C.6 Analysis Outcomes Performance (AOP)

• AOP1. łWhat are the typical outcomes of your analysis tasks?ž

ś (A) Threat report and signatures with the same frequency.

ś (B) Threat reports only.

ś (C) Signatures only.

• AOP2. łHow much do you worry about signature matching

performance (matching time) when writing a signature?ž

ś (A) Performance is as important as accuracy.

ś (B) Performance is important, but accuracy first.

ś (C) Only accuracy is a requirement.

C.7 Tools Evaluation (TE)

• TE1. łHow often do you use these tools to analyze a malware

sample? (0 means no sample, 100 for all samples)ž

ś (A) Similarity hashing [0-100]

ś (B) Debugger [0-100]

ś (C) Sandbox [0-100]

ś (D) Decompiler [0-100]

ś (E) Unpacker [0-100]
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ś (F) Antivirus [0-100]

ś (G) Disassembler [0-100]

• TE2. łHow do you rate the current state of debuggers for mal-

ware analysis?ž

ś (A) They are essential but they require me to perform

repetitive tasks.

ś (B) They are essential and I can perform all tasks with no

problem.

ś (C) They are not essential to my work.

• TE3. łHow do you see the role of plugins in the debugging

process?ž

ś (A) They are essential for malware analysis.

ś (B) They help, but they are not essential.

ś (C) They make no difference.

• TE4. łHow do you rate the current state of decompilers for

malware analysis?ž

ś (A) They are very useful.

ś (B) They help in a minor part of the cases.

ś (C) They are far from being useful.

• TE5. łWhat are the tools you would like to exist to help your

malware analysis tasks?ž

ś Free-text answer.

C.8 Future insights (FI)

• FI1. łHow do you see the role of AI in the future of malware

analysis?ž

ś (A) AI will solve the problem and eliminate analysts.

ś (B) AI will help in some tasks, but analysts will still be

required in most cases.

ś (C) AI will not play a key role.

• FI2. łWhat are your general thoughts about the future of mal-

ware analysis?ž

ś Free-text answer.

C.9 Voluntary Disclosure (VD)

• VD1. łThis survey is anonymous. However, if you disclose

some information about yourself, it helps us to draw stronger

conclusions about the findings based on your declared position,

expertise, and so on. We can also reach out with follow-up

questions. Now that you have filled out the survey, if you feel

comfortable, you can voluntarily deanonymize yourself. Feel

free to stay anonymous if you want.ž

ś Free-text answer.

D FOLLOWUP SURVEY

The follow-up questions were designed individually to reach mal-

ware analysts who voluntarily disclosed their identities. We high-

light that the follow-up questions were used to explain their re-

sponses, and not to measure prevalence, such that they do not

impact the statistical results. All developed questions adopt the

following template:

D.1 Follow-Up Questions (FU)

• FU-N. łYou mention to use the tool <NAME> to analyze mal-

ware. How do you use this tool?ž

ś Free-text answer.

• FU-N+1. łYou mention to never use the strategy <NAME> to

analyze malware. Why not?ž

ś Free-text answer.

E ANALYST’S DESIRED TOOLS

We below present the analysts’ answers about desired tools classi-

fied by how much new knowledge they require to be implemented.

We identify the participants by a number (P_ID), according to Ta-

ble 1 from Section 4.1, to highlight that their requests and needs

are diversified.

Engineering Developments: Solutions that can be implemented

using current knowledge.

Analysts want more scalability:

P13. łA Windows VM provided by Microsoft without

many security things and tailored to allow me to change

any characteristics of the machine without much trou-

ble, like language, username, etc.ž

Analysts want better Usability:

P18. łBetter GUI based API tracer (similar like outdated

API monitor)ž

P8. łI wish x64dbg could be called from the CLI and run

a script with a sample.ž

Analysts want more efficiency:

P8. łIn Linux, I’d like to have more injection capabilities

in strace and a Yara-like tool to match instructions.ž

Analysts want to increase accuracy:

P6. łBetter Unpackers.ž

Scientific Developments: Solutions that require additional scien-

tific developments, even though deployed via a product.

Analysts want increased accuracy:

P5. łMulti-Architecture Sandbox.ž

Challenge: Whereas the construction of a sandbox is a well-

studied topic, the correlation of data between multiple architectures

is still an open problem.

Analysts want more usability:

P7. łA more automated angr.ž (Ref. [64])

P8. łA good API logger that doesn’t require me to choose

which function calls I want to see. Something like strace

but for Windows.ž

P14. łA memory monitoring tool that you attach to a

process before executing it and it automatically dumps

anything interesting when allocated in memory (like

PE files).ž

P20. łAI-assisted function identification for stripped

binaries that actually works.ž

Challenge: Whereas analysis and tracing are well-studied top-

ics, the existing tools still require analysts to manually configure

lots of key aspects of an analysis procedure (e.g., which functions

to hook, how to explore multiple paths, where to stop analysis,

where to put breakpoints, and so on). The analyst’s request for

automation is not only a matter of adding a new feature to the tools,

but a request for the development of new reasoning tools, since to
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automatically hook a function, the analysis tool must be able to

łguessž if that function is important in that given context. In this

sense, the analyst’s suggestion for AI assistance is in line with the

problem challenge, since it requires additional reasoning.

The case of decompilers: They were reported as one of the most

popular solutions among analysts. They were also the most com-

mented solution, as they still have development gaps, as follows:

P9. łbetter decompilers to languages like delphi, go,

rust.ž

P14. łAn easy-to-use decompiler based on the execution

trace (for virtualized samples)ž

P19. łImproved decompilers with better types and static

library detection; better ways to identify malware fam-

ilies.ž

P10. łIA behavior analysis based on intermediate ma-

chine code.ž

Challenges: The advancements requested by the analysts re-

quire additional scientific advancements, since most of these ca-

pabilities involve additional reasoning by the tools, in addition to

better engineering support. The automatic identification of libraries

or the best parts of the code to be decompiled requires the decom-

piler not only to know how to handle the code but also to interpret

the goal and importance of the code pieces.

F ANALYST’S INSIGHTS ABOUT THE FUTURE

We below present the analysts’ answers about their perceptions

about the future of the malware analysis field. We identify the par-

ticipants by a number (P_ID), according to Table 1 from Section 4.1,

to highlight that their requests and needs are diversified.

Malware Tactics: It is increasingly important to identify how a

malware works, not only if it is malicious or not.

P5. łIt will require more and more skilled people. Mal-

ware evasion are common place now.ž

P7. łMulti-stage, fileless, firmware and other types of

samples that are difficult to analyze with traditional

techniques will have a great impact on users’ security,

but at the same time will provide new opportunities for

research in the field.ž

P5. łWith the increase of ARM devices, I believe we

will have an increase of multi-architecture malware

(recently I have seen an increase of multi-platform mal-

ware, but multi-architecture is still rare).ž

Developing Intelligence: Malware attacks appear in variants and

can be stealth. It is increasingly important to develop knowledge

about the attackers to map operations and anticipate movements.

P15. łFocus will change from file/code analysis on initial

attack vectors (phishing, social engineering, network

behavior etc.)ž

P8. łBeing able to fully analyze amalware sample/family

is not the most important thing IMHO. We have to have

context and we need to extract intelligence from it, not

only describe its features. Maybe we have to interact

with its C2, track the actors, etc. So, malware analysis

plays a key part on campaign/incident investigation,

but it doesn’t help much alone.ž

The role of AI: The most trending technique at the moment

was commented by many analysts. They expressed their views as

follows:

P12. łI think the presence of a malware analyst will al-

ways be necessary. Perhaps there will be a day when an

AI will be able to analyze with precision, but even in this

case there will have to be a malware analyst to "feed"

the AI with more inputs and progress the techniques

and tools.ž

P13. łAI will help and eliminate trivial tasks, but often

is necessary to perform advanced tweaks to make the

malware work, So, this needs to be done by a human

being.ž

P14. łAI will be useful for anomaly detection, but man-

ual malware analysis will still be required to better

understand how the attack works.ž

P18. łAI will help in future more but there will be always

a need for analysts.ž

Education: More than any tool, current analysts express concern

about training the next-generation of analysts, a goal academia

might supply.

P19. łWe need better education, but it is a niche job.ž

P1. łAn ever-growing field with a great need for great

and open-minded researchers. Start to think like attack-

ers and combine it with the mindset of a defender and

you’ll more chance to win.ž

P9. łAlways will raise new challenger malware that will

need skilled professionals and better courses will be a

differential to prepare new professionals.ž

G MOVING FORWARD

This work’s goal is to help move the field forward. In Table 29, we

summarize our multiple research findings and point out possible

research directions to address the identified development gaps.

H STUDY REPLICATION AND
GENERALIZATION

Reaching a significant number of participants is the biggest chal-

lenge and threat to the validity of any survey study. We attempted

to overcome this challenge and mitigate this risk in our main ex-

periment by increasing the confidence in the representativeness of

the analysts that we interviewed. To that, we limited the survey

distribution to only analysts acknowledged to work in the field. We

here take a further step. We reproduce the experiments with a dif-

ferent group of participants to evaluate how the answers generalize

between them.

Participants. For the new survey round, we opted to distribute

the survey via the Internet, as performed by related works. We

distributed our survey via posts on social media and web forums

to attract voluntary participants. The drawback of this approach is

that we (and previous works) cannot guarantee that the responders

are actually malware analysts and have the reported skills. The
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Table 29: Moving Forward Summary. Research findings and suggested directions.

# Finding Suggested Direction

1 Malware analysts perform more and varied daily tasks

than reverse engineering all day.

Develop tools that allow easy context switching.

2 Most malware analysts work in teams, but they analyze

samples individually.

Develop collaboration tools that focus more on the shar-

ing of the final result than on real-time collaboration.

3 Most analysts have to handle regional threats. Develop more region and context-specific malware eval-

uations, such as region-specific longitudinal studies.

4 Most professionals are self-taught malware analysts. Develop more malware courses in the universities.

5 Reading papers is the preferred form of getting updates

for most analysts. However, most analysts read more

white papers than academic papers.

Make academic papers reach out to professional commu-

nities to increase their impact and better support security

professionals.

6 Most analysts collect additional samples to enrich their

analysis procedures.
Enhance similarity detection tools for threat triaging.

7 Most malware analysts still receive recognizable mal-

ware variants for analysis.

8 Many analysts end up hosting their own analysis solu-

tions rather than using a COTS one due to their lack of

configuration possibilities.

Service-based solutions such as public sandboxes should

be more customizable.

9 Some analysts use their own analysis solutions due to

companies not allowing the use of public services.

Develop easier-to-install and easier-to-configure solu-

tions to not put the configuration burden on the analyst.

10 Most analysts still handle multi-stage malware via mul-

tiple, non-integrated tools.

Increase the integration between tools, such as via stan-

dardized data transfer protocols

11 Most analysts still handle multi-stage manually. Develop automation tools that integrate different types

of threats, and not only support different tasks for the

same threat type.

12 Unpacking samples is hard, regardless of the malware

analyst’s expertise level.
Develop automated unpacking and obfuscation tools.

13 Unpacking and deobfuscation are also time-consuming,

even for skilled analysts.

14 Most analysts do not run analyses multiple times or in

multiple sandboxes as a standard practice.

Develop guidelines and metrics to evaluate when a sam-

ple requires additional inspection.

15 Most analysts explore multiple execution paths manu-

ally and not via structured approaches and solutions

described in the literature.

Popularize solutions for automatic multipath exploration

such as fuzzing and symbolic execution.

16 Half of all surveyed analysts believe that the performance

of analysis solutions can be improved.

Develop faster sandboxes, that are acknowledged by

most analysts as a point of improvement.

17 Decompilers are the most useful tool in most analysts’

opinion even though decompiler limits are widely ac-

knowledged by them.

Develop more decompilers focused on malware analysis

because, despite decompiler limits, it is the tool that helps

analysts in the most complicated tasks.

18 An increased automation level for the analysis tools is

desired by most analysts.

Benefit from Artificial Intelligence (AI) developments to

develop automated hooking and automation function

identification mechanisms.

19 Most analysts believe AI will help in their work, but they

believe analysts are still required to train the AI models.

Train new analysts in the creation of AI-assisted security

solutions and the creation of security core knowledge

for these solutions.

20 Education is voluntarily pointed out by most analysts as

the most required change for the future.

Focus on the training of the next generation of malware

analysts workforce with special attention in the devel-

opment skills to understand attacker’s mentality.
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survey was open between October and December/23. In total, 20

analysts completed the survey. With this number of answers, we

can compare the new results with the reference one on the same

basis (we previously surveyed 21 analysts).

Population Differences. Whereas in the main experiment, we

were able to trace back analysts to their occupations, this is not

possible in the reproduced survey due to the limitations of the

Internet-based, open invitation strategy. The most significant dif-

ference noticed for the user population is that the new responders

are younger than the first ones. The average expertise years is now

4.33 vs. the previous 7 years. The most experienced professional

holds 15 years of experience in both cases. However, 3 professionals

reported having this seniority in the first run vs. 1 professional in

the replication study.

Methodology and Findings.We performed the same data anal-

yses as described in the main paper. Due to space constraints, we

opted to not reproduce all tables here, but only to compare the

summary of each analysis.

Malware analysis is still one of themultiple tasks of most security

professionals. The findings of the reproduced survey experiments

are aligned with the ones from the original survey. No responder

reported not performing malware analysis, which suggests that our

survey reached the right audience, even facing Internet distribu-

tion challenges. The minority of analysts reported to be full-time

malware analysts (prev. 14% vs. 10%). Most analysts position them-

selves on an intermediate number of analysis tasks. The fraction of

eventual malware analysts is also constant (prev. 42% vs 40%). The

only noticeable difference between the surveys is a swap between

those who previously reported mostly performing malware analysis

(23%) that are now only 10%, migrating to the reasonable number

of malware analysis tasks category.

Most analysts are individuals part of a team This result is also

consistent with previous observations. Most analysts are part of a

team but analyze samples individually (prev. 76% vs. 80%). The only

noticeable difference is a swap between those who were indepen-

dent analysts (19% vs 10%) vs. teams that analyze samples together

(prev. 4% vs. 10%).

Analysts know the context of the infections. This result is par-

tially aligned with our previous findings. Previously, most analysts

reported analyzing regional threats (52% vs. 30%) whereas nowmost

analysts analyze samples for their own local companies (14% vs.

50%). In common, the analysis of collected samples without further

infection context is the less frequent scenario (7% vs. 20%).

Most analysts are self-taught. This result aligns with the previ-

ous findings. Most analysts are self-taught (prev. 42% vs. 60%). The

only observable difference is a swap between those who previously

learned via post-grad in the field and those who learned via a certi-

fication process (10%). No analyst learned via formal undergraduate

courses in the field.

Analysts remain updated mainly via whitepapers. This result

aligns with the previous survey round.Whitepapers are the primary

information source for the analysts (prev. 46% vs. 34%). Academic

papers are still a minority part (prev. 14% vs. 10%). The training

category remained stable (prev. 12% vs. 13%). The newly interviewed

analysts rely more on YouTube videos and events to remain updated

(prev. 11% and 21% vs. 25% for each now).

Collected samples are important for signature and report gen-

eration. The fraction of analysts using previous samples to help

generate signatures (prev. 38% vs. 30%) or writing reports (prev. 9%

vs. 10%) is relatively constant. The only observable difference is that

fewer analysts collect more samples to understand their internal

working (prev. 33%

Samples storage depends on the company policy. The rate of

analysts that never store samples is relatively constant (prev. 9%

vs. 10%). Among the analysts that report to store samples for the

future, the most observable difference is in their reason. Whereas

previous survey results reported company obligation to store (42%

vs. 20%), now analysts report more of their curiosity as the main

reason (23% vs. 50%).

Most analysts run procedures on their own machines. This result

is aligned with the initial findings. Most analysts run the analysis

procedures on their own machines (prev. 85% vs. 70%). The re-

maining analysts in this replication study reported using company

sandboxes (prev. 9% vs. 30%).

The use of public sandboxes remains a controversial point. The

first survey revealed that whereas almost half (52%) of the analysts

like public sandbox services, another half (48%) do not like or are not

allowed to use them. In this new study, the number of companies

disallowing their use has grown (prev. 19% vs. 40%). Among the

60% allowed to use, 30% like and 30% dislike them (prev. 28%). This

shows that the use of a public sandbox is a fracture point in the

malware analysis community.

Analysts still see malware variants. The number of malware

analysts rarely observing malware variants has grown in the repli-

cation study (prev. 5% vs. 30%). However, most of the analysts still

report seeing variants sometimes (prev. 42% vs. 60%) or very often

(52% vs. 10%). The growth in the analysts rarely seeing malware

variants is explained by the growth in analysts analyzing threats

to their local companies. All (100%) analysts that reported rarely

seeing malware variants also report only analyzing threats to their

local companies.

Most analysis tasks are still manual. This is aligned with previous

findings. No analyst reported in any of the surveys to use fully

automated solutions. In both cases, most analysts report that their

analysis procedures are half manual (prev. 52% vs. 60%). Second,

they report their analyses to be mostly manual (prev. 48% vs. 40%).

The analysis of multi-stage malware requires constant analysts

intervention. This result aligns with previous findings. Most an-

alysts treat each malware stage as a new analysis (prev. 66% vs.

60%) and another significant fraction manually copy and paste the

results from one stage as input for the next (prev. 19% vs. 30%).

No analyst reported using fully automated analysts and 1 analyst

reported only analyzing the first malware stage.

ulKnowing to deobfuscate samples is a key malware analyst skill.

This result aligns with the previous finding. Analysts report that

deobfuscating samples is the skill they most struggle with (prev.

45% vs. 54%). The second most challenging task for the analysts

is unpacking (prev. 32% vs. 28%). Finally, identifying execution

triggers comes last (prev. 23% vs. 22%).

Deobufscating malware samples takes the analyst’s time. This

result is in line with previous findings. Deobfuscating samples is
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a time bottleneck for most analysts (prev. 56% vs. 59%). Unpack-

ing is the second most time-consuming task (prev. 26% vs. 32%).

Identifying detection triggers comes last (prev. 25% vs. 11%).

There is no standard for the number of sandbox runs. This result

aligns with the previous findings. In this new survey round, once

again, no analyst reported to always test samples multiple times.

Half of the analysts (50%) reported to typically run only once, but

sometimes more. Another half of the analysts (50%) reported to

typically runmore than once, but not always. In the previous survey,

this same division was observed, with 38% of the analysts being in

each category.

There is no standard for sandbox configuration. A significant

number of malware analysts report not changing sandbox config-

urations (prev. 66% vs. 40%). Among the modified aspects, a few

change only the OS (prev. 0% vs. 10%), and some only the architec-

ture (prev. 9% vs. 10%). From the ones who make sandbox changes,

the majority opt to change both parameters (prev. 23% vs. 40%).

The discovery of new execution paths is still widely manual.

This finding aligns with previous results. For most samples, analyst

report to manually discover their execution paths (prev. 73% vs.

57%). Forced execution is the second most common technique (prev.

49% vs. 30%). The remaining strategies account for less than 20%

each one.

Multi-path malware is often characterized via their IoCs. This

result aligns with the previous findings. In this new survey round,

once again the malware analysts reported to consider only the

IoCs when comparing execution traces (prev. 62% vs. 80%). The

remaining analysts reported considering any malware trace that

presents malicious behavior as representative (prev. 28% vs. 20%).

No analyst reported using another analysis strategy.

Tool’s performance is another controversial point. Previous re-

sults revealed that the community is split into those who believe

that the tools are fast enough (38%) or are intrinsically slow (14%)

and those who believe that current tools are slow and could be

improved (47%). The new survey round reveals that the division re-

mains, although at a slightly different scale. Half of the participants

(50%) believe that the tools are fast enough. Another half believe

the tools are slow, but some (30%) believe it is an intrinsic limitation

whereas others (20%) believe that the tools can be improved.

Sandbox performance is also a controversial topic. As in the

previous round, most analysts (prev. 100% vs. 80%) agree that faster

sandboxes would be helpful. However, the practical divide between

those who believe it helps in specific (prev. 52% vs. 60%) and in

broader (prev. 48% vs. 40%) cases remains.

Signatures and Reports are the most frequent analysis outcomes.

This result is in line with previous findings. Most analysts report to

produce both signatures and reports (prev. 47% vs. 50%). Another

set of analysts produces only reports (prev. 42% vs. 30%). The pro-

duction of signatures only is limited in both cases (prev. 10% vs.

20%).

Accuracy is more important than performance for signature

generation. This finding is in line with the previous results. The

minority of the analysts give the same weight to the accuracy and

performance of the written signatures (prev. 33% vs. 10%). Most

analysts put accuracy first (prev. 47% vs. 70%), and a minority only

worry about accuracy (prev. 19% vs. 20%).

Decompilers and AVs at extreme positions. This finding is aligned

with the previous survey results. Decompilers remain at the top of

the most used solutions (prev. 61% vs. 65%). On the other extreme,

AVs remain the less used ones (prev. 58% vs. 29%). The solutions in

between did not present significant variation.

Debuggers require performing repetitive tasks. This result is

aligned with the previous findings. Most analysts consider debug-

gers key for malware analysis (prev. 90% vs. 90%). However, most

analysts report that debuggers require them to perform repetitive

tasks (prev. 71% vs. 80%), whereas a minority part believe that de-

buggers are enough for their tasks as they are (prev. 19% vs. 10%).

Plugins help improve debuggers for malware analysis. As in

the previous survey round, plugins are reported to improve the

debugger operation for malware analysis (prev. 100% vs. 90%). Once

again, there is a divide between thosewho consider plugins essential

(prev. 42% vs. 60%) and those who believe in help only in specific

situations (prev. 57% vs. 30%).

Decompilers are solutions with high cost-benefit. This result

aligns with previous findings. Most analysts consider decompilers

as very useful tools (prev. 81% vs. 80%).

Analysts believe AI will help and not replace them. This finding

is aligned with the previous results. Most analysts believe that AI

will affect their job (prev. 96% vs. 90%). Most of them believe that

AI will help (prev. 90% vs. 90%), whereas a few to none believe it

will completely solve current analysts’ problems (prev. 4% vs. 0%).

Analysts want AI to automate tools. Analysts once again reported

desire for (i) new engineering tools; and (ii) new conceptual tools.

Among the conceptual tools, all analysts expressed a desire for AI

to be used to automate repetitive tasks.
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