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Abstract— 3D object detection (OD) is a crucial element in
scene understanding. However, most existing 3D OD models
have been tailored to work with light detection and ranging
(LiDAR) and RGB-D point cloud data, leaving their per-
formance on commonly available visual-inertial simultaneous
localization and mapping (VI-SLAM) point clouds unexamined.
In this paper, we create and release two datasets: VIP500,
4772 VI-SLAM point clouds covering 500 different object and
environment configurations, and VIP500-D, an accompanying
set of 20 RGB-D point clouds for the object classes and shapes in
VIP500. We then use these datasets to quantify the differences
between VI-SLAM point clouds and dense RGB-D point clouds,
as well as the discrepancies between VI-SLAM point clouds
generated with different object and environment characteristics.
Finally, we evaluate the performance of three leading OD
models on the diverse data in our VIP500 dataset, revealing the
promise of OD models trained on VI-SLAM data; we examine
the extent to which both object and environment characteristics
impact performance, along with the underlying causes.

I. INTRODUCTION

In the realm of 3D object detection (OD) [1], [2], [3],
[4], prevailing models have predominantly been trained on
light detection and ranging (LiDAR) [5] and RGB-D [6],
[7] point cloud data. In contrast, point cloud data gener-
ated through visual-inertial simultaneous localization and
mapping (VI-SLAM) [8] has received much less attention.
This type of point cloud is a vital consideration, given that
VI-SLAM is widely used on resource-constrained mobile
devices. For example, it is the standard mapping technique on
augmented reality (AR) platforms, on which OD capabilities
are of central importance [9], [10], and VI-SLAM point
cloud sharing is integral to virtual content persistence in
AR (e.g., [11]). However, the potential for OD models to
extract information from VI-SLAM point clouds has not been
explored until now.

VI-SLAM point cloud data introduces a specific set of
challenges. Unlike LiDAR or RGB-D data, the accuracy, den-
sity, and spatial distribution of VI-SLAM data vary widely
depending on object and background textures [12]. Con-
sequently, even high-performing detection models, initially
trained on LiDAR or RGB-D data, may exhibit poor perfor-
mance when confronted with VI-SLAM data. Moreover, the
diversity in VI-SLAM data, stemming from different object
and environment characteristics, makes the development of
models robust to all scenarios challenging. However, to the
best of our knowledge, there is currently no work exploring
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the impact of object and environment characteristics on 3D
OD using VI-SLAM point clouds.

To address this research gap, we conduct the first system-
atic evaluation of 3D OD models on VI-SLAM point clouds,
that includes the effect of object and environment character-
istics on detection performance. Our study focuses on OD in
indoor environments, a common setting for VI-SLAM, and
uncovers the influence of object shape and texture, as well
as floor texture. Our main contributions are:

e We create and release two publicly available datasets':

VIP500, 4772 labeled VI-SLAM point clouds covering
500 object and environment configurations generated
using a game engine, and the accompanying VIP500-D,
20 RGB-D point clouds generated from the object
classes and shapes in VIP500.

e We quantify the fundamental differences between con-
ventional RGB-D point clouds and VI-SLAM point
clouds, as well as variations within VI-SLAM data,
using the Density-aware Chamfer distance (DCD), a
metric for calculating point cloud discrepancies [13].

e We assess the performance of three state-of-the-art
(SOTA) 3D OD models on VI-SLAM point cloud data
generated from diverse object and environment char-
acteristics. We find that models trained on VI-SLAM
data perform well with some object and environment
characteristics but poorly with others, highlighting the
potential for extracting information from VI-SLAM
data, but also the need to develop more robust models.

Through these contributions, we shed light on the chal-
lenges and promise of 3D OD on VI-SLAM point cloud
data, and reveal insights related to the impact of object and
environment characteristics on OD performance.

II. BACKGROUND
A. Point Cloud Generation

Point cloud data can be acquired from 3D scanners
that measure object-to-scanner distance, or generated from
stereo- or multi-view 2D imagery [14]. Various types of
3D scanners, including LiDAR, laser stripe triangulators,
and RGB-D cameras, produce point clouds with high spa-
tial resolution and accuracy, and relatively uniform spatial
distribution [15]. In contrast, the point clouds generated
by VI-SLAM algorithms, including both SOTA open-source
solutions (e.g., ORB-SLAM3 [16]) and ‘black-box’ commer-
cial AR platforms (e.g., ARKit [17]), contain sparse points
with nonuniform spatial distributions, and the accuracy of

Thttps://github.com/timscargill/VIP-Datasets
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Fig. 1: Examples of the virtual environments we used to

generate our VI-SLAM point cloud dataset: (a) chair object
class example; (b) variations for this class (first row object
shape, second row object texture, third row floor texture).

these points varies widely depending on the properties of
surfaces present, e.g., their geometry and textures [12].
We generate a VI-SLAM point cloud dataset which covers
diverse object and environment characteristics, detailed in
Section III-A.

B. 3D Indoor OD

3D indoor OD, a crucial component of indoor scene under-
standing [18], localizes object instances and recognizes their
categories within a scene. The performance of 3D indoor OD
has garnered significant interest, particularly in the realm of
service robots [19], [20] and AR applications [9], [10]. SOTA
models include VoteNet [1] and H3DNet [2], which predict
3D bounding boxes and semantic classes based on point
groups, GroupFree [3], which computes object features from
all the points instead of grouping them, and FCAF3D [4] and
TR3D [21], which leverage the synergy between geometric
point cloud data and RGB inputs. However, none of these
SOTA 3D OD models have been evaluated on VI-SLAM
point cloud data. Here we evaluate their performance on our
new VI-SLAM point cloud dataset (Section III-A), and ex-
amine the impact of object and environment characteristics.

C. Impact of Environment Characteristics on 3D OD

The inherent variability of environment conditions is
known to influence model performance [22]. However, to
our knowledge, there is currently no work investigating the
impact of object and environment characteristics on 3D
OD with VI-SLAM data. Prior research [22], [23], [24]
has studied the effects of environment conditions on 3D
OD with LiDAR data. Mai et al. [22] and Do et al. [24]
delve into the effects of foggy and snowy scenes on LiDAR
data, revealing substantial distortions that lead to diminished
detection accuracy. Piroli et al. [23] emphasize how cold
weather disrupts object size and orientation estimation. In
contrast to the focus on LiDAR data, our work specifically
examines 3D OD performance on VI-SLAM data, across
diverse objects and environments.

III. OUR DATASETS

In this section, we introduce two new datasets that we
have created as part of this work, one VI-SLAM point cloud
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Flg 2 Examples of the VI- SLAM data generated from
the visual data shown in Fig. 1. The size, accuracy and
distribution of an object’s point clouds (blue points) are
impacted by the object’s shape and texture, and environment
(floor) texture.

dataset and one RGB-D point cloud dataset. Both datasets
are publicly available in our GitHub repository'.

A. VI-SLAM Point Cloud Dataset

To study the effect of object and environment character-
istics, we require a dataset in which these characteristics
are varied in a systematic and controlled manner. To this
end, we use a game engine-based methodology to generate
semi-synthetic data [25], [26], [27], [28], comprising virtual
visual data and real inertial data. As in [28], we create
virtual environments in which we apply specific object and
environment characteristics, use the ground truth trajectory
from existing VI-SLAM datasets (e.g., [29], [30]) to generate
camera images in those environments, then combine this new
visual data with the inertial data from the original dataset.

As illustrated in Fig. 1, we created virtual environments
in Unity 2020.3.14f1 consisting of a single object in a
8mx6mx4m room with blank walls and a textured floor.
For each type of object (e.g., a chair) we generated different
configurations in which we varied the object shape by
using different 3D models (Fig. 1b, top row), the object
texture (Fig. 1b, middle row), and the floor texture (Fig. 1b,
bottom row). We used the A4 trajectory in the SenseTime
VI-SLAM dataset [30] to generate a new sequence for each
environment variant, then ran them on a SOTA open-source
VI-SLAM algorithm, ORB-SLAM3 [16]; we modified the
ORB-SLAM3 software to save the generated point cloud to
a text file. Finally, because the exact transform between the
ground truth game engine coordinate frame and the SLAM
point cloud coordinate frame is not known (so the game
engine coordinates cannot be used to segment the SLAM
point cloud), we segmented and labeled the generated point
clouds using the Open3D Python library [31]. We applied
plane detection and outlier removal to identify points not part
of the object, and appended a new column to each line in
the point cloud file indicating the object class for that point.
Examples of the VI-SLAM point clouds generated from the
source data in Fig. 1 are shown in Fig. 2.

Using the above process, we created a dataset of 4772
labeled VI-SLAM point clouds, which we name VIP500.
VIP500 covers 500 different environment configurations:
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Fig. 3: Our Unity virtual environments show the five shapes
we used for the desk, sofa, and table object classes (with the
wood object texture and carpet floor texture).
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four common indoor object classes from the ModelNetl10
dataset [32] (chair, desk, sofa, and table) x five object shapes
x five object textures X five floor textures. We ran 10 trials
for each configuration; some configurations resulted in the
loss of tracking in some trials and invalid point clouds, which
were excluded from the dataset. The object and floor textures
are consistent across classes, and shown in Fig. 1; the object
shapes for the desk, sofa and table classes are shown in Fig. 3
(chair in Fig. 1), and the corresponding point clouds in Fig. 5
(chair in Fig. 2). The size, accuracy, and distribution of object
point clouds (blue points) are not only impacted by the shape
and texture of the object, but also by the floor texture.

B. RGB-D Point Cloud Dataset

We also created an RGB-D dataset that accompanies
VIP500, to study the differences between the VI-SLAM point
clouds and point clouds generated from 3D scanners. We
generated the dataset using the same virtual environments
with the same object shapes as those used in VIP500. We
exported virtual environments built in Unity to FBX files
and imported them to Unreal Engine 4.27.2. To generate our
point clouds, we leveraged the Unreal plugin AirSim [33],
which facilitates the creation of RGB-D point clouds after
capturing RGB camera images and depth sensor readings.

Using this process, we created a dataset of 20 RGB-D
point clouds, which we name VIP500-D. This dataset con-
tains four object classes (chair, desk, sofa, and table), each
with five object shapes. We do not consider different object
and floor textures because these characteristics have minimal
influence on RGB-D point clouds. Examples of the RGB-D
point clouds in VIP500-D are shown in Fig. 4.

IV. METHODS
A. VI-SLAM and RGB-D Point Clouds Comparisons

We use the DCD introduced in [13] as a metric for
quantifying point cloud discrepancies, to assess the differ-
ences between VI-SLAM and RGB-D point clouds, and the
differences between VI-SLAM point clouds generated with

o 8

Fig. 4: RGB-D point clouds for different chair shapes used in
our datasets, generated from the visual data shown in Fig. 1.
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Fig. 5: Examples of the VI-SLAM point clouds generated
from the visual data shown in Fig. 3, the five shapes used

for the desk, sofa and table object classes.
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varied object and environment characteristics. DCD extends
the conventional Chamfer distance by detecting the disparity
of density distributions and removing outliers, making it a
more comprehensive and reliable measure of similarity. Since
the VI-SLAM and RGB-D point clouds may not share the
same coordinate system, the first step is to use the iterative
closest point (ICP) algorithm to rectify the translational
and rotational discrepancies within the point clouds during
comparisons. We do not adjust for the scale discrepancies, as
VI-SLAM removes scale ambiguity through the integration
of inertial measurements [16]. The ICP algorithm iteratively
finds corresponding points between two point clouds and
looks for a rigid transformation minimizing the alignment er-
ror [34]. We obtain two aligned point clouds S4 and Sp and
calculate the DCD between them, denoted as D.(S4, Sp).

B. Performance of OD Models on VI-SLAM Point Clouds

3D OD Models: To conduct a comprehensive analysis, we
evaluate the performance of three SOTA indoor 3D OD mod-
els: (1) VoteNet [1], (2) H3DNet [2] and (3) GroupFree [3].
These models are exclusively geometry-based, so that they
only use the geometry information of the point cloud data.

VIP500 Dataset Grouping: To investigate the impact of
object and environment characteristics on OD performance,
we organize the VIP500 dataset into a total of 30 groups.
To study the effect of object texture, we divide our VIP500
dataset into the five object texture types (wood, yellow
fabric, wool, green fabric, black), and to study the effect of
environment texture we divide it into the five floor texture
types (marble, wood, large tile, small tile, carpet). These
groups contain instances from all classes. To study the effect
of object shapes, we divide the VIP500 dataset into 20 groups
(4 classes x 5 object shapes), because object shapes cannot
be compared across classes (so each object shape group only
contains instances from one class).

Performance of Pre-trained OD Models: We start by
examining the performance of SOTA 3D OD models pre-
trained on ScanNetV2 [6], a commonly used OD benchmark
dataset comprising 3D reconstructed indoor scene meshes,
from which dense point clouds can be generated. ScanNetV2
contains ~ 1.2K training examples derived from diverse
rooms, and has 18 object categories. In line with the standard
practice of deploying OD models in specialized environ-
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Fig. 6: (a) DCD between the RGB-D point clouds and the VI-SLAM point clouds for different chair shapes; (b—e) DCD
between VI-SLAM point clouds for different sofa and table shapes, object textures, and floor textures.

ments, we source our pre-trained OD models from a well-
known and widely-used GitHub repository [35].

To assess the performance of these pre-trained models

on our VIP500 dataset, we employ the standard OD eval-
uation metric: mean average precision (mAP), reported as
a percentage. We present mAP with an intersection over
union (IoU) threshold of 0.25, rather than the conventional
threshold of 0.5 [36], since the substantial domain gap be-
tween ScanNetV?2 and VIP500 leads to nearly zero mAP@.5
across all test groups. To comprehensively evaluate model
performance, we also report the mean average recall (mAR)
with an IoU threshold of 0.25.
Performance of OD Models Trained on VI-SLAM Data:
As fine-tuning is a well-established domain adaptation tech-
nique, we fine-tune all layers of SOTA 3D OD models with
VI-SLAM data and evaluate their performance. This process
illustrates the potential of using VI-SLAM data for scene
understanding and forms a foundational exploration, paving
the way for future investigations into more sophisticated
adaptation methods specifically tailored for VI-SLAM data.
We first define the object shape, object texture, and floor
texture training sets; to limit the number of trained models
to a tractable amount, for each of these three characteristics
we choose one group (e.g., one texture) to train the models
on, and test the models on the remaining data groups. To
maximize fairness and prevent extreme cases where models
are trained on the best- or worst-performing characteristics,
we opt to train the OD models on the middle-performing
VI-SLAM characteristics. These middle-performing charac-
teristics are selected based on the results we obtain using
the pre-trained models. Specifically, for the object and floor
texture we train the models on the middle-performing texture
and test it on the other four textures. For object shape, we
train the model on the middle-performing chair, sofa, table,
and desk shapes, and test it on the remaining 16 object
shapes. To train the models, we use the AdamW optimizer
with a 0.01 weight decay coefficient, and set the learning
rate as 0.008, as provided in the GitHub repository [35]. To
measure the performance of models trained on VI-SLAM
data, we employ the standard mAPQ.5.

V. RESULTS

We quantify the geometric disparities of point clouds in
Section V-A. We then train three leading OD models on
ScanNetV2 data and VI-SLAM data, and evaluate the OD
performance on our VIP500 dataset in Sections V-B and V-C.

A. VI-SLAM and RGB-D Point Clouds Comparisons

We report the DCD D, between the RGB-D and VI-SLAM
point clouds in Fig. 6a, and among VI-SLAM point clouds
with different object shapes, object textures, and floor tex-
tures in Figs. 6b-6e.

We observe that the discrepancies between RGB-D and
VI-SLAM point clouds are large (D, is 0.85 on average),
especially compared with discrepancies among VI-SLAM
point clouds with different object and environment char-
acteristics (D. is 0.63 on average). This highlights the
substantial domain gap between RGB-D and VI-SLAM point
clouds. This finding aligns with a visual comparison of
the RGB-D point clouds with higher spatial resolution and
relatively uniform spatial distributions, shown in Fig. 4, and
the VI-SLAM point clouds characterized by sparser points
with nonuniform distributions, shown in Figs. 2 and 5.

Figs. 6b-6¢ show D, for pairs of VI-SLAM point clouds
generated with different sofa shapes and table shapes, rep-
resentative examples of different object shapes. We observe
that D, reflects the levels of visual discrepancies observed in
Fig. 5. For example, the corner sofa models have the greatest
average D, to other sofa models; this finding aligns with our
observations from Figure 5, in which corner sofa point clouds
notably stand out in size compared to other models. Another
example is that the square table has the largest D, to the
dining table; this also corresponds with Figure 5, in which
the square and dining tables exhibit a large size discrepancy.

Figs. 6d-6e show D, for pairs of VI-SLAM point clouds
generated using different object textures or floor textures.
We calculate the means and standard deviations of D, for
pairs of different object textures and different floor textures,
denoted as E(D?), E(DI), o(D?) and o(DJ). We observe
that although E(Df) (0.61) is smaller than E(D?) (0.63),
o(DI) (0.072) is larger than o(D2) (0.057). o(DI) being
larger can be attributed to the influence of floor textures on
VI-SLAM tracking accuracy, as well as their impact on the
distribution of point clouds across objects and environments
(e.g., floors). This observation suggests that certain factors,
such as floor textures, which have minimal impact on RGB-D
data, can have a significant influence on VI-SLAM data.

The geometric disparity of point clouds quantified by the
DCD is one of the factors leading to performance degradation
when training OD models on point clouds with specific
object and environment characteristics, and subsequently
testing them on point clouds with differing characteristics.
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TABLE I: The mAP@Q.25 and mARQ.25 of three models pre-trained on ScanNetV2, across 30 groups. 71% of mAPQ.25
values are < 1%, showing the limited utility of pre-trained models on VI-SLAM point clouds. Best in bold, worst underlined.

Metrics mAP@.25 (%) mAR@.25 (%)

Chair shapes I(;?g%: 2;2?:2 Framed Rounded Basic I(;?gf: 2?%22 Framed Rounded Basic
VoteNet 0.01 0 0.01 0.01 0 10.70 4.53 12.45 10.59 7.38
H3DNet 0.07 0.23 0.24 0.06 0.03 44.44 79.42 58.09 40.68 29.92

GroupFree 0.03 0.05 0.04 0.01 0.02 53.50 44.86 50.21 32.63 40.57

Desk shapes Large Computer ~ Writing Drz;:&;frs- Drﬁg}? tr s Large Computer ~ Writing Drellz&;frs- Drﬁ‘g’f tr s
VoteNet 2775 1.92 1.00 1.49 4.47 79.75 71.60 54.77 57.02 75.10
H3DNet 0.07 0.80 0.10 0.01 0.63 28.10 72.40 42.32 14.88 19.50

GroupFree 0.01 0.01 0 0.03 0 5.60 4.96 124 6.61 3.73

Sofa shapes Settee Angular Rounded Corner Small Settee Angular Rounded Corner Small
VoteNet 0.11 0.10 0.74 0.02 1.42 25.13 23.48 47.95 7.66 18.37
H3DNet 0 0.09 0.02 1.01 0 6.15 39.68 22.13 22.58 0.82

GroupFree 0 0 0 0 0 0 243 1.64 0.81 0.82

Table shapes High Coffee Dining Square Circular High Coffee Dining Square Circular
VoteNet 18.2 19.18 33.44 5.26 17.38 78.51 59.29 76.15 49.12 88.19
H3DNet 6.90 2.47 1.77 0.15 0.56 45.45 62.39 45.19 14.16 24.89

GroupFree 0.02 0 0 0.01 0.06 4.13 7.08 2.51 15.49 15.19
Object Yellow Green Yellow Green
textjures Wood fabric Wool fabric Black Wood fabric Wool fabric Black
VoteNet 8.66 6.82 5.48 3.07 0.03 58.31 53.23 53.69 39.75 5.57
H3DNet 0.71 0.58 3.92 0.02 0.03 35.98 37.42 86.60 348 6.25
GroupFree 0.03 0.03 0.02 0.01 0 23.02 17.96 15.28 10.59 3.77

Floor textures Marble Wood Large tile  Small tile Carpet Marble Wood Large tile  Small tile Carpet
VoteNet 433 5.36 2.25 2.82 9.09 40.45 42.53 45.02 41.70 4491
H3DNet 6.02 0.23 0.08 0.13 3.50 71.31 12.98 21.05 12.92 68.01

GroupFree 0.01 0.01 0.02 0 0.03 13.45 11.38 16.40 6.85 24.42

We investigate this aspect below.

B. Performance of Pre-trained OD Models

We conduct evaluations on three pre-trained 3D OD
models using the 30 data groups detailed in Section IV-
B. The mAP@.25 and mARQ.25 of pre-trained models
for these groups are shown in Table I. We observe that
the mAP@Q.25 of the three OD models is low (< 34%
in all cases, < 10% for all except VoteNet on the table
class) compared to the mAP@Q.25 of models trained on
the ScanNetV2 dataset (62.34% for VoteNet, 66.07% for
H3DNet and 66.17% for GroupFree). This result reveals the
substantial domain gap between VI-SLAM point cloud data
and RGB-D point cloud data. In addition to mAPQ.25, we
note that better performance is achieved for the mARQ.25
metric. This implies that while numerous objects are detected
by the pre-trained models, a significant proportion of these
detections are incorrect.

Considering both mAP@.25 and mARQ.25, we find that
the object shapes which result in the best performance are
the framed chair, the angular sofa, the circular table, and
the computer and drawers-left desk, while wood and carpet
are the best-performing object and floor textures respectively.
The characteristics which result in the worst performance are
the basic chair, the settee, corner and small sofas, the square
table, and the writing desk, along with the black object
texture and small tile floor texture. From the corresponding
point cloud data in Fig. 2 and Fig. 5, we observe that
VI-SLAM data generated with the best-performing character-
istics frequently bear a closer resemblance to the RGB-D data
(e.g., the dense point cloud generated with the wood object
texture or the circular table shape), while VI-SLAM data

generated with the worst-performing characteristics exhibit
greater dissimilarity from RGB-D data (e.g., the sparse
point cloud generated with the black object texture or the
square table shape). Although the performance of pre-trained
models varies across different VI-SLAM data groups, the
overall performance is low (e.g., 71% of the mAPQ.25
values are < 1%), which indicates that directly applying
OD models pre-trained on dense data to VI-SLAM point
clouds provides limited utility, underscoring a critical need
for domain adaptation techniques [37], [38].

C. Performance of OD Models Trained on VI-SLAM Data

As explained in Section IV-B, we fine-tune three OD
models on the middle-performing characteristics, defined
according to the test performance presented in Table I. The
middle-performing data characteristics are the large office
chair shape, the rounded sofa shape, the dining table shape,
the computer desk shape, the wool object texture, and the
marble floor texture.

The mAP®Q.5 values across the remaining 24 groups are
shown in Table II. Performance is better with the OD models
trained on VI-SLAM data than the pre-trained OD models
(Section V-B), due to the differences among VI-SLAM data
being smaller than the differences between VI-SLAM data
and RGB-D data, as shown in Fig. 6. Importantly though,
OD performance on VI-SLAM point clouds varies greatly
across different object and environment characteristics, even
when models are trained on VI-SLAM data. As we discuss
below, in some scenarios SOTA OD models may provide
informative outputs from VI-SLAM point clouds, while in
others they perform much more poorly.

The OD models generally perform better on object shapes
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TABLE II: The mAP@.5 of OD models trained on VI-SLAM
data across 24 groups varies from 0.51% to 76.66%. Best in
bold, worst underlined.

Metric mAP@.5 (%)

Chair shapes Small office Framed Rounded Basic
VoteNet 14.48 2.95 24.57 10.03
H3DNet 5.19 3.97 3.36 6.21

GroupFree 37.68 34.28 21.77 43.29

Desk shapes Large Writing Dr?:g:rs— Drﬁg}ir 5
VoteNet 52.86 58.73 33.36 13.10
H3DNet 9.36 12.30 7.51 4.07

GroupFree 13.80 49.71 25.59 30.95

Sofa shapes Settee Angular Corner Small
VoteNet 69.77 76.66 3141 45.76
H3DNet 25.14 17.45 0.51 0.78

GroupFree 62.64 66.07 59.31 54.92

Table shapes High Coffee Square Circular
VoteNet 23.12 16.51 5.68 12.57
H3DNet 8.41 2.39 4.8 6.41

GroupFree 33.92 22.94 9.75 25.32
Object Yellow Green
textjures Wood fabric fabric Black
VoteNet 66.78 68.69 44.20 6.08
H3DNet 76.24 75.83 51.17 7.27
GroupFree 75.71 73.53 4423 5.32

Floor textures Wood Large tile  Small tile Carpet
VoteNet 35.55 14.67 45.59 32.00
H3DNet 46.16 14.62 54.30 4471

GroupFree 40.62 29.01 51.59 46.47

that are more similar to the shapes in the training data.
For example, point clouds from the best-performing shape,
the angular sofa, align closely with those from the rounded
sofa used for training, evidenced by a low DCD of 0.61. In
contrast, the DCD between the rounded sofa and the worst-
performing shape, the corner sofa, is higher at 0.69. This
highlights the need to consider how well object shapes are
represented in training data.

For the object textures, the mAP@Q.5 values are highest
with the feature-rich wood and yellow fabric textures (65 —
80% for all OD models), and by far the lowest with the
plain black texture (< 10% for all OD models). While the
DCD between the point clouds from the black texture and
the wool texture used for training is not the largest, the point
clouds generated with the black texture exhibit a high level
of sparsity (Fig. 2). In fact, of all the characteristics we
studied, object texture had the most consistent effect on OD
performance, intuitive given that feature-based VI-SLAM
algorithms like ORB-SLAM3 are designed to store informa-
tion about recognizable textures, and thus an object’s texture
directly affects how much information is available about it
in VI-SLAM point clouds. This result mirrors those from
studies of the effect of texture on VI-SLAM pose tracking, in
that textureless environment regions degrade tracking perfor-
mance [28], [39], [30]. Moreover, black textureless regions
(e.g., TVs, monitors) have also been shown to result in
poor performance of the infrared time-of-flight depth sensors
sometimes incorporated into mobile devices [40]. Given the
prevalence of these types of surfaces in built environments,
the development of OD models robust to sparse VI-SLAM
point cloud data is an important topic for future work.

For the floor textures, the highest m AP@Q.5 values (45 —

55%) are consistently achieved with the small tile tex-
ture, and the the lowest mAP@.5 values (< 30%) with
the large tile texture. This reveals the surprising extent to
which environment texture, as well as object texture, impacts
OD performance on VI-SLAM data. However, a notable
exception arises: the worst-performing texture, large tile
texture, has a small DCD with the marble texture used
for training (Fig. 6e). We note that with the large tile
texture, VI-SLAM-based tracking results in less accurate
point clouds, degrading OD performance. As illustrated in
Fig. 2, different environment textures can also result in
different object point cloud densities (due to the selection of
a fixed number of keypoints in each frame in the VI-SLAM
algorithm), and the extent to which this occurs in a wider
range of environments is worthy of further investigation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we assess the performance of 3D OD models
on VI-SLAM point clouds, including the impact of object
and environment characteristics. To facilitate this, we create
and release a dataset of VI-SLAM point clouds covering 500
different object and environment configurations, along with
an accompanying dataset of RGB-D point clouds. Leveraging
these datasets, we systematically quantify the disparities
between VI-SLAM and RGB-D point clouds, as well as
variations between VI-SLAM point clouds generated with
different object and environment characteristics. We evaluate
three SOTA 3D OD models on VI-SLAM data, both when
the models are trained on dense point clouds, and when they
are trained on VI-SLAM data.

Overall, our results demonstrate the promise of OD on
the type of VI-SLAM point clouds that are readily avail-
able on a wide range of mobile devices. Despite SOTA
OD models trained on dense point clouds providing little
useful information, we show that training them on VI-SLAM
point clouds dramatically improves performance, especially
when objects of interest are textured. Indeed, given that
VI-SLAM point cloud sharing is an integral part of current
techniques for virtual content persistence in AR (e.g., [11]),
these results raise important concerns about the potential for
attackers to infer information about an environment using
OD models. There is also significant scope to explore how
OD performance can be improved for the object and environ-
ment characteristics we identified as more challenging. This
improvement could be achieved by collecting more diverse
training data, up-sampling sparse point clouds, or using self-
supervised learning [41], contrastive learning [42], and other
domain adaptation methods.
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