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Synopsis  Biology as a field has transformed since the time of its foundation from an organized enterprise cataloging the di-
versity of the natural world to a quantitatively rigorous science seeking to answer complex questions about the functions of
organisms and their interactions with each other and their environments. As the mathematical rigor of biological analyses has
improved, quantitative models have been developed to describe multi-mechanistic systems and to test complex hypotheses.
However, applications of quantitative models have been uneven across fields, and many biologists lack the foundational train-
ing necessary to apply them in their research or to interpret their results to inform biological problem-solving efforts. This gap
in scientific training has created a false dichotomy of “biologists” and “modelers” that only exacerbates the barriers to working
biologists seeking additional training in quantitative modeling. Here, we make the argument that all biologists are modelers
and are capable of using sophisticated quantitative modeling in their work. We highlight four benefits of conducting biological
research within the framework of quantitative models, identify the potential producers and consumers of information produced
by such models, and make recommendations for strategies to overcome barriers to their widespread implementation. Improved
understanding of quantitative modeling could guide the producers of biological information to better apply biological measure-
ments through analyses that evaluate mechanisms, and allow consumers of biological information to better judge the quality
and applications of the information they receive. As our explanations of biological phenomena increase in complexity, so too
must we embrace modeling as a foundational skill.

Statistical thinking will one day be as necessary for 2012; Palubicki et al. 2022); population biOlOgiStS are
asked to explain the likely impact of ecosystem changes
and management decisions (Faust et al. 2004; Garcia-

Diaz et al. 2019; Baker and Bode 2020); physiologists

efficient citizenship as the ability to read and write.

— Wilks (1951) paraphrasing H.G. Wells (1903)

One of the most valuable, significant, and also useful at-
tributes of human thought generally, is its ability to reveal
and explain the fabric of reality. ... Prediction-even perfect,
universal prediction-is simply no substitute for explanation.

— Deutsch (1998)

Biologists, indeed scientists generally, are increas-
ingly called upon to provide explanations of natural
phenomena based upon a thorough understanding of
the mechanisms that drive them (Dauer et al. 2021;
Mayes et al. 2022). Ecosystem biologists are asked for
explanations of how landscapes will respond to chang-
ing climatic conditions (Edwards 2011; Rehfeldt et al.
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are asked to explain the impact of extreme conditions
on individuals (Sergio 2018); and molecular biologists
are asked to explain how the interactions among the
molecular components of cells drive responses to drugs,
environmental stimuli, or other cells (Iyengar 2009;
Le Novere 2015; Zewde 2020). Inevitably, greater and
greater accuracy is expected in the explanations scien-
tists provide, which has led to increased use of quan-
titative modeling in biology (Mogilner et al. 2006). At
the same time, however, the demand for accuracy, and
attendant mathematical or computational complexity,
have amplified barriers to learning and applying quan-
titative modeling within biology. Such barriers lead to
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the perception that modeling is only for a subset of
practitioners, “the modelers,” who are distinct from
the rest of “us biologists.” Not only is this view an
inaccurate depiction of biology, it is also detrimen-
tal to the field’s advancement and indeed to its abil-
ity to provide exactly those explanations we desperately
need to address myriad challenges (Gunawardena 2014;
Joshi 2022).

In our view, every biologist is a modeler, an explainer
of reality. Whether or not working on complex math-
ematical or computational models, we all create mod-
els of the world in our teaching, our research, and in
the representations we use to interpret the work of oth-
ers and communicate among ourselves. Despite the uni-
versal applications of models, there is, of course, a con-
tinuum of the degree to which each biologist includes
quantitatively rigorous models within their repertoire.
It is our view that many biologists can benefit from in-
creasing the quantitative rigor in their own work, their
own understanding of the world, and the way they con-
sume information produced by their colleagues. Unfor-
tunately, the perceived dichotomy between “modelers”
and “us” serves as a barrier against individuals moving
along that continuum by expanding an understanding
of the relevance of models and modeling for their own
work (Joshi 2022).

In this paper, we seek to focus attention on the ubig-
uity of modeling among biologists by examining what
models and modeling are, how they are currently used
and understood in our field, and how and why we might
expand their applications. Additionally, we focus atten-
tion on the importance of quantitative modeling and
why it plays a unique role among other types of mod-
eling within biology. We recognize that every biologist
does not play the same role within the social or bu-
reaucratic institutions that guide scientific discovery,
and therefore does not interact with models, quanti-
tative or otherwise, in the same way or for the same
reasons. Consequently, strategies for overcoming bar-
riers and engaging with quantitative models will vary
greatly among different communities of practice. Nev-
ertheless, there are clear themes for improving facil-
ity with quantitative models. Consequently, we suggest
specific guidelines that we hope will expand both ap-
preciation of quantitative modeling’s crucial role in bi-
ology, and the abilities of practitioners who serve in di-
verse roles to engage more effectively with quantitative
modeling.

Scientists use models in everything they
do

Many answers exist to the question, “What is a model?”
The common thread within biology is that a model
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is a simplified description of a subset of phenom-
ena that occur in nature (Oreskes 2003; Mogilner
et al. 2006). This clearly encompasses all quantita-
tive models, which are based upon a collection of
mathematical quantities and their interactions. How-
ever, this definition also encompasses laboratory and
field experiments, which examine a subset of the spa-
tial and temporal diversity of life. Perhaps less in-
tuitively, this definition also encompasses our vari-
ous verbal, mental, and visual explanations of nat-
ural phenomena (Cowan 2010; Gruszka and Necka
2017).

If all of the aforementioned examples are models,
then the act of modeling is simply the process of
creating them. More precisely, modeling is the pro-
cess of mapping portions of nature onto the sim-
pler conceptual spaces that we use to depict it (Rosen
1991; Joshi 2022), with the goal of improving under-
standing of how the corresponding natural phenomena
would respond under analogous, though more complex,
circumstances.

Biologists do this type of mapping all the time, of-
ten without even realizing it because humans in general
have evolved to do this masterfully. There is no such
thing as a group of biologists who “model” and another
who does not. Likewise, there should be no expectation
that “modeling” is a domain of activity unto itself and
separate from biology.

Quantitative models have distinct
benefits over informal modeling
frameworks

While all biologists are modelers, it is also clear that
not all biologists use quantitative models as part of
their data analysis repertoire. This is unfortunate, be-
cause quantitative models offer important and poten-
tially unique benefits. Here we identify four benefits of
particular value.

(1) Formal deductions increase confidence in predictions
about complex natural phenomena

Human minds are inept at the task of determin-
ing the necessary consequences of a set of predicates.
That is to say, we are not good at predicting the out-
come of phenomena based on observed conditions, es-
pecially if those conditions are numerous or if they in-
teract. This reflects well-known cognitive biases and in-
accuracies of judgment, present even in trained pro-
fessionals, when heuristics are used in problem solv-
ing (Tversky and Kahneman 1974; Korteling and Toet
2020). Quantitative models of all sorts, indeed all of
mathematics, have emerged as the most efficient way
to develop rules to rigorously measure the mechanisms
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for how phenomena operate. Quantitative models can
be constructed to contain many more objects than hu-
mans can possibly consider, yet we remain confident
in their accuracy because they are built on a founda-
tion of formal deduction, which can be scaled and ad-
justed to handle complexity. They improve upon fal-
lible mental logic with a formal process of deduction,
thereby detecting patterns and increasing confidence in
predictions.

(2) Quantitative models reveal counterintuitive outcomes
that may otherwise go undetected

The results of quantitative models compared to prior
expectations often reveal that prior expectations and ex-
pert judgment are (at least partially) incorrect (Allesina
and Tang 2012; Holden and Ellner 2016); that is, coun-
terintuitive outcomes are not uncommon. Allocation of
millions of dollars, years of work, and international pol-
icy may be affected by inadequate understanding over-
turned by counterintuitive quantitative models. Ma-
rine turtles were long thought to be in decline mainly
as a result of predation occurring on nesting beaches;
however, careful analysis of their entire life cycle re-
vealed mortality at sea to be more important in caus-
ing decreases in population abundance (Crouse et al.
1987; Crowder et al. 1994; Heppel et al. 1996). Con-
sequently, turtle exclusion devices to prevent acciden-
tal death of turtles associated with fishing were devel-
oped, and international treaties now require their use
by shrimpers and other fishers serving the US fish mar-
ket (U.S. Public Law 101-162, section 609). Such re-
sults are a direct indication of failure of human men-
tal deduction of consequences from predicates, but this
failure is only evident after quantitative modeling re-
veals previously undetected relationships (Allesina and
Tang 2012). Further, incorrect prior expectations may
be held strongly, even by experts, and over long periods
of time. For example, it is widely expected that Fishe-
rian sexual selection (Fisher 1930; Henshaw and Jones
2020) is a strong driver of, and hence a potent explana-
tion for, elaborate mating displays and other traits in-
volved in pre-mating isolation. In reality, however, this
driver is much weaker than expected (Greenfield et al.
2014) and may actually progressively disappear from
populations (de Servedio and Biirger 2014). Interac-
tions among different life-history stages can lead to un-
expected outcomes such as dominance by a species that
is both a worse competitor and less able to avoid preda-
tion (de Roos 2020). While the effect of measurement
error on inference has been studied for over a century
(Kummell 1879; Fuller 1987; Stefanski 2000; Altman
and Krzywinski 2024), its complex effects remain un-
appreciated by practitioners (Brackenhoff 2018; Shaw
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et al. 2018; Innes et al. 2021). Contrary to expectation,
when predictor error is present, our ability to identify
correct models of nature may decrease, not increase,
with increasing effect size and sample size (Manthey
et al. 2023). Furthermore, increasing sample size may
be less effective for improving inference than reduc-
ing heterogeneity (Rosenbaum 2005). These and sim-
ilar examples illustrate that reliance on informal ver-
bal, mental, or visual models may come at the cost of
incorrectness and even result in massively misdirected
resources.

(3) Quantitative models permit rigorous assessment of
uncertainty

One prominent reason that informal (i.e., not explic-
itly quantitative) models yield incorrect results is that
human minds are inept at incorporating uncertainty, as
is widely evident from the work of Daniel Kahneman on
the irrationality of many human decisions, especially in
the face of uncertainty (Tversky and Kahneman 1974;
Garner 1982; Schustek and Moreno-Bote 2018). All
non-trivial models (i.e., complex enough to not have ob-
vious outcomes) involve uncertainty (Heisenberg 1927;
Kampourakis and McCain 2020; Korbel and Wolpert
2024). They are subsets of nature, so factors left out may
(and generally do) have an impact on the outcome. Ad-
ditionally, the representation of the subset that is in-
cluded may be inaccurate and lead to even more uncer-
tainty. Thus, biology practitioners need ways to quantify
the level of uncertainty within any given analysis. More
importantly, we need ways to track and propagate un-
certainty through every stage of analyses to determine
its impact on the ultimate outcome. This can only be
done effectively through the use of quantitative mod-
els of stochasticity. The importance of quantifying un-
certainty is especially evident in cases that require con-
crete decisions to be made. The US Fish and Wildlife
Service has a mandate to maintain stable populations
of wildlife while also allowing ongoing harvest, either
purposefully or incidentally, even when critical param-
eters such as survivorship and fecundity rates are highly
uncertain. For example, assessment of allowable har-
vest of golden eagles (Aquila chrysaetos) in the western
United States depends crucially on quantitying uncer-
tainty in the allowable harvest limit (Millsap et al. 2021).
Without explicit quantification of how uncertainty in
many demographic parameters affects the uncertainty
in the harvest limit, it would be impossible to arrive
at clear permitting guidelines that allow, for example,
wind energy development. It would also be difficult to
recognize that even though the population of golden ea-
gles appears stable and has been for decades, it is un-
likely to be resilient in the face of increased harvesting
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(Millsap et al. 2021). Our ability to reason informally
about such complex situations is woefully inadequate
to the task, so quantitative models of uncertainty are
essential.

(4) Latent variables of greatest interest can be inferred in
quantitative models

Interestingly, verbal, mental, and visual models are
often full of quantities that cannot be observed directly
but are generally of most direct interest. These are de-
scribed as latent variables (Skrondal and Rabe-Hesketh
2007; Blei 2014; Bartolucci et al. 2022) and are natu-
rally, almost unthinkingly, included in the qualitative
models that humans use to describe our world. In con-
trast, they are often excluded from quantitative models.
This practice diminishes the utility of quantitative mod-
els and can contribute to inaccurate predictions. Latent
variables can, however, be included explicitly and effec-
tively in quantitative modes. For example, cancers can
be characterized by models that explicitly ascribe pat-
terns of microarray data, genome sequences, and tran-
scriptome counts to underlying, but unobserved, that
is, latent, tumor types (Mo et al. 2018). The unobserv-
able, but obviously important, state of health can be
quantified (Hyland et al. 2014). Features characteris-
tic of vocalizations can be identified as latent factors
(Sainburg et al. 2020). In landscape genetics, latent fac-
tors can capture genetic variation explained by, for ex-
ample, demographic history, patterns of ancestry, or en-
vironmental factors not otherwise measured (Frichot
etal. 2013). In fisheries and wildlife biology, state-space
and related models are used to quantify unmeasurable
parameters of critical scientific or management impor-
tance (Thorson and Minto 2015; Westcott et al. 2018).
The unobserved but explanatory latent variables in-
cluded in these models are generally informed by mul-
tiple contributing measured variables, even if they are
measured in different units, at different times, or using
different sampling schemes. Importantly, all of these ex-
amples capture explicitly the types of quantities that of-
ten occur in the conceptual models we use as explana-
tions but are nevertheless beyond the reach of measure-
ment. Many quantitative models in common use, how-
ever, do not include latent variables and can be misled
by measurement error (Brackenhoff 2018; Shaw et al.
2018; Innes et al. 2021). This is a case in which non-
quantitative models are in some sense better than some
quantitative ones, because at least they do include the
unobservable, latent variables of interest. However, this
is not an indication that quantitative models should not
be used or that they cannot include latent variables. In-
deed, they can, as the previous examples show and as
is well known from the array of hierarchical and struc-
tural equation models that have been used with success
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(Grace 2006; Langrock et al. 2014). Instead, the lack of
latent variables in commonly used models, for exam-
ple, most regressions, is an indication that when biol-
ogists turn to quantitative models, they often use ones
that can be misleading rather than try to capture the
nuances already developed in the informal ones. This
trend directly supports our thesis that biologists will
benefit from increasing the rigor of their quantitative
modeling skills so that they can recognize these prob-
lems and seek solutions that already exist, but are not
currently widely used (Brackenhoff 2018; Shaw et al.
2018; Innes et al. 2021).

Clearly, quantitative modeling offers many benefits,
including those that cannot be provided by alternative
modeling approaches. To reap those benefits, biologists
would profit from increasing the rigor with which they
approach their modeling. All biologists are modelers,
and all can benefit from improving their quantitative
modeling skills so that their explanations of biological
phenomena are better.

Models are experiments for testing
hypotheses

Modeling, like laboratory and field activities, is best
characterized as an experiment. In the lab or field, one
identifies a set of factors to control and others to vary
in hopes of revealing that the latter, not the former, are
responsible for observed responses. Often, such an ex-
periment is undertaken to determine which of several
possible factors has the greatest impact on the observed
response. Modeling should be regarded in the same way.
That is, it should be regarded as an endeavor seeking
to determine which of several potential factors leads to
the greatest improvement in our understanding of the
response(s). Fitting a single model to data is rarely the
most appropriate path to this end; rather, competing
multiple models is as important as entertaining multiple
working hypotheses (Chamberlin 1890). Researchers
should define two or more models (or model families)
corresponding to distinct hypotheses regarding how the
natural phenomenon might work, and then compare
them in the face of the data obtained (Edwards 1972).
The relevant questions are: which model is best sup-
ported by the available data and what is its range of ap-
plicability (Lawing et al. 2021; Proust et al. 2021)? Be-
cause the models differ systematically by design in un-
derlying hypothesized mechanisms, their relative sup-
port can answer the questions. This process can, in turn,
lead to better experimentation. The ensuing feedback
between explicit modeling of alternative hypotheses and
evaluation of given data can lead to a much improved
understanding of the mechanisms involved in natural
phenomena.
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Every biologist needs a working
knowledge of quantitative modeling,

regardless of their field or the role they
play

In the above sections, we outline an argument for the
benefits of couching any biological question within a
modeling framework and addressing the resulting hy-
potheses using explicitly quantitative models. Biologists
who play myriad roles in biological research, resource
management, implementation, and policy creation ben-
efit from a strong understanding of mathematically rig-
orous modeling (Le Novére 2015; Holden and Ellner
2016; Murphy and Weiland 2016; Earl et al. 2017; Fuller
et al. 2020). Here, we suggest benefits for biologists
classified into two groups that broadly encompass the
possible roles they might play, regardless of their field
of interest: producers and consumers of information.
Producers of information include researchers who de-
velop novel methods as well as researchers who use
established methods with a specific (often mandated)
scope confined by their scientific focus, that is, molecu-
lar pathway, taxon, geographical region, application, etc.
Consumers, in this context, are the practitioners and
policymakers who implement “best science” to address
specific applied problems (Murphy and Weiland 2016)
and interested laypeople who do not work on a particu-
lar biological system professionally, but have a vested in-
terest in the answers to biological questions. We believe
that producers can benefit from organizing their exper-
imental work into models that explicitly quantify the
mechanisms that drive phenomena, their interactions,
and the uncertainty within the measurements. In this
way, they will be better able to describe the nuances of
and uncertainty surrounding their conclusions (Holden
and Ellner 2016). Practitioners who primarily play the
complementary role of consumers may or may not need
to create the quantitative models that inform their work,
but do require a working understanding of their compo-
nents, measurements of error and variance, and nuance
in interpretation. Of course, no biologist is an expert in
every aspect of biological research, and therefore, our
individual roles shift depending on the topic of interest.

All researchers benefit from organizing their
work within the framework of quantitative
models

The producers who use quantitative models to the
greatest extent are those who develop new methods
or who seek to identify previously unmeasured mech-
anisms that drive trends in biology. Molecular biolo-
gists apply quantitative models to identify previously
unknown cellular processes, from the scale of spe-
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cific molecular actions to entire cellular-scale behaviors
(Mogilner et al. 2006; Iyengar 2009; Le Novére 2015).
Thermal physiologists increasingly recognize the value
of quantitative models to track organismal responses
to heat stress that go beyond critical thermal limits
to incorporate physiological and environmental vari-
ables (Feng et al. 2019; Gamliel et al. 2020). Popula-
tion biologists develop quantitative models to improve
their understanding of the mechanisms that determine
population sizes and genetic connectivity across time
and space (Balkenhol et al. 2016; Milligan et al. 2018;
Peterson et al. 2019; Rohde 2022). Biologists who seek
to identify and quantify mechanisms that drive relation-
ships at higher organizational levels, such as communi-
ties and ecosystems, embraced quantitative modeling,
and in particular models that include latent variables,
earlier than biologists from other fields (Canham et al.
2003; Grace 2006; Bondavalli et al. 2009; Warton et al.
2015; however, see Pritchard et al. 2000 for an early ex-
ample from population genetics) and continue to de-
velop models of greater complexity as computational
power permits (Shoemaker et al. 2019; Pollock et al.
2020; Thompson et al. 2020; Patubicki et al. 2022).
Researchers who work within the constraints of some
predefined scope using established methods are the
most prolific producers within biology. They create the
most published data and their work likely has the great-
est direct influence on policy and implementation de-
cisions because it composes most of what is consid-
ered “best available science.” Best available science is
the standard by which many government and policy-
making organizations make and defend implementa-
tion, conservation, or management decisions (Doremus
2004; Murphy and Weiland 2016; Lindsay 2020). The
term is most commonly used in reference to envi-
ronmental protection and restoration actions (Lindsay
2020), but is, in practice, equally applied in consumer-
focused biology, such as food and medical science (Chiu
et al. 2023). There is no single legal definition of best
available science (Oil and Hazardous Substance Liabil-
ity, 33 US. Code § 1321(a) (27); 50 C.ER. § 600.315
National Standard 2- Scientific Information; The En-
dangered Species Act, 16 U.S.C. §§1531 et seq.; The
Clean Air Act 42, US.C. 7401 et seq.; Sullivan et al.
2006; Ryder et al. 2010; Lindsay 2020). Standards vary
based on field, jurisdiction, and practitioner interpre-
tations (Doremus 2004; Sullivan et al. 2006; Esch et
al. 2018; Lindsay 2020), which has often led to liti-
gation (i.e., Southwest Center for Biological Diversity
v. Babbitt, 215 E3d 58 2000; American Wildlands v.
Kempthorne, 530 E3d 991 2008; San Luis and Delta-
Mendota Water Authority v. Locke, 776 E.3d 971 2014).
In practice, best available science is often defined by
the majority consensus of a body of scientific literature
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that addresses a specific taxon or problem of concern
(Lowell and Kelly 2016); furthermore, it often varies in
completeness among applications (Doremus 2004). If
this is the standard by which decisions are made, it is
imperative that the studies that inform that body of lit-
erature do not perpetuate oversimplifications of systems
of study, misunderstandings of mechanistic drivers, or
misrepresentation of confidence around analyses that
could misinform downstream actions. Following this
logic, research biologists who publish the literature that
informs policy and implementation decisions bear a
heavy responsibility to apply the best available meth-
ods to their work. Alarmingly, this is also the category
of researchers who are most likely to start a sentence
with the phrase “I am not a modeler. . .,” perpetuating
the false expectation that working biology researchers
belong in a separate domain from quantitative model-
ers (Joshi 2022). We do not argue that it is the respon-
sibility of all researchers to develop novel applications
of quantitative modeling, which would be counterpro-
ductive to progress toward solutions for specific biolog-
ical problems; however, it is the responsibility of all re-
searchers to understand and transparently discuss the
limitations of the analyses that they perform, to quantify
the uncertainty in their conclusions, and to learn about
and adopt better methods when they are made avail-
able (Jackson et al. 2000; Mogilner et al. 2006; Shafer
et al. 2015; Holden and Ellner 2016; Garcia-Diaz et al.
2019; Joshi 2022). A shift toward a quantitative model-
ing framework for all biological research would allow
for quantification of mechanisms that drive relation-
ships, measurements of true variables of interest (even
if they are latent), and quantification of uncertainty. Im-
portantly, hierarchical quantitative models also provide
a means to measure the mechanisms that link research
performed at each of many organizational levels (Zewde
2020; Perennes et al. 2021; Lu et al. 2023) to better in-
form predictions of organismal and systemic responses
to change.

Quantitative models improve interpretations
of “best available science” for policy and
implementation decisions

Policymakers and practitioners are the primary con-
sumers of the information and materials that biologi-
cal researchers create, as they are the biologists tasked
with using the “best available science” to improve or
defend applications of that knowledge. Shortcomings
in this knowledge may result in misapplied importance
being placed on research that emphasizes particular
methods or biological mechanisms while others are ig-
nored (Heppell et al. 1996; Holderegger et al. 2019).
A strong understanding of quantitative modeling pro-
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vides a framework through which policymakers and
practitioners can assess the extent to which an exist-
ing body of knowledge sufficiently predicts the mech-
anisms of a biological system, the level of uncertainty
within that body of knowledge, and how it informs any
particular decision (Holden and Ellner 2016; Garcia-
Diaz et al. 2019; Baker and Bode 2020; Mayes et al.
2022). Decision-makers can apply this knowledge in
two ways: first, by using it to assess the strength of
various pieces of evidence for one hypothetical mech-
anistic relationship or another, and second, by creat-
ing formal meta-analyses of the available primary re-
search on any given topic (Garcia-Diaz et al. 2019; Baker
and Bode 2020). Formal quantitative models that mea-
sure the likelihood of counterintuitive relationships or
identify gaps in knowledge could reduce the impact of
fallible mental logic in decision-making, improve the
outcome of implementation efforts, and save millions
of dollars spent on errant attempts to implement in-
effectual solutions to biological problems (Holden and
Ellner 2016).

Every human being is, in some context, a layperson
with a vested interest in biological research and imple-
mentation. Even the most highly educated biologists are
not experts, or even well-informed amateurs, in more
than a few related fields. As such, every human being
has an interest in being able to critically analyze evi-
dence (or lack thereof) for or against any decision based
on biological research, at least at a rudimentary level
(though such understanding benefits from the guidance
of trained experts). We have no expectation that laypeo-
ple should be able to consume primary biological liter-
ature; they are not the intended audience for that work
(Berenbaum 2001; Sedgwick et al. 2021) and often do
not even have access to it (Day et al. 2020; Racimo et
al. 2022). However, laypeople are still important con-
sumers of biological knowledge through other media
(Rohde 2022), and their interests in solutions to biologi-
cal problems are equally valid (Day et al. 2020; Sedgwick
et al. 2021). As such, laypeople need training and tools
to assess the quality of seemingly scientific claims. This
ability has become increasingly important, as technol-
ogy has improved world-wide communication to be
practically instantaneous and free-of-charge, permit-
ting the distribution and sometimes accidental or pur-
poseful manipulation of information (Berenbaum 2001;
Dahlstrom 2021). We assert that, as consumers of bi-
ological research, laypeople would benefit from con-
sidering the biological information that they receive
through the lens of quantitative modeling because it en-
courages systematic exploration of the mechanisms that
drive relationships, the uncertainty surrounding analy-
ses, and acknowledgement of the complexity of natural
phenomena. Similarly to how a professional decision-
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maker may use quantitative models to assess the quality
of support for hypothesized mechanisms within a bio-
logical system, informed laypeople may use them to dif-
ferentiate between well-substantiated scientific conclu-
sions and claims with little or no support.

Opportunities to develop a biological
workforce and citizenry with a working
knowledge of quantitative modeling

Biologists who work in any field within biology must
be trained in mathematical and modeling concepts
that form the foundation of quantitative modeling. Un-
til now, formal biological training has implicitly fos-
tered the “us biologists” versus “them modelers” world-
view (Joshi 2022). Due to this misguided perspective,
many practicing biologists never received this founda-
tional training (Ioannidis et al. 2014). This perceived di-
chotomy is exacerbated by the often rigorous and time-
consuming challenge of building models that accurately
represent complex natural phenomena. Biologists with-
out this necessary training might try to form collabo-
rations with scientists who “are modelers” as a way to
apply these rigorous analyses to their systems of inter-
est without learning how they are created or how to in-
terpret their uncertainties. Such partnerships of biolog-
ical system experts and modeling experts may be pro-
ductive in some cases but may also lead to mistakes in
the parameterization of models if the creator does not
understand the biological system well. Conversely, er-
rors of model interpretation on the part of the biolog-
ical systems experts could lead to miscommunication
when they present their results to consumers. Collab-
orations have the potential to increase the application
of quantitative modeling frameworks to complex bio-
logical problems, but they are most effective when all
researchers involved have enough foundational knowl-
edge to understand the components and outputs of the
models.

Biologists with modeling expertise should work with
their colleagues to build workshops and other training
opportunities to help fill this training gap within our bi-
ological workforce. Here we must acknowledge that the
development and implementation of such training op-
portunities represent a huge task for biologists whose
mandates may often require other forms of productiv-
ity, such as literature publications (Kun 2018; van Dalen
2021) or management of implementation actions. We
call on universities and agencies to recognize the im-
portance of this work and to accept the training tools
produced by it as equally valuable contributions to their
mandates and their fields. As biologists with modeling
expertise develop training tools to help their colleagues
improve understanding and increase use of quantita-
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tive models within their fields, practitioners who play
diverse roles within biology must agree to engage with
those training opportunities. Without enthusiastic par-
ticipation from all biologists, quantitative modeling is
likely to remain underutilized.

Along with training the current biological workforce,
secondary schools and universities must incorporate
the foundational concepts of quantitative modeling into
their biology curricula (Dauer et al. 2021; Mayes et al.
2022). Any student body that is sophisticated enough to
discuss hypothesis testing within the framework of the
scientific method could also learn the foundational con-
cepts that support quantitative modeling. Such lessons
should focus on the importance of latent variables,
identifying mechanisms that drive biological relation-
ships, and quantifying uncertainty. Once this founda-
tion is established, more advanced classes could intro-
duce specific modeling frameworks that best address
the questions of interest in diverse fields. The addition
of this training to the curricula of secondary biology
courses and foundational general education courses at
universities, while important, may represent a particu-
lar challenge because curricula in these cases are con-
trolled to varying extents by state-run legislative au-
thorities with competing interests (Park et al. 2020).
Upper-division biology curricula at universities, how-
ever, are directly controlled by faculty. This educa-
tional freedom presents a relatively unencumbered path
to improve collegiate biological education in quantita-
tive modeling by incorporating this training through-
out the biological curriculum, including in required bi-
ological statistical courses for undergraduate students
and in required discipline-specific quantitative mod-
eling courses for graduate students, whether in class-
room settings or through direct mentorship. The ad-
dition of quantitative modeling to early biological ed-
ucation would circumvent, to some extent, the need for
future generations of biologists to seek additional train-
ing in these concepts outside of their formal education
(Mayes et al. 2022).

Finally, researchers who develop novel models or
new applications of existing models must engage with
other practitioners beyond publications of scientific lit-
erature to improve the uptake of these methods. This
engagement includes producing freely available, user-
friendly software and tutorials. Once again, we recog-
nize that the development of these tools represents a
huge effort that may be undervalued relative to other
forms of productivity. We call on agencies and universi-
ties to recognize the development of user-friendly soft-
ware that facilitates the uptake of quantitative mod-
eling methods as a valuable contribution to biology.
Previous examples of modeling frameworks that con-
tinue to be used include maximum entropy modeling
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to estimate species distributions and spatial densities
(Phillips et al. 2006; Elith et al. 2010; Phillips et al.
2017), genetic structure analysis to map genetic diver-
sity across landscapes (Pritchard et al. 2000; Guillot et
al. 2005; Earl and von Holdt 2012; Besnier and Glover
2013), multivariate analyses of ecological data (McCune
and Grace 2002), multivariate non-parametric regres-
sions (McCune 2006), and general model structures
(de Valpine et al. 2017; Ponisio et al. 2020). In all
of these cases, free or low-cost user-friendly software
(MaxEnt, STRUCTURE, GENELAND, PC-ORD, Hy-
perNiche, and NIMBLE) and extensive documenta-
tion and training materials increased the uptake of the
methods.

Motivations and barriers to a systemic
shift toward quantitative modeling

The primary motivation for a universal shift toward
the quantitative modeling framework within biology
should be that it improves the capacity of scientific anal-
yses to address important biological questions and re-
duces the instances of erroneous conclusions that could
be unintentionally harmful to human societies and nat-
ural ecosystems. Regardless of the discipline within bi-
ology, there is an internationally accepted, if not al-
ways explicitly defined, ethos that demands integrity,
professional competence, and professional discipline
from working scientists (Weinbaum et al. 2019). This
is the same ethos that requires rigorous self- and peer-
review of any scientific findings and applications of
“best available science” in policy and resource manage-
ment decisions. As computational power increases and
improved methods of data collection or analysis are de-
veloped, working scientists have an ethical responsibil-
ity to learn and incorporate those advances into their re-
search where applicable. We assert that recent advances
in computational power have made the application of
quantitative modeling to complex biological questions
feasible. As a result, all biologists should strive to im-
prove their abilities to reap the benefits of quantitative
modeling, which include harnessing the power of for-
mal reasoning, identifying correct but counterintuitive
outcomes, quantifying uncertainty, and focusing on la-
tent variables, often the main targets of interest; all these
benefits lead to improved explanations of the natural
world.

We also recognize, however, that there are significant
barriers to entry for shifting from a well-known frame-
work of analysis to a novel one. Working biologists and,
perhaps to a lesser extent, biology students have de-
manding schedules that may not permit intervals of re-
duced productivity to accommodate intensive training
events like the ones that would be required to create a
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systemic change in analytical practices. This scheduling
conflict is probably even more extreme for the quantita-
tive scientists who would need to develop such training
events and tools. Additionally, in many cases, there is
not currently a financial incentive to incorporate quan-
titative modeling into research grant proposals, the pri-
mary source of funding for many biologists. In fact,
there may be a disincentive because these proposals are
reviewed by peer scientists who may also be unfamiliar
with quantitative modeling, and research indicates that
proposals with familiar methods are more likely to be
funded than proposals with novel ones (Phillipps and
WeifSenborn 2019; Franzoni et al. 2022). Nevertheless,
these challenges are not unique to quantitative model-
ing; they are common to any important shift in scientific
practice (Kuhn 1962) and need to be embraced by ev-
eryone, producers and consumers of biological knowl-
edge as well as funding agencies and journals, for sci-
ence to progress. The relatively few biologists who cur-
rently apply quantitative modes in their work face all of
these challenges and persevere. Rather than identifying
these practitioners as something separate from “us biol-
ogists,” they should be embraced as role models and in-
centivized to guide others to improve their understand-
ing and applications of quantitative models.

Conclusions

In this paper, we have laid out an argument for shifting
the dominant paradigm of biological research, applica-
tion, and training from one that is often highly depen-
dent on mental logic, which has been demonstrated to
be often biased or flawed (Gruszka and Necka 2017),
to one of explicitly quantified mechanistic relationships.
We produced examples of the advantages of quantita-
tive modeling to producers and consumers of biologi-
cal information spanning many fields and levels of bi-
ological organization. Despite the many advantages of
quantitative modeling for biological research and prac-
tice, biologists must overcome practical barriers to its
application and possibly personal biases against its use
before we can reasonably expect it to be widely adopted.
Nevertheless, reliance on explanations for increasingly
complex phenomena in biology requires improvement
in the quantitative and modeling skills of biologists.
We outlined several actionable steps that can be taken
by researchers and institutions to increase the applica-
tion of quantitative modeling: form collaborations be-
tween biological systems experts and biologists familiar
with quantitative modeling, provide resources and sup-
port for the development of workshops and trainings for
working biologists to learn foundational concepts, re-
vise scientific curricula in secondary schools and uni-
versities to educate the future biological workforce, and
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provide resources and support for the creation of user-
friendly software that facilitates the use of quantitative
modeling.
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