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Abstract: Building stock modeling emerges as a critical tool in the strategic reduction of embodied
carbon emissions, which is pivotal in reshaping the evolving construction sector. This review
provides an overall view of modern methodologies in building stock modeling, homing in on
the nuances of embodied carbon analysis in construction. Examining 23 seminal papers, our
study delineates two primary modeling paradigms—top-down and bottom-up—each further
compartmentalized into five innovative methods. This study points out the challenges of data
scarcity and computational demands, advocating for methodological advancements that promise
to refine the precision of building stock models. A groundbreaking trend in recent research is
the incorporation of machine learning algorithms, which have demonstrated remarkable capac-
ity, improving stock classification accuracy by 25% and urban material quantification by 40%.
Furthermore, the application of remote sensing has revolutionized data acquisition, enhancing
data richness by a factor of five. This review offers a critical examination of current practices and
charts a course toward an environmentally prudent future. It underscores the transformative
impact of building stock modeling in driving ecological stewardship in the construction industry,
positioning it as a cornerstone in the quest for sustainability and its significant contribution toward
the grand vision of an eco-efficient built environment.
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1. Introduction

In the coming decade, to achieve carbon neutrality by 2030, a substantial 70% of total
new building-related carbon emissions will originate from material production, transport,
and construction, which are components of embodied carbon [1]. Meanwhile, at present,
the required quantities of several metals and minerals that are commonly used in the built
environment have exceeded available reserves in their natural state. Harnessing an existing
building stock as a resource for future city construction could serve a dual purpose: first, it
would offer valuable local materials; second, utilizing the embodied carbon stock could
potentially help mitigate up to 50% of emissions within the industry [1]. The first step
in using an existing building stock as a vast reserve of embodied carbon (materials and
building components) is to adopt a comprehensive and quantitative approach to assessing
embodied carbon in the building stock and predicting future changes in the building stock.
This comprehensive assessment of existing building stock can provide a foundation for
making informed decisions to achieve carbon neutrality [2].

Traditionally, building stock models have played a crucial role in analyzing the en-
ergy efficiency and operational-energy-related greenhouse gas emissions of buildings and
infrastructure [3]. These models serve versatile purposes: target verification, feasibility
assessments, strategic and operative energy planning, and impact analyses [4]. They can be
applied to both existing building stocks and future scenarios, making them instrumental
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in evaluating the implications of various development options, such as renovation, new
construction, and demolition. While building stock models have primarily been applied
to operational energy modeling, particularly in the residential and commercial sectors,
extensive research has led to the development of multiple methods and techniques for ex-
amining, understanding, and predicting operational energy consumption [5-7]. However,
it is worth noting that the focus of building stock model research has primarily revolved
around its application in operational energy analysis. With the relatively recent emergence
of embodied energy and carbon assessments as a distinct field of study, researchers have
adapted existing building stock models initially designed for operational energy analysis
to address this evolving domain.

In recent years, many integrated building stock models have emerged to assess em-
bodied carbon emissions within built environments [7,8]. These models exhibit significant
variations in terms of data sources, input processes, calculation methods, aggregation
levels, and model accuracy and resolution. Moreover, they encompass a wide range of
social-technical assumptions related to building stock dynamics, influencing the types
of results and scenarios they can effectively evaluate [9]. However, despite the growing
importance of embodied carbon assessments, there has been a notable absence of a com-
prehensive review focusing on building stock model approaches, methods, advantages,
and disadvantages in this context. This article aims to fill this gap by thoroughly reviewing
building stock models employed in embodied carbon studies. This article is organized
into several key sections. First, it presents a detailed examination of two distinct building
stock model approaches, bottom-up and top-down, both geared toward quantifying and
mapping embodied carbon within large-scale building stocks (Section 3). It further delves
into a discussion of the subtypes within each category and the strengths and weaknesses of
different model approaches, with a particular focus on two critical aspects: data sources and
model accuracy and efficiency (Section 4). In the subsequent section, emerging techniques
are explored with respect to challenges and future trends in building stock models, empha-
sizing their integration with machine learning algorithms. Additionally, the limitations and
contributions of this review (Section 5) are outlined. Finally, this article discusses next steps
and the utility of building stock models for policymakers (Section 6).

2. Methodology

This review exclusively considered papers that addressed building stocks on a broad
scale, encompassing urban to transnational levels, and offered assessments related to
embodied carbon and/or environmental impact. The literature review was carried out
using scientific papers sourced from both Web of Science and Google Scholar. Our search
criteria included the terms “building stock model”, “environmental impact”, “embodied
carbon”, and “embodied energy”. A series of filtering steps were implemented in an initial
pool of over 100 papers to narrow our focus to papers that concentrated on large-scale
modeling while excluding review articles. Ultimately, a curated set of 23 representative
papers were selected for a comprehensive comparative analysis. This selection was based
on criteria such as study comprehensiveness, the provision of results, and the type of paper.
The chosen studies span the past fifteen years, covering 2008 to 2023. You can refer to
Table 1 for a list of these selected papers.

Table 1. Literature count.

Approach Method Count

Top-down Computationally based
Statistically based

Bottom-up Computationally based
Statistically based
Physics-based
Physics-based + Statistically based

NGl = | O
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3. Overview of Results

As illustrated in Figure 1, the earliest publication was found in 2009; since then, there
has been a steady increase in the number of the research publications on this topic.

Number of publication

2008 2013 2018 2023

Publication year

Figure 1. Publication year.

Based on the principles and methods of modeling, building stock models can be
divided into two categories: the top-down method and the bottom-up method [9-11].
Top-down approaches involve summarizing entire building stocks using macroeconomic
or other statistical data (e.g., material flow) at an aggregated level for a given geographic
region (e.g., city or country) and time. The aggregated building data can then be divided
into sections (e.g., single-family building sections) according to building’s function or
spatial proximity [8]. In contrast, bottom-up approaches assess the performance of specific
components within a building stock, such as individual buildings, particular materials,
or technologies, and then extend these findings to the stock level [12]. By utilizing disag-
gregation, a bottom-up approach can offer significantly greater resolution in representing
the specific conditions of individual buildings, resulting in a more accurate assessment of
embodied carbon.

As illustrated in Figure 2, the top-down approach can be further divided into com-
putationally based and statistically based models. Both approaches rely on statistical
correlations between historical aggregated data and socio-economic factors, such as pop-
ulation or economic growth, to illustrate links between the building sector and carbon
emissions [8]. Both models can predict a building stock’s macroeconomic performance and
embodied carbon’s impact on different development scenarios over time. The National
Energy System (NEMS) (EIA 2009) is one of the most well-known top-down statistically
based models. The distinction of the computationally based model its use and integration
of computational power. The recent development of machine learning techniques has in-
creased interest in computationally based models (refer to Section 5.1 for more information
on machine learning techniques).

Bottom-up approaches initially compute the embodied carbon and environmental
impacts of individual buildings or clusters of buildings. Subsequently, these representative
models are employed to project regional or national embodied carbon and environmental
impact through various weighting methodologies (e.g., by using the percentage of floor
space, building types, etc.). The bottom-up approach can be divided into physics-based,
statistically based, and computationally based models (refer to Figure 2). The main differ-
ence between top-down and bottom-up statistically based models are their data sources,
and the same is true for the differences between top-down and bottom-up computationally
based models (refer to Section 4). Physics-based models use the archetype approach and
the building-by-building approach.
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Figure 2. Top-down and bottom-up methodologies for building stock modeling.

Table 1 lists the identified studies by model approach and method. The majority
of the literature, 17 out of 23 studies, employed bottom-up approaches. Among these
bottom-up approaches, the physics-based model was the most prevalent, with six studies
using it, followed by statistically based models (five studies), and computationally based
models (four studies). Two studies utilized hybrid methods combining physics-based and
statistically based approaches.

3.1. Top-Down Approach

The top-down approach utilizes the life cycle analysis input-output method to ex-
plore the interaction between material flow and the broader economy. This approach
involves considering material intensity, which measures the amount of construction ma-
terials required per unit, typically expressed as kg per gross floor space (kg/m?) or per
gross building volume (kg/m?) [13]. The analysis focuses on common building materials
such as steel, concrete, wood, brick, and masonry [14]. Material flow analysis, also known
as material flow accounting, is employed to estimate the movement of building materials
within a defined system across various spatial and temporal scales, particularly in the
construction materials domain, with a specific focus on buildings [15].

3.1.1. Statistically Based Models

The earliest publication employing a top-down statistical model to examine rural
and urban housing dynamics in China was an early publication in which a research
team comprising members from China, the Netherlands, and Norway expanded a pre-
existing dynamic material flow analysis model [16]. This enhanced model was created
to analyze the demand for iron and steel and assess the availability of scrap from the



Sustainability 2024, 16, 2089

50f18

housing sector, encompassing a time frame from 1900 to 2100. The outcomes of this analysis
indicated a marked reduction in steel demand for new housing construction in the ensuing
decades (post 2010), attributed to the anticipated increase in the lifespan of residential
buildings. However, this trend also posed challenges in terms of excess steel production
capacity. Subsequently, other researchers adopted the same method and modeling approach
developed in this early study. In other cases, researchers estimated the material demand
and environmental impact of buildings in China spanning the years 1950 to 2050 using
this method, and the results also revealed a substantial decline in material demand and
carbon emissions stemming from the construction of new buildings in the forthcoming
years [17]. Nevertheless, contrary to these predictions, new housing construction in China
continued its growth trajectory post 2010, consequently leading to increased building
material demand and associated carbon emissions [18]. These disparities underscore
the embedded uncertainties and inaccuracies within results generated by the top-down
statistical model, a topic to be explored more deeply in Section 4.

Around the same time, Ref. [14] created a new top-down framework to assess the
embodied carbon of a building stock and the operational carbon of a building stock along
with transportation carbon; together, those two comprise the in-use stocks defined in the
European Standard Accounts [19]. To illustrate how the dimensions, lifespan, and physical
characteristics of in-use stocks influence energy and material flow, and to validate the
suggested framework, the research team conducted three case studies at different scales
and with different focuses. The first case was passenger car production in China, and the
third case investigated direct emissions from coking and electricity generation associated
with the global steel industry. The second case examined embodied carbon emissions
from building construction, operation, and the demolition of a residential building stock in
Norway. However, this article did not specify its data source or calculation techniques [14].

Research on this topic experienced a gap until 2020, when multiple research teams
renewed their focus. For instance, Zhou and colleagues introduced a probabilistic model
aimed at predicting the trajectory of embodied energy in a residential building stock in
China [20]. This model incorporates five key components: forecasting new construction,
defining material intensity distributions, estimating energy intensity trajectories, accounting
for building construction and demolition, and factoring in material transportation. To
handle uncertainties in these inputs, Monte Carlo simulations were employed, resulting in
a probabilistic distribution of annual embodied energy for new construction. The study’s
findings suggest that the embodied energy from the building stock is expected to peak
around 2027 [20]. The accuracy of this prediction is yet to be verified by actual data.

It is worth noting that the research team emphasized a significant limitation in the
realm of evidence-based policymaking: the need for more comprehensive data. They
stressed the importance of moving beyond existing statistics, which primarily focus on
annual new construction. Instead, they strongly advocated for expanding data collection
efforts to encompass the overall size of a city’s building stock. By establishing a comprehen-
sive and transparent database, decision makers can access essential evidence to formulate
effective energy and climate policies related to buildings. They certainly correctly pointed
out that the limitations of their top-down statistically based model were directly related to
the aggregated data and their source [20].

3.1.2. Computationally Based Models

Computationally based models also use aggregated data and material flow analyses to
estimate embodied carbon emissions. In contrast to statistically based models, computation-
ally based models use algorithms to process data and draw conclusions; computationally
based models rely on mathematical equations, simulations, and algorithms to simulate
complex systems or processes rather than solely relying on mathematical processes as sta-
tistically based models do. Because of their computational power, computationally based
models may use limited empirical data for validation or calibration. In contrast, statistically
based models heavily rely on observed (historical) data for analysis and prediction. Since
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the computationally based method is very new, only one publication was identified. Arhaet
and team estimated the embodied carbon emissions of building structural systems in the
United States [13]. They built two computational models: building stock and material in-
tensity models. First, the dynamic stock-driven model was fine-tuned based on a previous
model created by the same team to estimate future floor spaces [21]. It was then inserted
into a material intensity model for each type of structural system to compute the building
stock level flow of structural materials and embodied carbon emissions. The stock-driven
model uses the open dynamic material system model, a framework for modeling stocks
and flows from an industrial ecology perspective [22]. Based on the analysis results, they
suggested extending the lifespan of existing buildings and reducing the per-capita floor
space demand to decrease the embodied carbon from building stocks.

3.2. Bottom-Up Approach

Bottom-up models are typically used in the engineering field and are based on repre-
sentative buildings. An individual representative building’s performance is assessed and
then extrapolated to represent an entire building stock using weighting coefficients. For
instance, in previous studies, a representational single-family house was used to present
an entire segment of single-family housing stock in the United States [23], China [24] and
Australia [25]. Data inputted into bottom-up models include building footprints, building
characteristics (e.g., height, construction type, etc.), and material intensity.

Three main modeling techniques are used in the bottom-up approach for building
stock aggregation: physics-based, statistically based, and computationally based models.

Bottom-up physics-based models can be subdivided into archetype and building-by-
building models. In the archetype model, embodied carbon and environmental impacts
are evaluated by examining a subset of archetype buildings, each representing a distinct
building cohort (e.g., attached single-family houses with specific sizes and features). The
results are then scaled proportionally based on the total number (or other indicators) of
such building archetypes in the stock. In the building-by-building model, every individual
building in the stock is examined, and the embodied carbon is calculated by consolidating
the individual results at the stock level. The main difference between the archetype model
and the building-by-building model is that the archetype model is a representative model
that does not exist in the real world, but the building-by-building model uses an actual
building to represent a segment of a building stock, and it is typically associated with a
geographic location and climatic condition.

Bottom-up statistically based building stock modeling is an analytical method that
leverages statistical data and information to assess and profile a collection of buildings
in a defined geographic area. However, the building stock data are generally secondary
and aggregated. The data for constructing these models are often drawn from government
surveys, census records, energy consumption databases, and other pertinent statistical
references. The parameters in a statistically based model include building dimensions, ages,
classifications, energy consumption, and other pertinent attributes [4]. It is also capable
of forecasting new constructions and retrofit projects, offering insights into the enduring
dynamics of the building stock and its implications on the climate impact associated with
changes in the building stock [26].

Computationally based building stock modeling is the newest emerging trend among
all modeling techniques. It is similar to statistically based building stock modeling in
terms of being data-driven and data-intensive. The key difference between statistically
based building stock models and computationally based models is that statistically based
models use historical data and aggregated information to make generalizations about
building stocks, while computationally based models rely on detailed data and physics-
based simulations to model individual buildings or building archetypes, providing a more
accurate and granular representation. Within the computationally based models, there are
subtypes, such as the agent-based model [26], the artificial neural network model [27], and
the system dynamics model [28]. Because of rapid improvements in computational power,
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the computationally based models demonstrate an advantage in modeling, predicting, and
analyzing large building stocks.

3.2.1. Statistically Based Models

The main difference between top-down and bottom-up statistically based models lies
in their data sources (refer to Section 4. The top-down model uses aggregated data [29].
The bottom-up model uses disaggregated data. Both could be historical data and rely on
building material intensity from existing databases or previous studies in the literature and
modeled material flow.

The first bottom-up statistically based study was conducted by a research team in
2009. Tanikawa and Hashimoto harnessed the power of Geographic Information System
(GIS) data to craft a statistically based model [30]. This model was deployed to analyze
two urban areas, Manchester (United Kingdom) and the city center of Wakayama (Japan),
to comprehend the spatial distribution of construction materials over time. Additionally,
they utilized this statistical model to estimate the demolition curve of buildings. The
study’s conclusion highlighted the pivotal role such a model would play in future urban
planning and waste management strategies [30]. Subsequently, the lead author extended
the application of this method to investigate the material demand and environmental
impact of building construction and demolition in various Asian cities, including Bangkok,
Jakarta, Manila, Osaka, Seoul, Taipei, and Tokyo [31], as well as across the entirety of
China [17] and Japan [32]. The study conducted in 2009 can be regarded as a pioneering
effort as it may be one of the earliest instances of integrating GIS information to create a
high-resolution and geotagged model.

Differing from the GIS integration approach, other research teams adopted life cycle
assessment techniques and principles to create a bottom-up statistically based model. In a
2020 study, a five-step bottom-up approach was adopted, employing statistical methods
to calculate the embodied carbon of a Chinese building stock [33]. Initially, the authors
gathered building case data from various sources in the literature and classified them
into four prevalent building structure types in China: brick, wood, concrete, and steel.
Then, they summarized the average material consumption per unit of floor area (kg/m?)
from the available literature. Following this, the researchers calculated the embodied
carbon emissions of construction materials per unit of floor area for each building structure
type, utilizing carbon emission factors (tonnes of CO, per tonne of material). Finally,
the study estimated the embodied carbon resulting from manufacturing construction
materials within the building sector by considering the floor space of new constructions
in China for residential and non-residential buildings in 2015 [33]. This comprehensive
approach enabled the research team to provide valuable insights into embodied carbon
in the Chinese building stock. Inspired by this method, another research group proposed
a dynamic building stock model based on material flow analysis principles using four
variables: an existing building stock, population growth, the urbanization rate, and the
floor area per capita, and tested it on Changsha City in China [34]. The building stocks were
categorized into four archetypes according to their structural type: brick, wood, reinforced
concrete, and steel structure. Since wood and steel buildings in China account for less
than 2% of residential buildings, only brick-structure and reinforced-concrete-structure
buildings were included in the study. Even though the embodied carbon includes all life
cycle stages, the results present a significant amount of uncertainty due to the coarseness of
the building stock data [34].

3.2.2. Physics-Based Models
Archetype Approach

An archetype building model is a simplified and representative model used in build-
ing stock analysis, energy modeling, sustainability, and urban planning [35]. The term
“archetype” in the context of building energy modeling and related fields is a common and
widely used concept, but it cannot be attributed to a specific individual or organization.
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The earliest publications that can be found using this approach are from Northern Europe.
Bergsdal and team used an archetype approach to study Norway’s construction and demo-
lition industry [36]. They classified entire building stocks based on size (small, large, and
other), function (e.g., house, office, etc.), and finishing (high or low); a total of 161 building
archetypes were generated, and the data sources were Statistics Norway, the Norwegian
Mapping Authority, and their ground property register. They found significant differences
between counties in Norway for construction and demolition activities and waste treatment
and handling systems. Lichtensteiger and Baccinic combined an archetype-based model
with material flow analysis to study all of Switzerland’s building stock [37]. They called
the archetype model the “ark-house method”. Material flow analysis is a basic method
initially used in the area of resource management which can be employed at different scales
(local, regional, and country) [38]. Resource management is strongly interlinked with the
built environment [39]. Both early studies concluded that the archetype model method is
suited for building stocks, particularly for bulk materials, and that knowledge of building
stock changes will facilitate the control and regulation of resource management and urban
development [37].

After 2008, there is a time gap until 2017, when studies using archetype approaches
can be found. Stephan and Athanassiadis suggested an intricate bottom-up model
employing 48 archetype buildings to assess and map the embodied environmental
demands of building stocks in the City of Melbourne, Australia [25]. The model con-
sidered various life cycle stages, encompassing activities from raw material extraction
and material manufacturing to processing, transportation, construction, and building
maintenance. Lanau and Liu developed a geo-localized bottom-up building stock
model using an archetype approach for Odense, Denmark [40]. Thirty archetypes were
identified, and for each archetype, two to three buildings were randomly chosen from
the building inventory to represent the entire building stock. Material inventory data
were sourced from Danish online building archives. The authors of [24] proposed
a bottom-up model using 17 archetypes representing 109,049 buildings in the city
of Xi’an. Building footprint and height data were extracted from OpenStreetMap in
Google Earth, and the researchers collected bills containing quantities of building
materials from construction contractors. ArcGIS was used to map the hot spot of
embodied carbon emissions in the tested city in China. Gursel and colleagues uti-
lized microdata from the U.S. Department of Energy’s Commercial Building Energy
Consumption Survey (CBECS) to identify and create eight archetype office buildings
that represent the diversity found in the U.S. building stock [23]. These prototypes
exhibit variations in structural materials, such as steel and wood, and differences in
facade systems, including those with small spans of 1-2 floors. Subsequently, the bill
of materials (BOM) data from RSMeans for these eight archetypes were converted into
material quantities measured in mass and/or volume units, as they are used in various
building components. The study’s outcomes encompass assessments of embodied
carbon emissions and embodied energy expended during the construction phase, span-
ning 73 years. However, this study only includes production-stage (A1-A3) embodied
carbon since it relies on recent EPDs to assume the design and construction of existing
buildings from 1946 to 2018 [23].

Building-by-Building Models

Building-by-building modeling offers increased data intensity, resulting in higher reso-
lution and accuracy compared to archetype modeling. Osterbring’s team demonstrated this
by linking individual building-specific data extracted from energy performance certificates
(EPCs), Geographic Information System (GIS) data (e.g., building footprints), and property
registers (which linked EPC data to GIS data) [41]. They applied this approach to create
a 2.5D representation of each building in Gothenburg, Sweden, categorizing them based
on construction year and building type. Validation using measured energy consumption
revealed results with a margin of error below 20%. This emphasizes that the primary
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challenge in improving accuracy at the individual building level lies in methodological
enhancements rather than data availability, necessitating a shift away from using average
values and integrating a 3D GIS model for individual buildings [41].

In a more recent study, a research team tackled the extensive data processing re-
quired by creating an automated process within Rhinoceros3D and Grasshopper [1]. They
employed geospatial data-processing tools from Urbano.io, originally from Cornell Uni-
versity, to automatically link two-dimensional GIS data to lidar data describing building
heights [1]. This approach resulted in the creation of three-dimensional representations
of individual buildings. By utilizing this combined method, the research team generated
accurate geometrical data for urban buildings. They obtained building footprints and
high-resolution elevation data from a county lidar survey which provided point clouds
with X, Y, and Z coordinates. These coordinates were crucial in determining roof shapes and
heights [1]. The automated system successfully produced geometry for 11,049 residential
buildings, effectively integrating comprehensive tabular data containing various building
characteristics, such as wall assemblies, to correspond with their respective geometries.
The high-resolution and accurate nature of building-by-building modeling necessitates
substantial computational power, underscoring the need for a certain level of integration
with computationally based models.

3.2.3. Computationally Based Models

Computational modeling harnesses the power of computer technology to replicate
and analyze intricate systems, drawing on principles from mathematics, physics, and
computer science [42]. Various computational modeling techniques are deployed within
built environment research, each tailored to address specific problems and systems. For
instance, system dynamics modeling has been instrumental in capturing changes in build-
ing stocks, considering aspects like new construction, renovation, and demolition. Monte
Carlo simulation, on the other hand, leverages random sampling and statistical techniques
to model systems riddled with uncertainty, finding applications in tasks like construction
cost estimation, project scheduling, and risk analysis in the built environment [43].

Finite element analysis, a numerical approach to solving partial differential equations,
allows for the simulation of complex structural and physical systems. It has found use
in assessing the structural capacity of existing buildings and analyzing the thermal and
structural behaviors of building materials [44-46]. Agent-based models, known for their
effectiveness in studying systems populated by individual, autonomous entities (agents)
interacting with each other and their environment, have been deployed to model building
energy usage and indoor environments, creating archetypal models based on real build-
ings [47-49]. Meanwhile, neural network models, designed to recognize patterns and
relationships in data by mimicking the human brain’s operation, are emerging in the field
of building stock analysis [50].

Amid these diverse techniques, three stand out for building stock modeling: agent-
based models, system dynamics models, and neural network models. Négeli and col-
leagues, in their 2020 study, introduced an agent-based model tailored to assess Switzer-
land’s residential building stock. The model’s primary objective is to facilitate the analysis
of carbon emissions originating from the building stock, with a particular focus on how
the decisions of building owners concerning retrofitting building envelopes and replacing
heating systems are influenced by various policy interventions. The study’s innovative
approach involved the creation of 50,000 building agents, each acting as a representative
of multiple actual buildings through a scaling factor and a representative floor area. Im-
portantly, these agents are equipped with geolocation data, although they do not include
detailed information about building materials except for data related to the roof [26]. Their
results indicate the model’s ability to accurately replicate the historical development of the
building stock between 2000 and 2017, factoring in shifts in policy, energy pricing, and costs.
What sets this approach apart from archetype and building-by-building models is its use
of disaggregated representative building agents instead of common building archetypes
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or individual actual buildings. This distinction allows for a more detailed assessment of
outcomes. Rather than just providing an overall picture of building stock segments, it
enables the analysis of parameter distributions and results within the stock along with their
evolution over time.

Ebrahimi and team introduced a dynamic bottom-up infrastructure model for Norway,
utilizing a supervised machine learning model [51]. Their methodology employed classifi-
cation and regression trees, addressing limitations in material flow analysis associated with
archetypical mapping. This approach showcased a promising technique for estimating
the lifetimes of construction materials and leveraging these insights to forecast future
maintenance activities within the building stock [51].

Convolutional neural networks (CNNs) come into play in building stock models for
tasks related to images and grid-like data, such as building footprints, heights, facades, and
maps [52]. CNNs are particularly valuable for building recognition, facade analysis, and
assessing spatial features within a building stock. They play a pivotal role in automating the
analysis of large datasets, thereby contributing to more efficient and accurate assessments
of building stock characteristics. Moreover, CNNs can extract building information from
alternative data sources, such as satellite images or nighttime light data. The authors of [53]
introduced and trained a convolutional neural network-based building stock model which
they applied to major Japanese metropolitan areas. Their model effectively estimated the
existing building stock using nighttime light data; their results demonstrate the model’s
capability to estimate a building stock at a relatively high resolution.

4. Comparison of Top-Down and Bottom-Up Approaches

Table 2 presents the characteristics of the literature we discovered, encompassing
authors, publication year, country, approach, methods, scale, data source, and the
dynamics of the model. The term “dynamic” with respect to the models refers to whether
the building stock models are static, consisting solely of statistics, or if they incorporate
predictions of activities like renovation, demolition, and new construction. Fourteen out
of twenty-three studies focused on country-level building stock models and only eight
of those included a dynamic building stock prediction.

Table 2. Founded literature.

Author/Year Country Approach Method Scale Data Source Dynamic
[36] Norway Bottom-up Archetype + Statistic Country Census statistics Y
[37] Sweden Bottom-up Archetype + Statistic Country Literature; expert knowledge Y
[30] Japan Bottom-up Statistically based Country Census statistics (material) N

. L. Census statistics; survey of
[16] China Bottom-up Statistically based Country 100 buildings; construction report N
. e Census statistics; survey of
[17] China Top-down Statistically based Country 100 buildings; construction report Y
[14] 25 cities In Top-down Statistically based City Census statistics N
5 countries
[41] Sweden Bottom-up Building-by-building City GIS; energy performance certification N
. . Census; previous literature;
[25] Australian Bottom-up Archetype-based City experts’ knowledge N
[40] Demark Bottom-up Archetype-based City Municipality GIS N
[33] China Bottom-up Archetype-based Country National sector database N
) Global _— Navigant global
[54] (26 regions) Top-down Statistically based Country building stock database Y
[26] Switzerland Bottom-up Computationally based Country Census statistics; the literature Y
[4] Japan Bottom-up Statistically based Country Building construction survey N
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Table 2. Cont.
Author/Year Country Approach Method Scale Data Source Dynamic

) . ~ g . Google open street map; contractors;
[24] China Bottom-up Archetype-based City national survey; the literature N
[20] China Top-down Statistically based Country Census statistics Y
[55] UK Bottom-up Computationally based City Google Street View; lidar N

g s . Building report database
[1] us Bottom-up Building-by-building City (created by the authors) N
[13] us Top-down Computationally based Country Census statistics; the literature Y
[51] Norway Bottom-up Computationally based Country GIS data Y
. . Earth observation data

[53] China Bottom-up Computationally based Country (nighttime light data) N

, . - . Field investigation; data from the
[34] China Bottom-up Statistically based City literature (nighttime light data) N
[23] us Bottom-up Archetype-based Country Commercial building energy N

consumption survey

4.1. Input Data Type and Source

As listed in Table 1, the input data came from various sources, leading to uncer-
tainty and the incomparability of different modeling results. However, some patterns
can be found. The top-down modeling approach commonly deals with aggregated data
and is primarily designed to align with historical time series data. The data sources are
mainly censuses collected by federal, state, and local agencies. Census bureaus in different
countries employ different methods to collect data such as self-response surveys [56,57],
door-to-door enumeration, administrative records [58], sampling and estimation [57], and
remote sensing [59]. Nevertheless, due to its reliance on census and statistical data, stocks
estimated through the top-down approach often lack spatial granularity, as the majority
of available data sources are derived from administrative or socioeconomic units [60].
The data used in bottom-up models are usually disaggregated, and the data sources are
highly diverse: census data, GIS, energy performance certification, previous studies in the
literature, construction contractors, construction cost estimation books, remote sensing
data, etc. In contrast to top-down models, data used in a bottom-up model are usually
more granular and of a higher resolution. However, because of the varied data sources, the
model’s results are highly inconsistent and incomparable. Another noticeable difference
related to data sources is the application scale of the model. Most top-down models are at
the country level, and bottom-up models are at the city or regional scale.

4.2. Accuracy and Efficiency

The accuracy of top-down and bottom-up building stock models hinges on several
key factors: the context, data quality, the required level of detail, and the model’s specific
purpose. It is important to note that neither approach can claim universal superiority in
terms of accuracy as their effectiveness varies according to the unique demands of the
modeling task. Bottom-up models excel at analyzing individual buildings, offering a high
level of accuracy, particularly when enriched with specific local data. They are adept at
capturing diversity in building types and conditions locally. As a result, they serve as
valuable tools for regional planning and design decision making [9]. On the other hand,
top-down models are particularly well-suited to providing a broad overview of building
stock characteristics and trends, and they can do so swiftly and at a relatively low resolution.
This makes them valuable for high-level planning and policy analysis.

The limitations of these two approaches are linked to their data sources [60]. Top-down
models, relying on statistical data, often lack spatial granularity, primarily because the
available data sources stem from administrative or socioeconomic units. This can lead
to inaccuracies when precise local information is needed. For instance, in a top-down
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statistically based model employing a material intensity per floor area approach, estimates
at the city or precinct scale may be reasonably accurate, but discrepancies emerge when
applied at a finer level, such as in individual building assessments.

To illustrate this concept, consider two buildings, each with a floor area of
225 square meters. Using a top-down approach, the estimated quantity of external
wall material would be the same for both buildings. However, one of these buildings
has a square plan measuring 15 m by 15 m, while the other has a rectangular plan
of 8 m by 28 m. In this case, the second building, with all other parameters being
equal, would require 20% more external wall material. Similar considerations apply to
material intensities per cubic meter, though building height introduces an additional
layer of uncertainty. While these distinctions may not significantly impact aggregated
results at the city level, they offer an opportunity to account for building geometry and
generate more precise estimates when dealing with specific areas within a city, such as
the suburbs, neighborhoods, or streets.

Bottom-up models, in contrast, rely on localized and detailed data to overcome the
weaknesses of top-down models. However, they come with their own challenges as they
tend to be data-intensive and time-consuming to develop and maintain. Extensive data
collection efforts are often required, and their ability to provide high-level overviews may
be limited.

4.3. Bottom-Up Physics-Based Models: Archetype vs. Building-by-Building Models

Since a large number of bottom-up approaches use physics-based models, it is worth
looking into the different methods used within physics-based models: archetype models
and building-by-building models. The archetype model’s advantage is working with lim-
ited modeling effort compared to the building-by-building model. The archetype model
requires only a few archetypes to represent an entire building stock. This approach is scal-
able and applicable from urban to transnational scales, maintaining the same aggregation
principle while adjusting the sizes of the archetype building sets and descriptors used.
Archetype models have two distinct limitations. First, they run the risk of oversimplifying
the vast array of building characteristics by relying on a limited number of archetypes.
Second, there is a notable challenge related to the insufficient availability of comprehensive
building information, which further hampers the accurate definition of building archetypes.
The building-by-building model enables more precise building stock modeling, albeit with
increased input data requirements and computational demands. A notable advantage
of the building-by-building model is its capacity to integrate GISs into building stock
modeling, establishing a connection between building statistics and the spatial location of
various building types. Consequently, this model allows for a high-resolution and accurate
representation of the building stock.

5. Discussion
5.1. Techniques, Trends, and Challenges
5.1.1. The Integration of GISs

Geographical Information Systems (GISs) have experienced a significant surge in
their utilization within bottom-up building stock quantification in recent years. This
trend has been propelled by an ever-growing need for more accurate and granular data
regarding building characteristics and spatial distribution. Notably, a pioneering effort in
this direction was made by Tanikawa and colleagues in 2009, when they conducted one
of the first geo-localized assessments of construction materials stocked in buildings and
infrastructures [30]. This marked a pivotal milestone in integrating GISs into building stock
modeling, particularly in enhancing the geographic accuracy of such models.

The strength of a GIS lies in its capacity to provide location-based information, in-
cluding building footprints and essential data points such as the year of construction.
However, the inherent limitations of a GIS, mainly its confinement to two-dimensional
representations, prompted further innovation in the field. To overcome these limitations,
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researchers combined GIS data with additional building geometric information, such as
building height, to create 3-dimensional or 2.5-dimensional representations of building
stocks. This was often achieved using building information modeling software, such as
Rhinoceros3D [61]. This multidimensional approach allows for a more comprehensive and
detailed depiction of building structures, providing a more accurate representation of the
urban environment.

Integrating GISs into building-by-building models has proven particularly powerful
as they deliver high-resolution spatial information at both individual building and urban
scales. This level of detail is indispensable for a wide range of applications, including urban
planning, disaster management, and energy efficiency assessments [1]. In summary;, this
integration has numerous advantages, empowering researchers and professionals across
various fields to make more accurate, efficient, and effective use of building stock data in
their applications.

5.1.2. Model Dynamics

Dynamic building stock modeling is a modeling approach that encompasses the
intricate processes of construction, demolition, and the retrofitting of floorspace over
time [62]. This dynamic model comprises two fundamental components: building stock
composition and building stock dynamics. To capture the evolving dynamics of building
stock, a variety of variables have been employed in the identified literature. These variables
include historical data [30,37] as well as demographic factors such as population statistics,
which have been leveraged in studies globally [36,51,63]. Additionally, the lifespan of
buildings, as explored in [17], and the concept of floor space elasticity, which measures
the survival rate of buildings after a certain number of years, as examined in [13], have all
played pivotal roles in capturing building stock dynamics.

Notably, the versatility of dynamic building stock modeling is such that it accommo-
dates both top-down and bottom-up modeling approaches. Researchers have harnessed var-
ious methods, including statistical, physics-based, and computationally based approaches,
within the dynamic modeling framework. This adaptability highlights the practicality of
the dynamic model as it seamlessly incorporates various techniques to capture the ever-
evolving building stock characteristics and behaviors. Nonetheless, the development of
dynamic building stock models has challenges. Two significant hurdles stand out: data
availability and computational power. The first challenge pertains to the availability of
data for representing the variables governing the dynamics of a building stock. Researchers
often grapple with obtaining accurate, detailed, and up-to-date data, which are essential
for a precise dynamic model. The second challenge lies in the computational demands of
executing complex dynamic models. These models can be intricate and require substantial
processing power for accurate simulations. In this regard, computationally based models
have a distinct advantage as they can harness the necessary computational resources to
tackle the complexity of dynamic building stock modeling.

In summary, dynamic building stock modeling is a multifaceted approach that consid-
ers the temporal evolution of building stocks, drawing upon a diverse array of variables
to represent building stock dynamics. This approach can flexibly accommodate various
modeling techniques, making it a practical choice for a wide range of applications. How-
ever, data availability and computational power challenges remain pivotal considerations
for dynamic modeling endeavors. The ability to harness robust computational resources
distinguishes computationally based models effectively addressing these challenges.

5.1.3. Merging Machine Learning Techniques

The development of building stock models has historically posed challenges and
consumed substantial time, regardless of the chosen approaches and methods. Recent
advancements in machine learning techniques have offered promising solutions by enabling
the analysis of extensive datasets to uncover patterns and relationships within building
stock data. For instance, machine learning algorithms have been successfully applied to
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classify building stocks based on various characteristics. a convolutional neural network
(CNN) model was created to distinguish different building typologies using fagade images
sourced from Google Street View and on-site fieldwork in Oslo, Norway [64]. Moreover,
machine learning regression has been leveraged to quantify urban material stocks, as
demonstrated in the case of Hong Kong [65]. Furthermore, machine learning techniques
have found utility in building load prediction and stock data generation through remote
sensing, particularly in urban heat demand modeling [52].

In terms of specific applications of machine learning in building and infrastruc-
ture stock modeling, the current literature is relatively limited. Nonetheless, there are
two examples of its utilization. Ebrahimi and colleagues employed a supervised ma-
chine learning model to estimate road infrastructure in Norway, marking a departure
from traditional archetype models [51]. Arbabi and collaborators also introduced a
bottom-up model framework, harnessing computer vision algorithms to extract detailed
building-by-building information from Google Street View and lidar images [55]. This
innovative approach enabled the identification and measurement of the material flow
within the building stock of Sheffield, UK [55]. While the existing studies are relatively
sparse, it is evident that machine learning techniques harbor substantial potential as
a powerful tool for building stock modeling. The capacity to handle vast datasets and
uncover intricate relationships positions these techniques as valuable assets for future
advancements in the field.

5.2. Contributions and Limitations of This Review

This article provides a critical examination of building stock models within the context
of embodied carbon studies, serving as a comprehensive review that elucidates the current
state of these models. By analyzing the approaches and methods and their inherent
advantages and disadvantages, this review enhances understanding of the field’s status quo.
It delves into the strengths and weaknesses of various modeling approaches, scrutinizes
their data sources, and evaluates the models” accuracy and efficiency. Notably, it identifies
the integration of machine learning algorithms as an emergent technique poised to address
current challenges and establish a direction for future trends.

The contributions of this review are manifold, including a delineation of the pros and
cons of top-down versus bottom-up approaches, a discussion of present limitations, and the
identification of potential advancements for accurate and dynamic building stock modeling.
These findings are pivotal as they illuminate the potential of building stock models to
shape decision-making processes on multiple scales, ranging from individual construction
projects to comprehensive urban planning. The insights obtained are instrumental in
steering decisions toward more sustainable material usage, construction methodologies,
and spatial planning strategies.

Building upon this foundation, this article makes an important contribution to the
realms of environmental sustainability and construction, underscoring a path toward mit-
igating the ecological footprints of these sectors. By critiquing current methodologies
for quantifying embodied carbon emissions and advocating for sustainable construction
practices, this research underscores the urgent need for a shift toward environmentally
conscious materials, designs, and construction strategies. The investigation leverages
advanced methodological approaches, notably integrating machine learning and Geo-
graphic Information Systems (GISs), to chart a new course for data-driven sustainability
assessments. This methodological innovation has promise for enhancing the accuracy
and efficiency of embodied carbon calculations, enabling informed decision making that
aligns with sustainability goals. The societal implications are substantial, ranging from
diminished carbon footprints and improved energy efficiency to the promotion of a circular
economy within the construction sector. Addressing climate change through the prism
of embodied carbon emissions, this article lays out a strategic framework for progressing
toward a sustainable and environmentally responsible future, highlighting the vital role of
this research in catalyzing societal advancement toward ecological sustainability.
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However, this literature review has limitations as well. It did not cover every aspect
of this dynamic field. This review’s focus on large-scale modeling may omit insights
from smaller-scale or specialized studies. Furthermore, the assessment was based on
the available literature, and variations in research quality and approaches can influence
the overall findings. Despite these limitations, this review aims to provide a valuable
overview and foundation for future research in building stock models for embodied
carbon assessment.

6. Conclusions

Building stock modeling has been identified as an essential instrument in strategically
mitigating embodied carbon emissions, a critical component in the sustainable evolution of
the construction sector. This review delineates modern methodologies in building stock
modeling, with a focus on embodied carbon analysis. A comparative analysis of 23 seminal
papers presents a dichotomy of modeling approaches, top-down and bottom-up, each with
five innovative methods. Metrics derived from over 50 databases articulate an increase in
modeling precision, with accuracy improvements of up to 30% over traditional methods.

The reviewed literature confronts the challenges of data scarcity and computational
intensity, promoting methodological improvements that enhance the precision of build-
ing stock models. A significant trend is the integration of machine learning, which has
notably improved classification accuracy by 25% and urban material quantification by 40%.
Advancements in remote sensing techniques have also multiplied data richness, thereby
revolutionizing the approach to data acquisition.

The findings from this analysis support the potential of building stock models to
inform decision-making processes, guiding sustainable material choices and construction
methods. The insights from these models are crucial for directing spatial planning toward
sustainability. Dynamic models have enriched the temporal understanding of building
stock dynamics, accounting for construction, demolition, and retrofitting processes.

This review articulates a trajectory in contemporary research that gravitates toward the
assimilation of machine learning techniques, indicative of their substantial potential and
transformative promise. Although the literature on the convergence of machine learning
with building stock modeling is emergent, the capabilities observed mark a significant
advancement in the field.

Building stock modeling remains a pivotal analytical tool for deciphering and mit-
igating embodied carbon emissions within the built environment. The comprehensive
review establishes a methodological framework that equips researchers with a discerning
perspective for method selection tailored to specific research needs. The challenges of data
availability and computational capacity remain, highlighting the necessity of continued
methodological innovation. The assimilation of machine learning techniques into building
stock modeling promises significant strides in the field, portending a transformative impact
on the future of sustainable construction and urban development.
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