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Urban embodied carbon assessment: methodology and insights from 
analyzing over a million buildings in Chicago

Siavash Ghorbanya and Ming Hub 

aDepartment of Civil and Environmental Engineering and Earth Sciences, College of Engineering, University of Notre Dame, Notre 
Dame, Indiana, USA; bSchool of Architecture, University of Notre Dame, Notre Dame, Indiana, USA 

ABSTRACT 
Confronting climate change, this study quantifies the embodied carbon emissions from the 
building sector—an overlooked yet significant contributor to urban carbon emissions. 
Through a novel empirical framework, the embodied carbon of Chicago’s building stock was 
assessed and visualized, providing a scalable template for other cities with comparable data
sets. The analysis encompasses 1,010,840 buildings and identifies 157 architectural arche
types. This methodology facilitates the granular evaluation of embodied carbon, guiding 
strategic urban carbon mitigation planning. establishes visual analytics tools for informed 
policymaking. The geospatially resolved findings identify emissions-intensive zones showing 
that majority of emissions are concentrated in specific archetypes and geographic areas, 
delivering actionable data for urban development stakeholders. The findings reveal that 
increasing the building lifespan to 80 years with a 20% reduction in building sizes can 
decrease carbon emissions to one-third of the current value. The research harnesses the 
Excel 3D Map tool for emissions visualization, offering an intuitive understanding of urban 
emissions’ spatial dynamics and highlighting key areas for intervention. Furthermore, a sensi
tivity analysis explores the repercussions of end-life thresholds and building sizes on pro
jected emissions. This multifaceted approach enhances the capacity for data-driven, low- 
carbon urban planning, paving the way for cities to align with global decarbonization goals 
and laying the groundwork for a versatile embodied carbon assessment methodology. This 
study contributes to the existing literature by creating a transferable framework for measur
ing embodied carbon in building stocks, providing detailed geo-accurate data for urban 
planners and policymakers, and offering benchmarks and visualizations for assessing and 
understanding embodied carbon performance and mitigation in urban environments, exem
plified by the city of Chicago.
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Introduction

The 2021 Global Status Report for Buildings and 
Construction published by the United Nations 
details that global carbon emissions from the 
building sector represent 37% of total emissions, 
including 10% from building construction (i.e. 
embodied carbon emission) [1]. via research, prac
tice, and regulatory tools enacted over multiple 
decades, we have a clear understanding of oper
ational building energy use and associated carbon 
emissions partnered with effective carbon reduc
tion strategies [2,3]. However, mitigating the cli
mate emergency and moving toward carbon 
neutrality will require that all carbon emissions 
from building stock be quantified and strategies 
enacted to reduce their impacts. The embodied 
carbon of a building [4] – resulting from the 

greenhouse gases emitted from the extraction, 
manufacturing, transportation, installation, main
tenance, demolition, and disposal of building 
materials over a building’s whole lifecycle is a 
prime but overlooked target for impact and miti
gation [5,6]. As current green building codes, 
benchmarks, and regulations remain focused on 
operational energy savings and carbon reduction, 
the empirical studies on the effectiveness of 
embodied carbon (e.g. recycle and re-use) mitiga
tion strategies on the built environment remain 
limited due to the paucity of high-quality data 
[7,8]. Recent studies have found that green build
ings focusing solely on operational energy and car
bon can be more harmful than traditional 
buildings due to the exclusion of embodied car
bon emissions in their assessments [2]. These 
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elevated negative effects are presumed to be due 
to the non-inclusion of embodied carbon emis
sions in current “green” practices. Hence, a method 
of measuring and assessing the whole building life 
cycle embodied carbon (LCEC) of buildings at an 
urban scale is needed. The urgency of addressing 
building emissions cannot be overstated since it is 
the essential first step to creating strategies to 
mitigate and reduce carbon emissions from the 
building sector. As urban centers continue to 
grow, the decisions made today regarding building 
design, construction materials, and energy systems 
will have long-lasting effects on the urban carbon 
footprint and the global fight against climate 
change. Despite this importance, the understand
ing of the complete life cycle of the building stock 
at cities and urban scales has not received enough 
attention due to the lack of high-resolution data 
and methodologies to assess them. While some 
studies have tried to approach this issue in the 
developing countries with more available large- 
scale data [9–13], this phenomenon is specifically 
more tangible in the developed countries such as 
the United States.

In the United States, the lack of knowledge 
regarding a building’s embodied carbon impact 
exists at the whole-building level, and is due to three 
gaps: (i) methodology to measure the entire build
ing stock– per differences in building types, (ii) 
building-level data at the national scale, and (iii) 
benchmarks for assessing the building’s embodied 
carbon performance. In addition to building stock 
complexities, there is also heterogeneity in the 
urban context. Differences between states in terms 
of existing building inventory, market demand, cli
mate, population size and density, and vacancy 
rates all play a role in embodied carbon assess
ments – thus there is no one-size-fits-all solution. 
Building-level data is a foundational element of 
decarbonizing the built environment because we 
cannot manage what we do not measure. 
Moreover, embodied carbon benchmarking is useful 
for designer, practitioners, and local and state poli
cymakers. Hence there is an urgent need to meas
ure, inventory, assess and map building sector 
embodied carbon emissions at the national scale.

To fill the knowledge gap, this research aims to 
create a framework and model to measure, map, 
and benchmark the individual building’s embodied 
carbon and environmental impact on an urban 
scale with high resolution. Chicago is used as a 
case study to test and validate the proposed 
framework.

Literature review

Methods for calculating and mapping carbon emis
sions from urban building stocks are diverse and 
contingent upon the collected data, the founda
tional models applied, the emission sources identi
fied, and the intended scope of application [14].

Review of methods used for urban embodied 
carbon assessment

Presently, there are two predominant categorical 
methodologies employed for the appraisal of car
bon emissions at the urban scale: (1) Top-down 
methodologies synthesize data for the entire 
aggregate of building stock by employing macro
economic or statistical datasets—such as material 
flow analyses—at a collective level. This is typically 
carried out within defined geographic confines 
(e.g. urban or national boundaries) and temporal 
parameters. Subsequently, this composite data is 
partitioned into discrete segments, for instance, 
delineating single-family residences based on their 
functional characteristics or geographic propin
quity, as elucidated by previous study [15]. (2) 
Bottom-up methodologies conduct a granular ana
lysis by evaluating individual elements within the 
building stock. This includes discrete buildings, 
specific materials, or distinct technological applica
tions. These isolated assessments are then extrapo
lated to a broader stock-level context. As Mastrucci 
and colleagues suggested, through the disaggre
gation process, bottom-up approaches yield a con
siderably enhanced resolution in capturing the 
unique attributes of individual buildings, thereby 
facilitating a more precise evaluation of the 
embodied carbon emissions [16].

The top-down methodological approach can be 
further subclassified into computational [17] and 
statistical models [16]. Each model is grounded in 
the statistical correlation drawn from historical 
data amalgamated at a macro scale, juxtaposed 
with socio-economic indicators such as population 
dynamics or economic development. These corre
lations serve to elucidate the interplay between 
the building sector’s activities and resultant carbon 
emissions, as explicated by [15]. Both model var
iants are proficient in forecasting the macroeco
nomic performance of the building stock, as well 
as the implications of embodied carbon within 
varied developmental trajectories over time. An 
exemplar of a prominent top-down, statistically 
oriented model is the National Energy System 
(NEMS), as referenced by the Energy Information 
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Administration in 2009. What distinguishes the 
computational model is its application and 
amalgamation of computational resources. The 
advancement of machine learning methodologies 
has spurred a heightened interest in computa
tional models [18].

The bottom-up approach is differentiated into 
three distinct model types: physics-based, statis
tical [19], and computational [20]. The primary 
divergence between top-down and bottom-up 
models, whether statistical or computational, 
resides in the origin and granularity of data inputs. 
For the bottom-up statistical and computational 
models, data is typically sourced from detailed, 
site-specific observations, contrasting with the 
broader, macro-level data employed by top-down 
models [16]. Within the realm of physics-based 
models, two prominent subcategories emerge: the 
archetype method Lanau and colleagues [21], 
which generalizes building characteristics into 
standard models, and the building-by-building 
method, which scrutinizes each building individu
ally for detailed analysis [22].

In the domain of bottom-up quantification of 
building stock, the use of geographical information 
data has markedly increased in recent years. This 
upsurge is driven by the escalating demand for 
data that is both precise and detailed concerning 
the traits and spatial arrangement of buildings. A 
notable advance in this field was achieved by 
Tanikawa and colleagues in 2009, who undertook 
an early foray into geo-localized evaluations of 
construction materials accumulated within build
ings and infrastructural assets [23].

Furthermore, even though some of the 
researchers have concentrated on carbon emission 
at the urban scale, most of these studies are 
focused on a specific phase (e.g. urban expansions 
or demolition) and have not considered the whole 
life cycle of the cities. Moreover, the majority of 
these studies are in the context of developing 
countries, specifically China. Many of the studies 
on an urban scale focus on transportation carbon 
emissions [24,25]. Some studies deployed simula
tion methods to assess this impact [26]. Urban 
expansion is another area on this scale. A study 
in Wuhan, China worked on carbon storage loss 
issues in urban sprawl scenarios [27]. Other 
researchers also worked on this area in Guangzhou, 
Changsha, Zhuzhou, Xiangtan, Beijing, Tianjin, and 
Hebei cities in China on the same area [28–31]. 
These studies relied on simulation methods to esti
mate carbon emissions. A different study in China 

used a bottom-up approach to calculate the 
embodied carbon of the buildings [32]. 
Nevertheless, this study uses a process-based 
input-output model which is not appropriate for 
large-scale predictions in the lack of data condi
tion, which is mostly the case for the developed 
countries.

A study in Ireland concentrated on the whole 
life cycle emission from buildings [33]. However, 
this study relied on the EPA datasets for estimating 
the emissions and did not concentrate on a high- 
resolution building-by-building estimation model. 
Therefore, this method cannot be used for further 
high detailed analysis and sensitivity analysis. 
Meanwhile, a study in the United Kingdom worked 
on a bottom-up methodology based on typologies 
of buildings to estimate the carbon emission [34]. 
However, this study was focused on mostly 
assumptions about the current England buildings 
regarding their height, area, and type and not the 
actual dataset from the cities’ condition. Another 
study in Australia worked on a wide national scale 
of embodied and operational carbon emission but 
this study was also based on the 4 general arche
types, namely detached, townhouse, apartment, 
and high-rise building in the scope of residential 
buildings and did not consider the archetypes 
based on the cities’ existing buildings’ data [35]. 
Therefore, the current study is one of the very first 
studies conducted in the context of developed 
countries and in a building-by-building high-reso
lution approach which makes it suitable for any 
high-resolution simulation and sensitivity analysis 
studies.

Review of urban carbon emission mapping

The mapping of existing carbon emissions is indis
pensable for comprehending the baseline and craft
ing strategies for carbon mitigation. Therefore, a 
critical aspect of evaluating carbon emissions from 
the urban built environment is to delineate their 
spatial distribution. Historically, studies have pre
dominantly applied top-down methods to estimate 
and map carbon emissions, assign emission reduc
tion responsibilities, and project emissions from the 
construction sector at the national and regional lev
els [36,17]. Such approaches have been more 
aligned with urban industrial planning rather than 
spatial planning. However, such approaches often 
overlook the embodied carbon emissions from 
material production, fall short in pinpointing the 
spatial distribution of carbon emissions from 
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individual buildings, and do not support urban car
bon management at a granular level.

Addressing this gap, this project has introduced 
a bottom-up approach using the archetype 
method to compute carbon emissions from urban 
building stocks. This method integrates data from 
various sources and statistical inventories, utilizing 
tools like ArcGIS. Carbon emission factors for differ
ent building archetypes are determined through 
professional experience and statistical analyses, 
using a building life cycle assessment model. The 
archetype method is then employed to construct 
detailed carbon emission inventories for individual 
buildings within urban areas, enabling the quantifi
cation and cartographic representation of carbon 
emissions from the urban building stock.

Materials and methodology

Overall approach

In this study, as illustrated in Figure 1, a four-step 
bottom-up approach was used to assess the 
embodied carbon and environmental impact of 
Chicago’s existing building stock. The archetype 
approach, which models an average building to 
typify a segment of the building stock, is the most 
prevalent methodology employed in bottom-up 
building stock modeling [37,16]. This type of 
approach and model development is well-suited to 
building stock studies since it can link a high-reso
lution detailed assessment at an individual build
ing level, scale it up, and apply the archetype data 
to the entire building stock at the urban scale [37].

The first step started with Chicago building 
stock dataset creation. This phase involved the 
amassing of data, such as structural and material 
attributes of buildings, building floor area, and 
height, at a granular, individual building level. A 
comprehensive set of 15 building variables was 
extracted from two distinct data sources, as 
detailed in Building Stock Dataset Creation section 
and Table 1, with the geospatial coordinates of 
each building being precisely documented. 
Subsequently, the second step entailed the synthe
sis of individual building datasets into archetypes 
representative of Chicago’s diverse building stock. 
The details of archetypes are described in 
Archetypes CreationSection.

In the third step, the whole building life cycle 
embodied carbon (LCEC), embodied energy (pri
mary energy), and associated environmental 
impact were calculated for each archetype. Athena 
Impact Estimator for Buildings was used to con
duct the analysis. The Athena Impact Estimator for 
Buildings is a widely recognized tool for conduct
ing life cycle assessments (LCA) of buildings. This 
software assess the environmental impact of 

Figure 1. Research methodology flowchart.

Table 1. Data sources and variables.
Dataset Category #Variables Variables used

[39] NSI Data 6 Foundation Type, Structure Type, 
Foundation Depth, Building 
Square Footage, Number of 
Floors, Median Year Built

[42] Cook County 9 Wall Material, Roof Material, 
Building Square Feet, Land 
Square Feet, Central Air, Other 
Heating, Central Heating, 
Longitude, Latitude,

Total 15
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building materials over their entire lifecycle, includ
ing extraction, manufacturing, transportation, 
installation, maintenance, and end-of-life disposal. 
The Athena Impact Estimator software is tailored 
for the North American region which makes it per
fect for this study. Moreover, the comprehensive 
dataset, industry acceptance, and detailed outputs 
are other advantages that led to using this soft
ware [38]. The results were then exported into an 
Excel sheet and integrated into one workbook to 
create the emissions dataset. In the final step, this 
dataset was employed to generate a visual repre
sentation on a map of Chicago, facilitating an ana
lysis aimed at elucidating the spatial distribution of 
embodied carbon and the broader environmental 
impact exerted by the city’s existing building 
stock.

Building stock dataset creation

Two datasets were utilized for data collection. The 
National Structure Inventory (NSI) was used as the 
main source of the data collection, including the 
structural data of the buildings [39]. The National 
Structure Inventory (NSI) was initially formulated 
by the United States Army Corps of Engineers to 
support its Dam and Levee Screening initiative. 
The latest iteration of this dataset has been made 
accessible to the public and has subsequently 
been incorporated into the database managed by 
the Federal Emergency Management Agency 
(FEMA).

The data collected for Chicago buildings from 
this NSI included building structure type, founda
tion type, square footage, number of floors, and 
coordination of each building. However, while wall 
and roof materials are among the factors that 
influence the buildings’ environmental emissions 
noticeably [16,40,41], this dataset lacks the build
ings’ envelope materials. Therefore, the Cook 
County Open Data was used to cover this gap for 
Chicago [42]. It should be noted that this dataset 
includes the residential buildings and therefore 
the commercial buildings are not in the scope of 
this study. Coordination data, the roof and wall 
materials, the land square footage, and the heating 
systems (central heating, other heating, and cen
tral air conditioning) were collected from this data
set. Table 1 demonstrates the data sources and 
variables used in this study. The geo-coordinates 
of each building were used to match the two data 
sources. The combined data sources lead to the 
creation of a dataset of over 1 million building

Embodied carbon and environment impact 
indicators

In this study, as illustrated in Figure 1b, in addition 
to LCEC, five midpoint environmental indicators 
were used to assess the life cycle environmental 
impact (LCEI) of the Chicago building stock: 
Human health particulate potential, ozone deple
tion potential, acidification potential, smog forma
tion potential, and eutrophication potential. As 
stipulated by the U.S. Environmental Protection 
Agency, a suite of specific midpoint environmental 
impact categories has been established, utilizing 
common equivalence units to facilitate the com
parison and quantification of sustainability objec
tives and achievements. These categories include 
(1) human health particulate potential (PM2.5 
eq/m2); (2) acidification potential (kg SO2eq/m2); 
(3) eutrophication potential (Kg PO4eq/m2); (4) 
ozone depletion potential (CFCeq/m2); (5) smog 
formation potential (kg O3eq/m2); and (6) human 
health cancers, non-cancerous diseases, and eco- 
toxicity effects (various units). The first five catego
ries are predominantly utilized within the building 
and construction sector, attributable to their direct 
relevance to building lifecycle impacts [37].

Archetypes creation

For this study, directly calculating the environmen
tal impact of individual buildings was not feasible 
because of the enormous building numbers. 
However, environmental impact could be assessed 
based on a set of building physical characteristics 
and energy consumption, presenting unique build
ing archetypes. The archetype building models 
were generated using existing buildings in the two 
datasets mentioned in Building Stock Dataset 
Creation section, which include buildings with rela
tively similar characteristics, representing the exist
ing building stock in Chicago. In order to construct 
the archetypes, the combination of structure type, 
foundation type, wall type, and roof type was 
added to the created building stock dataset.

As listed in Table 2, Archetypes were described 
following the naming convention A-B-CC-DD, 
whereby A describes the building structure type 
(Wood, Masonry, Manufactured, Steel), B repre
sents the foundation type (e.g. Crawl, Basemen), 
CC represents the exterior wall materials (e.g. 
wood, Masonry), and DD is the roof construction 
types (R1-R6). All archetypes were created as 92 
square meters/1000 square feet (12 meters by 7.6 
meters), one-floor height. Using the primary 
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structure options, exterior wall materials, founda
tion types, and roof types, this study generated 157 
archetypes representing over 1 million buildings in 
Chicago. These 157 archetypes were created using 
the existing buildings in Chicago meaning there 
were 157 different combinations of primary struc
ture type, foundation type, exterior wall type, and 
roof types. Therefore, in the created dataset, each 
building was assigned an Archetype Code. For 
example, the code “WBW2R1” represents a building 
with a wooden structure (W), basement foundation 
(B), wall type 2 (W2), and roof type 1 (R1); 
“MCW1R3” represents a building with a masonry 
structure (M), crawl foundation (C), wall type 1 (W1), 
and roof type 3 (R3). The electrical and mechanical 
equipment and interior design materials impact 
were not in the scope of this research.

Assess life cycle embodied carbon emission and 
environmental impact

A two-step process was used to obtain the entire 
building stock LCEC and environmental impacts in 
Chicago. In the first step, the LCEC and five environ
mental impact indicators of individual archetypes 
were calculated using Athena Impact Estimator ver
sion 5 (comply with both EN15804 and 15978). To 
achieve this, each of the 157 archetypes was mod
eled in the Athena as a single-floor 1000 SQF build
ing. For example, an MBW1R4 archetype was 
modeled as a single-story 1000 SQF building with a 
masonry structure, basement foundation, wooden 
exterior wall material, and shake roof type, as men
tioned in Table 2. This resulted in a dataset of LCEC 
including three indicators: the Biogenic Global 

Warming Potential (GWP), Calcination GWP, and 
Total GWP. Five impact environmental impact indi
cators are explained in Embodied Carbon and 
Environment Impact Indicators section. In addition, 
embodied energy was also calculated and meas
ured by primary energy use for each of the arche
types. This forms a dataset for the expected 
emissions per area unit for each of the archetypes 
which were later used to calculate the building 
emissions for each individual building in Chicago by 
multiplying these values with the building’s area 
and number of floors. Archetype life cycle embod
ied carbon ranges from 123.79 kgCO2e/m2 (11.5 
kgCO2e/ft2) for WBW2R1 to 950.45 kgCO2e/m2 
(88.3 kgCO2e/ft2) for SSW1R2. Figure 2 shows one 
example of embodied carbon assessed through the 
whole life cycle archetype CBW1R1 with 661.98 
kgCO2e/m2 and MBW1R4 with 846.04 kgCO2e/m2.

In the second step, the archetypes were 
assigned to each individual building in the 
Chicago datasets created for this study (refer to 
Building Stock Dataset Creation section). The cre
ated dataset of the building inventory includes the 
archetype code of each building, its year built, 
floor area, and number of floors. As explained ear
lier, the Athena models were considered for a 
1000 SQF 1-floor building. Therefore, the value 
generated by the Athena can be divided by 1000 
to produce each archetype environmental emis
sion per square footage for one floor. Accordingly, 
Eq. (1) was used to calculate the emission of each 
of the buildings where the archetype emission in 
each of the emissions. In this equation, the build
ing area is in units of square footage, and the 
number of floors is an integer number.

Table 2. Archetype variables in building segments.
Primary structure types (A) Foundation type (B) Exterior wall types (CC) Roof types (DD)

W- Wood 
M- Masonry 
H- Manufactured 
S- Steel

C- Crawl 
B- Basement 
S- Slab 
P- Pier 
I- Pile 
F-Fill 
W-Solid wall

W1- Wood 
W2- Masonry 
W3- Wood & Masonry 
W4- Stucco

R1- Shingle/Asphalt 
R2- Tar and gravel 
R3- Slate 
R4- Shake 
R5- Tile 
R6- other

Figure 2. Life cycle embodied carbon archetype (a) CBW1R1. (b) MBW1R4.
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Visualization and analysis

After creating the dataset, Python programming 
was utilized to analyze the data and determine the 
significance of emissions for each building arche
type. This analysis served as the foundation for 
developing a sensitivity analysis model and a 
dashboard for 3-dimensional visualization of the 
emissions. From a life-cycle assessment (LCA) per
spective, the age of a building creates various 
scenarios that influence its emissions. For instance, 
buildings undergo demolition, replacement, and 
renovation once they reach a certain age, which 
can result in the construction of new buildings 
that differ in size from the original baseline. To 
address these changes, scenarios were developed 
and programmed in Python to assess the impact 
of these changes on emission levels. Equation (2)
was employed to simulate the emissions of new 
buildings, assuming that the new square footage 
would range from 80% to 120% of the existing 
square footage. Additionally, the age threshold 
was set between 50 to 100 years, with increments 
of 10 years, guided by findings from the current lit
erature review. The current emissions of the build
ings were used as the baseline in the sensitivity 
analysis.

if building age > age threshold ! New Emission

¼ Archetype Base Emission

� New Square Footage

� Number of Floors

Equation 2 

After calculating the new emission, the changes 
towards the baseline were calculated based on Eq. 
(3). This ratio shows the amount of the change in 
the total emission compared to the current status 
of the city’s building stock.

New Emission Ratio

¼
New Emission

The Current Amount of Emission
Equation 3 

Additionally, the Excel 3D Map tool was 
employed to visualize and project emissions across 
Chicago. The coordinates in the dataset, represent
ing the longitude and latitude of each building, 

were used to display the calculated emissions as 
bars located at each building’s position. The choice 
of the Excel 3D Map tool was driven by its user- 
friendly interface, which offers numerous customiz
able options to filter the visualizations based on 
building archetypes, age ranges, and emission lev
els. Moreover, the robust and fast backbone of the 
Excel 3D Map tool and its real-time connection to 
the data make it a suitable tool for visualizing such 
results. It also provides an interactive environment, 
allowing users to access detailed information 
about each building simply by hovering over it 
with the cursor. Furthermore, the tool supports 
various 2D visualization features, making it an ideal 
choice for developing a 3D GIS-based dashboard, 
which was one of the objectives of this research.

Results and discussion

Descriptive analysis

Table 3 demonstrates the general statistics of the 
Chicago buildings’ height, area, and year built. In 
the consolidated dataset of Chicago’s urban infra
structure, a total of 1,010,840 buildings were ana
lyzed which had an average area of 1,819 Sqf 
mean year built of 1958, delineating 157 unique 
architectural archetypes.

As illustrated in Figure 3, the predominance of 
the city’s building composition is attributable to 
merely three archetypes: "MBW2R1", "WBW1R1", 
and "MBW3R1", which collectively represent 
approximately 88% of the total. Specifically, 
"MBW2R1" typifies 36% of the building stock, char
acterized by masonry structures with basements 
and shingle roofs. The "WBW1R1" archetype, 
accounting for 29%, is distinguished by wooden 
structural elements, including basements, wood 
walls, and similarly shingled roofs. The third prom
inent category, "MBW3R1", constitutes 23%, featur
ing masonry buildings with basements, walls of 
mixed masonry and wood, and shingle roofs. 
These findings highlight a pronounced architec
tural homogeneity within the city’s vast array of 
buildings.

As illustrated in Figure 4, within the external 
wall category, masonry walls represent the major
ity at 43.68%, followed by wooden walls at 

Building Emission ¼
Archetype Emission � Building Area � Number of Floors

1000
Equation 1 
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30.49%. The combination of wood and masonry 
accounts for 24.32% of the buildings, while stucco 
materials comprise only 1.52%. In terms of rooftop 
materials, over 90% consist of Shingle and Asphalt. 

The least common roofing material is slate, 
making up just 0.38% of the total, which equates 
to approximately 3,840 buildings. Additionally, 
the results indicate that most buildings are 

Table 3. The descriptive statistics of buildings area, height, and age.
Count Mean Std Min 25% 50% 75% Max

Area (SQF) 1,010,840 1,818.9 1,909.8 168.9 1,136.0 1,449.0 2,184.0 904,276.0
Year Built 1,958.4 16.0 1,939.0 1,944.0 1,957.0 1,968.0 2,017.0
Number of Floors 1.4 1.1 1.0 1.0 1.0 2.0 353.0

Figure 3. The GIS visualization of main archetypes in the Chicago Metropolitan Area.
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constructed with masonry structures, and more 
than 99% of the buildings feature basement 
foundations.

Table 4 shows the general statistics of the 
amount of different emission types in A-C and A-D 
LCA phases throughout the buildings in Chicago. 
Phases A–C denotes the amount of emission from 
the raw material stage to the construction and dis
posal of the materials while phase D adds the 
phases beyond the building LCA, including reuse, 
recovery, recycling, etc.

After analyzing the status of 4 main archetype 
categories in Chicago, the average value of the dif
ferent emissions for each of these categories was 
assessed. As demonstrated in Figure 5, “MBW2R2” 

average emission is slightly higher than the three 
other categories. This category comprises masonry 
structures, basement foundations, masonry walls, 
and tar and gravel roofs. Meanwhile, the WBW1R1, 
as the only frequent category with a wooden 
structure in Chicago has the lowest emission rate.

Although the difference between emissions 
seems insignificant, the analysis of the emissions in 
practice and applied to the city scale shows differ
ent results. As shown in Figure 6, the average 
emission of the buildings with MBW2R2 becomes 
significantly higher than the other categories in 
practice. The main difference between this arche
type and two other masonry buildings is in the 
rooftop material.

Figure 4. The distribution of the number of buildings with different materials in Chicago.

Table 4. The emissions statistical distribution in Chicago over 1,010,840 buildings.
Mean Standard deviation Min 25% 50% 75% Max

GWP (biogenic) −29158 2323835 −1735749000 −26035 −13877 −6868 486
GWP (calcination) 17162 91082 50 10150 13831 33393 87526682
Acidification 1064 64705 34 384 525 1113 42876246
HH Particulate 260 22306 9 78 109 239 16323548
Eutrophication 126 9568 0 41 57 124 6851620
Ozone Depletion 0 27 0 0 0 0 17580
Smog 20250 1479632 661 6823 9371 19880 972425391
Total Primary Energy 2648776 225032445 117955 867360 1227630 2721924 150214710355
Non-RenewableEnergy 2443806 209662802 100317 809952 1140236 2498886 139865271649
Fossil Fuel 2148344 183251116 727 724675 1019676 2228800 125376057462
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The last item worthy of mention is the biogenic 
carbon calculation. EN 15804 is an important regu
lation that defines the product category rules for 
building and construction products. In this study, 
we follow this requirement: in the newest version, 
EN15804 þ A2, long-term biogenic carbon storage 
is not permitted. All biogenic carbon sequestered 
in modules A1-A3 must be considered as emitted 
(or transferred to nature) in module C. Since mod
ule C has to be included in life cycle assessment 
under the new requirement, so any carbon seques
tering, bio-based materials are considered to have 
net zero biogenic carbon over their life cycle. The 
life cycle carbon emission (A-C) can not go nega
tive under the new requirements.

Sensitivity analysis

Sensitivity analysis in the context of building stock 
refers to a method used to assess the impact of 
variations in input parameters on the output of 
building carbon emission models. This analysis is 
crucial for understanding the uncertainties associ
ated with building stock models and for improving 

the accuracy of performance predictions [43]. 
There are several uncertainties exist in the assess
ment, mainly related to the assumption made and 
data used in the calculation. Two primary factors 
can influence the accuracy and reliability of the 
assessment results. The first factor is end-of-life 
uncertainty. Existing LCA databases and methods 
often lack comprehensive data on the end-of-life 
treatment and recycling of building materials and 
components [44]. An end-of-life stage, including 
recycling and disposal, can have a substantial influ
ence on the environmental impact of a building 
[45]. The second factor is the building life span, 
there is no consensus on what value of building 
life span should be used since it varies per region, 
building types, and other factors. The building life 
span found in previous studies varies between 
50 years and 100 years, which led to a wide range 
of GWP results. A sensitivity analysis was con
ducted to test the impact of the uncertainty asso
ciated with total floor area and building life span. 
A 10-year increment was used for change from the 
initial assessment, which is 50 years. Five values 
were used for building life span: 60, 70, 80, 90, and 

Figure 5. The total life cycle emission value of each archetype per square foot based on the Athena model.
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100 years. The baseline was considered as the cur
rent amount of GWP in the A-C phases of the life
cycle and Eqs. (2) and (3) were used to perform 
the sensitivity analysis.

Figure 7 indicates the ratio of the changes 
compared to the baseline for different areas and 
building age threshold scenarios and helps to 
understand how strategic modifications to build
ing footprints and age limits can substantially 

influence emission outputs. The square footage 
factor determines the range of change in the 
buildings’ square footage. Considering the age of 
the buildings in Chicago, and the fact that the 
number of buildings more than 90 years old is 
negligible, the results showed almost no new 
emission for this range. Nevertheless, the results 
showed that the policies for the new building area 
and the age of buildings can significantly impact 

Figure 6. The average emission for each of the archetypes in the entire city of Chicago.
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the new amount of emission. Keeping the build
ings up to 80 years and then considering the 80% 
of the current area for the new buildings had the 
lowest ratio with 26% of the current emission 
showing that small modifications can lower future 
emissions significantly while the age threshold of 
50 and 20% increase in the area produced almost 
the same as existing emission in the whole city 
with both new and old buildings. This fact is evi
dent in Figure 8 where the higher slopes of emis
sion increase are observed when moving from 
100 years threshold to 50 years.

Visualization

The 3D visualization of the buildings’ emissions 
transforms our understanding of the geographical 
distribution of these emissions. After understand
ing the archetypes and their emission rates, the 
Excel 3D Map tool was used to visualize the emis
sions. This powerful visualization, as shown in 
Figure 9, offers critical insights that benefit policy
makers, urban planners, and environmental 
researchers by pinpointing the sources and pat
terns of emissions across different regions. This 

Figure 7. The heatmap of the new emission ratio for different building areas and age thresholds.

Figure 8. The emission changes sensitivity analysis for different areas and ages 3D visualization.
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particular visualization presents data from a signifi
cant subset, 10,000 buildings out of more than 
one million analyzed in the study, and provides 
more information about the geographical build
ings’ emissions as a substantial tool to investigate 
the root causes of the construction industry’s 
adverse environmental impacts.

The 3D Map tool not only displays the locations 
and emission levels but also incorporates a suite of 
interactive features that allow users to dissect the 
data further. Users can apply filters to view emis
sions by building archetype, structural materials, 
construction year ranges, and more, enhancing the 
tool’s utility for detailed analysis. The emissions are 
categorized and color-coded, making it easier to 
differentiate between types such as CO2, methane, 
or particulate matter. This differentiation is crucial, 
as it enables the visualization to adapt to various 
analytical scenarios for different units and scales of 
the emissions, ensuring that emission stacks are 

accurately represented in terms of both magnitude 
and type. Besides the mentioned features that 
allow users to customize the data they want to 
access, the Excel 3D Map Tool provides an 
extremely user-friendly environment that needs no 
expertise to modify the variables.

The data revealed intriguing patterns, notably 
that downtown Chicago—a region dense with high- 
rise buildings—registered high emission potentials. 
This was anticipated given the urban density and 
architectural characteristics. Surprisingly, certain sub
urban areas, particularly the northwest, also dis
played elevated emissions. A deeper dive into the 
data linked these emissions to specific building 
types, particularly those with roofing materials cate
gorized under archetypes MBW2R3 and MBW2R4, 
underscoring the significant impact of construction 
materials on emission levels.

In addition to geographic and material factors, 
the visualization highlighted that structures with 

Figure 9. The building emissions visualization for buildings’ total life cycle emission for 10,000 sample buildings (each 
box in the 3D visualization demonstrates a building in the city of Chicago).
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steel frameworks, though less common in Chicago, 
contributed disproportionately to the emission 
totals. This insight, aligned with findings from 
Figure 5 to Figure 6, confirms the substantial role 
of building materials and structural types in envir
onmental impact. Overall, this advanced visualiza
tion tool does more than merely map emissions; it 
provides a multi-dimensional exploration of envir
onmental data, empowering stakeholders to make 
informed decisions and target interventions more 
effectively. Additionally, the size and selection of 
the subsample can be changed according to the 
users’ demands.

Contribution

This study contributes to the existing literature in 
the following three aspects. First, at the method
ology level, this study creates a framework to 
measure the existing building stock’s embodied 
carbon in the city of Chicago, such framework and 
methodology can be applied to other cities that 
have similar building characteristic information. 
Secondly, for the building-level data at the urban 
scale, the individual buildings with geolocation 
have been identified, modeled, and assessed. Such 
detailed and geo-accurate embodied carbon data 
is a tremendous asset for urban planners, policy
makers, and researchers who are interested in 
advancing the understanding of built environment 
embodied carbon mitigation. Lastly, the descrip
tive analysis provides benchmarks for assessing 
the future building’s embodied carbon perform
ance, and the data visualization provides the gen
eral public information regarding the existing 
urban embodied carbon and future changes. By 
dissecting the emission profiles of Chicago’s build
ing stock, the study contributes to a growing body 
of knowledge aimed at fostering resilient, low- 
carbon urban environments.

Limitation

While this research establishes a comprehensive 
framework for constructing a detailed inventory of 
buildings and calculating their emissions using a 
bottom-up approach, it does have some limita
tions. Firstly, the study is geographically con
strained to the Chicago metropolitan area, which 
may limit its generalizability to other regions. 
Additionally, there are constraints related to the 
availability of detailed data on building envelopes 
and roofing materials. The data for Chicago cate
gorizes building wall materials into four categories, 

which may not adequately represent the actual 
diversity of materials used.

Furthermore, the absence of a unified dataset 
necessitates the merging of various datasets, lead
ing to the exclusion of numerous buildings from 
the study. Although these limitations affect the 
number of archetypes analyzed, they do not com
promise the methodological integrity of the 
research. Despite the significant prevalence of sev
eral archetypes, the overall impact of these limita
tions on the findings is minimal. Looking ahead, 
future research could leverage data extraction 
technologies such as Google Street View and satel
lite imagery, combined with computer vision mod
els, to develop a more generalized model capable 
of extracting data for cities beyond Chicago, 
thereby extending the applicability of this study.

In addition to the previously discussed limita
tions, this study also faces constraints due to its 
underlying assumptions. Specifically, the emissions 
resulting from the renovation of buildings to main
tain their usability as they age were not included 
in sensitivity analysis results since it was not in the 
scope of this research. Consequently, it is recom
mended that future studies undertake detailed 
simulations to assess the impact of various renova
tion and replacement scenarios on urban emission 
levels.

Conclusion

This research aimed to investigate the building 
stock emissions in the United States. It utilized the 
city of Chicago as the study platform. The objec
tives of this study were to (1) develop a method
ology for extending the emission databases to 
individual buildings in North America, (2) investi
gate the most frequent archetypes and their 
emission levels, and (3) visualize the results geo
graphically and explain the emission status of 
Chicago. To achieve these objectives, the study 
chose the Athena Impact Estimator Software as 
the emission estimator database and used the 
National Structure Inventory and Cook County 
Open Data as the datasets to gather the buildings’ 
characteristics. A bottom-top physical-based arche
type approach was used to model different emis
sions for Chicago.

The results demonstrated that although 157 
archetypes existed in Chicago, more than 90% of 
them were distributed through four archetypes. 
Furthermore, the analyses showed that although 
the archetypes might seem not to be remarkably 
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different at first glance, the differences between 
the emissions make substantial differences in the 
practice and can influence the emission level of 
the buildings significantly. Furthermore, the roof 
material proved to be a very influential factor in 
the emission level of the buildings. Moreover, the 
wood material was associated with the lowest 
emission rate while the steel structure was associ
ated with the highest ones.

The 3-dimensional visualization showed that the 
emission hotspots might be different as it is 
expected in the cities. For instance, the northwest 
side of the Chicago emission was even greater 
than some of the buildings in the downtown area. 
The observation of the data in this area showed 
that the high-emission archetypes were con
structed with different roof types. The results of 
this study not only provided a systematic frame
work for building emission but also emphasized 
on the importance of developing a suitable 
platform for visualizing and demonstrating the 
emission results for better understanding and deci
sion-making. The results of this study are useful for 
policymakers, urban planners, architects, and envir
onmental researchers. Future studies are sug
gested to concentrate on utilizing the power of 
advanced methods such as computer vision to col
lect the required data such as wall and roof mater
ial. Future research can also concentrate on 
expanding this methodology to other cities at 
other zones and climate conditions for better 
comparison.
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