St

Carbon Management

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tcmt20

©

Taylor & Francis

Taylor & Francis Grou

P

Urban embodied carbon assessment:
methodology and insights from analyzing over a
million buildings in Chicago

Siavash Ghorbany & Ming Hu

To cite this article: Siavash Ghorbany & Ming Hu (2024) Urban embodied carbon assessment:

methodology and insights from analyzing over a million buildings in Chicago, Carbon
Management, 15:1, 2382993, DOI: 10.1080/17583004.2024.2382993

To link to this article: https://doi.org/10.1080/17583004.2024.2382993

8 © 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

@ Published online: 25 Jul 2024.

\J
G/ Submit your article to this journal

A
& View related articles &'

PN
(&) view Crossmark data &'
CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tcmt20


https://www.tandfonline.com/action/journalInformation?journalCode=tcmt20
https://www.tandfonline.com/journals/tcmt20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17583004.2024.2382993
https://doi.org/10.1080/17583004.2024.2382993
https://www.tandfonline.com/action/authorSubmission?journalCode=tcmt20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tcmt20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/17583004.2024.2382993?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/17583004.2024.2382993?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/17583004.2024.2382993&domain=pdf&date_stamp=25 Jul 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/17583004.2024.2382993&domain=pdf&date_stamp=25 Jul 2024

CARBON MANAGEMENT
2024, VOL. 15, NO. 1, 2382993
https://doi.org/10.1080/17583004.2024.2382993

Taylor & Francis
Taylor &Francis Group

8 OPEN ACCESS W) Check for updates

Urban embodied carbon assessment: methodology and insights from
analyzing over a million buildings in Chicago

Siavash Ghorbany® @ and Ming Hu®
®Department of Civil and Environmental Engineering and Earth Sciences, College of Engineering, University of Notre Dame, Notre
Dame, Indiana, USA; ®School of Architecture, University of Notre Dame, Notre Dame, Indiana, USA

ABSTRACT

Confronting climate change, this study quantifies the embodied carbon emissions from the
building sector—an overlooked yet significant contributor to urban carbon emissions.
Through a novel empirical framework, the embodied carbon of Chicago’s building stock was
assessed and visualized, providing a scalable template for other cities with comparable data-
sets. The analysis encompasses 1,010,840 buildings and identifies 157 architectural arche-
types. This methodology facilitates the granular evaluation of embodied carbon, guiding
strategic urban carbon mitigation planning. establishes visual analytics tools for informed
policymaking. The geospatially resolved findings identify emissions-intensive zones showing
that majority of emissions are concentrated in specific archetypes and geographic areas,
delivering actionable data for urban development stakeholders. The findings reveal that
increasing the building lifespan to 80years with a 20% reduction in building sizes can
decrease carbon emissions to one-third of the current value. The research harnesses the
Excel 3D Map tool for emissions visualization, offering an intuitive understanding of urban
emissions’ spatial dynamics and highlighting key areas for intervention. Furthermore, a sensi-
tivity analysis explores the repercussions of end-life thresholds and building sizes on pro-
jected emissions. This multifaceted approach enhances the capacity for data-driven, low-
carbon urban planning, paving the way for cities to align with global decarbonization goals
and laying the groundwork for a versatile embodied carbon assessment methodology. This
study contributes to the existing literature by creating a transferable framework for measur-
ing embodied carbon in building stocks, providing detailed geo-accurate data for urban
planners and policymakers, and offering benchmarks and visualizations for assessing and
understanding embodied carbon performance and mitigation in urban environments, exem-
plified by the city of Chicago.
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Introduction greenhouse gases emitted from the extraction,
manufacturing, transportation, installation, main-
tenance, demolition, and disposal of building
materials over a building’s whole lifecycle is a
prime but overlooked target for impact and miti-
gation [5,6]. As current green building codes,

benchmarks, and regulations remain focused on

The 2021 Global Status Report for Buildings and
Construction published by the United Nations
details that global carbon emissions from the
building sector represent 37% of total emissions,
including 10% from building construction (i.e.
embodied carbon emission) [1]. via research, prac-

tice, and regulatory tools enacted over multiple
decades, we have a clear understanding of oper-
ational building energy use and associated carbon
emissions partnered with effective carbon reduc-
tion strategies [2,3]. However, mitigating the cli-
mate emergency and moving toward carbon
neutrality will require that all carbon emissions
from building stock be quantified and strategies
enacted to reduce their impacts. The embodied
carbon of a building [4] - resulting from the

operational energy savings and carbon reduction,
the empirical studies on the effectiveness of
embodied carbon (e.g. recycle and re-use) mitiga-
tion strategies on the built environment remain
limited due to the paucity of high-quality data
[7,8]. Recent studies have found that green build-
ings focusing solely on operational energy and car-
bon can be more harmful than
buildings due to the exclusion of embodied car-
bon emissions in their assessments [2]. These

traditional
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elevated negative effects are presumed to be due
to the non-inclusion of embodied carbon emis-
sions in current “green” practices. Hence, a method
of measuring and assessing the whole building life
cycle embodied carbon (LCEC) of buildings at an
urban scale is needed. The urgency of addressing
building emissions cannot be overstated since it is
the essential first step to creating strategies to
mitigate and reduce carbon emissions from the
building sector. As urban centers continue to
grow, the decisions made today regarding building
design, construction materials, and energy systems
will have long-lasting effects on the urban carbon
footprint and the global fight against climate
change. Despite this importance, the understand-
ing of the complete life cycle of the building stock
at cities and urban scales has not received enough
attention due to the lack of high-resolution data
and methodologies to assess them. While some
studies have tried to approach this issue in the
developing countries with more available large-
scale data [9-13], this phenomenon is specifically
more tangible in the developed countries such as
the United States.

In the United States, the lack of knowledge
regarding a building’s embodied carbon impact
exists at the whole-building level, and is due to three
gaps: (i) methodology to measure the entire build-
ing stock- per differences in building types, (ii)
building-level data at the national scale, and (iii)
benchmarks for assessing the building’s embodied
carbon performance. In addition to building stock
complexities, there is also heterogeneity in the
urban context. Differences between states in terms
of existing building inventory, market demand, cli-
mate, population size and density, and vacancy
rates all play a role in embodied carbon assess-
ments — thus there is no one-size-fits-all solution.
Building-level data is a foundational element of
decarbonizing the built environment because we
cannot manage what we do not
Moreover, embodied carbon benchmarking is useful
for designer, practitioners, and local and state poli-
cymakers. Hence there is an urgent need to meas-
ure, inventory, assess and map building sector
embodied carbon emissions at the national scale.

To fill the knowledge gap, this research aims to
create a framework and model to measure, map,
and benchmark the individual building’s embodied
carbon and environmental impact on an urban
scale with high resolution. Chicago is used as a
case study to test and validate the proposed
framework.

measure.

Literature review

Methods for calculating and mapping carbon emis-
sions from urban building stocks are diverse and
contingent upon the collected data, the founda-
tional models applied, the emission sources identi-
fied, and the intended scope of application [14].

Review of methods used for urban embodied
carbon assessment

Presently, there are two predominant categorical
methodologies employed for the appraisal of car-
bon emissions at the urban scale: (1) Top-down
methodologies synthesize data for the entire
aggregate of building stock by employing macro-
economic or statistical datasets—such as material
flow analyses—at a collective level. This is typically
carried out within defined geographic confines
(e.g. urban or national boundaries) and temporal
parameters. Subsequently, this composite data is
partitioned into discrete segments, for instance,
delineating single-family residences based on their
functional characteristics or geographic propin-
quity, as elucidated by previous study [15]. (2)
Bottom-up methodologies conduct a granular ana-
lysis by evaluating individual elements within the
building stock. This includes discrete buildings,
specific materials, or distinct technological applica-
tions. These isolated assessments are then extrapo-
lated to a broader stock-level context. As Mastrucci
and colleagues suggested, through the disaggre-
gation process, bottom-up approaches yield a con-
siderably enhanced resolution in capturing the
unique attributes of individual buildings, thereby
facilitating a more precise evaluation of the
embodied carbon emissions [16].

The top-down methodological approach can be
further subclassified into computational [17] and
statistical models [16]. Each model is grounded in
the statistical correlation drawn from historical
data amalgamated at a macro scale, juxtaposed
with socio-economic indicators such as population
dynamics or economic development. These corre-
lations serve to elucidate the interplay between
the building sector’s activities and resultant carbon
emissions, as explicated by [15]. Both model var-
iants are proficient in forecasting the macroeco-
nomic performance of the building stock, as well
as the implications of embodied carbon within
varied developmental trajectories over time. An
exemplar of a prominent top-down, statistically
oriented model is the National Energy System
(NEMS), as referenced by the Energy Information



Administration in 2009. What distinguishes the
computational model is its application and
amalgamation of computational resources. The
advancement of machine learning methodologies
has spurred a heightened interest in computa-
tional models [18].

The bottom-up approach is differentiated into
three distinct model types: physics-based, statis-
tical [19], and computational [20]. The primary
divergence between top-down and bottom-up
models, whether statistical or computational,
resides in the origin and granularity of data inputs.
For the bottom-up statistical and computational
models, data is typically sourced from detailed,
site-specific observations, contrasting with the
broader, macro-level data employed by top-down
models [16]. Within the realm of physics-based
models, two prominent subcategories emerge: the
archetype method Lanau and colleagues [21],
which generalizes building characteristics into
standard models, and the building-by-building
method, which scrutinizes each building individu-
ally for detailed analysis [22].

In the domain of bottom-up quantification of
building stock, the use of geographical information
data has markedly increased in recent years. This
upsurge is driven by the escalating demand for
data that is both precise and detailed concerning
the traits and spatial arrangement of buildings. A
notable advance in this field was achieved by
Tanikawa and colleagues in 2009, who undertook
an early foray into geo-localized evaluations of
construction materials accumulated within build-
ings and infrastructural assets [23].

Furthermore, even though some of the
researchers have concentrated on carbon emission
at the urban scale, most of these studies are
focused on a specific phase (e.g. urban expansions
or demolition) and have not considered the whole
life cycle of the cities. Moreover, the majority of
these studies are in the context of developing
countries, specifically China. Many of the studies
on an urban scale focus on transportation carbon
emissions [24,25]. Some studies deployed simula-
tion methods to assess this impact [26]. Urban
expansion is another area on this scale. A study
in Wuhan, China worked on carbon storage loss
issues in urban sprawl scenarios [27]. Other
researchers also worked on this area in Guangzhou,
Changsha, Zhuzhou, Xiangtan, Beijing, Tianjin, and
Hebei cities in China on the same area [28-31].
These studies relied on simulation methods to esti-
mate carbon emissions. A different study in China
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used a bottom-up approach to calculate the
embodied carbon of the buildings [32].
Nevertheless, this study uses a process-based
input-output model which is not appropriate for
large-scale predictions in the lack of data condi-
tion, which is mostly the case for the developed
countries.

A study in Ireland concentrated on the whole
life cycle emission from buildings [33]. However,
this study relied on the EPA datasets for estimating
the emissions and did not concentrate on a high-
resolution building-by-building estimation model.
Therefore, this method cannot be used for further
high detailed analysis and sensitivity analysis.
Meanwhile, a study in the United Kingdom worked
on a bottom-up methodology based on typologies
of buildings to estimate the carbon emission [34].
However, this study was focused on mostly
assumptions about the current England buildings
regarding their height, area, and type and not the
actual dataset from the cities’ condition. Another
study in Australia worked on a wide national scale
of embodied and operational carbon emission but
this study was also based on the 4 general arche-
types, namely detached, townhouse, apartment,
and high-rise building in the scope of residential
buildings and did not consider the archetypes
based on the cities’ existing buildings’ data [35].
Therefore, the current study is one of the very first
studies conducted in the context of developed
countries and in a building-by-building high-reso-
lution approach which makes it suitable for any
high-resolution simulation and sensitivity analysis
studies.

Review of urban carbon emission mapping

The mapping of existing carbon emissions is indis-
pensable for comprehending the baseline and craft-
ing strategies for carbon mitigation. Therefore, a
critical aspect of evaluating carbon emissions from
the urban built environment is to delineate their
spatial distribution. Historically, studies have pre-
dominantly applied top-down methods to estimate
and map carbon emissions, assign emission reduc-
tion responsibilities, and project emissions from the
construction sector at the national and regional lev-
els [36,17]. Such approaches have been more
aligned with urban industrial planning rather than
spatial planning. However, such approaches often
overlook the embodied carbon emissions from
material production, fall short in pinpointing the
spatial distribution of carbon emissions from
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individual buildings, and do not support urban car-
bon management at a granular level.

Addressing this gap, this project has introduced
a bottom-up approach using the archetype
method to compute carbon emissions from urban
building stocks. This method integrates data from
various sources and statistical inventories, utilizing
tools like ArcGIS. Carbon emission factors for differ-
ent building archetypes are determined through
professional experience and statistical analyses,
using a building life cycle assessment model. The
archetype method is then employed to construct
detailed carbon emission inventories for individual
buildings within urban areas, enabling the quantifi-
cation and cartographic representation of carbon
emissions from the urban building stock.

Materials and methodology
Overall approach

In this study, as illustrated in Figure 1, a four-step
bottom-up approach was used to assess the
embodied carbon and environmental impact of
Chicago’s existing building stock. The archetype
approach, which models an average building to

The first step started with Chicago building
stock dataset creation. This phase involved the
amassing of data, such as structural and material
attributes of buildings, building floor area, and
height, at a granular, individual building level. A
comprehensive set of 15 building variables was
extracted from two distinct data sources, as
detailed in Building Stock Dataset Creation section
and Table 1, with the geospatial coordinates of
each building being precisely documented.
Subsequently, the second step entailed the synthe-
sis of individual building datasets into archetypes
representative of Chicago’s diverse building stock.
The details of archetypes are described in
Archetypes CreationSection.

In the third step, the whole building life cycle
embodied carbon (LCEC), embodied energy (pri-
mary energy), and associated environmental
impact were calculated for each archetype. Athena
Impact Estimator for Buildings was used to con-
duct the analysis. The Athena Impact Estimator for
Buildings is a widely recognized tool for conduct-
ing life cycle assessments (LCA) of buildings. This
software assess the environmental impact of

Table 1. Data sources and variables.

typify a segment of the building stock, is the most Dataset  Category  #Variables Variables used
prevalent methodology employed in bottom-up  [391  NSI Data 6  Foundation Type, Structure Type,
buildi K deli 37161, Thi f Foundation Depth, Building
uilding stock modeling [37,16]. Is type o Square Footage, Number of
approach and model development is well-suited to Floors, Median Year Built
o . K i X . [42] Cook County 9 Wall Material, Roof Material,
building stock studies since it can link a high-reso- Building Square Feet, Land
lution detailed assessment at an individual build- square Feet, Central Air, Other
) . Heating, Central Heating,
ing level, scale it up, and apply the archetype data Longitude, Latitude,
. s Total 15
to the entire building stock at the urban scale [37].
Step 1 Step 2 Step 3 Step 4
Archetype Chicago
embodied building stock
carbon embodied
carbon
Create Archetype Geo-assign
Cook archetypes Embodied ™| archetypes
county data CUERE Shiank
Y — building stock
Archetype environmental
— environmental impact
Chicago impact
building stock
dataset (a)
Environmental Embodied
Impact Indicators Irgprut | Inveintory Carbon | Energy
Ozone Depleti?n Potentlial (ODP) —— GWP Calcination
Smog _F.om_1at|on Poe_ntlal (SFP) Primary GWP Biogenic
AC|d|f|clat|o‘n POten[Ié| (ACP) |= stsg;?ri,lc\)/c\)lfll, GWP Towl
Etrenisatinn Pawil (E1F) Geolocation Total Primary Energy
Human Health Particulate
Potential (HHP) (b)

Figure 1. Research methodology flowchart.



building materials over their entire lifecycle, includ-
ing extraction, manufacturing, transportation,
installation, maintenance, and end-of-life disposal.
The Athena Impact Estimator software is tailored
for the North American region which makes it per-
fect for this study. Moreover, the comprehensive
dataset, industry acceptance, and detailed outputs
are other advantages that led to using this soft-
ware [38]. The results were then exported into an
Excel sheet and integrated into one workbook to
create the emissions dataset. In the final step, this
dataset was employed to generate a visual repre-
sentation on a map of Chicago, facilitating an ana-
lysis aimed at elucidating the spatial distribution of
embodied carbon and the broader environmental
impact exerted by the city’s existing building
stock.

Building stock dataset creation

Two datasets were utilized for data collection. The
National Structure Inventory (NSI) was used as the
main source of the data collection, including the
structural data of the buildings [39]. The National
Structure Inventory (NSI) was initially formulated
by the United States Army Corps of Engineers to
support its Dam and Levee Screening initiative.
The latest iteration of this dataset has been made
accessible to the public and has subsequently
been incorporated into the database managed by
the Federal Emergency Management Agency
(FEMA).

The data collected for Chicago buildings from
this NSI included building structure type, founda-
tion type, square footage, number of floors, and
coordination of each building. However, while wall
and roof materials are among the factors that
influence the buildings’ environmental emissions
noticeably [16,40,41], this dataset lacks the build-
ings’ envelope materials. Therefore, the Cook
County Open Data was used to cover this gap for
Chicago [42]. It should be noted that this dataset
includes the residential buildings and therefore
the commercial buildings are not in the scope of
this study. Coordination data, the roof and wall
materials, the land square footage, and the heating
systems (central heating, other heating, and cen-
tral air conditioning) were collected from this data-
set. Table 1 demonstrates the data sources and
variables used in this study. The geo-coordinates
of each building were used to match the two data
sources. The combined data sources lead to the
creation of a dataset of over 1 million building
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Embodied carbon and environment impact
indicators

In this study, as illustrated in Figure 1b, in addition
to LCEC, five midpoint environmental indicators
were used to assess the life cycle environmental
impact (LCEl) of the Chicago building stock:
Human health particulate potential, ozone deple-
tion potential, acidification potential, smog forma-
tion potential, and eutrophication potential. As
stipulated by the U.S. Environmental Protection
Agency, a suite of specific midpoint environmental
impact categories has been established, utilizing
common equivalence units to facilitate the com-
parison and quantification of sustainability objec-
tives and achievements. These categories include
(1) human health particulate potential (PM2.5
eg/m?); (2) acidification potential (kg SO2eq/m2);
(3) eutrophication potential (Kg PO4eq/m?); (4)
ozone depletion potential (CFCeq/m?); (5) smog
formation potential (kg O3eq/m?); and (6) human
health cancers, non-cancerous diseases, and eco-
toxicity effects (various units). The first five catego-
ries are predominantly utilized within the building
and construction sector, attributable to their direct
relevance to building lifecycle impacts [37].

Archetypes creation

For this study, directly calculating the environmen-
tal impact of individual buildings was not feasible
because of the enormous building numbers.
However, environmental impact could be assessed
based on a set of building physical characteristics
and energy consumption, presenting unique build-
ing archetypes. The archetype building models
were generated using existing buildings in the two
datasets mentioned in Building Stock Dataset
Creation section, which include buildings with rela-
tively similar characteristics, representing the exist-
ing building stock in Chicago. In order to construct
the archetypes, the combination of structure type,
foundation type, wall type, and roof type was
added to the created building stock dataset.

As listed in Table 2, Archetypes were described
following the naming convention A-B-CC-DD,
whereby A describes the building structure type
(Wood, Masonry, Manufactured, Steel), B repre-
sents the foundation type (e.g. Crawl, Basemen),
CC represents the exterior wall materials (e.g.
wood, Masonry), and DD is the roof construction
types (R1-R6). All archetypes were created as 92
square meters/1000 square feet (12 meters by 7.6
meters), one-floor height. Using the primary
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Table 2. Archetype variables in building segments.

Primary structure types (A) Foundation type (B)

Exterior wall types (CC) Roof types (DD)

Total Total Total Total

PRODUCT
(A1to A3)

CONSTRUCTION USE ENDOF LIFE  BEYOND BUILDING

PROCESS (8) (C1to C4) LIFE

rrrrr

W- Wood C- Crawl W1- Wood R1- Shingle/Asphalt
M- Masonry B- Basement W2- Masonry R2- Tar and gravel
H- Manufactured S- Slab W3- Wood & Masonry R3- Slate
S- Steel P- Pier W4- Stucco R4- Shake
- Pile R5- Tile
F-Fill R6- other
W-Solid wall
Global Warming Potential (kg CO2 eq) CBWIR Global Warming Potential (kg CO2 eq) MBWIR4
3.00E+04 6.00E404
2.50E+04 5.00€404
2.00E404 ok
1.50E+04
1.00E+04 o
5.00E403 . oot
= - m 0

(A4 & AS) (D)

Figure 2. Life cycle embodied carbon archetype (a) CBW1R1. (b) MBW1R4.

structure options, exterior wall materials, founda-
tion types, and roof types, this study generated 157
archetypes representing over 1 million buildings in
Chicago. These 157 archetypes were created using
the existing buildings in Chicago meaning there
were 157 different combinations of primary struc-
ture type, foundation type, exterior wall type, and
roof types. Therefore, in the created dataset, each
building was assigned an Archetype Code. For
example, the code “WBW2R1” represents a building
with a wooden structure (W), basement foundation
(B), wall type 2 (W2), and roof type 1 (R1);
“MCW1R3" represents a building with a masonry
structure (M), crawl foundation (C), wall type 1 (W1),
and roof type 3 (R3). The electrical and mechanical
equipment and interior design materials impact
were not in the scope of this research.

Assess life cycle embodied carbon emission and
environmental impact

A two-step process was used to obtain the entire
building stock LCEC and environmental impacts in
Chicago. In the first step, the LCEC and five environ-
mental impact indicators of individual archetypes
were calculated using Athena Impact Estimator ver-
sion 5 (comply with both EN15804 and 15978). To
achieve this, each of the 157 archetypes was mod-
eled in the Athena as a single-floor 1000 SQF build-
ing. For example, an MBW1R4 archetype was
modeled as a single-story 1000 SQF building with a
masonry structure, basement foundation, wooden
exterior wall material, and shake roof type, as men-
tioned in Table 2. This resulted in a dataset of LCEC
including three indicators: the Biogenic Global

Warming Potential (GWP), Calcination GWP, and
Total GWP. Five impact environmental impact indi-
cators are explained in Embodied Carbon and
Environment Impact Indicators section. In addition,
embodied energy was also calculated and meas-
ured by primary energy use for each of the arche-
types. This forms a dataset for the expected
emissions per area unit for each of the archetypes
which were later used to calculate the building
emissions for each individual building in Chicago by
multiplying these values with the building’s area
and number of floors. Archetype life cycle embod-
ied carbon ranges from 123.79 kgCO2e/m2 (11.5
kgCO2e/ft?) for WBW2R1 to 950.45 kgCO2e/m2
(88.3 kgCO2e/ft?) for SSW1R2. Figure 2 shows one
example of embodied carbon assessed through the
whole life cycle archetype CBW1R1 with 661.98
kgCO2e/m2 and MBW1R4 with 846.04 kgCO2e/m2.

In the second step, the archetypes were
assigned to each individual building in the
Chicago datasets created for this study (refer to
Building Stock Dataset Creation section). The cre-
ated dataset of the building inventory includes the
archetype code of each building, its year built,
floor area, and number of floors. As explained ear-
lier, the Athena models were considered for a
1000 SQF 1-floor building. Therefore, the value
generated by the Athena can be divided by 1000
to produce each archetype environmental emis-
sion per square footage for one floor. Accordingly,
Eg. (1) was used to calculate the emission of each
of the buildings where the archetype emission in
each of the emissions. In this equation, the build-
ing area is in units of square footage, and the
number of floors is an integer number.
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Archetype Emission x Building Area x Number of Floors

Building Emission =

Visualization and analysis

After creating the dataset, Python programming
was utilized to analyze the data and determine the
significance of emissions for each building arche-
type. This analysis served as the foundation for
developing a sensitivity analysis model and a
dashboard for 3-dimensional visualization of the
emissions. From a life-cycle assessment (LCA) per-
spective, the age of a building creates various
scenarios that influence its emissions. For instance,
buildings undergo demolition, replacement, and
renovation once they reach a certain age, which
can result in the construction of new buildings
that differ in size from the original baseline. To
address these changes, scenarios were developed
and programmed in Python to assess the impact
of these changes on emission levels. Equation (2)
was employed to simulate the emissions of new
buildings, assuming that the new square footage
would range from 80% to 120% of the existing
square footage. Additionally, the age threshold
was set between 50 to 100years, with increments
of 10years, guided by findings from the current lit-
erature review. The current emissions of the build-
ings were used as the baseline in the sensitivity
analysis.

if building age > age threshold — New Emission
= Archetype Base Emission
x New Square Footage
x Number of Floors
Equation 2
After calculating the new emission, the changes
towards the baseline were calculated based on Eq.
(3). This ratio shows the amount of the change in
the total emission compared to the current status
of the city’s building stock.
New Emission Ratio

New Emission

- The Current Amount of Emission
Equation 3

Additionally, the Excel 3D Map tool was
employed to visualize and project emissions across
Chicago. The coordinates in the dataset, represent-
ing the longitude and latitude of each building,

Equation 1
1000

were used to display the calculated emissions as
bars located at each building’s position. The choice
of the Excel 3D Map tool was driven by its user-
friendly interface, which offers numerous customiz-
able options to filter the visualizations based on
building archetypes, age ranges, and emission lev-
els. Moreover, the robust and fast backbone of the
Excel 3D Map tool and its real-time connection to
the data make it a suitable tool for visualizing such
results. It also provides an interactive environment,
allowing users to access detailed information
about each building simply by hovering over it
with the cursor. Furthermore, the tool supports
various 2D visualization features, making it an ideal
choice for developing a 3D GIS-based dashboard,
which was one of the objectives of this research.

Results and discussion
Descriptive analysis

Table 3 demonstrates the general statistics of the
Chicago buildings’ height, area, and year built. In
the consolidated dataset of Chicago’s urban infra-
structure, a total of 1,010,840 buildings were ana-
lyzed which had an average area of 1,819 Sqf
mean year built of 1958, delineating 157 unique
architectural archetypes.

As illustrated in Figure 3, the predominance of
the city’s building composition is attributable to
merely three archetypes: "MBW2R1", "WBW1R1",
and "MBW3R1", which collectively represent
approximately 88% of the total. Specifically,
"MBW2R1" typifies 36% of the building stock, char-
acterized by masonry structures with basements
and shingle roofs. The "WBW1R1" archetype,
accounting for 29%, is distinguished by wooden
structural elements, including basements, wood
walls, and similarly shingled roofs. The third prom-
inent category, "MBW3R1", constitutes 23%, featur-
ing masonry buildings with basements, walls of
mixed masonry and wood, and shingle roofs.
These findings highlight a pronounced architec-
tural homogeneity within the city’s vast array of
buildings.

As illustrated in Figure 4, within the external
wall category, masonry walls represent the major-
ity at 43.68%, followed by wooden walls at
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Table 3. The descriptive statistics of buildings area, height, and age.

Count Mean Std Min 25% 50% 75% Max
Area (SQF) 1,010,840 1,818.9 1,909.8 168.9 1,136.0 1,449.0 2,184.0 904,276.0
Year Built 1,958.4 16.0 1,939.0 1,944.0 1,957.0 1,968.0 2,017.0
Number of Floors 14 1.1 1.0 1.0 1.0 2.0 353.0
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Figure 3. The GIS visualization of main archetypes in the Chicago Metropolitan Area.

30.49%. The combination of wood and masonry  The

least common

roofing material

is slate,

accounts for 24.32% of the buildings, while stucco
materials comprise only 1.52%. In terms of rooftop
materials, over 90% consist of Shingle and Asphalt.

making up just 0.38% of the total, which equates
to approximately 3,840 buildings. Additionally,

the results indicate that most buildings are
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Pie Chart for Roof Material
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Figure 4. The distribution of the number of buildings with different materials in Chicago.

Table 4. The emissions statistical distribution in Chicago over 1,010,840 buildings.

Mean Standard deviation Min 25% 50% 75% Max
GWP (biogenic) —29158 2323835 —1735749000 —26035 —13877 —6868 486
GWP (calcination) 17162 91082 50 10150 13831 33393 87526682
Acidification 1064 64705 34 384 525 1113 42876246
HH Particulate 260 22306 9 78 109 239 16323548
Eutrophication 126 9568 0 41 57 124 6851620
Ozone Depletion 0 27 0 0 0 0 17580
Smog 20250 1479632 661 6823 9371 19880 972425391
Total Primary Energy 2648776 225032445 117955 867360 1227630 2721924 150214710355
Non-RenewableEnergy 2443806 209662802 100317 809952 1140236 2498886 139865271649
Fossil Fuel 2148344 183251116 727 724675 1019676 2228800 125376057462

constructed with masonry structures, and more
than 99% of the buildings feature basement
foundations.

Table 4 shows the general statistics of the
amount of different emission types in A-C and A-D
LCA phases throughout the buildings in Chicago.
Phases A-C denotes the amount of emission from
the raw material stage to the construction and dis-
posal of the materials while phase D adds the
phases beyond the building LCA, including reuse,
recovery, recycling, etc.

After analyzing the status of 4 main archetype
categories in Chicago, the average value of the dif-
ferent emissions for each of these categories was
assessed. As demonstrated in Figure 5, “MBW2R2"

average emission is slightly higher than the three
other categories. This category comprises masonry
structures, basement foundations, masonry walls,
and tar and gravel roofs. Meanwhile, the WBW1R1,
as the only frequent category with a wooden
structure in Chicago has the lowest emission rate.

Although the difference between emissions
seems insignificant, the analysis of the emissions in
practice and applied to the city scale shows differ-
ent results. As shown in Figure 6, the average
emission of the buildings with MBW2R2 becomes
significantly higher than the other categories in
practice. The main difference between this arche-
type and two other masonry buildings is in the
rooftop material.
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Figure 5. The total life cycle emission value of each archetype per square foot based on the Athena model.

The last item worthy of mention is the biogenic
carbon calculation. EN 15804 is an important regu-
lation that defines the product category rules for
building and construction products. In this study,
we follow this requirement: in the newest version,
EN15804 + A2, long-term biogenic carbon storage
is not permitted. All biogenic carbon sequestered
in modules A1-A3 must be considered as emitted
(or transferred to nature) in module C. Since mod-
ule C has to be included in life cycle assessment
under the new requirement, so any carbon seques-
tering, bio-based materials are considered to have
net zero biogenic carbon over their life cycle. The
life cycle carbon emission (A-C) can not go nega-
tive under the new requirements.

Sensitivity analysis

Sensitivity analysis in the context of building stock
refers to a method used to assess the impact of
variations in input parameters on the output of
building carbon emission models. This analysis is
crucial for understanding the uncertainties associ-
ated with building stock models and for improving

the accuracy of performance predictions [43].
There are several uncertainties exist in the assess-
ment, mainly related to the assumption made and
data used in the calculation. Two primary factors
can influence the accuracy and reliability of the
assessment results. The first factor is end-of-life
uncertainty. Existing LCA databases and methods
often lack comprehensive data on the end-of-life
treatment and recycling of building materials and
components [44]. An end-of-life stage, including
recycling and disposal, can have a substantial influ-
ence on the environmental impact of a building
[45]. The second factor is the building life span,
there is no consensus on what value of building
life span should be used since it varies per region,
building types, and other factors. The building life
span found in previous studies varies between
50years and 100years, which led to a wide range
of GWP results. A sensitivity analysis was con-
ducted to test the impact of the uncertainty asso-
ciated with total floor area and building life span.
A 10-year increment was used for change from the
initial assessment, which is 50years. Five values
were used for building life span: 60, 70, 80, 90, and
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Figure 6. The average emission for each of the archetypes in the entire city of Chicago.

100 years. The baseline was considered as the cur-
rent amount of GWP in the A-C phases of the life-
cycle and Egs. (2) and (3) were used to perform
the sensitivity analysis.

Figure 7 indicates the ratio of the changes
compared to the baseline for different areas and
building age threshold scenarios and helps to
understand how strategic modifications to build-
ing footprints and age limits can substantially

influence emission outputs. The square footage
factor determines the range of change in the
buildings’ square footage. Considering the age of
the buildings in Chicago, and the fact that the
number of buildings more than 90years old is
negligible, the results showed almost no new
emission for this range. Nevertheless, the results
showed that the policies for the new building area
and the age of buildings can significantly impact
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Figure 8. The emission changes sensitivity analysis for different areas and ages 3D visualization.

the new amount of emission. Keeping the build-
ings up to 80years and then considering the 80%
of the current area for the new buildings had the
lowest ratio with 26% of the current emission
showing that small modifications can lower future
emissions significantly while the age threshold of
50 and 20% increase in the area produced almost
the same as existing emission in the whole city
with both new and old buildings. This fact is evi-
dent in Figure 8 where the higher slopes of emis-
sion increase are observed when moving from
100 years threshold to 50 years.

Visualization

The 3D visualization of the buildings’ emissions
transforms our understanding of the geographical
distribution of these emissions. After understand-
ing the archetypes and their emission rates, the
Excel 3D Map tool was used to visualize the emis-
sions. This powerful visualization, as shown in
Figure 9, offers critical insights that benefit policy-
makers, urban planners, and environmental
researchers by pinpointing the sources and pat-
terns of emissions across different regions. This
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Figure 9. The building emissions visualization for buildings’ total life cycle emission for 10,000 sample buildings (each
box in the 3D visualization demonstrates a building in the city of Chicago).

particular visualization presents data from a signifi-
cant subset, 10,000 buildings out of more than
one million analyzed in the study, and provides
more information about the geographical build-
ings’ emissions as a substantial tool to investigate
the root causes of the construction industry’s
adverse environmental impacts.

The 3D Map tool not only displays the locations
and emission levels but also incorporates a suite of
interactive features that allow users to dissect the
data further. Users can apply filters to view emis-
sions by building archetype, structural materials,
construction year ranges, and more, enhancing the
tool’s utility for detailed analysis. The emissions are
categorized and color-coded, making it easier to
differentiate between types such as CO2, methane,
or particulate matter. This differentiation is crucial,
as it enables the visualization to adapt to various
analytical scenarios for different units and scales of
the emissions, ensuring that emission stacks are

accurately represented in terms of both magnitude
and type. Besides the mentioned features that
allow users to customize the data they want to
access, the Excel 3D Map Tool provides an
extremely user-friendly environment that needs no
expertise to modify the variables.

The data revealed intriguing patterns, notably
that downtown Chicago—a region dense with high-
rise buildings—registered high emission potentials.
This was anticipated given the urban density and
architectural characteristics. Surprisingly, certain sub-
urban areas, particularly the northwest, also dis-
played elevated emissions. A deeper dive into the
data linked these emissions to specific building
types, particularly those with roofing materials cate-
gorized under archetypes MBW2R3 and MBW2R4,
underscoring the significant impact of construction
materials on emission levels.

In addition to geographic and material factors,
the visualization highlighted that structures with
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steel frameworks, though less common in Chicago,
contributed disproportionately to the emission
totals. This insight, aligned with findings from
Figure 5 to Figure 6, confirms the substantial role
of building materials and structural types in envir-
onmental impact. Overall, this advanced visualiza-
tion tool does more than merely map emissions; it
provides a multi-dimensional exploration of envir-
onmental data, empowering stakeholders to make
informed decisions and target interventions more
effectively. Additionally, the size and selection of
the subsample can be changed according to the
users’ demands.

Contribution

This study contributes to the existing literature in
the following three aspects. First, at the method-
ology level, this study creates a framework to
measure the existing building stock’s embodied
carbon in the city of Chicago, such framework and
methodology can be applied to other cities that
have similar building characteristic information.
Secondly, for the building-level data at the urban
scale, the individual buildings with geolocation
have been identified, modeled, and assessed. Such
detailed and geo-accurate embodied carbon data
is a tremendous asset for urban planners, policy-
makers, and researchers who are interested in
advancing the understanding of built environment
embodied carbon mitigation. Lastly, the descrip-
tive analysis provides benchmarks for assessing
the future building’s embodied carbon perform-
ance, and the data visualization provides the gen-
eral public information regarding the existing
urban embodied carbon and future changes. By
dissecting the emission profiles of Chicago’s build-
ing stock, the study contributes to a growing body
of knowledge aimed at fostering resilient, low-
carbon urban environments.

Limitation

While this research establishes a comprehensive
framework for constructing a detailed inventory of
buildings and calculating their emissions using a
bottom-up approach, it does have some limita-
tions. Firstly, the study is geographically con-
strained to the Chicago metropolitan area, which
may limit its generalizability to other regions.
Additionally, there are constraints related to the
availability of detailed data on building envelopes
and roofing materials. The data for Chicago cate-
gorizes building wall materials into four categories,

which may not adequately represent the actual
diversity of materials used.

Furthermore, the absence of a unified dataset
necessitates the merging of various datasets, lead-
ing to the exclusion of numerous buildings from
the study. Although these limitations affect the
number of archetypes analyzed, they do not com-
promise the methodological integrity of the
research. Despite the significant prevalence of sev-
eral archetypes, the overall impact of these limita-
tions on the findings is minimal. Looking ahead,
future research could leverage data extraction
technologies such as Google Street View and satel-
lite imagery, combined with computer vision mod-
els, to develop a more generalized model capable
of extracting data for cities beyond Chicago,
thereby extending the applicability of this study.

In addition to the previously discussed limita-
tions, this study also faces constraints due to its
underlying assumptions. Specifically, the emissions
resulting from the renovation of buildings to main-
tain their usability as they age were not included
in sensitivity analysis results since it was not in the
scope of this research. Consequently, it is recom-
mended that future studies undertake detailed
simulations to assess the impact of various renova-
tion and replacement scenarios on urban emission
levels.

Conclusion

This research aimed to investigate the building
stock emissions in the United States. It utilized the
city of Chicago as the study platform. The objec-
tives of this study were to (1) develop a method-
ology for extending the emission databases to
individual buildings in North America, (2) investi-
gate the most frequent archetypes and their
emission levels, and (3) visualize the results geo-
graphically and explain the emission status of
Chicago. To achieve these objectives, the study
chose the Athena Impact Estimator Software as
the emission estimator database and used the
National Structure Inventory and Cook County
Open Data as the datasets to gather the buildings’
characteristics. A bottom-top physical-based arche-
type approach was used to model different emis-
sions for Chicago.

The results demonstrated that although 157
archetypes existed in Chicago, more than 90% of
them were distributed through four archetypes.
Furthermore, the analyses showed that although
the archetypes might seem not to be remarkably



different at first glance, the differences between
the emissions make substantial differences in the
practice and can influence the emission level of
the buildings significantly. Furthermore, the roof
material proved to be a very influential factor in
the emission level of the buildings. Moreover, the
wood material was associated with the lowest
emission rate while the steel structure was associ-
ated with the highest ones.

The 3-dimensional visualization showed that the
emission hotspots might be different as it is
expected in the cities. For instance, the northwest
side of the Chicago emission was even greater
than some of the buildings in the downtown area.
The observation of the data in this area showed
that the high-emission archetypes were con-
structed with different roof types. The results of
this study not only provided a systematic frame-
work for building emission but also emphasized
on the importance of developing a suitable
platform for visualizing and demonstrating the
emission results for better understanding and deci-
sion-making. The results of this study are useful for
policymakers, urban planners, architects, and envir-
onmental researchers. Future studies are sug-
gested to concentrate on utilizing the power of
advanced methods such as computer vision to col-
lect the required data such as wall and roof mater-
ial. Future research can also concentrate on
expanding this methodology to other cities at
other zones and climate conditions for better
comparison.
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