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A B S T R A C T

This study delves into the energy burden on households, a crucial aspect of energy justice, influenced by urban
environment factors and buildings’ passive and active designs. It evaluates the effects of passive and active
design features on household energy expenditures at the census tract scale. Applying advanced Machine Learning
techniques, including multiple and decision tree regressions, random forests, support vector machines, XGBoost,
and Neural Networks, the research assesses the impact of various factors on the energy burden. Findings reveal
that passive design elements significantly outweigh active ones in reducing energy costs at the urban scale, as
confirmed by a model with a 94.8 % R2 accuracy. The insights provided are vital for policymakers, urban
planners, architects, and researchers, pushing for sustainable urban planning and energy justice by prioritizing
effective design strategies. This contributes to a broader understanding and implementation of energy-efficient
measures in urban development.

1. Introduction and background

1.1. Energy burden

Energy burden is defined as the value of energy-related expenditures
that each household pays compared to their gross income (Department
of Energy, 2023). The energy-related expenditure primarily refers to the
utility bill (e.g., heating and cooling). The Average Energy Burden (AEB)
is calculated from the average value of these expenditures in a specific
region, such as census tracts. A census tract is a relatively permanent
subdivision of a county that the U.S. Census Bureau uses to help organize
population data for statistical purposes, typically containing between
1200 and 8000 residents (United States Census Bureau, 2024). Over 46
million people in the United States, about 40 % of the population, pay a
significant proportion of their income on the energy burden, sometimes
exceeding 10 % of their gross income (Drehobl et al., 2020). This dif-
ference not only impacts energy justice in the United States such as
affording the necessary heating and cooling appliances, but also leads to
health issues which are constantly arising due to the current climate
change patterns and extreme temperature events (Drehobl et al., 2020;

Ghorbany et al., 2024b; Guo et al., 2018). Moreover, studies show that
some specific demographic groups are more prone to energy justice is-
sues, which leads to equity issues in society (Drehobl et al., 2020).
Directly addressing poverty requires high-level, multidimensional de-
cisions, making solutions difficult and expensive (Ajebe, 2024; Y. Su
et al., 2023).

1.2. Passive and active strategies

Passive and active strategies are two distinct principles in building
science and design. Passive strategy employs solutions that maximize
the efficiency and comfort of the built environment by utilizing natural
resources such as sunlight and ventilation (Ochoa and Capeluto, 2008).
Active strategies, conversely, involve the use of mechanical and elec-
trical devices, including heating systems, to provide comfort for building
occupants (Ochoa & Capeluto, 2008; Wigginton & Harris, 2013).

Historically, passive approaches have significantly lessened energy
consumption before the advent of modern mechanical systems.
Contemporary studies affirm passive strategies’ efficacy, particularly in
hot climates, with findings suggesting they can decrease cooling loads
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and energy usage by an average of 31 % and 29 %, respectively, (Hu
et al., 2023). Other studies in the United States showed that insulated
building materials in roofs and ceilings potentially reduce energy con-
sumption by 35 to 45 % while wall insulation can add another 15 %
(Shahee et al., 2024). The features of passive strategies are renewable
and require low technology, thus reducing energy consumption without
imposing additional financial burdens on households (Bhamare et al.,
2019; Campaniço et al., 2014; Chen& Yang, 2017). In the contemporary
context, the importance of these two principles on energy consumption
in buildings has always been an area of debate (Ochoa& Capeluto, 2008;
Salameh& Touqan, 2022; Zune et al., 2020). In addition, the lack of data
on some of the passive design features, such as the window-to-wall ratio
(WWR) and external shading up to recently, has made performing a
comprehensive comparison a challenge (Ghorbany et al., 2024b). Other
studies related to WWR and external shading were either concentrated
on an individual building and not the urban scale (Ashrafian&Moazzen,
2019; Harmati & Magyar, 2015; Javad & Navid, 2019), or used
simplified methods to assess the outdoor shading at the design stage and
not the actual existing buildings in the cities (Elrefai & Nikolopoulou,
2023).

Prior research on other passive strategies have also focused mainly
on isolated buildings, often overlooking its impact on larger urban areas
and demographic variations at the census tract level. Some of these
studies also considered the passive and active design features together.
Sun et al. (2018) worked on a case study in Southeast Asia as the first
zero-energy building and investigated the cost efficiency of passive and
active design strategies. Other researchers in China worked on the
collaborative optimization for the heating systems and passive design to
reduce the cost and energy consumption (Wang et al., 2020). Kang et al.
(2015) worked on comparing the impact of passive design against the
active strategies and showed that passive strategies are more beneficial
in terms of energy saving. However, this research was focused on a
school building (Kang et al., 2015). What is worth noting is that these
studies predominantly originate from developing nations, such as
Mexico (Vargas & Hamui, 2021), Nigeria (Onyenokporo & Ochedi,
2019), Egypt (Abdallah, 2022; B. Su, 2011), Spain (Diz-Mellado et al.,
2023), and China (Cheung et al., 2005; Han et al., 2017; Ling & Jin,
2018; Yao et al., 2018) while only a few studies concentrated on
developed countries such as the United States (Ghorbany et al., 2024b;
Hu et al., 2023).

Furthermore, a few studies worked on passive and active design
strategies on an urban scale. Bouketta, (2023) worked on investigating
the impact of Urban Cool Island as a passive strategy for improving the
summer conditions (Bouketta, 2023). However, this research neither
directly worked on energy nor concentrated on buildings’ impact in
urban cool islands. Another study also worked on the impact of passive
design in thermal conditions but this study was not focused on active
and passive design comparison and its impact on energy (Shaeri et al.,
2018). The current literature shows that current studies were not
directly related to energy burden behavior and prediction and were
mostly considered only one of the passive or active design strategies
(Azimi Fereidani et al., 2021; Cheshmehzangi & Dawodu, 2020; Sala-
meh & Touqan, 2022). Therefore, a research to cover this gap and
propose a framework to compare these two strategies on an urban scale
is necessary.

In addressing urban energy burdens and the effectiveness of different
strategies, Machine Learning (ML) has emerged as a powerful tool for
predictive analysis, which is due to its exceptional effectiveness in
deciphering the intricate relationship between variables and producing
predictions (Bukkapatnam et al., 2019; Ghorbany et al., 2024a; Rebala
et al., 2019). In the last decades, Fan et al., (2017) worked on predicting
cooling factors using deep learning algorithms (Fan et al., 2017) while
Bektas Ekici and Aksoy (2011) utilized an Adaptive Network Based
Inference System (ANFIS) for predicting energy consumption in both
cooling and heating systems and could find a good combination between
these two energies (Bektas Ekici & Aksoy, 2011). Another study in this

field used artificial neural networks for cooling load prediction (Kwok&
Lee, 2011). Sholahudin and Han (2016) used neural networks in heating
energy consumption prediction in individual buildings (Sholahudin &
Han, 2016). Another study used LSTM for predicting building energy
consumption (Li et al., 2022). Although these studies found that ma-
chine learning models can be efficient models in energy use cases, their
application has been primarily confined to individual energy types and
early design stages rather than holistic urban energy consumption pre-
dictions incorporating building characteristics.

This research seeks to bridge the gap by comparing passive and
active strategies at an urban scale and employingML to identify the most
influential factors for predicting AEBs. The passive design factors
investigated in this research include the wall material, roof material,
window-to-wall ratio, external shade, and land coverage while the
active design factors included the proportion of heating and cooling
systems such as central air, warm air heating, hot water steam heating,
unit heater heating systems, floor furnaces, and solar.

To address this issue, this research aims to (1) conduct a compre-
hensive comparison between the passive design factors and active
design main components by combining the different data sources and
creating a first-of-it-kind dataset for statistical analysis, (2) identify the
most significant variables that are impacting the AEB in the census tracts
using the interpretable regression methods, and (3) develop an ML
model to accurately predict AEB in Chicago Cook County census tracts.
The findings of this research indicate that passive, rather than active
design factors play a more crucial role in changing energy expenditures
on the urban scale. The findings of this research provide insights for
policymakers, urban planners, architects, and future researchers to
move toward a sustainable and equitable urban environment and the act
of energy justice.

2. Methodology

Fig. 1 demonstrates the general flowchart of this study. This research
methodology includes three major steps, namely data collection, data
processing, and data analysis. The proposed methodology was con-
ducted on the data from the metropolitan area of Chicago, located in a
hot-summer humid continental climate zone in the Midwest region of
the United States as a representative of a developed country major city.
In the data collection section different data sources including the GSV
data (Ghorbany et al., 2024b), National Structure Inventory (NSI) data
(NSI, 2024), Cook County Open Data (Cook County Assessor’s Office,
2022), and LEAD and ACS data (Ma et al., 2019) were examined to
extract the required variables for assessing the passive design and
building characteristics’ influence on AEB. To merge these different data
sources without data loss, a pre-processing stage was conducted. Finally,
in the data analysis stage, the prepared dataset was investigated by
statistical and ML methods to assess the impact of each variable on the
AEB on the households and develop the best model for predicting it. The
details of each step have been provided in the following sections.

2.1. Data sources

The dispersion of the passive design and building characteristics data
is one of the bottlenecks in the AEB analysis that needs to be addressed
before any further analysis. Different data resources are used in this
research to overcome this challenge. Table 1 demonstrates the variables
extracted from each of the data sources and the description of these
datasets can be found in APPENDIX 2.

2.2. Data processing

After collecting the required datasets, the data needed to be changed
from the individual building scale to the census tract scale to match the
energy burden. To accomplish this, each dataset was first treated sepa-
rately. In the beginning, the missing data were cleaned from the
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datasets. Afterward, the land cover was calculated from the building and
land square feet for the Cook County Data. Then, the average of the
central air variable was calculated for each census tract. For the cate-
gorical variables, which included wall material, roof material, central
heating, and other heating, the proportion of each category for the
census tract was calculated. Then, all the datasets were grouped by the
census tract FIPS code. FIPS is a unique code assigned to each census
tract in the United States.

The same steps were done on the NSI dataset. After cleaning the
missing data, the categorical variables, including the building structure
type and building foundation type, were calculated based on the pro-
portion of each category in these variables in each Census Tract. The
other variables were averaged and grouped by the census tract FIPS
code. Moreover, the extracted data from CNN GSV model were averaged
based on the census tracts in Illinois. FIPS code was also assigned to each
extracted data from images to make the data merging feasible in future
steps. After calculating the required parameters and transforming each
dataset to the census tract level, the data was merged based on the FIPS
code. In total, 1135 rows of data remained, meaning that there were
1135 out of 1319 census tract in Chicago that match between four
datasets for Chicago city. The statistical description of the merged
dataset is demonstrated in APPENDIX 1. In this table, the mean value,
standard deviation of each variable, minimum, maximum, and quantiles
of the data are reported.

2.3. Data analysis

2.3.1. Correlation and multicollinearity
After creating the research data frame, Python was used to imple-

ment the statistical analysis. To generate a general insight into the
variable’s relationship and develop the initial hypothesis, the Pearson
Correlation was used (Saidi et al., 2019).

Afterward, the Variance Inflation Factor (VIF) was checked to assess
the multicollinearity among the variables. Since the linear regression
model coefficients are interpreted with the assumption of keeping other
variables constant while changing one independent variable, the mul-
ticollinearity is one of the factors that violate the Ordinary Least Squares
(OLS) assumptions and impacts its interpretability (Ghorbany et al.,
2024b; Lee et al., 2023). The VIF is calculated through Eq. (1) where the
coefficient of determination, or R2, is found by regressing the main in-
dependent variable in the model against each of the other independent
variables.

VIF =
1

1 − R2
(1)

The estimation of VIF gives an idea about the variables that need to
be eliminated to keep the model’s interpretability.

2.3.2. OLS regression and machine learning
OLS regression is the most interpretable ML model that provides an

idea about the interaction of the variables and how they are impacting
the dependent variable, in here AEB (Burton, 2021). Therefore, the OLS
was used in this study to extract the influential passive design factors on
AEB among all the defined variables in Section 2.1. The coefficients of
the OLS method are calculated based on Eq. (2) where X is the matrix of
the independent variables and Y is the vector of dependent variables.

β̂ =
(
XTX

)−1XTY (2)

After extracting the β̂ of the OLS regression model, the P-Value of the
coefficients is calculated and the values below 0.05 are considered sig-
nificant. Otherwise, the variables can be deleted upon consideration of
R2 and R2 adjusted difference and the importance of model’s
interpretability.

After selecting the appropriate variables and interpreting the results,
more advancedML regression models were run to check whether there is
a higher prediction power can be achieved through these models. The
Support Vector Regression (SVR), decision tree regression, random
forest regression, and XGBoost regression models were used to find the
most optimal model for average energy prediction based on building
characteristics. All the models went into a fine-tuning grid search to find
the best parameters and were tested through a 5-fold cross-validation to
validate the accuracy and error of the models (Ghorbany et al., 2024b;

Fig. 1. The research methodology flowchart.

Table 1
The variables distribution among the data sources.

Dataset Category #Variables Variables used

(Ghorbany et al.,
2024b)

GSV Data 2 Window to Wall Ratio (WWR),
External Shading

(NSI, 2024) NSI Data 6 Structure Type, Foundation Type,
Foundation Height, Square
Footage, Number of Stories, Year
Built

(Cook County
Assessor’s
Office, 2022)

Cook
County

9 Longitude, Latitude, Wall
Material, Roof Material, Building
Square Feet, Land Square Feet,
Central Heating, Other Heating,
Central Air

(Ma et al., 2019) LEAD
Data

1 AEB

(U.S. Census
Bureau, 2022)

ACS Data 2 Population with Poverty Status
Percentage, The Over 65 Years
Population Percentage

Total 20
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Fig. 2. Population Below Poverty Level (pct_poverty) (a), External Shading (b), Land Coverage (c), and Central Air Condition (d) Data Distribution in Chicago.
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He et al., 2023; Nti et al., 2021). The R2, Root Mean Square Error
(RMSE), Mean Square Error (MSE), and Mean Absolute Error (MAE)
were used as the performance measures of these models in this study
(see Eqs. (3)–(6)) (Ghorbany et al., 2023; Pham, 2019).

R2 = 1−
RSS
TSS

(3)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n
i=1

(
yi − ypi

)2

n

√

(4)

MSE =
1
n

∑n

i=1

(
ypi − yi

)2 (5)

MAE =
1
n

∑n

i=1

⃒
⃒ypi − yi

⃒
⃒ (6)

In these equations, yi indicates the predicted value, ypi is the esti-
mated data, γp demonstrate the mean value, and n indicates the sample

size. Moreover, RSS is the sum of squares of residuals and TSS is the total
sum of squares.

3. Housing physical condition data

3.1. Descriptive data analysis results

The extraction of general statistical characteristics of the data was
the first step to provide a general insight into the dataset. APPENDIX 1
demonstrates the results of the statistical description of the merged
dataset. Only 1133 census tracts were used for data analysis as building
square footage and land cover data were only available for those tracts
out of the 1135 tracts identified in Cook County.

In Cook County, wall material proportions were categorized into
wood, masonry, combined wood and masonry, and stucco, with ma-
sonry being the most common (average 37.67 %) and stucco least
common (average 1.14 %). Roofing materials were grouped into six
types, including shingle/asphalt, tar and gravel, shake roof, tile roof,
slate roof, and other roofs. Shingle/asphalt was the most prevalent,

Fig. 3. Pearson correlation among the study variables.
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averaging 67.87 %, whereas slate was the least, at only 0.32 % average
but reaching 14.69 % in some areas. This indicates a preference for
asphalt and shingle roofs. Central heating types included warm air, hot
water steam, and electric; notable was the absence of specific heating
categories in local use. In terms of ventilation, about 39.19 % of build-
ings had central air conditioning that also controls the mechanical
ventilation, window-to-wall ratios ranged from 15.15 % to 25.68 %. As
for external shading, it was present in 30.27% on average, up to 62.24%
in certain areas, reflecting diverse natural and mechanical ventilation
practices in Cook County, Chicago. Fig. 2 demonstrates the distribution
of some of these variables in Chicago.

3.2. Statistical data analysis results

3.2.1. Correlation insights: socioeconomic and geographical determinants
of energy burden

Upon examining the data distribution, Pearson Correlation was
deployed to provide a perspective on the relationship between the
covariates and AEB as well as the collinearity between the variables
themselves. Fig. 3 shows poverty (pct_poverty) and central air condi-
tioning systems have the most substantial correlation to energy burden,
at 0.73 and -0.71, respectively. Poverty’s positive correlation with en-
ergy burden suggests that it concurrently rises. Conversely, central air
conditioning’s negative correlation implies more such systems corre-
spond with lower energy burden, potentially reflecting the newer
buildings with enhanced passive strategies (appropriate window-to-wall
ratio), as indicated by the 0.71 correlation between building year and air
conditioning. This may be due to the income and socioeconomic pa-
rameters since there is an interesting pattern between the central air
systems usage and regions with lower poverty as demonstrated in Fig. 2.
It is noteworthy that the correlation does not necessarily mean a cause-
and-result relationship between the variables.

Additional variables like median year built, wood wall materials,
masonry wall materials, wood and masonry combination wall material,
latitude, longitude, heating systems except warm air, tar and gravel roof
material, and land cover also show notable correlation with energy
burden in Table 2. These relationships provide a framework for under-
standing factors influencing energy expenses and burdens.

As shown in Table 2, latitude and longitude indicate the geographical
location of the census tracts, which is another factor that has a corre-
lation larger than 0.4 with the AEB. Longitude correlates positively
(0.43), indicating that as census tracts shift eastward, the energy burden
tends to increase. This is while as demonstrated in Fig. 2, the eastern
areas in Chicago have denser land covers, suggesting the increase in
building density might be a potential reason for more energy demand in
these areas. The latitude, conversely, has a negative correlation (-0.42),
suggesting a decreased energy burden when moving northward, as
shown in Fig. 3. These trends may reflect climatic variations like wind
and humidity, which might be influenced due to the alignment of this
city to Lake Michigan and can create microclimates inside the city
(Alfraihat et al., 2016). This also might be due to socioeconomic patterns
such as wealth distribution near or further to water bodies. To elaborate
on this, as demonstrated in Fig. 2, the northern and western areas of
Chicago have generally lower poverty percentages which suggests that
this trend can be accelerated by the financial issues in these areas and

also it might be impacting the marginalized areas more. Moreover, Fig. 2
shows that these areas with more poverty have lower central air con-
ditioning systems suggesting that other types of cooling and heating is
responsible for the energy burden in these areas. Additionally, the
“combined wood and masonry” wall category in Fig. 3 highlights that
the combination of wood and masonry as wall materials (e.g., bricks
being used to a certain height of the building and wood for the rest)
correlates differently with AEB than when these materials are used
separately. Therefore, the significance and influence of these variables
are further examined using the Ordinary Least Squares (OLS) model to
understand the impact of those variables.

3.2.2. OLS regression results
To initial the analysis, a regression model with AEB as the outcome

and 36 predictors was conducted (see Table 3). The model is significant
as indicated by a Prob F-statistic below 0.005 and an F-statistic value of
128, well above the usual significance threshold of 10-20 (Sureiman &
Mangera, 2020). Consequently, the null hypothesis, stating that the
variables are not associated with AEB, is rejected indicating the vari-
ables collectively are associated with the AEB. However, many P-values
above 0.05 suggest some variables may not significantly differ from
zero, implying a lack of individual impact. The closeness of R-squared to
adjusted R-squared suggests these discrepancies are likely due to mul-
ticollinearity, advising caution before removing any variables.

Considering the multicollinearity presence, variables such as lati-
tude, median year built, the percentage of poverty, population over 65
years old, window-to-wall ratio, external shading, central air condi-
tioning, and land cover ratio remained significant, indicating certain
association with the AEB. While many were anticipated by the Pearson
correlation analysis (refer to Fig. 3), factors like age influence, window-
to-wall ratio, and external shading introduced new insights. That means
even though these variables were not among the highly correlated
values in the correlation results (Table 2), OLS as a more robust model
proved that these variables are significant to the energy burden.

To refine the model, variables with a P-value below 0.05 were
retained, and then their variances inflation factor (VIF) was monitored.
The adjustments in R-squared and Bayesian information criterion (BIC)
were the criteria for the inclusion or removal of variables. Lower BIC
values indicate an improved model over the previous iterations (Chak-
rabarti& Ghosh, 2011; Ghorbany et al., 2022). Table 4 shows the model
after excluding variables that caused multicollinearity. Excluding Slate
Roof Material Proportion, all retained variables have P-values below
0.05. Despite the marginal P-value of Slate Roof Material Proportion, the
close R-squared and adjusted R-squared values justify keeping the cur-
rent variables. This revised model enhances interpretability, and a
comparison of the R2 values in Tables 3 and 4 shows it maintains pre-
dictive efficacy. Moreover, the Akaike information criterion (AIC) and
BIC values are lower than the previous model, suggesting that this is a
better fit, and the F-statistic increase from 128 to 291 supports this.

The regression model fits the data well, surpassing prior results by
Ghorbany et al. (2024b), but the intercept’s physical plausibility is
questionable – suggesting a 34 % energy burden in the absence of urban
development. The high P-value for the intercept in Table 3, however,
hints at a plausible zero value in undeveloped areas. Removing the
constant from the model, Table 5 shows the final model. The F-statistic
rose to 1355 and both R-squared and adjusted R-squared values
improved to 0.948 and 0.947, respectively. The AIC and BIC values are
nearly unchanged. These measures, alongside logical model interpre-
tation, suggest this is the superior model. It’s R-squared raised signifi-
cantly from 0.785 to 0.948, outperforming prior models by over 20 %
(Ghorbany et al., 2024b).

In the developed model, the P-value of all the variables is below 0.05
suggesting that there is enough evidence to reject the null hypothesis
and accept all variables associated with AEB. According to the co-
efficients presented in Table 5, the geographical location of the census
tracts has the most influence on the AEB, suggesting that potentially

Table 2
Variables with relatively high (higher than 0.3) negative and positive correla-
tions with AEB.

Mode Variables

Positive
Correlation

heating systems except for warm air, tar and gravel roof
material, wood wall materials, masonry wall materials, land
cover, longitude, poverty percentage

Negative
Correlation

Median year built, wood and masonry combination wall
material, latitude, central air conditioning

S. Ghorbany et al.
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climate (e.g., microclimates caused by Lake Michigan or wind factors),
and socioeconomic conditions are highly associated with energy use.
Moreover, the latitude of the census tracts has the highest coefficient
among all variables. That means a 1 1-degree increase in the location of
the census tracts on average, decreases the AEB by 1.328 % in the census
tract while the amount of this change is, on average, 0.455 % for the
longitude.

As expected, poverty is the next most influential factor on the AEB,
meaning a 1 % increase in the population below poverty, on average, in-
creases the energy burden by 0.067 %. Moreover, with 95 % confidence,
this change is between 0.062 to 0.072 % on the AEB. However, changing
the poverty level requires a difficult multifactor economic decision which
might have an adverse effect on many factors in the long time (Cheng &
Ngok, 2020; Sachs, 2015; Šileika & Bekerytė, 2013). The findings from
Table 5 suggest that passive design elements, specifically the
window-to-wall ratio (WWR) and roofing material, exert a comparable
influence on poverty-related changes. Notably, these passive design pa-
rameters can be adjusted relatively easily during the design and renova-
tion processes, potentially mitigating additional financial strain on
households (Ghorbany et al., 2024b). Moreover, the passive design factors
investigated in this research (e.g., wall material, window-to-wall ratio)
collectively as a group, impact the AEB more than the poverty ratio. This
finding provides a substantial perspective for the policymakers and energy
department for developing sustainable cities and expanding energy justice
through passive design policymaking. According to themultiple regression
results, the AEB can be calculated through Eq. (7).

Average Energy Burden= (−0.455) × Longitude+ (−1.328) × Latitude

+ (0.067) × pct poverty+ (0.019)

× Over 65 Years Population Percentage

+ (−0.060) × WWR+ (−0.024) × Central Air

+ (0.011) × External Shading+ (0.015)

× MasonryWall Material Proportion+ (0.020)

× WoodenWall Material Proportion+ (0.012)

× Wood andMasonryWall Material Proportion

+ (−0.028) × StuccoWall Material Proportion

+ (0.009) × Median Year Built+ (0.004)

× Land Cover+ (−0.062)

× Other Roof Material Proportion+ (0.053)

× Slate Roof Material Proportion
(7)

As evident in the P-Values from Table 5, among active design factors,
only air conditioning association with energy burden is statistically
significant and therefore linked to energy burden on a census tract scale,
indicating that passive design elements are more significantly impactful
for urban policy. Policymakers, architects, and urban planners should,
therefore, focus more on passive design factors. The comparison in Fig. 4
shows that passive design elements have the greatest effect on

Table 3
General model with all variables and AEB as dependent variable.

Prob > F = 0
F-statistic: 128.8
No. Observations: 1133

Dep. Variable: AEB
R-squared: 0.789
Adj. R-squared: 0.783
AIC: 2693
BIC: 2859

Variables Coefficient Std. Error t-value P-value CI Lower CI Upper

const 7.533 36.265 0.208 0.835 -63.622 78.689
Longitude -0.072 0.349 -0.207 0.836 -0.756 0.612
Latitude -1.223 0.263 -4.658 0.000 -1.739 -0.708
Building Square Feet 0.000 0.000 -1.717 0.086 0.000 0.000
Masonry Wall Material Proportion 0.243 0.579 0.420 0.674 -0.893 1.380
Wood Wall Material Proportion 0.249 0.579 0.430 0.668 -0.887 1.384
Wood and Masonry Wall Material Proportion 0.242 0.579 0.417 0.676 -0.894 1.378
Stucco Wall Material Proportion 0.195 0.579 0.338 0.736 -0.940 1.331
Shingle and Asphalt Roof Material Proportion 0.159 0.386 0.413 0.680 -0.598 0.917
Tar and Gravel Roof Material Proportion 0.155 0.386 0.400 0.689 -0.603 0.912
Shake Roof Material Proportion 0.166 0.386 0.430 0.667 -0.592 0.924
Tile Roof Material Proportion 0.120 0.387 0.311 0.756 -0.638 0.879
Other Roof Material Proportion 0.089 0.387 0.231 0.818 -0.670 0.849
Slate Roof Material Proportion 0.240 0.387 0.619 0.536 -0.520 0.999
Wooden Building Structure Proportion 0.082 7.354 0.011 0.991 -14.348 14.513
Manufactured Building Structure Proportion 9.735 8.586 1.134 0.257 -7.112 26.582
Masonry Building Structure Proportion 0.031 7.288 0.004 0.997 -14.269 14.332
Steel Building Structure Proportion -1.361 7.408 -0.184 0.854 -15.897 13.176
Concrete Building Structure Proportion -0.954 7.431 -0.128 0.898 -15.534 13.626
Basement Building Foundation Proportion 22.426 40.54 0.553 0.580 -57.118 101.971
Pier Building Foundation Proportion -22.767 104.492 -0.218 0.828 -227.793 182.258
Pile Building Foundation Proportion -37.058 169.691 -0.218 0.827 -370.013 295.897
Slab Building Foundation Proportion 23.582 40.482 0.583 0.560 -55.848 103.012
Crawl Building Foundation Proportion 21.350 40.526 0.527 0.598 -58.168 100.868
Number of Stories Mean -0.022 0.135 -0.166 0.868 -0.288 0.243
Foundation Height Mean 0.002 0.556 0.004 0.997 -1.089 1.094
Median Year Built 0.009 0.003 2.937 0.003 0.003 0.015
Percentage of Poverty 0.069 0.003 24.515 0.000 0.063 0.074
Percentage of Over 65 Years 0.017 0.004 4.451 0.000 0.01 0.025
WWR -0.069 0.019 -3.631 0.000 -0.106 -0.032
Land Cover 0.008 0.003 2.941 0.003 0.003 0.013
Central Air -0.023 0.002 -10.416 0.000 -0.027 -0.018
Warm Air Heating Proportion 0.462 1.158 0.399 0.69 -1.809 2.734
Hot Water Steam Heating Proportion 0.467 1.158 0.403 0.687 -1.805 2.739
None Heating System Proportion -0.854 2.123 -0.402 0.688 -5.019 3.311
Unit Heater Heating System Proportion -0.862 2.123 -0.406 0.685 -5.028 3.303
External Shading 0.010 0.004 2.618 0.009 0.002 0.017
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household energy burdens, although they also exhibit higher variability.
Furthermore, among the wall materials, the stucco, a relatively rare

wall type at the census tract scale, had a negative coefficient. The use of
slate materials in the roofs seems to have an adverse effect on AEB.
Among the passive design factors, WWR’s impact on the AEB is another
interesting finding of this study. The analysis showed that the impact of
changing in WWR in the census tracts is almost equal to changing the
poverty status in the region. That means increasing the average WWR in
the census tracts scale by 1 %, on average, decreases the energy burden
in the census tract by 0.06 %, and with 95 % confidence, its impact is
between 0.026 to 0.095 in reducing the energy burden. Another note-
worthy finding is that the age groups were another demographic vari-
able that indicated an increase in the over 65-year-old population ratio
is correlated with energy expenditure growth. This can potentially be
explained by the older population’s spending more time in the home and
requiring a more controlled indoor thermal environment.

3.2.3. ML models comparison
After interpreting the results of the OLS multiple regression model as

the most interpretable ML model, different MLmodels were investigated
to find the best possible model for the AEB prediction based on the
defined variables. Therefore, the SVR, XGBoost, Random Forest regres-
sion, and Decision Tree regression models were investigated. Moreover,
a Neural Network model with three hidden layers each layer including 8
neurons and sigmoid activation function in 500 epochs was tested on the
model. Table 6 demonstrates the results of these models.

As demonstrated in the Table 6, the developed multiple regression
model has the highest R-squared value among all represented models.

However, the MSE in some of the models, including the Neural Network
model, is lower. MSE is defined as the summation of bias2 and variance
(Lin & Dobriban, 2020). The lower MSE value with lower R2 in the
neural network indicates that this model probably has a lower bias. Still,
its difference from the OLS model is not significant, and it covers less
variance as well. In other words, this model is a good fit for the ordinary
predictions of the AEB; however, it might not perform as well as OLS in
dealing with the outliers. Considering this fact and the power of inter-
pretability in the OLS models, this model can still be announced as the
most suitable model for AEB prediction. Moreover, all of the presented
models, except the decision tree, generated lower errors compared to the
best energy burden prediction models presented in the previous studies
(Ghorbany et al., 2024b).

4. Contributions

These findings contribute to urban planning and energy policy-
making, highlighting the superior role of passive design strategies over
active design features in reducing energy burdens at the urban scale.
This research provides valuable insights into energy justice, stressing the
importance of passive design in addressing energy costs and sustain-
ability in urban areas. It also emphasizes the need to consider
geographical, socioeconomic, and demographic factors in urban
planning.

By demonstrating that passive design features like window-to-wall
ratio, external shade, and building materials have a significant effect
on energy expenditures, the study advocates for a shift towards more
low-cost, passive, sustainable, energy-efficient, and equitable urban
design practices. The high R2 value (94.8 %) indicates a strong model for

Table 4
Optimized model after removing the redundant variables.

Prob > F = 0
F-statistic: 291.3
No. Observations: 1133

Dep. Variable: AEB
R-squared: 0.785
Adj. R-squared: 0.782
AIC: 2680
BIC: 2756

Variables Coefficient Std.
Error

t-value P-
value

CI
Lower

CI
Upper

const 34.094 10.347 3.295 0.001 13.793 54.396
Latitude -1.186 0.187 -6.329 0.000 -1.553 -0.818
pct_poverty 0.067 0.003 26.190 0.000 0.062 0.072
Over 65 Years
Population
Percentage

0.018 0.004 4.829 0.000 0.011 0.026

WWR -0.066 0.018 -3.701 0.000 -0.101 -0.031
Central Air -0.023 0.002 -11.957 0.000 -0.027 -0.019
External
Shading

0.011 0.004 3.153 0.002 0.004 0.018

Masonry Wall
Material
Proportion

0.015 0.002 9.332 0.000 0.012 0.019

Wooden Wall
Material
Proportion

0.021 0.002 13.415 0.000 0.018 0.024

Wood and
Masonry
Wall
Material
Proportion

0.013 0.002 6.014 0.000 0.009 0.017

Stucco Wall
Material
Proportion

-0.029 0.008 -3.493 0.000 -0.045 -0.013

Median Year
Built

0.009 0.003 3.265 0.001 0.004 0.014

Land Cover 0.004 0.002 2.027 0.043 0.000 0.007
Other Roof
Material
Proportion

-0.068 0.025 -2.719 0.007 -0.117 -0.019

Slate Roof
Material
Proportion

0.048 0.025 1.92 0.055 -0.001 0.097

Table 5
The final model with the highest accuracy.

Prob > F = 0
F-statistic: 1355
No. Observations: 1133

Dep. Variable: AEB
R-squared: 0.948
Adj. R-squared: 0.947
AIC: 2682
BIC: 2757

Variables Coefficient Std.
Error

t-value P-
value

CI
Lower

CI
Upper

Longitude -0.455 0.149 -3.053 0.002 -0.748 -0.163
Latitude -1.328 0.240 -5.521 0.000 -1.800 -0.856
Percentage of
Poverty

0.067 0.003 26.422 0.000 0.062 0.072

Percentage of
Over 65 Years

0.019 0.004 4.957 0.000 0.011 0.026

WWR -0.060 0.018 -3.402 0.001 -0.095 -0.026
Central Air -0.024 0.002 -12.716 0.000 -0.027 -0.020
External
Shading

0.011 0.004 3.067 0.002 0.004 0.018

Masonry Wall
Material
Proportion

0.015 0.002 9.123 0.000 0.012 0.019

Wood Wall
Material
Proportion

0.020 0.002 12.379 0.000 0.017 0.024

Wood and
Masonry Wall
Material
Proportion

0.012 0.002 5.707 0.000 0.008 0.017

Stucco Wall
Material
Proportion

-0.028 0.008 -3.427 0.001 -0.044 -0.012

Median Year
Built

0.009 0.003 3.158 0.002 0.003 0.014

Land Cover 0.004 0.002 2.262 0.024 0.001 0.008
Other Roof
Material
Proportion

-0.062 0.025 -2.488 0.013 -0.111 -0.013

Slate Roof
Material
Proportion

0.053 0.025 2.131 0.033 0.004 0.102
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predicting AEB, offering a clear, actionable framework for improving
urban design and policy to reduce energy costs and enhance energy
justice. This research not only deepens our understanding of the impact
of design features on urban household energy burden but also provides
concrete evidence for enhancing energy efficiency through informed
passive design.

5. Conclusion

This research aimed to investigate the passive design and active

design variables to (1) identify which variables from these categories are
associated with AEB, (2) which of the categories has greater influence on
the AEB in census tracts scale, and (3) develop a prediction model for
AEB. To achieve these goals, this study started by merging four different
datasets, including the Google Street View extracted information using
Convolutional Neural Network, and preprocessing this dataset. After-
ward, the statistical analysis was performed using a combination of ML
methods, including multiple regression, decision tree regression,
random forest regression, support vector regression (SVR), XGBoost
regression, and neural networks to assess the variables’ impact on AEB
and provide a robust prediction model for this issue.

The results indicated that the passive design factors play a more
crucial role in the energy burden of urban-scale households. From the
mechanical devices in the building, only the central air conditioner was
associated with the energy burden. Meanwhile, most of the passive
design factors, including wall materials, roof materials, WWR, external
shad, and land cover, were influencing the energy expenditures of the
households. Among these variables, the WWR had one of the highest
influences on energy expenditures, which was comparable to the pop-
ulation poverty ratio. Moreover, the geographical location of the census

Fig. 4. Passive and active design comparison with demographic variables. Coefficients and confidence intervals.

Table 6
ML models performance measurement indicators.

Model R-Squared RMSE MSE MAE

Multiple Regression Model (OLS) 94.8 % 0.78 0.61 0.60
Neural Network Model 83.3 % 0.70 0.49 0.52
SVR Model 69.9 % 0.78 0.62 0.60
XGBoost Model 73.4 % 0.74 0.56 0.57
Random Forest Model 69.9 % 0.78 0.65 0.60
Decision Tree Model 53.2 % 0.97 0.99 0.74
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tracts and the elderly population of these regions were other factors that
proved to be associated with the energy burden.

The developed model was able to predict the energy burden with
94.8 % accuracy, which is the best-developed model for energy burden
prediction up to this day and to the authors’ knowledge. Overall, the
findings of this research emphasize the importance of passive design
strategies on the urban scale and prove these variables to be more sig-
nificant than the mechanical systems in the buildings. Moreover, it
provided an easy-to-use and highly interpretable model to predict the
energy burden with high accuracy. The findings of this research can be
widely used by future researchers, urban policymakers, urban planners,
and architects. Future studies are suggested to include the insulation
data and investigate the results on a national scale. Moreover, future
studies can consider adding the buildings’ direction, especially in coastal
cities, and examine the accuracy of the provided model for such con-
ditions. Future studies are also encouraged to investigate and quantify
the impact of passive design in census tracts with active solar energy
techniques.
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Appendixes

Appendix 1
The merged dataset statistical description.

count mean std min 25 % 50 % 75 % max

FIPS 1135
Building Square Feet 1133 2007.87 913.80 821.42 1482.54 1832.42 2313.40 19992.00
Land Square Feet 1135 35062.02 121213.62 2435.91 4046.53 5999.52 16409.78 2505312.31
Building Square Meters 1133 186.57 84.89 76.30 137.71 170.26 214.94 1857.21
Land Square Meters 1135 3256.91 11258.91 226.24 375.99 557.60 1524.44 232718.13
Central Air 1135 39.19 25.90 0.00 15.46 36.27 59.27 100.00
Land Cover 1133 30.48 21.71 0.07 12.68 27.99 45.67 100.00
Masonry Wall Material Proportion 1135 37.67 22.57 0.00 19.74 35.50 54.14 94.51
Wooden Wall Material Proportion 1135 25.76 19.62 0.00 9.85 22.18 38.46 96.82
Wood and Masonry Wall Material Proportion 1135 14.26 15.16 0.00 4.20 8.14 19.84 84.24
Stucco Wall Material Proportion 1135 1.14 3.23 0.00 0.00 0.23 0.71 36.34
Shingle/Asphalt Roof Material Proportion 1135 67.87 26.06 0.00 52.67 76.10 88.30 99.67
Tar and Gravel Roof Material Proportion 1135 9.34 11.31 0.00 1.11 4.05 14.57 59.48
Shake Roof Material Proportion 1135 0.40 1.76 0.00 0.00 0.00 0.13 19.37
Tile Roof Material Proportion 1135 0.45 1.23 0.00 0.00 0.17 0.47 27.28
Other Roof Material Proportion 1135 0.44 0.99 0.00 0.00 0.14 0.48 17.33
Slate Roof Material Proportion 1135 0.32 1.02 0.00 0.00 0.10 0.29 14.69
Warm Air Heating Proportion 1135 63.19 23.73 0.00 49.28 67.95 81.23 99.76
Hot Water Steam Heating Proportion 1135 15.64 13.80 0.00 4.61 12.14 23.37 70.81
None Heating System Proportion 1135 75.31 22.67 0.00 66.04 84.55 91.60 99.31
Unit Heater Heating System Proportion 1135 3.52 3.91 0.00 0.85 2.57 4.82 35.02
Masonry Building Structure Proportion 1135 59.18 19.70 2.97 44.41 60.28 75.01 96.94
Steel Building Structure Proportion 1135 4.06 3.77 0.00 1.84 3.13 5.16 36.10
Wooden Building Structure Proportion 1135 34.54 18.75 2.12 20.01 32.26 46.33 96.52
Manufactured Building Structure Proportion 1135 0.05 0.51 0.00 0.00 0.00 0.00 12.44
Concrete Building Structure Proportion 1135 2.17 2.32 0.00 0.79 1.38 2.74 23.97
Basement Building Foundation Proportion 1135 85.10 14.89 1.14 82.00 90.28 94.30 100.00
Slab Building Foundation Proportion 1135 9.56 10.34 0.00 4.04 6.48 11.21 97.31
Pile Building Foundation Proportion 1135 0.00 0.01 0.00 0.00 0.00 0.00 0.34
Pier Building Foundation Proportion 1135 0.00 0.02 0.00 0.00 0.00 0.00 0.66

(continued on next page)
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Appendix 1 (continued )

count mean std min 25 % 50 % 75 % max

Crawl Building Foundation Proportion 1135 5.34 8.65 0.00 0.68 1.95 5.80 75.89
Median Year Built 1135 1954.85 15.26 1939.00 1939.00 1953.00 1964.21 2005.97
avg_energyburden 1135 2.97 1.68 1.00 2.00 2.00 4.00 10.00
Pct_poverty 1135 15.98 12.41 0.39 6.45 12.05 22.71 72.55
Over 65 Years Population Percentage 1135 15.00 6.82 0.67 10.30 14.47 18.67 54.98
WWR Ratio 1135 15.15 1.57 10.88 14.06 14.98 16.01 25.68
External Shading 1135 30.27 8.18 6.79 24.82 30.31 35.89 62.24

Appendix 2

Data sources

The google street view data
The external shading and window-to-wall ratio (WWR) has been proven to be two crucial variables in passive design (Ghorbany et al., 2024b; Hu

et al., 2023). That said, this data is not available through conventional datasets. Therefore, the first dataset used in this study is based on the authors’
previous research, a Convolutional Neural Network (CNN) model that is able to extract the external shading and WWR data from the Google Street
View images (Ghorbany et al., 2024b). The extracted data from this method is linked to the building’s coordination, allowing to define the corre-
sponding census tract as the mutual identification value to merge the datasets. TheWWR determines the ratio of the windows area to the wall area and
the external shading is a binary value determining what proportion of windows have external shading in the building.

National Structure Inventory (NSI) data
In addition to the ventilation characteristics of the buildings, other factors impact the passive design features of the built environment. Some of

these variables include the buildings’ structure type, building foundation type and its depth, the square footage of the building, the number of stories,
and the building year built (NSI, 2024). The NSI is a dataset created and maintained by U. S. Army Corps of Engineers (USACE) to assist in the
assessment of the effects of both natural andman-made disasters, make point-based building inventories with attribution consistently accessible across
the country, and provide access all federal departments eager to work together on structural inventory data. The building structure type in this dataset
includes masonry, wood, manufactured, and steel. The foundation type, on the other hand, is categorized in 7 groups, namely crawl, full basement,
slab, pier, pile, fill, and solid wall.

Cook county open data
The envelope of the buildings including walls and roofs is another factor that influences the energy usage of the building for heating and cooling

purposes (Manso et al., 2021; Staszczuk & Kuczyński, 2021). Moreover, the location of the buildings (longitude and latitude), the isolation of the
building (land coverage), and the heating systems used in the building are claimed as the design factors that impact the buildings’ energy usage
(Bokaie et al., 2016; Mahmoud et al., 2021; Pineau et al., 2013; Pulselli et al., 2009). To access these data and assess their influence on the AEB, the
open data from Cook County Government provided by the Cook County Assessor’s Office were used (Cook County Assessor’s Office, 2022). The
variables "Longitude", "Latitude", "Wall Material", "Roof Material", "Building Square Feet", "Land Square Feet", "Central Heating", "Other Heating”, and
"Central Air" from this dataset were used. To add the land cover, the proportion of building square footage to the land square footage was calculated for
the buildings. The wall material data included four types of external wall materials and roof types included 6 different types. Central heating includes
four different types of heating including warm air, hot water steam, electric, and other and other heating systems including floor furnaces, unit heaters,
stoves, solar, and none categories. The central air is a binary variable determining whether the building is equipped with a central air conditioning
system or not.

LEAD and ACS data
As the target variable of this research, the AEB for each census tract was extracted and calculated from the LEAD data (Ma et al., 2019). This dataset

includes the different energy costs for each census tract and the gross income information. Therefore, the AEB can be calculated from these data.
Moreover, the percentage of people in poverty status and the elderly population ratio were used as the demographic and economic benchmarks
extracted from ACS 5 year aggregated data, to assess the impact of building properties compared to these factors (U.S. Census Bureau, 2022). This
dataset includes demographic, socioeconomic, and housing characteristics of the United States population (U.S. Census Bureau, 2022).

References

Abdallah, A. S. H. (2022). Passive design strategies to improve student thermal comfort
in Assiut University: A field study in the faculty of physical education in hot season.
In Sustainable cities and society, 86, Article 104110. https://doi.org/10.1016/j.
scs.2022.104110. August.

Ajebe, M. (2024). Elusive trade-off: The solution to energy poverty and GHG emissions in
Africa. Environmental and Sustainability Indicators, 21, Article 100320. https://doi.
org/10.1016/j.indic.2023.100320. November 2023.

Alfraihat, R., Mulugeta, G., & Gala, T. S. (2016). Ecological evaluation of urban heat
island in Chicago City, USA. Journal of Atmospheric Pollution, 4(1), 23–29. https://
doi.org/10.12691/jap-4-1-3

Ashrafian, T., & Moazzen, N. (2019). The impact of glazing ratio and window
configuration on occupants’ comfort and energy demand: The case study of a school

building in Eskisehir, Turkey. Sustainable Cities and Society, 47, Article 101483.
https://doi.org/10.1016/j.scs.2019.101483. March.

Azimi Fereidani, N., Rodrigues, E., & Gaspar, A. R. (2021). A review of the energy
implications of passive building design and active measures under climate change in
the Middle East. Journal of Cleaner Production, 305. https://doi.org/10.1016/j.
jclepro.2021.127152

Bektas Ekici, B., & Aksoy, U. T. (2011). Prediction of building energy needs in early stage
of design by using ANFIS. Expert Systems with Applications, 38(5), 5352–5358.
https://doi.org/10.1016/j.eswa.2010.10.021

Bhamare, D. K., Rathod, M. K., & Banerjee, J. (2019). Passive cooling techniques for
building and their applicability in different climatic zones—The state of art. Energy
and Buildings, 198, 467–490. https://doi.org/10.1016/j.enbuild.2019.06.023

Bokaie, M., Zarkesh, M. K., Arasteh, P. D., & Hosseini, A. (2016). Assessment of urban
heat island based on the relationship between land surface temperature and Land

S. Ghorbany et al.

https://doi.org/10.1016/j.scs.2022.104110
https://doi.org/10.1016/j.scs.2022.104110
https://doi.org/10.1016/j.indic.2023.100320
https://doi.org/10.1016/j.indic.2023.100320
https://doi.org/10.12691/jap-4-1-3
https://doi.org/10.12691/jap-4-1-3
https://doi.org/10.1016/j.scs.2019.101483
https://doi.org/10.1016/j.jclepro.2021.127152
https://doi.org/10.1016/j.jclepro.2021.127152
https://doi.org/10.1016/j.eswa.2010.10.021
https://doi.org/10.1016/j.enbuild.2019.06.023


Sustainable Cities and Society 114 (2024) 105723

12

Use/Land Cover in Tehran. Sustainable Cities and Society, 23, 94–104. https://doi.
org/10.1016/j.scs.2016.03.009

Bouketta, S. (2023). Urban Cool Island as a sustainable passive cooling strategy of urban
spaces under summer conditions in Mediterranean climate. In Sustainable cities and
society, 99, Article 104956. https://doi.org/10.1016/j.scs.2023.104956. September.

Bukkapatnam, S. T. S., Afrin, K., Dave, D., & Kumara, S. R. T. (2019). Machine learning
and AI for long-term fault prognosis in complex manufacturing systems. CIRP Annals,
68(1), 459–462. https://doi.org/10.1016/j.cirp.2019.04.104

Burton, A. L. (2021). OLS (Linear) regression. The encyclopedia of research methods in
criminology and criminal justice (pp. 509–514). Wiley. https://doi.org/10.1002/
9781119111931.ch104

Campaniço, H., Hollmuller, P., & Soares, P. M. M. (2014). Assessing energy savings in
cooling demand of buildings using passive cooling systems based on ventilation.
Applied Energy, 134, 426–438. https://doi.org/10.1016/j.apenergy.2014.08.053

M. R. B. T.-P. of Chakrabarti, A., Ghosh, J. K., Bandyopadhyay, P. S., & Forster, S. (2011).
AIC, BIC and recent advances in model selection. In Philosophy of statistics, 7 pp.
583–605). Elsevier. https://doi.org/10.1016/B978-0-444-51862-0.50018-6.

Chen, X., & Yang, H. (2017). Sensitivity analysis and optimization of a typical passively
designed residential building with hybrid ventilation in hot and humid climates.
Energy Procedia, 142, 1781–1786. https://doi.org/10.1016/j.egypro.2017.12.563

Cheng, Q., & Ngok, K. (2020). Welfare attitudes towards anti-poverty policies in China:
Economical individualism, social collectivism and institutional differences. Social
Indicators Research, 150(2), 679–694. https://doi.org/10.1007/s11205-020-02313-y

Cheshmehzangi, A., & Dawodu, A. (2020). Passive cooling energy systems: Holistic
SWOT analyses for achieving urban sustainability. International Journal of Sustainable
Energy, 39(9), 822–842. https://doi.org/10.1080/14786451.2020.1763348

Cheung, C. K., Fuller, R. J., & Luther, M. B. (2005). Energy-efficient envelope design for
high-rise apartments. Energy and Buildings, 37(1), 37–48. https://doi.org/10.1016/j.
enbuild.2004.05.002

Cook County Assessor’s Office. (2022). Assessor residential property characteristics |
Cook county open data. Cook County Assessor’s Office Data Department. https://da
tacatalog.cookcountyil.gov/Property-Taxation/Assessor-Archived-05-11-2022-Res
idential-Property-/bcnq-qi2z/about_data.

Department of Energy. (2023). Low-income community energy solutions. Energy.Gov.
https://www.energy.gov/scep/slsc/low-income-community-energy-solutions.
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