
JoCG 14(1), 343–394, 2023 343

Journal of Computational Geometry jocg.org

UNIT-DISK RANGE SEARCHING AND APPLICATIONS∗

Haitao Wang†

Abstract. Given a set P of n points in the plane, we consider the problem of computing
the number of points of P in a query unit disk (i.e., all query disks have the same radius).
We show that the main techniques for simplex range searching in the plane can be adapted
to this problem. For example, by adapting Matoušek’s results, we can build a data struc-
ture of O(n) space in O(n1+δ) time (for any δ > 0) so that each query can be answered
in O(

√
n) time; alternatively, we can build a data structure of O(n2/ log2 n) space with

O(n1+δ) preprocessing time (for any δ > 0) and O(log n) query time. Our techniques lead
to improvements for several other classical problems in computational geometry.

1. Given a set of n unit disks and a set of n points in the plane, the batched unit-
disk range counting problem is to compute for each disk the number of points in it.
Previous work [Katz and Sharir, 1997] solved the problem in O(n4/3 log n) time. We
give a new algorithm of O(n4/3) time, which is optimal as it matches an Ω(n4/3)-time
lower bound. For small χ, where χ is the number of pairs of unit disks that intersect,
we further improve the algorithm to O(n2/3χ1/3 + n1+δ) time, for any δ > 0.

2. The above result immediately leads to an O(n4/3) time optimal algorithm for counting
the intersecting pairs of circles for a set of n unit circles in the plane. The previous
best algorithms solve the problem in O(n4/3 log n) deterministic time [Katz and Sharir,
1997] or in O(n4/3 log2/3 n) expected time by a randomized algorithm [Agarwal, Pel-
legrini, and Sharir, 1993].

3. Given a set P of n points in the plane and an integer k, the distance selection problem is
to find the k-th smallest distance among all pairwise distances of P . The problem can
be solved in O(n4/3 log2 n) deterministic time [Katz and Sharir, 1997] or in O(n log n+
n2/3k1/3 log5/3 n) expected time by a randomized algorithm [Chan, 2001]. Our new
randomized algorithm runs in O(n log n+ n2/3k1/3 log n) expected time.

4. Given a set P of n points in the plane, the discrete 2-center problem is to compute
two smallest congruent disks whose centers are in P and whose union covers P . An
O(n4/3 log5 n)-time algorithm was known [Agarwal, Sharir, and Welzl, 1998]. Our
techniques yield a deterministic algorithm of O(n4/3 log10/3 n · (log log n)O(1)) time
and a randomized algorithm of O(n4/3 log3 n · (log log n)1/3) expected time.

∗This research was supported in part by NSF under Grants CCF-2005323 and CCF-2300356. A prelimi-
nary version of this paper appeared in Proceedings of the 18th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT 2022).
†Kahlert School of Computing, University of Utah, Salt Lake City, UT 84112, USA,

haitao.wang@utah.edu

http://jocg.org/


JoCG 14(1), 343–394, 2023 344

Journal of Computational Geometry jocg.org

1 Introduction

We consider the range counting queries for unit disks. Given a set P of n points in the
plane, the problem is to build a data structure so that the number of points of P in D can
be computed efficiently for any query unit disk D (i.e., all query disks have the same known
radius).

Our problem is a special case of the general disk range searching problem in which
each query disk may have an arbitrary radius. Although we are not aware of any previous
work particulary for our special case, the general problem has been studied before [5, 6,
22, 38, 42]. First of all, it is well-known that the lifting method can reduce the disk range
searching in the d-dimensional space to half-space range searching in the (d+1)-dimensional
space; see, e.g., [25,42]. For example, using Matoušek’s results in 3D [35], with O(n) space,
each disk query in the plane can be answered in O(n2/3) time. Using the randomized results
for general semialgebraic range searching [6, 38], one can build a data structure of O(n)
space in O(n1+δ) expected time that can answer each disk query in O(

√
n logO(1) n) time,

where (and throughout the paper) δ denotes any small positive constant. For deterministic
results, Agarwal and Matoušek’s techniques [5] can build a data structure of O(n) space in
O(n log n) time, and each query can be answered in O(n1/2+δ) time.

A related problem is to report all points of P in a query disk. If all query disks
are unit disks, the problem is known as fixed-radius neighbor problem in the literature [11,
16, 19, 20]. Chazelle and Edelsbrunner [20] gave an optimal solution (in terms of space and
query time): they constructed a data structure of O(n) space that can answer each query
in O(log n+ k) time, where k is the output size; their data structure can be constructed in
O(n2) time. By a standard lifting transformation that reduces the problem to the halfspace
range reporting queries in 3D, Chan and Tsakalidis [14] constructed a data structure of O(n)
space in O(n log n) time that can answer each query in O(log n + k) time; the result also
applies to the general case where the query disks may have arbitrary radii. Refer to [2,3,36]
for excellent surveys on range searching.

In this paper, we focus on unit-disk counting queries. By taking advantage of the
property that all query disks have the same known radius, we manage to adapt the tech-
niques for simplex range searching to our problem. We show that literally all main results
for simplex range searching can be adapted to our problem with asymptotically the same
performance. For example, by adapting Matoušek’s result in [33], we build a data structure
of O(n) space in O(n log n) time and each query can be answered in O(

√
n logO(1) n) time.

By adapting Matoušek’s result in [35], we build a data structure of O(n) space in O(n1+δ)
time and each query can be answered in O(

√
n) time. By adapting Chan’s randomized result

in [13], we build a data structure of O(n) space in O(n log n) expected time and each query
can be answered in O(

√
n) time with high probability.

In addition, we obtain the following trade-off: after O(nr) space and O(nr(n/r)δ)
preprocessing time, each query can be answered in O(

√
n/r) time, for any 1 ≤ r ≤ n/ log2 n.

In particularly, setting r = n/ log2 n, we can achieve O(log n) query time, using O(n2/ log2 n)
space and O(n2/ log2−δ n) preprocessing time. To the best of our knowledge, the only
previous work we are aware of with O(log n) time queries for the unit-disk range searching

http://jocg.org/


JoCG 14(1), 343–394, 2023 345

Journal of Computational Geometry jocg.org

problem is a result in [30],1 which can answer each query in O(log n) time with O(n2 log n)
time and space preprocessing.

Probably more interestingly to some extent, our techniques can be used to derive im-
proved algorithms for several classical problems, as follows. Our results are the first progress
since the previous best algorithms for these problems were proposed over two decades ago.

Batched unit-disk range counting. Let P be a set of n points and D be a set of m
(possibly overlapping) congruent disks in the plane. The problem is to compute for all disks
D ∈ D the number of points of P in D. The algorithm of Katz and Sharir [30] solves
the problem in O((m2/3n2/3 + m + n) log n) time. By using our techniques for unit-disk
range searching and adapting a recent result of Chan and Zheng [15], we obtain a new
algorithm of O(n2/3m2/3 + m log n + n logm) time. We further improve the algorithm so
that the complexities are sensitive to χ, the number of pairs of disks of D that intersect.
The runtime of the algorithm is O(n2/3χ1/3 +m1+δ + n log n).

On the negative side, Erickson [27] proved a lower bound of Ω(n2/3m2/3 +m log n+
n logm) time for the problem in a so-called partition algorithm model, even if each disk is a
half-plane (note that a half-plane can be considered as a special unit disk of infinite radius).
Therefore, our algorithm is optimal under Erickson’s model.

Counting intersections of congruent circles. As discussed in [30], the following problem
can be immediately solved using batched unit-disk range counting: Given a set of n congru-
ent circles of radius r in the plane, compute the number of intersecting pairs. To do so, define
P as the set of the centers of circles and define D as the set of congruent disks centered at
points of P with radius 2r. Then apply the batched unit-disk range counting algorithm on
P and D. The algorithm runs in O(n4/3) time, matching an Ω(n4/3)-time lower bound [27].
To the best of our knowledge, the previous best results for this problem are a deterministic
algorithm of O(n4/3 log n) time [30] and a randomized algorithm of O(n4/3 log2/3 n) expected
time [4]. Agarwal, Pellegrini, and Sharir [7] also studied the problem for circles of different
radii and gave an O(n3/2+δ) time deterministic algorithm.

Distance selection. Let P be a set of n points in the plane. Given an integer k in the
range [1, n(n − 1)/2], the distance selection problem is to find the k-th smallest distance
among all pairwise distances of P ; let λ∗ denote the k-th smallest distance. Given a value
λ, the decision problem is to decide whether λ ≥ λ∗. We refer to the original problem as
the optimization problem.

Chazelle [17] gave the first subquadratic algorithm of O(n9/5 log4/5 n) time. Agarwal,
Aronov, Sharir, and Suri [4] presented randomized algorithms that solve the decision problem
in O(n4/3 log2/3 n) expected time and the optimization problem in O(n4/3 log8/3 n) expected
time, respectively. Goodrich [28] later gave a deterministic algorithm of O(n4/3 log8/3 n)

1See Theorem 3.1 [30]. The authors noted in their paper that the result was due to Pankaj K. Agarwal.
The result is actually for a dual problem: Preprocess a set of n disks (of arbitrary radii) in O(n2 log n) space
and time, so that the number of disks contained a query point can be computed in O(log n) time. The result
can be used to solve the unit-disk range queries.

http://jocg.org/


JoCG 14(1), 343–394, 2023 346

Journal of Computational Geometry jocg.org

time for the optimization problem. Katz and Sharir [30] proposed a deterministic algorithm
of O(n4/3 log n) time for the decision problem and used it to solve the optimization problem
in O(n4/3 log2 n) deterministic time. Using the decision algorithm of [4], Chan’s randomized
technique [12] solved the optimization problem in O(n log n + n2/3k1/3 log5/3 n) expected
time.

Our algorithm for the batched unit-disk range counting problem can be used to
solve the decision problem in O(n4/3) time. Combining it with the randomized technique
of Chan [12], the optimization problem can now be solved in O(n log n + n2/3k1/3 log n)
expected time.

Discrete 2-center. Let P be a set of n points in the plane. The discrete 2-center problem
is to find two smallest congruent disks whose centers are in P and whose union covers P .
Agarwal, Sharir, and Welzl [9] gave an O(n4/3 log5 n)-time algorithm. Using our techniques
for unit-disk range searching, we slightly reduce the time complexity of their algorithm to
O(n4/3 log10/3 n(log log n)O(1)) deterministic time or to O(n4/3 log3 n(log log n)1/3) expected
time by a randomized algorithm.

In the following, we present our algorithms for unit-disk range searching in Section 2.
The other problems are discussed in Section 3. Section 4 concludes the paper.

2 Unit-disk range searching

In this section, we present our algorithms for unit-disk range searching problem. Our goal
is to show that the main techniques for simplex range searching can be used to solve our
problem. In particular, we show that, after overcoming many difficulties, the techniques of
Matoušek in [33] and [35] as well as the results of Chan [13] can be adapted to our problem
with asymptotically the same performance.

We assume that the radius of unit disks is 1. In the rest of this section, unless
otherwise stated, a disk refers to a unit disk. We begin with an overview of our approach.

An overview. We roughly (but not precisely) discuss the main idea. We first implicitly
build a grid G of side length 1/

√
2 such that any query disk D only intersects O(1) cells of

G. This means that it suffices to build a data structure for the subset P (C ′) of the points
of P in each individual cell C ′ of G with respect to query disks whose centers are in another
cell C that is close to C ′. A helpful property for processing P (C ′) with respect to C is
that for any two disks with centers in C, their boundary portions in C ′ cross each other at
most once. More importantly, we can define a duality relationship between points in C and
disk arcs in C ′ (and vice versa): a point p in C is dual to the arc of the boundary of Dp

in C ′, where Dp is the disk centered at p. This duality helps to obtain a Test Set Lemma
that is crucial to the algorithms in [13, 33, 35]. With these properties and some additional
observations, we show that the algorithm for computing cuttings for hyperplanes [18] can
be adapted to the disk arcs in C ′. With the cutting algorithms and the Test Set Lemma,

http://jocg.org/


JoCG 14(1), 343–394, 2023 347

Journal of Computational Geometry jocg.org

we show that the techniques in [13, 33, 35] can be adapted to unit-disk range searching for
the points of P (C ′) with respect to the query disks centered in C.

The rest of this section is organized as follows. In Section 2.1, we reduce the unit-
disk range searching problem to problems with respect to pairs of cells (C,C ′). Section 2.2
introduces some basic concepts and observations that are fundamental to our approach. We
adapt the cutting algorithm of Chazelle [18] to our problem in Section 2.3. Section 2.4 proves
the Test Set Lemma. In the subsequent subsections, we adapt the algorithms of [13,33,35],
whose query times are all Ω(

√
n) withO(n) space. Section 2.8 presents the trade-offs between

the preprocessing and the query time. Section 2.9 finally summarizes all results.

2.1 Reducing the problem to pairs of grid cells

For each point p in the plane, we use x(p) and y(p) to denote its x- and y-coordinates,
respectively, and we use Dp to denote the disk centered at p. For any region A in the plane,
we use P (A) to denote the subset of points of P in A, i.e., P (A) = P ∩A.

We will compute a set C of O(n) pairwise-disjoint square cells in the plane with the
following properties. (1) Each cell has side length 1/2. (2) Every two cells are separated
by an axis-parallel line. (3) For a disk Dp with center p, if p is not in any cell of C, then
Dp ∩ P = ∅. (4) Each cell C of C is associated with a subset N(C) of O(1) cells of C, such
that for any disk D with center in C, every point of P ∩D is in one of the cells of N(C).
(5) Each cell C ′ of C is in N(C) for a constant number of cells C ∈ C.

The following is a key lemma for reducing the problem to pairs of square cells.

Lemma 1. 1. The set C with the above properties, along with the subsets P (C) and N(C)
for all cells C ∈ C, can be computed in O(n log n) time and O(n) space.

2. With O(n log n) time and O(n) space preprocessing, given any query disk Dp with
center p, we can determine whether p is in a cell C of C, and if yes, return the set
N(C) in O(log n) time.

Proof. We first compute O(n) disjoint vertical strips in the plane, each bounded by two
vertical lines, as follows. We sort all points of P from left to right as p1, p2, . . . , pn. Starting
from p1, we sweep the plane by a vertical line `. The algorithm maintains an invariant that
` is in the current vertical strip whose left bounding line is known (and to the left of `)
and whose right bounding line is to be determined and to the right of `. Initially, we put
a vertical line at x(p1) − 1 as the left bounding line of the first strip. Suppose ` is at a
point pi. If i < n and x(pi+1) − x(pi) ≤ 3, then we move ` to pi+1. Otherwise, we put a
vertical line at x(pi) + 1 + ξ as the right bounding line of the current strip, where ξ is the
smallest non-negative value such that x(pi) + 1 + ξ − x′ is a multiple of 1/2 with x′ as the
x-coordinate of the left bounding line of the current strip. Next, if i = n, then we halt the
algorithm; otherwise, we put a vertical line at x(pi+1) − 1 as the left bounding line of the
next strip and move ` to pi+1.

After the algorithm halts, we have at most n vertical strips that are pairwise-disjoint.
According to our algorithm, if the center of a disk D is outside those strips, then P (D) = ∅.

http://jocg.org/


JoCG 14(1), 343–394, 2023 348

Journal of Computational Geometry jocg.org

C

Figure 1: The grey cells are all neighbor cells of C.

Also, if a strip contains m points of P , then the width of the strip is O(m). This also means
that the sum of the widths of all strips is O(n). In addition, the width of each strip is a
multiple of 1/2.

Next, for each vertical strip A, by sweeping the points of P (A) from top to bottom
in a similar way as above, we compute O(|P (A)|) disjoint horizontal strips, each of which
becomes a rectangle with the two bounding lines of A. Similar to the above, if the center of
a disk D is in A but outside those rectangles, then P (D) = ∅. The height of each rectangle
R is a multiple of 1/2. Also, the height of R is O(|P (R)|). This implies that the sum of the
heights of all rectangles in A is O(|P (A)|). As such, the sum of the heights of all rectangles
in all vertical strips is O(n).

In this way, we compute a set of O(n) pairwise-disjoint rectangles in O(n) vertical
strips with the following property. (1) If a disk D whose center is outside those rectangles,
then D(P ) = ∅. (2) Each rectangle contains at least one point of P . (3) The sum of the
widths of all vertical strips is O(n). (4) The sum of heights of all rectangles in all vertical
strips is O(n). (5) The height (resp., width) of each rectangle is a multiple of 1/2.

In the following, due to the above property (5), we partition each rectangle into a
grid of square cells of side length 1/2. Consider a vertical strip A. We use a set VA of
vertical lines to further partition A into vertical sub-strips of width exactly 1/2 each. Since
the width of A is O(|P (A)|), |VA| = O(|P (A)|). Consider a rectangle R of A. We use a set
HR of horizontal lines to partition R into smaller rectangles of height exactly 1/2 each. Since
the height of R is O(|P (R)|), |HR| = O(|P (R)|). The lines of VA ∪HR together partition R
into square cells of side length 1/2, which form a grid GR. We process the points of P (R)
using the grid GR, as follows. Processing all rectangles in this way will prove the lemma.

For each cell C of GR, a cell C ′ is a neighbor of C if the minimum distance between
C and C ′ is at most 1. Let N ′(C) denote the set of all neighbors of C (e.g., see Fig. 1).
Clearly, |N ′(C)| = O(1).

Each cell C of the grid GR has an index (i, j) if C is in the i-th row of GR from the
top and in the j-th column from the left. For each point p ∈ P (R), by doing binary search
on the lines of VR and the lines of HR, we can determine the cell Cp (along with its index)
that contains p. In this way, we can find all “non-empty” cells of GR that contain at least

http://jocg.org/


JoCG 14(1), 343–394, 2023 349

Journal of Computational Geometry jocg.org

one point of P ; further, for each non-empty cell C, the points of P in C are also computed
and we associate them with C. Clearly, the number of non-empty cells is at most |P (R)|.

We next define a set CR of cells in the grid GR (the union of CR for all rectangles
R is C). For each non-empty cell C, we can find its neighbor set N ′(C) in O(1) time using
its index and we put all cells of N ′(C) in CR. As the number of non-empty cells is at most
|P (R)| and |N ′(C)| = O(1) for each cell C, |CR| = O(|P (R)|). Note that it is possible that
CR is a multi-set. To remove the repetitions, we can first sort all cells of CR using their
indices (i.e., an index (i, j) is “smaller than” (i′, j′) if i < i′, or i = i′ and j < j′) and then
scan the list to remove repetitions. We store this sorted list in our data structure (i.e., the
data structure to be built for this lemma). Finally, for each cell C of CR, we define N(C) as
the set of non-empty cells C ′ with C ∈ N ′(C ′). We can compute N(C) for all C ∈ CR by
scanning N ′(C ′) for all non-empty cells C ′. Note that N(C) is a subset of N ′(C) and thus
|N(C)| = O(1) and N(C) ⊆ CR. We store N(C) in our data structure.

Consider a disk Dp whose center p is in R. Let C be a cell of R containing p (if p lies
on the common boundary of more than one cell, then let C be an arbitrary one). If C 6∈ C,
then Dp does not contain any point of P (R) and thus does not contain any point of P by the
definition of R. Otherwise, by the definition of N(C), the points of P (R)∩Dp are contained
in the union of the cells of N(C); further, by the definition of R, P (Dp) = P (R) ∩Dp.

In summary, given VA, the above processing of P (R) computes the line set HR, the
cells of CR, and the set N(C) and the points of P (C) for each cell C ∈ CR. Other than
computing VA, the total time is O(|P (R)| log n) and the space is O(|P (R)|).

We process each rectangle R of A as above. Since the sum of |P (R)| for all rectangles
R of A is |P (A)|, the total processing time for all rectangles of A (including computing the
line set VA) is O(|P (A)| log n) and the space is O(|P (A)|).

We process all vertical strips as above for A. Define C stated in the lemma as the
union of CR for all rectangles R in all vertical strips. Because the total sum of |P (A)| of all
vertical strips is O(n), the total processing time is O(n log n) and the total space is O(n).
This proves the first lemma statement.

For the second part of the lemma, consider a query disk Dp with center p. We first
do binary search on the bounding lines of all vertical strips and check whether p is in any
vertical strip. If not, then p is not in any cell of C and Dp ∩ P = ∅. Otherwise, assume that
p is in a vertical strip A. Then, we do binary search on the horizontal bounding lines of the
rectangles of A and check whether p is in any such rectangle. If not, then p is not in any cell
of C and Dp ∩ P = ∅. Otherwise, assume that p is in a rectangle R. Next, by doing binary
search on the vertical lines of VA and then on the horizontal lines of HR, we determine the
index of the cell C of the grid GR that contains p. To determine whether C is in CR, we
do binary search on the sorted list of CR using the index of C. If C 6∈ CR, then C 6∈ C and
Dp ∩P = ∅. Otherwise, we return N(C), which is stored in the data structure. Clearly, the
running time for the algorithm is O(log n). This proves the lemma.

With Lemma 1 in hand, to solve the unit disk range searching problem, for each cell
C ∈ C and each cell C ′ ∈ N(C), we will preprocess the points of P (C ′) with respect to the
query disks whose centers are in C. Suppose that the preprocessing time (resp. space) for

http://jocg.org/


JoCG 14(1), 343–394, 2023 350

Journal of Computational Geometry jocg.org

C ′

a b

h(a, b)

Figure 2: Illustrating C′, which is the grey region.

C ′

p1

p2

q1

q2

Figure 3: Illustrating an upper arc pseudo-trapezoid
in C′.

each such pair (C,C ′) is f(m) = Ω(m), where m = |P (C ′)|. Then, by the property (5) of C,
the total preprocessing time (resp., space) for all such pairs (C,C ′) is f(n) (more precisely,
this holds for all functions f(·) used in our paper). In the following, we will describe our
preprocessing algorithm for (C,C ′). Since N(C) ⊂ C and the points of P in each cell of C
are already known by Lemma 1, P (C ′) is available to us. To simplify the notation and also
due to the above discussion, we assume that all points of P are in C ′, i.e., P (C ′) = P . Note
that if C = C ′, then the problem is trivial because any disk centered in C ′ covers the entire
cell (since the side-length of each grid cell is 1/2). We thus assume C 6= C ′. Due to the
property (2) of C, without loss of generality, in the following we assume that C and C ′ are
separated by a horizontal line such that C is below the line.

2.2 Basic concepts and observations

For any two points a and b, we use ab to denote the line segment connecting them. For any
compact region A in the plane, let ∂A denote the boundary of A, e.g., if A is a disk, then
∂A is a circle.

Consider a disk D whose center is in C. As the side length of C ′ is 1/2, ∂D ∩ C ′
may contain up to two arcs of the circle ∂D. For this reason, we enlarge C ′ to a region C ′ so
that ∂D ∩C ′ contains at most one arc. The region C ′ is defined as follows (e.g., see Fig. 2).

Let a and b be the two vertices of C ′ on its top edge. Let Dab be the disk whose
center is below ab and whose boundary contains both a and b. Let h(a, b) be the arc of
∂Dab above ab and connecting a and b. Define C ′ to be the region bounded by h(a, b), and
the three edges of C ′ other than ab. As the side length of C ′ is 1/2, for any disk D whose
center is in C, ∂D ∩C ′ is either ∅ or a single arc of ∂D (which is on the upper half-circle of
∂D). Let eb denote the bottom edge of C ′.

Consider a disk D. An arc h on the upper half-circle of ∂D (i.e., the half-circle
above the horizontal line through its center) is called an upper disk arc (or upper arc for
short); lower arcs are defined symmetrically. Note that an upper arc is x-monotone, i.e.,
each vertical line intersects it at a single point if not empty. If h is an arc of a disk D, then
we say that D is the underlying disk of h and the center of D is also called the center of h.
An arc h in C ′ is called a spanning arc if both endpoints of h are on ∂C ′. As we are mainly
dealing with upper arcs of C ′ whose centers are in C, in the following, unless otherwise
stated, an upper arc always refers to one whose center is in C.

http://jocg.org/


JoCG 14(1), 343–394, 2023 351

Journal of Computational Geometry jocg.org

C

Figure 4: Illustrating C, which is the grey region.

The following is an easy but crucial observation that makes it possible to adapt many
techniques for dealing with lines in the plane to spanning upper arcs of C ′. In the following
discussion, we will use this observation without explicitly referring to it.

Observation 1. Suppose h is an upper arc in C ′, and e is a vertical line segment or an
upper arc in C ′. Then, h and e can intersect each other at most once.

Proof. If e is a vertical segment, since h is x-monotone, h and e can intersect each other at
most once. If e is an upper arc, since both e and h are upper arcs of disks whose centers are
in C and they are both in C ′, they can intersect each other at most once.

Pseudo-trapezoids. Let h(p1, p2) be an upper arc with p1 and p2 as its left and right
endpoints, respectively. Define h(q1, q2) similarly, such that x(p1) = x(q1) and x(p2) = x(q2).
Assume that h(p1, p2) and h(q1, q2) do not cross each other and h(p1, p2) is above h(q1, q2).
The region σ bounded by the two arcs and the two vertical lines p1q1 and p2q2 is called an
upper-arc pseudo-trapezoid (e.g., see Fig. 3). We call p1q1 and p2q2 the two vertical sides of
σ, and call h(q1, q1) and h(p1, p2) the top arc and bottom arc of σ, respectively. The region
σ is also considered as an upper-arc pseudo-trapezoid if the bottom arc h(q1, q2) is replaced
by a line segment q1q2 on eb (for simplicity, we still refer to q1q2 as the bottom-arc of σ). In
this way, C ′ itself is an upper-arc pseudo-trapezoid. Note that for any pseudo-trapezoid σ
in C ′ and a disk D centered in C, ∂D ∩ σ is either empty or an upper arc.

The counterparts of C (with respect to C ′). The above definitions in C ′ (with respect
to C) have counterparts in C (with respect to C ′) with similar properties. First, we define
C in a symmetric way as C ′, i.e., a lower arc connecting the two bottom vertices of C ′ is
used to bound ∂C; e.g., see Fig. 4. Also, we define lower-arc pseudo-trapezoids and spanning
lower arcs similarly, and unless otherwise stated, a lower arc in C refer to one whose center
is in C ′. In the following discussion, unless otherwise stated, properties, algorithms, and
observations for the concepts of C ′ with respect to C also hold for their counterparts of C
with respect to C ′.

Duality. We define a duality relationship between upper arcs in C ′ and points in C. For
an upper arc h in C ′, we consider its center as its dual point in C (e.g., see Fig. 5). For a
point q ∈ C, we consider the upper arc ∂Dq ∩ C ′ as its dual arc in C ′ if it is not empty.
Similarly, we define duality relationship between lower arcs in C and points in C ′. Note that

http://jocg.org/


JoCG 14(1), 343–394, 2023 352

Journal of Computational Geometry jocg.org

C ′

C

h

q

Figure 5: Illustrating an upper arc h in C′ and its dual point q in C.

if the boundary of a disk centered at a point p ∈ P does not intersect C, then the point p
can be ignored from P in our preprocessing because among all disks centered in C one disk
contains p if and only if all other disks contain p. Henceforth, without loss of generality, we
assume that ∂Dp intersects C for all points p ∈ P , implying that every point of P is dual
to a lower arc in C. Note that our duality is similar in spirit to the duality introduced by
Agarwal and Sharir [8] between points and pseudo-lines.

2.3 Computing hierarchical cuttings for disk arcs

Let H be a set of n spanning upper arcs in C ′. For a compact region A of C ′, we use HA to
denote the set of arcs of H that intersect the relative interior of A. By adapting its definition
for hyperplanes, e.g., [18, 35], a cutting for H is a collection Ξ of closed cells (each of which
is an upper-arc pseudo-trapezoid) with disjoint interiors, which together cover the entire C ′.
The size of Ξ is the number of cells in Ξ. For a parameter 1 ≤ r ≤ n, a (1/r)-cutting for H
is a cutting Ξ satisfying |Hσ| ≤ n/r for every cell σ ∈ Ξ.

We will adapt the algorithm of Chazelle [18] to computing a (1/r)-cutting of size
O(r2) for H. It is actually a sequence of hierarchical cuttings. Specifically, we say that a
cutting Ξ′ c-refines a cutting Ξ if every cell of Ξ′ is contained in a single cell of Ξ and every
cell of Ξ contains at most c cells of Ξ′. Let Ξ0,Ξ1, . . . ,Ξk be a sequence of cuttings such
that Ξ0 consists of the single cell C ′ (recall that C ′ itself is an upper arc pseudo-trapezoid),
and every Ξi is a (1/ρi)-cutting of size O(ρ2i) which c-refines Ξi−1, for two constants ρ and
c. In order to make Ξk a (1/r)-cutting, we set k = dlogρ re. The above sequence of cuttings
is called a hierarchical (1/r)-cutting of H. If a cell σ ∈ Ξj−1 contains a cell σ′ ∈ Ξj , we say
that σ is the parent of σ′ and σ′ is a child of σ. Hence, one could view Ξ as a tree structure
with Ξ0 as the root.

Let χ denote the number of intersections of the arcs of H. We have the following
theorem.

Theorem 1. (The Cutting Theorem) Let χ denote the number of intersections of the arcs
of H. For any r ≤ n, a hierarchical (1/r)-cutting of size O(r2) for H (together with the
sets Hσ for every cell σ of Ξi for all 0 ≤ i ≤ k) can be computed in O(nr) time; more

http://jocg.org/


JoCG 14(1), 343–394, 2023 353

Journal of Computational Geometry jocg.org

specifically, the size of the cutting is bounded by O(r1+δ + χ · r2/n2) and the running time
of the algorithm is bounded by O(nrδ + χ · r/n), for any small δ > 0.

Remark. Correspondingly, for a set of lower arcs in C, we can define cuttings similarly with
lower-arc pseudo-trapezoids as cells; the same result as Theorem 1 also holds for computing
lower-arc cuttings. Also note that the algorithm is optimal if the subsets Hσ’s need to be
computed. Further, similar result on cuttings for other more general curves in the plane
(e.g., circles or circular arcs of different radii, pseudo-lines, line segments, etc.) can also be
obtained.

To prove Theorem 1, we adapt Chazelle’s algorithm for computing cuttings for hy-
perplanes [18]. It was stated in [8] that Chazelle’s algorithm can be extended to compute
such a cutting of size O(r1+δ+χ ·r2/n2) in O(n1+δ+χ ·r/n) time. However, no details were
provided in [8]. For completeness and also for helping the reader to better understand our
cutting, we present the algorithm details in the appendix, where we actually give a more
general algorithm that also works for other curves in the plane (e.g., circles or circular arcs of
different radii, pseudo-lines, line segments, etc.). Further, our result also reduces the factor
n1+δ in the above time complexity of [8] to nrδ.

The weighted case. To adapt the simplex range searching algorithms in [13, 33, 35], we
will need to compute cuttings for a weighted set H of spanning upper arcs in C ′, where
each arc h ∈ H has a nonnegative weight w(h). The hierarchical (1/r)-cutting can be
naturally generalized to the weighted case (i.e., the interior of each pseudo-trapezoid in a
(1/r)-cutting can be intersected by upper arcs of H of total weight at most w(H)/r, where
w(H) is the total weight of all arcs of H). By a method in [32], any algorithm computing a
hierarchical (1/r)-cutting for a set of hyperplanes can be converted to the weighted case with
only a constant factor overhead. We can use the same technique to extend any algorithm
computing a hierarchical (1/r)-cutting for a set of upper arcs to the weighted case.

2.4 Test Set Lemma

A critical component in all simplex range searching algorithms in [13, 33, 35] is a Test Set
Lemma. We prove a similar result for our problem, by using the duality. For any pseudo-
trapezoid σ in C ′, we say that an upper arc h crosses σ if h intersects the interior of σ.

Lemma 2. (Test Set Lemma) For any parameter r ≤ n, there exists a set Q of at most
r spanning upper arcs in C ′, such that for any collection Π of interior-disjoint upper-arc
pseudo-trapezoids in C ′ satisfying that each pseudo-trapezoid contains at least n/(c · r)
points of P for some constant c > 0, the following holds: if κ is the maximum number
of pseudo-trapezoids of Π crossed by any upper arc of Q, then the maximum number of
pseudo-trapezoids of Π crossed by any upper arc in C ′ is at most O(κ+

√
r).

Proof. We adapt the proof of Lemma 3.3 [33] by using our duality. Let H be the set of
lower arcs in C dual to the points of P . By Theorem 1, we can choose a (1/t)-cutting Ξ for

http://jocg.org/


JoCG 14(1), 343–394, 2023 354

Journal of Computational Geometry jocg.org

C ′

C

h

q
σ

Figure 6: Illustrating the proof of Lemma 2: the dashed red arc is h and the four solid blue arcs constitute
G.

H whose lower-arc pseudo-trapezoids have at most r vertices in total, with t = Θ(
√
r). Let

V be the set of all vertices of the pseudo-trapezoids of Ξ. Let Q be the set of upper arcs in
C ′ dual to the points of V . Below we argue that Q has the property stated in the lemma.

Consider an upper arc h in C ′. Let σ be the pseudo-trapezoid of Ξ that contains the
center of h (recall that by our convention any upper arc of C ′ has its center in C). Let G be
the set of at most four upper arcs in C ′ dual to the vertices of σ (e.g., see Fig. 6). By the
hypothesis of the lemma, each arc of G crosses at most κ cells of Π. It remains to bound
the number of cells of Π crossed by h but by no arc of G. Such cells must be completely
contained in the zone Z(h) of h in the arrangement A(G) of the arcs of G in C ′. It can be
verified that any point of P lying in the interior of Z(h) must be dual to a lower arc in H
that crosses σ; there are at most n/t = O(n/

√
r) such lower arcs in H. Therefore, the zone

Z(h) contains O(n/
√
r) points of P . Since each cell of Π has at least n/(cr) points of P , the

number of cells of Π completely contained in Z(h) is O(
√
r). This proves the lemma.

With our Cutting Theorem (i.e., Theorem 1) and the Test Set Lemma, we proceed to
adapt the simplex range searching algorithms in [13, 33, 35] to our problem in the following
subsections.

2.5 A data structure based on pseudo-trapezoidal partitions

We first extend the simplicial partition for hyperplanes in [33] to our problem, which we
rename pseudo-trapezoidal partition. A pseudo-trapezoidal partition for P is a collection
Π = {(P1, σ1), . . . , (Pm, σm)}, where the Pi’s are pairwise disjoint subsets forming a partition
of P , and each σi is a relatively open upper-arc pseudo-trapezoid in C ′ containing all points of
Pi. The pseudo-trapezoidal partition we will compute has the following additional property:
max1≤i≤m |Pi| < 2 · min1≤i≤m |Pi|, i.e., all subsets have roughly the same size. Note that
the trapezoids σi’s may overlap. The subsets Pi’s are called classes of Π.

For any upper arc h in C ′, we define its crossing number with respect to Π as the
number of pseudo-trapezoids of Π crossed by h. The crossing number of Π is defined as
the maximum crossing numbers of all upper arcs h in C ′. The following partition theorem

http://jocg.org/


JoCG 14(1), 343–394, 2023 355

Journal of Computational Geometry jocg.org

corresponds to [33, Theorem 3.1]. Its proof is similar to in [33, Theorem 3.1], with our Test
Set Lemma and our Cutting Theorem.

Theorem 2. (Partition Theorem) Let s be an integer with 2 ≤ s < n and r = n/s. There
exists a pseudo-trapezoidal partition Π for P , whose classes Pi satisfy s ≤ |Pi| < 2s, and
whose crossing number is O(

√
r).

Proof. Note that similar result as the theorem is already known for pseudo-lines with respect
to points [8]. Here for completeness we sketch the proof and refer the reader to [33] for
detailed analysis.

We first apply the Test Set Lemma on P to obtain a set Q of at most r upper arcs
in C ′. The algorithm proceeds with r iterations. In the i-th iteration, 1 ≤ i ≤ r, we will
compute the set Pi and the upper-arc pseudo-trapezoid σi. Suppose P1, . . . , Pi and σ1, . . . , σi
have already been computed. Let P ′i = P \

⋃i
k=1 Pk and ni = |P ′i |. The algorithm maintains

an invariant that ni ≥ s. We describe the (i+ 1)-the iteration of the algorithm below.

If ni < 2s, we set Pi+1 = P ′i , σi+1 = C ′, m = i+1, and Π = {(P1, σ1), . . . , (Pm, σm)};
this finishes the construction of Π. In what follows, we assume ni ≥ 2s.

For each arc h ∈ Q, let ki(h) denote the number of pseudo-trapezoids among
σ1, . . . , σi crossed by h. We define a weighted set (Q,wi) by setting wi(h) = 2ki(h) for
every h ∈ Q. By the Cutting Theorem, we can choose a parameter ti ≥ c ·

√
ni/s for some

constant c > 0, such that there exists a (1/ti)-cutting Ξi for (Q,wi) that has at most ni/s
cells. Hence, some cell of Ξi contains at least s points of P ′i . Let σi+1 be such a cell. Among
the at least s points of P ′i contained in σi+1, we arbitrarily pick s points to form Pi+1.

This finishes the description of the construction of Π. Using the Test Set Lemma
and following the same analysis as that in [33, Lemma 3.2], we can show that the crossing
number of Π is bounded by O(

√
r).

Lemma 3. Given an integer s with 2 ≤ s < n and r = n/s, a pseudo-trapezoidal partition
for P satisfying 2 ≤ |Pi| < 2s for every class Pi and with crossing number O(r1/2+δ) can be
constructed in O(n log r) time.

Proof. First of all, if r = O(1), a pseudo-trapezoidal partition as in the Partition Theorem
can be constructed in O(n) time. To see this, it suffices to go through the steps of the proof
of the Partition Theorem and verify that the total time is bounded by O(n). For the Test
Set Lemma, we need to compute a (1/t)-cutting for a set of n arcs with t = O(1), which
can be done in O(n) time by our Cutting Theorem. The rest of the time analysis follows
the same as Lemma 3.4 [33].

To prove the lemma, we build the partition recursively. Specifically, we first build a
partition Π with class sizes between s1 and 2s1 and with crossing number at most c · √r1,
where r1 = n/s1 and c is a constant depending on the proof analysis of the Partition
Theorem. Then, for every class Pi of this partition, we construct a partition Πi with class
sizes between s2 and 2s2 and with crossing number c2 · √r2, where r2 = s1/s2. All these
secondary partitions form a pseudo-trapezoidal partition with class sizes between s2 and
2s2 and with crossing number c2√r, where r = n/s2. By repeating this process for a

http://jocg.org/


JoCG 14(1), 343–394, 2023 356

Journal of Computational Geometry jocg.org

certain number of times and choosing a sufficient large constant r0 for parameter s1 = n/r0,
s2 = s1/r0, etc, we can achieve the lemma. Note that we lose a constant factor in the
crossing number at every iteration. Refer to Corollary 3.5 [33] for details.

Let H be a set of n spanning upper arcs in C ′. Next, using Lemma 3 we give a
faster algorithm (than the one in our Cutting Theorem) to compute cuttings for H in the
following lemma, which corresponds to [33, Proposition 4.4].

Lemma 4. For any r ≤ n1/2−δ, a (1/r)-cutting of size O(r2) for H can be computed in
time O(n log r + r3+δ). In particular, the running time is O(n log r) when r ≤ n1/3+δ.

Proof. We first define the ε-approximations. Let R be a subset of H and is equipped with
a weight function w(·), i.e., for each arc h ∈ R, h has a weight w(h). For any subset R′ of
R, we use w(R′) to denote the total sum of the weights of all arcs of R′. The weighted set
(R,w) is an ε-approximation if |w(Re)/w(R) − |He|/|H|| < ε, for e as any sub-segment of
eb, any vertical line segment, or any upper arc in C ′. Next we prove the lemma.

Let D(H) be the set of points in C dual to the arcs of H. Let Π be a lower-arc
trapezoidal partition of D(H) with crossing number κ and each class has no more than s
points. For each class Pi of Π, we pick an arbitrary point pi ∈ Pi and let hi be the arc of H
dual to pi; we set w(hi) = |Pi|. In this way, we obtain a subset R of weighted arcs of H.

We claim that that (R,w) is a (2κs/n)-approximation of H. Indeed, let e be
sub-segment of eb, a vertical segment, or an upper arc in C ′. Our goal is to show that
|w(Re)/w(R) − |He|/|H|| < 2κs/n. By definition, w(R) = |H|. Hence, it suffices to prove
|w(Re) − |He|| < 2κs. Let D1 and D2 be the disks centered at the two endpoints of e, re-
spectively. Then, one can verify that if an arc of H crosses the interior of e, then the center
of the arc must be in one and only one disk of D1 and D2, i.e., in the symmetric difference
of the two disks. This implies that |w(Re)−|He|| is no more than the total number of points
in the classes of Π whose pseudo-trapezoids are crossed by the two lower arcs of C due to
the two endpoints of e. As the crossing number of Π is κ and each class of Π has at most s
points, we obtain that |w(Re)− |He|| ≤ 2κs. The claim is thus proved.

Due to the claim, we can compute a (1/t)-approximation (R,w) of size O(t2+δ) for
H in O(n log t) time by Lemma 3.

By adapting an observation made by Matoušek [32] for hyperplanes (see also [33,
Lemma 4.3]), we can show that if (R,w) is an ε-approximation for H and Ξ is an ε′-cutting
for (R,w), then Ξ is a 4(ε+ ε′)-cutting for H. As such, we can compute a (1/r)-cutting for
H, as follows. First, we compute a (1/8r)-approximation (R,w) of size O(r2+δ) for H in
O(n log r) time using by Lemma 3, as discussed above. Second, we compute a (1/8r)-cutting
Ξ for (R,w) in O(r3+δ) time by our Cutting Theorem. According to the above observation,
Ξ is a (1/r)-cutting for H. The total time of the algorithm is O(n log r + r3+δ).

Remark. The algorithm in Lemma 4 does not compute the subsets Hσ for all cells σ of the
cutting, since otherwise the algorithm of the Cutting Theorem is optimal.

http://jocg.org/


JoCG 14(1), 343–394, 2023 357

Journal of Computational Geometry jocg.org

σ

Figure 7: The trapezoid with solid boundary in
is a cell in Σ1 and the one with dotted boundary is
σ.

σ

Figure 8: The trapezoid with solid boundary in is a
cell in Σ2 and the one with dotted boundary is σ.

The following lemma, which corresponds to [33, Lemma 4.5], will be used in the
algorithm for Lemma 6.

Lemma 5. Given any constant c > 0, let r ≤ nα be a parameter, where α is a constant
depending on c. We can build in O(n log r) time a data structure of O(n) space for P such
that the number of points of P in a query upper-arc pseudo-trapezoid in C ′ can be computed
in O(n/rc) time and deleting a point can be handled in O(log r) time (the value of n in the
query time refers to the original size of P before any deletion happens).

Proof. In the preprocessing, we compute in O(n log t) time an upper-arc pseudo-trapezoidal
partition Π for P by Lemma 3, with at most t classes of sizes between n/t and 2n/t, and
with crossing number O(t1/2+δ), where t is a sufficiently large (constant) power of r. For
every (Pi, σi) ∈ Π, we store the pseudo-trapezoid σi, the size |Pi|, and the list of points of
Pi. We further partially sort the points of each Pi into at most 2t subsets of size at most
n/t2 each, such that all points in the i-th subset are to the left of all points of the (i+ 1)-th
subset (but points in each subset are not sorted). As |Pi| is between n/t and 2n/t, the above
partial sorting can be done in O(n/t · log t) time using the selection algorithm. Next, we
build a tree Ti, whose leaves correspond to the above subsets of Pi from left to right. For
each node v of Ti, we store the number of points in the subsets of the leaves in the subtree
rooted at v. It takes O(|Pi|) time to build the tree. Hence, the total preprocessing time for
all classes of Π is O(n log t), which is O(n log r) as t is a constant power of r. The space is
O(n).

Given a query upper-arc pseudo-trapezoid σ, we compute the number of the points
of P in σ as follows. For each trapezoid σi ∈ Π, we check whether σi is contained in σ. If
yes, we add |Pi| to the total count. The remaining points of P in σ that are not counted are
those contained in classes Pi whose pseudo-trapezoids σi are crossed by the boundary of σ.
We partition those pseudo-trapezoids into two subsets. Let Σ1 denote the subset of those
pseudo-trapezoids that are crossed by either the top arc or the bottom arc of σ (e.g., see
Fig. 7). Let Σ2 denote the subset of the rest pseudo-trapezoids of Π crossed by the boundary
of σ; hence, each pseudo-trapezoid of Σ2 is crossed by either the left or the right side of σ
but not crossed by either the top or the bottom arc of σ (e.g., see Fig. 8). The two subsets
Σ1 and Σ2 can be found by checking every pseudo-trapezoid of Π. As the crossing number
of Π is O(t1/2+δ), we have |Σ1| = O(t1/2+δ). However, |Σ2| may be as large as t.

For each pseudo-trapezoid σi ∈ Σ1, we check each point of Pi to see whether it lies

http://jocg.org/


JoCG 14(1), 343–394, 2023 358

Journal of Computational Geometry jocg.org

in σ. For each pseudo-trapezoid σi ∈ Σ2, suppose σi intersects the left side of σ but does
not intersect the right side. Let ` be the vertical line containing the left side of σ. Because
σi does not intersect the top arc, the bottom arc, or the right side of σ, points of Pi in σ
are exactly those to the right of `. Based on this observation, we find the number of such
points using the tree Ti, as follows. First, we search Ti to find the leaf v whose subset spans
` (i.e., ` is between the leftmost and the rightmost points of the subset). This search can
also compute the total number of points of Pi in the leaves to the right of v. Next, for
the subset Pv stored at the leaf v, we check every point of Pv to determine whether it is in
σ. As |Pv| ≤ n/t2, the time for searching Pi is O(log t + n/t2). If σi intersects the right
side of σ but does not intersect the left side, then we can use a similar algorithm. If σi
intersects both the right side and the left side of σ, then the points of Pi in σ are exactly
those points between the supporting lines of the left and right sides of σ. Hence, we can
still find the number by searching Ti but following two search paths. The search time is still
O(log t+ n/t2).

In this way, the query time is bounded by O(t + (n/t) · t1/2+δ + t · (log t + n/t2)),
which is O(t log t + n/t1/2−δ). If t is a large enough power of r and α is small enough, the
time is bounded by O(n/rc).

Finally, to delete a point, we simply mark the point as deleted in the appropriate
tree Ti, and update the point counts in the affected nodes of Ti. This can be done in O(log t)
time, which is O(log r) time.

The following lemma, which corresponds to [33, Lemma 4.6], will be used in the
algorithm for Lemma 7.

Lemma 6. There exists a small constant α > 0 such that a pseudo-trapezoidal partition as
in the Partition Theorem can be constructed in O(n log r) time for any r ≤ nα.

Proof. We go through the proof of the Partition Theorem. The first step is to compute a
(1/t)-cutting using the Test Set Lemma with t = Θ(

√
r), which can be done in O(n log r)

time by Lemma 4.

Most of the remaining steps can be performed in time polynomial in r, not depending
on n. The only exception is when we select a pseudo-trapezoid of the cutting Ξi containing
at least s points of P ′i . To do so, we need to find the number of points in these faces as well
as report the points inside the selected face. This requires O(r2) pseudo-trapezoidal range
counting (and O(r) reporting) queries on the original point set P , whose points may be
deleted (after reporting). By Lemma 5, the queries together take O(n log r) time including
the preprocessing if we set c = 2, which can be achieved when α is small enough. Note that
Lemma 5 does not mention the range reporting query but it can be done by modifying the
range counting algorithm with query time bounded by O(n/rc + k), where k is the number
of reported points.

The following lemma, which corresponds to [33, Theorem 4.7(i)], will be used in the
algorithm for Theorem 3.

http://jocg.org/


JoCG 14(1), 343–394, 2023 359

Journal of Computational Geometry jocg.org

Lemma 7. For any fixed δ > 0, if s ≥ nδ, then a pseudo-trapezoidal partition as in the
Partition Theorem (whose classes |Pi| satisfy s ≤ |Pi| < 2s and whose crossing number is
O(
√
r) can be constructed in O(n log r) time, where r = n/s.

Proof. We apply the recursive algorithm in Lemma 3, but use Lemma 6 to construct the
partition at each iteration. For a current point set of size m, we set the parameter s to m1−α

for the next iteration, where α refers to the parameter in Lemma 6. After the i-th iteration,
the size of the classes of the current partition are roughly n(1−α)i . Hence, it suffices to iterate
O(1) times before (1 − α)i drops below δ. Therefore, we only lost a constant factor in the
crossing number. The lemma thus follows.

Using the above lemma, we can obtain the following result for the disk range search-
ing problem.

Theorem 3. We can build an O(n) space data structure for P in O(n log n) time, such
that given any disk D centered in C, the number of points of P in D can be computed in
O(
√
n(log n)O(1)) time.

Proof. We build a partition tree T using the algorithm of Lemma 7 recursively, until we
obtain a partition of P into subsets of constant sizes, which form the leaves of T . Each inner
node v of T corresponds to a subset Pv of P as well as a pseudo-trapezoidal partition Πv of
Pv, which form the children of v. At each child u of v, we store the pseudo-trapezoid σu of
Πv containing Pu and also store the size |Pu|. We construct the partition Πv using Lemma 7
with parameter s =

√
|Pv|. Note that if u is the root, then σu = C ′ and Pu = P . Hence,

the height of T is O(log log n).

Given a query disk D whose center is in C, starting from the root of T , for each
node v, we check whether D contains the pseudo-trapezoid σv stored at v. If yes, then we
add |Pv| to the total count. Otherwise, if D crosses σv, then we proceed to the children of
v.

The complexities are as stated in the theorem. The analysis is the same as [33,
Theorem 5.1].

Remark. It is straightforward to modify the algorithm to answer the outside-disk queries:
compute the number of points of P outside any query disk, with asymptotically the same
complexities. This is also the case for other data structures given later, e.g., Theorems 4, 5,
6.

2.6 A data structure based on hierarchical cuttings

In this section, by using our Cutting Theorem and Test Set Lemma, we adapt the techniques
of Matoušek [35] to our problem. Our goal is to prove the following theorem.

Theorem 4. We can build an O(n) space data structure for P in O(n1+δ) time for any
small constant δ > 0, such that given any disk D whose center is in C, the number of points
of P in D can be computed in O(

√
n) time.

http://jocg.org/


JoCG 14(1), 343–394, 2023 360

Journal of Computational Geometry jocg.org

We first construct a data structure for a subset P ′ of at least half points of P . To
build a data structure for the whole P , the same construction is performed for P , then for
P \P ′, etc., and thus a logarithmic number of data structures with geometrically decreasing
sizes will be obtained. Because the preprocessing time and space of the data structure for
P ′ is Ω(n), constructing all data structures for P takes asymptotically the same time and
space as those for P ′ only. To answer a disk query on P , each of these data structures will
be called. Since the query time for P ′ is Ω(

√
n), the total query time for P is asymptotically

the same as that for P ′. Below we describe the data structure for P ′.

The data structure consists of a set of (not necessarily disjoint) upper-arc pseudo-
trapezoids in C ′, Ψ0 = {σ1, . . . , σt} with t =

√
n log n. For each 1 ≤ i ≤ t, we have a subset

Pi ⊆ P of n/(2t) points that are contained in σi. The subsets Pi’s form a disjoint partition
of P ′. For each i, there is a rooted tree Ti whose nodes correspond to pseudo-trapezoids,
with σi as the root. Each internal node of Ti has O(1) children whose pseudo-trapezoids
are interior-disjoint and together cover their parent pseudo-trapezoid. For each pseudo-
trapezoid σ of Ti, let Pσ = Pi ∩ σ. If σ is a leaf, then the points of Pσ are explicitly stored
at σ; otherwise only the size |Pσ| is stored there. Each point of Pi is stored in exactly one
leaf pseudo-trapezoid of Ti. The depth of Ti is q = O(log n). Hence, the data structure
is a forest of t trees. Let Ψj denote the set of all pseudo-trapezoids of all trees Ti’s that
lie at distance j from the root. For any upper arc h in C ′, let Kj(h) be the set of pseudo-
trapezoids of Ψj crossed by h; let Lj(h) be set of the leaf pseudo-trapezoids of Kj(h). Define
K(h) =

⋃q
j=0Kj(h) and L(h) =

⋃q
j=0 Lj(h). The data structure guarantees the following

for any upper arc h in C ′:
q∑
j=0

|Ψj | = O(n), (1)

|K(h)| = O(
√
n),

∑
σ∈L(h)

|Pσ| = O(
√
n). (2)

We next discuss the algorithm for constructing the data structure. The first step is
to compute a test set H (called a guarding set in [35]) of n spanning upper arcs in C ′. This
can be done in time polynomial in n by our Test Set Lemma. After that, the algorithm
proceeds in t iterations; in the i-th iteration, Ti, σi, and Pi will be produced.

Suppose Tj , σj , and Pj for all j = 1, 2 . . . , i have been constructed. Define P ′i =
P \ (P1∪· · ·∪Pi). If |P ′i | < n/2, then we stop the construction. Otherwise, we proceed with
the (i+ 1)-th iteration as follows. Let Ψ

(i)
0 , . . . ,Ψ

(i)
q denote the already constructed parts of

Ψ0, . . . ,Ψq. Define K(i)
j (h) and L(i)

j (h) similarly as Kj(h) and Lj(h). We define a weighted
arc set (H,wi). For each arc h ∈ H, define the weight

wi(h) = exp

(
log n√
n
·
[ q∑
j=0

4q−j · |K(i)
j (l)|+

∑
σ∈K(i)

q (l)

|Pσ|
])
.

Next, by our Cutting Theorem, we compute a hierarchical (1/r)-cutting for (H,wi)
with r =

√
n, which consists of a sequence of cuttings Ξ0,Ξ1, . . . ,Ξk with ρ > 4 (note that

by our algorithm for the Cutting Theorem, we can make ρ larger than any given constant).

http://jocg.org/


JoCG 14(1), 343–394, 2023 361

Journal of Computational Geometry jocg.org

Suppose p is the largest index such that the size of Ξp is at most t. As the size of
Ξj is O(ρ2j), ρ2p = Θ(t) and Ξp is a (1/rp)-cutting of (H,wi) with rp = ρp = Θ(

√
t). Let

q = k − p. Note that ρq = O(r/
√
t) = O(

√
n/t). Since |P ′i | ≥ n/2 and Ξp has at most t

pseudo-trapezoids, Ξp has a pseudo-trapezoid, denoted by σi+1, containing at least n/(2t)
points of P ′i . We arbitrarily select n/(2t) points of P ′i ∩ σi+1 to form the set Pi+1. Further,
all pseudo-trapezoids in Ξp,Ξp+1, . . . ,Ξk contained in σi+1 form the tree Ti+1, whose root
is σi+1. Next, we eliminate some nodes from Ti+1 as follows. Starting from the root, we
perform a depth-first-search (DFS). Let σ be the pseudo-trapezoid of the current node the
DFS is visiting. Suppose σ belongs to Ξp+j for some 0 ≤ j ≤ q. If σ contains at least 2q−j

points of Pi+1 (σ is said to be fat in [35]), then we proceed on the children of σ; otherwise,
we make σ a leaf and return to its parent (and continue DFS). In other words, a pseudo-
trapezoid of Ti+1 is kept if and only all its ancestors are fat. This finishes the construction
of the (i+ 1)-th iteration.

The running time of the construction algorithm is polynomial in n. Using our Test
Set Lemma and following the same analysis as in [35], we can show that Equations (1) and
(2) hold. Note that (1) implies that the total space of the data structure is O(n). With (2),
we show below that each disk range query can be answered in O(

√
n) time.

Given a query disk D whose center is in C, the points of P ′ in D can be computed
as follows. First, compute the total number of points in the pseudo-trapezoids σi of Ψ0 that
are contained in σ. Second, find the set Σ of pseudo-trapezoids σi of Ψ0 that are crossed by
the boundary of σ. Third, repeat the following steps until Σ becomes empty. We remove
one pseudo-trapezoid σ from Σ. If it is a leaf, we check whether each point of Pσ is in σ.
Otherwise we check each of its children. We handle those completely contained in σ directly
and add those crossed by the boundary of σ to Σ.

Equation (2) guarantees that the time spent in the third step is O(
√
n). The first two

steps, however, take O(t) = O(
√
n log n) time if the pseudo-trapezoids of Ψ0 are checked one

by one. The following two lemmas respectively reduce the time of these two steps to O(
√
n)

with additional preprocessing on the pseudo-trapezoids of Ψ0. Note that our intention is to
implement the two steps in O(

√
n) time with O(n) time and space preprocessing. Hence, the

results of the two lemmas may not be the best possible, but are sufficient for our purpose.

Lemma 8. With O(t(log t)O(1)) time and space preprocessing, the first step can be executed
in O(

√
t · exp(c ·

√
log t)) time, for a constant c.

Proof. Consider a pseudo-trapezoid σ ∈ Ψ0. By the definition of upper-arc pseudo-trapezoids,
σ is completely contained in the query disk D if and only if all four vertices of σ are in D.
We consider the four vertices of σ as a 4-tuple with a weight equal to |Pσ|. Hence, the prob-
lem becomes the following: preprocessing the set A of t 4-tuples of the pseudo-trapezoids of
Ψ0 such that the total weight of all 4-tuples contained in a query disk D can be computed
efficiently.

We use the algorithm for Lemma 6.2 [33] to build a multi-level data structure. We
proceed by induction on k with 1 ≤ k ≤ 4, i.e., solving the k-tuple problem by constructing
a data structure Sk(A). For k = 1, we apply Theorem 3 to obtain S1(A). For k > 1, let F
be the set of first elements of all k-tuples of A.

http://jocg.org/


JoCG 14(1), 343–394, 2023 362

Journal of Computational Geometry jocg.org

To construct Sk(A), we build a partition tree as Theorem 3 on F , by setting r =
m/s = exp(

√
logm) in a node v whose subset Pv has m points. For every class Qi of the

pseudo-trapezoidal partition Πv = {(Q1, σ1), (Q2, σ2), . . .} for Pv, we let Ai ⊆ A be the set
of k-tuples whose first elements are in Qi, and let A′i be the set of (k − 1)-tuples arising by
removing the first element from the k-tuples of Ai. We compute the data structure Sk−1(A′i)
and store it in the node v.

To answer a query for a disk D, we start from the root of the partition tree. For
each current node v, we find the pseudo-trapezoids of the partition Πv contained in D, and
for each such trapezoid σi, we use the data structure Sk−1(A′i) to find the k-tuples of Ai
contained in D. We also find the pseudo-trapezoids of Πv crossed by the boundary of σ,
and visit the corresponding subtrees of v recursively.

The complexities are as stated in the lemma, which can be proved by the same
analysis as in the proof of [33, Lemma 6.2].

Note that exp(c
√

log t) = O(tδ) for any small δ > 0. Since t =
√
n log n, the

preprocessing time and space of the above lemma is bounded by O(n) and the query time
is bounded by O(

√
n).

Lemma 9. With O(t(log t)O(1)) time and space preprocessing, the second step can be exe-
cuted in O(

√
t · (log n)O(1) + k) time, where k is the output size.

Proof. The second step of the query algorithm is to find all pseudo-trapezoids of Ψ0 that
are crossed by the boundary of a query disk D. Recall that ∂D ∩ C ′ is a spanning upper
arc h. For each edge e of a pseudo-trapezoid σi ∈ Ψ0, h crosses e if and only if one of
the following two conditions holds: (1) the two endpoints of e are in the two regions of C ′
separated by h; (2) e is a sub-segment of eb, both endpoints a and b of h are on eb, and
ab ⊆ e. We say that e is a type-1 target edge (resp., type-2 target edge) if e satisfies the first
(resp., second) condition. In the following, we discuss how to compute each type of target
edges with complexities as stated in the lemma.

Computing type-1 target edges. Let E be the set of the edges of all pseudo-trapezoids of
Ψ0. Note that |E| ≤ 4t. Given a query disk D, the problem is to find all type-1 target edges
of E. We adapt the algorithm for Lemma 6.3 [35] for reporting the segments crossed by a
query hyperplane. Let V1 denote the set of all left vertices of the edges of E (if an edge is a
vertical segment, then we take the bottom vertex); let V2 be the set of the right vertices.

Similarly to Lemma 8, we build a 2-level partition tree T on V1. For each node v,
we build a disk range reporting data structure on Pv, i.e., given a query disk D, report
all points Pv ∩ D. By the lifting method, the problem can be reduced to half-space range
reporting in 3D [1, 10, 14, 21, 34]. For example, using the result of [14], for m points in the
plane, a data structure of O(m) space can be built in O(m logm) time such that each disk
range reporting can be answered in O(logm + k) time. At each node v of T , we set the
parameter s to |Pv|2/3 when building the partition Πv. Let P ′v be the set of right vertices
whose corresponding left vertices are in Pv. We build a disk range reporting data structure
for P ′v at v.

http://jocg.org/


JoCG 14(1), 343–394, 2023 363

Journal of Computational Geometry jocg.org

For each query disk D, we find all nodes v of T whose pseudo-trapezoids are outside
D. For each such node v, using the disk range reporting data structure at v, we report all
points of P ′v inside D; all reported points correspond to the type-1 target edges of E.

The complexities are as stated in the lemma, which can be proved by the same
analysis as in the proof of [33, Lemma 6.3].

Computing type-2 target edges. This case is fairly easy to handle. Let E′ be the set of
the bottom edges of pseudo-trapezoids of Ψ0 that are on eb. Note that |E′| ≤ t. For a query
disk D, if the two endpoints a and b of h are not both on eb, then no type-2 target edges
exist. Assume that both a and b are on eb. Then, the problem is to report the segments of
E′ that contain ab. This problem can be solved in O(log |E′|+ k) time after O(|E′|) space
and O(|E′| log |E′|) time preprocessing (e.g., by reducing the problem to 2D range reporting
queries and then using priority search trees; see [23, Exercise 10.10]).

Since t =
√
n log n, the preprocessing time and space of the above lemma is bounded

by O(n) and the query time is bounded by O(
√
n), for k = O(

√
n) by Equation (2).

In summary, the above constructs our disk range searching data structure for The-
orem 4 in O(n) space and the query time is O(

√
n). The preprocessing time is polynomial

in n. To reduce it to O(n1+δ), we can can use the following approach.

Proof of Theorem 4. We apply the same algorithm as in the proof of Theorem 3, but stop
the algorithm when the size of Pv is roughly equal to nδ′ for a suitable small value δ′ > 0.
Then, the height of T is O(1). For each leaf node v of T , we build the data structure Dv

discussed above on Pv, which takes time polynomial in |Pv|. We make δ′ small enough so
that the total time we spend on processing the leaves of T is O(n1+δ). This finishes the
preprocessing, which takes O(n1+δ) time and O(n) space.

Given a query disk D, we first follow the tree T in the same way as before. Eventually
we will reach a set V of leaves v whose pseudo-trapezoids σv are crossed by ∂D. Since the
height of T of O(1), the size of V is O(

√
r), where r = n1−δ′ is the number of leaves of T .

Again since the height of T is O(1), the time we spend on searching T is O(
√
n) (see the

detailed analysis of Theorem 5.1 [33]). Finally, for each leaf node v ∈ V , we use the data
structure Dv to find the number of points of Pv∩D, in O(

√
|Pv|) time. As |Pv| = nδ

′
= n/r,

the total time for searching all leaf nodes of V is O(
√
n). This proves Theorem 4.

2.7 A randomized result

In this section, we show that the randomized result of Chan [13] can also be adapted for our
problem, with the following result.

Theorem 5. We can build an O(n) space data structure for P in O(n log n) expected time
by a randomized algorithm, such that given any disk D whose center is in C, the number of
points of P in D can be computed in O(

√
n) time with high probability.

http://jocg.org/


JoCG 14(1), 343–394, 2023 364

Journal of Computational Geometry jocg.org

The data structure is a partition tree, denoted by T , obtained by recursively sub-
dividing C ′ into cells each of which is an upper-arc pseudo-trapezoid. Each node v of T
corresponds to a cell, denoted by σv. If v is the root, then σv is C ′. If v is not a leaf,
then v has O(1) children whose cells form a disjoint partition of σv. Define Pv = P ∩ σv.
The set Pv is not explicitly stored at v unless v is a leaf, in which case |Pv| = O(1). The
cardinality |Pv| is stored at v. The height of T is O(log n). If κ is the maximum number of
pseudo-trapezoids of T that are crossed by any upper arc in C ′, then κ = O(

√
n) holds with

high probability. The partition tree T can be built by a randomized algorithm of O(n log n)
expected time. The space of T is O(n).

We follow the algorithm scheme of Chan [13] but instead use our Cutting Algorithm,
Test Set Lemma, and the duality relationship, except that two data structures in the al-
gorithm need to be provided. Both data structures are for the same subproblem but with
different performances, as follows. Let H be a set of m spanning upper arcs in C ′. Given a
query upper-arc pseudo-trapezoid σ in C ′, the problem is to report Hσ, where Hσ is the set
of all arcs of H crossing σ. We show below that we can achieve the same performances as
needed in Chan’s algorithm.

The first data structure2 requires the performance in the following lemma.

Lemma 10. With O(m logm) time preprocessing, each query can be answered in time
O(
√
m(logm)O(1) + |Hσ|).

Proof. Consider a query pseudo-trapezoid σ. An arc h ∈ H crosses σ if and only if it crosses
an edge e of σ. Note that e can be a sub-segment of the bottom side eb of C ′, a vertical
segment, or an upper arc in C ′. To answer the query, it suffices to find He for all edges e of
σ, where He is the set of arcs of H crossing e. Observe that an arc h ∈ H crosses e if and
only if one of the following two conditions hold: (1) the two endpoints of e are in the two
regions of C ′ separated by h; (2) e is a sub-segment of eb, both endpoints a and b of h are
on eb, and ab ⊆ e. We say that h is a type-1 target arc (resp., type-2 target arc) if h satisfies
the first (resp., second) condition. In the following, we discuss how to compute each type of
target arcs with complexities as stated in the lemma.

Computing type-1 target arcs. For computing type-1 target arcs, we consider the problem
in the dual setting as follows. Let H∗ be the set of points in C dual to the arcs of H. Let
D1 and D2 be the disks centered at the two endpoints of e, respectively. Observe that
an arc h ∈ H is a type-1 target arc if and only if its dual point h∗ is in the intersection
of C and D′, where D′ is the symmetric distance of D1 and D2. Hence, |He| is equal to
|H∗ ∩ D′|. Note that D′ is bounded by the two lower arcs of D1 and D2 in C as well as
the boundary of C. Hence, if we build the data structure of Theorem 3 on H∗, by following
a similar query algorithm, we can compute |H∗ ∩D′|. The difference is that now for each
node v of T , we check whether D′ contains the pseudo-trapezoid σv at Pv. As each of the
two lower arcs of D1 and D2 in C crosses O(

√
r) trapezoids of Πv, where r is the number

of pseudo-trapezoids of Πv, the query time is still bounded by O(
√
m · (logm)O(1)). It is

straightforward to verify that if we need to report all points in |H∗ ∩ D′|, then the query
2It is used for computing H∆i in Step 3(a) of the algorithm of [13, Theorem 5.2]

http://jocg.org/


JoCG 14(1), 343–394, 2023 365

Journal of Computational Geometry jocg.org

time is O(
√
m · (logm)O(1) + |H∗ ∩ D′|); indeed, if D′ contains σv, then we simply follow

the subtree at v and report all points in all leaves of the subtree. By Theorem 3, the
preprocessing time is O(m logm).

Computing type-2 target arcs. This case is fairly easy to handle. Let H ′ be the set of arcs
ofH whose endpoints both are on eb. Define E′ = {ab | a and b are the two endpoints of h, h ∈
H ′}. Note that |E′| ≤ m. For a query edge e, if e 6⊆ eb, then no type-2 target arcs exist.
Assume that e ⊆ eb. Then, an arc h ∈ H is a type-2 target arc if and only if ab ⊆ e, where
a and b are the two endpoints of h. Hence, the problem is to report the segments of E′ that
are contained in e. This problem can be solved in O(log |E′|+ k) time after O(|E′| log |E′|)
time preprocessing (e.g., by reducing the problem to 2D range reporting queries and then
using range trees; see [23, Exercise 10.9]), where k is the output size.

The second data structure3 requires the performance in the following lemma.

Lemma 11. With O(m2(logm)O(1)) time preprocessing, each query can be answered in
O((logm)O(1) + |Hσ|) time.

Proof. As discussed in the proof of Lemma 10, it suffices to compute He for all edges e of
the query pseudo-trapezoid σ. We still define type-1 target arcs (resp., type-2 target arcs) of
H in the same way. To handle type-2 target arcs, as discussed in the proof of Lemma 10, for
each edge e, all type-2 target arcs can be computed in O(logm+ k) time after O(m logm)
time preprocessing. In the following, we focus on computing the type-1 target arcs.

We will build a two-level data structure. To this end, we first consider a sub-problem:
Given a query point q in C ′, compute the subset Hq of arcs h of H whose underlying disks
contain q.

We adapt the approach of [35, Theorem 5.1]. By our Cutting Theorem, we compute
a hierarchical (1/r)-cutting Ξ0, . . . ,Ξk for H with r = c ·m for a constant c ≤ 1/8. Consider
a cell σ ∈ Ξi for i < k. For each child cell σ′ of σ in Ξi+1, let Hσ\σ′ denote the subset
of the arcs of H crossing σ but not crossing σ′. We partition Hσ\σ′ into two subsets: one,
denoted by H1(σ′), consists of the arcs of Hσ\σ′ whose underlying disks contain σ′ and the
other, denoted by H2(σ′), consists of the remaining arcs of Hσ\σ′ (hence, the underlying
disk of each arc of H2(σ′) does not contain any point of σ′). We call H1(σ′) and H2(σ′) the
canonical subsets of σ′. We store both subsets explicitly at σ′. For each cell σ of Ξk, we
store at σ the set Hσ of arcs of H crossing σ. Note that |Hσ| ≤ m/r = c. This finishes the
preprocessing.

The total preprocessing time is O(m2). To see this, computing the hierarchical
cutting takes O(m2) time by our Cutting Theorem. For each cell σ ∈ Ξi with i < k, the
number of arcs of H crossing σ is at most m/ρi. Hence, for each child cell σ′ of σ, we
can compute its two canonical sets in O(m/ρi) time. As there are O(ρ2(i+1)) such cells
σ′ in Ξi+1, the time we spend on computing these canonical sets for all cells of Ξi+1 is
O(mρi+2). Hence, the total time for computing all canonical sets in the preprocessing is∑k−1

i=0 mρ
i+2 = O(mr) = O(m2).

3It is used for computing R̂(q)
∆i

in Step 3(b) of the algorithm of [13, Theorem 5.2]

http://jocg.org/


JoCG 14(1), 343–394, 2023 366

Journal of Computational Geometry jocg.org

Given a query point q, using the hierarchical cutting, we locate the cell σi containing
q in each Ξi for 0 ≤ i ≤ k. For each σi, we report the canonical subset H1(σ′). Further, for
σk, we check each arc in Hσi and report it if its underlying disk contains q. As such, the
query time is O(logm+ |Hq|).

Note that the above approach can also be used to solve the following sub-problem:
Given a query point q in C ′, compute the set Hq of arcs h of H whose underlying disks do
not contain q. Indeed, instead of reporting H1(σ′), we report H2(σ′).

We now consider our original problem for computing all type-1 target arcs for each
edge e. Observe that an arc h of H is a type-1 target arc if and only if one endpoint of e
is in D while the other one is outside D, where D is the underlying disk of h. We build a
two-level data structure. In the first level, we build the same data structure as above. In the
second level, for each canonical set H1(σ′), we build the same data structure as above on
H1(σ′), denoted by D(σ′). The preprocessing time is O(m2 logm). To see this, for each cell
σ′ in Ξi+1, the size of each of its two canonical subsets H1(σ′) and H2(σ′) is O(m/ρi), and
thus the time for computing the secondary data structure Dj(σ

′) for σ′ is m2/ρ2i. As there
are O(ρ2(i+1)) cells σ′ in Ξi+1, the total time for constructing the secondary data structure
for all cells in Ξi+1 is O(m2ρ2). Therefore, the total preprocessing time is bounded by
O(m2 logm).

Let p1 and p2 be the two endpoints of e, respectively. We first report all arcs of
H whose underlying disks contain p1 but not p2, and we then report all arcs of H whose
underlying disks contain p2 but not p1. By the above observation, all these arcs constitute
He. We show below how to find the arcs in the former case; the algorithm for the latter case
is similar. Using the hierarchical cutting, we locate the cell σi containing q in each Ξi for
0 ≤ i ≤ k. For each σi, using the data structure D(σi), we report the arcs of H1(σ′) whose
underlying disks do not contain p2. For σk, we also check each arc in Hσk and report it if
its underlying disk contain p1 but not p2. The total query time is O(log2m+ |He|).

2.8 Trade-offs

Using cuttings and the results of Theorems 4 and 5, trade-offs between preprocessing and
query time can be derived by standard techniques [3, 35], as follows.

Consider a query disk D whose center q is in C. An easy observation is that a point
p ∈ P is contained in D if and only if q is contained in the disk Dp centered at p. As such,
we consider the problem in the dual setting.

Let H be the set of lower arcs in C dual to the points of P . The problem is equivalent
to finding the arcs of H whose underlying disks contain q. In the preprocessing, by our
Cutting Theorem, we compute a hierarchical (1/r)-cutting Ξ0, . . . ,Ξk for H. Consider a
cell σ ∈ Ξi for i < k. For each child cell σ′ of σ in Ξi+1, let Hσ\σ′ denote the subset of
the arcs of H crossing σ but not crossing σ′. We partition Hσ\σ′ into two subsets: one,
denoted by H1(σ′), consists of the arcs of Hσ\σ′ whose underlying disks contain σ′ and the
other, denoted by H2(σ′), consists of the remaining arcs of Hσ\σ′ (hence, the underlying
disk of each arc of H2(σ′) does not contain any point of σ′). We call H1(σ′) and H2(σ′) the
canonical subsets of σ′. We store their cardinalities at σ′. For each cell σ of Ξk, we store at

http://jocg.org/


JoCG 14(1), 343–394, 2023 367

Journal of Computational Geometry jocg.org

σ the set Hσ of arcs of H crossing σ. Note that |Hσ| ≤ n/r. Let Pσ be the set of the dual
points of Hσ. We build a unit-disk range counting data structure (e.g., Theorem 4) on Pσ,
denoted by Dσ, with complexity (T (|Pσ|), S(|Pσ|), Q(|Pσ|)) for P ∗(σ), where T (·), S(·), and
Q(·) are the preprocessing time, space, and query time, respectively. We refer to Dσ as the
secondary data structure. This finishes the preprocessing.

For the preprocessing time, constructing the hierarchical cutting takes O(nr) time.
Constructing the secondary data structure Dσ for all cells σ of Ξk takes O(r2 ·T (n/r)) time.
Hence, the total preprocessing time is O(nr + r2 · T (n/r)). Following similar analysis, the
space is O(nr + r2 · S(n/r)).

Given a query disk D with center q in C, using the hierarchical cutting, we locate
the cell σi containing q in each Ξi for 0 ≤ i ≤ k. For each σi, we add |H1(σi)| to the total
count. In addition, for σk, we use the secondary data structure Dσk to compute the number
of points of Pσk contained in D. Clearly, the query time is O(log r +Q(n/r)).4

As such, we obtain a data structure of O(nr + r2 · T (n/r)) preprocessing time,
O(nr+r2 ·S(n/r)) space, and O(log r+Q(n/r)) query time. Using the results of Theorems 4
and 5 to build the secondary data structure for each Pσ, respectively, we can obtain the
following trade-offs.

Theorem 6. 1. We can build an O(nr) space data structure for P in O(nr(n/r)δ) time,
such that given any query disk D whose center is in C, the number of points of P in
D can be computed in O(

√
n/r) time, for any 1 ≤ r ≤ n/ log2 n.

2. We can build an O(nr) space data structure for P in O(nr log(n/r)) expected time,
such that given any query disk D whose center is in C, the number of points of P in
D can be computed in O(

√
n/r) time with high probability, for any 1 ≤ r ≤ n/ log2 n.

In particular, for the large space case, i.e., r = n/ log2 n, we can obtain the following
corollary by Theorem 6(1) (a randomized result with slightly better preprocessing time can
also be obtained by Theorem 6(2)).

Corollary 1. We can build an O(n2/ log2 n) space data structure for P in O(n2/ log2−δ n)
time, such that given any query disk D whose center is in C, the number of points of P in
D can be computed in O(log n) time.

2.9 Wrapping things up

All above results on P are for a pair of cells (C,C ′) such that all points of P are in C ′ and
centers of query disks are in C. Combining the above results with Lemma 1, we can obtain
our results for the general case where points of P and query disk centers can be anywhere
in the plane.

In the preprocessing, we compute the information and data structure in Lemma 1,
which takes O(n log n) time and O(n) space. For each pair of cells (C,C ′) with C ∈ C and
C ′ ∈ N(C), we construct the data structure on P (C ′), i.e., P∩C ′, with respect to query disks

4The subsets H2(σ′) computed in the preprocessing is “reserved” for answering outside-disk queries.

http://jocg.org/


JoCG 14(1), 343–394, 2023 368

Journal of Computational Geometry jocg.org

centered in C, e.g., those in Theorems 3, 4, 5, and 6. As discussed before, due to property (5)
of C, the total preprocessing time and space is the same as those in the above theorems.
Given a query disk D with center q, by Lemma 1(2), we determine whether q is in a cell
C of C in O(log n) time. If no, then D ∩ P = ∅ and thus we simply return 0. Otherwise,
the data structure returns N(C). Then, for each C ′ ∈ N(C), we use the data structure
constructed for (C,C ′) to compute |P (C ′)∩D|. We return |P ∩D| =

∑
C′∈N(C) |P (C ′)∩D|.

As |N(C)| = O(1), the total query time is as stated in the above theorems. We summarize
these results below.

Corollary 2. Let P be a set of n points in the plane. Given a query unit disk D, the
unit-disk range counting problem is to find the number of points of P in D. We have the
following results.

1. An O(n) space data structure can be built in O(n log n) time, with O(
√
n(log n)O(1))

query time.

2. An O(n) space data structure can be built in O(n1+δ) time for any small constant
δ > 0, with O(

√
n) query time.

3. An O(n) space data structure can be built in O(n log n) expected time by a randomized
algorithm, with O(

√
n) query time with high probability.

4. An O(n2/ log2 n) space data structure can be built in O(n2/ log2−δ n) time, with O(log n)
query time.

5. An O(nr) space data structure can be built in O(nr(n/r)δ) time, with O(
√
n/r) query

time, for any 1 ≤ r ≤ n/ log2 n.

6. An O(nr) space data structure can be built in O(nr log(n/r)) expected time by a ran-
domized algorithm, with O(

√
n/r) query time with high probability, for any 1 ≤ r ≤

n/ log2 n.

Remark. As the simplex range searching [13,33,35], all results in Corollary 2 can be easily
extended to the weighted case (or the more general semigroup model) where each point of
P has a weight, i.e., each query asks for the total weight of all points in a query unit disk
D.

3 Applications

In this section, we demonstrate that our techniques for the disk range searching problem can
be used to solve several other problems. More specifically, our techniques yield improved
results for three classical problems: batched unit-disk range counting, distance selection,
and discrete 2-center.

http://jocg.org/


JoCG 14(1), 343–394, 2023 369

Journal of Computational Geometry jocg.org

3.1 Batched unit-disk range counting

Let P be a set of n points and D be a set of m (possibly overlapping) unit disks in the plane.
The batched unit-disk range counting problem (also referred to as offline range searching in
the literature) is to compute for each disk D ∈ D the number of points of P in D.

Let Q denote the set of centers of the disks of D. For each point q ∈ Q, we use Dq

to denote the unit disk centered at q.

We first apply Lemma 1 on P . For each point q ∈ Q, by Lemma 1(2), we first
determine whether q is in a cell C of C. If no, then Dq does not contain any point of P
and thus it can be ignored for the problem; without loss of generality, we assume that this
case does not happen to any disk of D. Otherwise, let C be the cell of C that contains q.
By Lemma 1(2), we further find the set N(C) of C. In this way, in O((n+m) log n) time,
we can compute Q(C) for each cell C of C, where Q(C) is the subset of points of Q in C.
Define D(C) as the set of disks of D whose centers are in Q(C). Let P (C) = P ∩ C.

In what follows, we will consider the problem for P (C ′) and D(C) for each pair
(C,C ′) of cells with C ∈ C and C ′ ∈ N(C). Combining the results for all such pairs leads to
the result for P and D (the details on this will be discussed later). To simplify the notation,
we assume that P (C ′) = P and D(C) = D (thus Q(C) = Q). Hence, our goal is to compute
|P ∩D| for all disks D ∈ D.

If C = C ′, then all points of P are in D for each disk D ∈ D and thus the problem
is trivial. Below we assume C 6= C ′. Without loss of generality, we assume that C ′ and C
are separated by a horizontal line and C ′ is above the line. We assume that each point of
P defines a lower arc in C since otherwise the point can be ignored. We also assume that
the boundary of each disk of D intersects C ′, i.e., each point q of Q is dual to an upper arc
hq in C ′, since otherwise the disk can be ignored. Observe that a point p is in Dq if and
only if p is below the upper arc hq (we say that p is below hq if p is below the upper half
boundary of Dq), for any p ∈ P and q ∈ Q. Hence, the problem is equivalent to computing
the number of points of P below each upper arc of H, where H = {hq | q ∈ Q}.

Given a set of n points and a set ofm lines in the plane, Chan and Zheng [15] recently
gave an O(m2/3n2/3 + n logm + m log n) time algorithm to compute the number of points
below each line (alternatively, compute the number of points inside the lower half-plane
bounded by each line). We can easily adapt their algorithm to solve our problem. Indeed,
the main techniques of Chan and Zheng’s algorithm we need to adapt to our problem are the
hierarchical cuttings and duality. Using our Cutting Theorem and our definition of duality,
we can apply the same technique and solve our problem in O(m2/3n2/3 + n logm+m log n)
time, with n = |P | and m = |H| = |D|. We thus have the following theorem. The proof
follows the framework of the algorithm in [15]; to make our paper self-contained, we sketch
the algorithm in the appendix.

Theorem 7. We can compute, for all disks D ∈ D, the number of points of P in D in
O(m2/3n2/3 + n logm+m log n), with n = |P | and m = |D|.

Let χ denote the number of intersections of the arcs of H, and thus χ = O(m2).
Using our Cutting Theorem and Theorem 7, we further improve the algorithm for relatively

http://jocg.org/


JoCG 14(1), 343–394, 2023 370

Journal of Computational Geometry jocg.org

small χ.

Theorem 8. We can compute, for all disks D ∈ D, the number of points of P in D in
O(n2/3χ1/3 +m1+δ + n log n) time, with n = |P | and m = |D|.

Proof. Let δ be the parameter in the Cutting Theorem. We compute a hierarchical (1/r)-
cutting Ξ0, . . . ,Ξk for H, with r = min{m/8, (m2/χ)1/(1−δ)}. By our Cutting Theorem,
the size of the cutting, denoted by K, is bounded by O(rδ + χ · r2/m2) and the time for
computing the cutting is O(mrδ + χ · r/m). Since the parameter r depends on χ, which is
not available to us, we can overcome the issue by using the standard trick of doubling. More
specifically, initially we set χ to a constant. Then we run the algorithm until it exceeds the
running time specified based on the guessed value of χ. Next, we double the value χ and
run the algorithm again. We repeat this process until when the algorithm finishes before it
reaches the specified running time for a certain value of χ. In this way, we run the cutting
construction algorithm at most O(logχ) time. Therefore, the total time for constructing
the desired cutting is O((mrδ + χ · r/m) logχ).

Next, we reduce the problem into O(K) subproblems and then solve each subproblem
by Theorem 7, which will lead to the theorem.

For each point p ∈ P , we find the cell σ of Ξi that contains p and we store p in a
canonical subset P (σ) of P (which is initially ∅), for all 0 ≤ i ≤ k, i.e., P (σ) = P ∩ σ; in
fact, we only need to store the cardinality of P (σ). For ease of exposition, we assume that
no point of P lies on the boundary of any cell of Ξi for any i.

For each disk D ∈ D, our goal is to compute the number of points of P in D, denoted
by nD. We process D as follows. We initialize nD = 0. Let h be the upper arc of H defined
by D, i.e., h = ∂D ∩ C ′. Starting from Ξ0 = C ′. Suppose σ is a cell of Ξi crossed by h
(initially, i = 0 and σ is C ′) and i < k. For each child cell σ′ of σ in Ξi+1, if σ′ is contained in
D, then we increase nD by |P (σ′)| because all points of P (σ′) are contained in D. Otherwise,
if h crosses σ′, then we proceed on σ′. In this way, the points of P ∩D not counted in nD
are those contained in cells σ ∈ Ξk that are crossed by h. To count those points, we perform
further processing as follows.

For each cell σ in Ξk, if |Pσ| > n/K, then we arbitrarily partition P (σ) into subsets
of size between n/(2K) and n/K, called standard subsets of P (σ). As Ξk has O(K) cells and
|P | = n, the number of standard subsets of all cells of Ξk is O(K). Denote by Dσ the subset
of disks of D whose boundaries cross σ. Our problem is to compute for all disks D ∈ Dσ the
number of points of P (σ) contained in D, for all cells σ ∈ Ξk. To this end, for each cell σ of
Ξk, for each standard subset P ′(σ) of P (σ), we solve the batched unit-disk range counting
problem on the point set P ′(σ) and the disk set Dσ by Theorem 7. Note that |Dσ| ≤ m/r.
As Ξk has O(K) cells, we obtain O(K) subproblems of size (n/K,m/r) each. As discussed
above, solving these subproblems also solves our original problem. It remains to analyze the
time complexity of the algorithm.

Time analysis. We use “reduction algorithm” to refer to the algorithm excluding the pro-
cedure for solving all subproblems by Theorem 7. For the time of the reduction algorithm,
as discussed above, constructing the hierarchical cutting takes O((nrδ +χ · r/n) logχ) time.

http://jocg.org/


JoCG 14(1), 343–394, 2023 371

Journal of Computational Geometry jocg.org

Locating the cells of the cuttings containing the points of P and thus computing |P (σ)|
for all cells σ in the cuttings can be done in O(n log r) time, which is O(n logm). As the
cutting algorithm also computes the sets Hσ for all cells σ ∈ Ξi for all 0 ≤ i ≤ k and each
cell of σ ∈ Ξi has O(1) child cells in Ξi+1, processing all disks D (i.e., computing nD without
counting those in the subproblems) takes O(nrδ + χ · r/n) time. Hence, the total time of
the reduction algorithm is O((nrδ + χ · r/n) logχ+ n logm).

As we have O(K) subproblems of size (n/K,m/r) each, by Theorem 7, the total
time solving these subproblems is proportional to

K ·
{( n

K

)2/3 (m
r

)2/3
+
m

r
log

n

K
+
n

K
log

m

r

}
= K1/3n2/3

(m
r

)2/3
+K

m

r
log

n

K
+ n log

m

r
.

Therefore, the total time of the overall algorithm is proportional to

(mrδ + χ · r/m) logχ+K1/3n2/3
(m
r

)2/3
+K

m

r
log

n

K
+ n logm (3)

Recall that r = min{m/8, (m2/χ)1/(1−δ)}. Depending on whether r = m/8 or
r = (m2/χ)1/(1−δ), there are two cases. We analyze the running time in each case below.

The case r = m/8. In this case, m/8 ≤ (m2/χ)1/(1−δ), and thus χ = O(m1+δ) and
K = O(m1+δ).

By plugging these values into (3), we obtain that the total time is bounded by
O(m1+δ(logm+log n

K )+n logm+n2/3m(1+δ)/3). Observe that n2/3m(1+δ)/3 = O(n+m1+δ).
Hence, the total time is bounded by O(m1+δ(logm+ log n

K ) + n logm).

Let T = m1+δ(logm+log n
K )+n logm. We claim that T = O(m1+δ logm+n log n).

Indeed, if n ≤ K, then log n
K = O(1) and n = O(m1+δ), and thus T = O(m1+δ logm). On

the other hand, assume n > K. Notice that K ≥ r since K is the size of a (1/r)-cutting.
Hence, n > r = m/8 and thus logm = O(log n). If n < m1+δ, then log n

K = O(logm), and
thus T = O(m1+δ logm+ n log n); otherwise, T = O(n log n). The claim thus follows.

Therefore, in the case r = m/8, the total time of the algorithm is O(m1+δ logm +
n log n).

The case r = (m2/χ)1/(1−δ). In this case, m/8 ≥ (m2/χ)1/(1−δ), and thus r = O(m) and
K = O(χ · r2/m2). Since χ = O(m2), logχ = O(logm).

By plugging these values into (3), we obtain that the total time is bounded by
O(m1+δ logm+K ·m/r log(n/K) + n logm+ n2/3χ1/3). Notice that

K ·m/r = χ · r/m =
χ

m2
· r ·m =

1

r1−δ · r ·m = rδ ·m = O(mδ) ·m = O(m1+δ).

Hence, the total time of the algorithm is O(m1+δ(logm+ log(n/K)) + n logm+ n2/3χ1/3).
We have proved above that m1+δ(logm + log(n/K)) + n logm = O(m1+δ logm + n log n).
Therefore, the total time of the algorithm is bounded by O(m1+δ logm+n log n+n2/3χ1/3).

http://jocg.org/


JoCG 14(1), 343–394, 2023 372

Journal of Computational Geometry jocg.org

Summary. Combining the above two cases, the total time of the algorithm is O(m1+δ logm+
n log n+n2/3χ1/3). Note that the factor logm of m1+δ logm in the running time is absorbed
by δ in the theorem statement.

The general problem. The above results are for the case where points of P are in the
square cell C ′ while centers of D are all in C. For solving the general problem where both
P and D can be anywhere in the plane, as discussed before, we reduce the problem to
the above case by Lemma 1. The properties of the set C guarantee that the complexities
for the general problem are asymptotically the same as those in Theorem 7. To see this,
we consider all pairs (C,C ′) with C ∈ C and C ′ ∈ N(C). For the i-th pair (C,C ′), let
ni = |P (C ′)| and mi = |D(C)|. Then, solving the problem for the i-th pair (C,C ′) takes
O(n

2/3
i m

2/3
i + mi log ni + ni logmi) time by Theorem 7. Due to the properties (4) and (5)

of C,
∑

i ni = O(n) and
∑

imi = O(m). Therefore, by Hölder’s Inequality,
∑

i n
2/3
i m

2/3
i ≤

n1/3 ·
∑

i n
1/3
i m

2/3
i ≤ n2/3m2/3, and thus the total time for solving the problem for all pairs

of cells is O(n2/3m2/3 +m log n+n logm). Similarly, the complexity of Theorem 8 also holds
for the general problem, with χ as the number of pairs of disks of D that intersect.

Computing incidences between points and circles. It is easy to modify the algorithm
to solve the following problem: Given n points and m unit circles in the plane, computing
(either counting or reporting) the incidences between points and unit circles. The runtime
is O(n2/3m2/3 +m log n+ n logm) or O(n2/3χ1/3 +m1+δ + n log n), where χ is the number
of intersecting pairs of the unit circles. Although the details were not given, Agarwal and
Sharir [8] already mentioned that an n2/3m2/32O(log∗(n+m)) + O((m + n) log(m + n)) time
algorithm can be obtained by adapting Matoušek’s technique [35]. (The same problem for
circles of arbitrary radii is considered in [8]. Refer to [40] for many other incidence problems.)
Our result further leads to an O(n4/3)-time algorithm for the unit-distance detection problem:
Given n points in the plane, is there a pair of points at unit distance? Erickson [27] gave a
lower bound of Ω(n4/3) time for the problem in his partition algorithm model.

3.2 The distance selection problem

Given a set P of n points in the plane and an integer k in the range [0, n(n − 1)/2], the
distance selection problem is to compute the k-th smallest distance among the distances of
all pairs of points of P . Let λ∗ denote the k-th smallest distance to be computed. Given
a value λ, the decision problem is to decide whether λ ≥ λ∗. Using our batched unit-disk
range counting algorithm, we can easily obtain the following lemma.

Lemma 12. Given a value λ, whether λ ≥ λ∗ can be decided in O(n4/3) time.

Proof. We can use our algorithm for the batched unit-disk range counting problem. Indeed,
let D be the set of congruent disks centered at the points of P with radius λ. By Theorem 7,
we can compute in O(n4/3) time the cardinality |Π|, where Π is the set of all disk-point
incidences (D, p), where D ∈ D, p ∈ P , and D contains p. Observe that for each pair of
points (pi, pj) of P whose distance is at most λ, it introduces two pairs in Π. Also, each point

http://jocg.org/


JoCG 14(1), 343–394, 2023 373

Journal of Computational Geometry jocg.org

pi introduces one pair in Π because pi is contained in the disk of D centered at pi. Hence,
the number of pairs of points of P whose distances are at most λ is equal to (|Π| − n)/2.
Clearly, λ ≥ λ∗ if and only if (|Π| − n)/2 ≥ k.

Plugging Lemma 12 into a randomized algorithm of Chan [12, Theorem 5], λ∗ can
be computed in O(n log n+ n2/3k1/3 log n) expected time.

Theorem 9. Given a set P of n points in the plane and an integer k in the range [0, n(n−
1)/2], the k-th smallest distance of P can be computed in O(n log n+n2/3k1/3 log n) expected
time by a randomized algorithm.

3.3 The discrete 2-center problem

Let P be a set of n points in the plane. The discrete 2-center problem is to find two smallest
congruent disks whose centers are in P and whose union covers P . Let λ∗ be the radius of
the disks in an optimal solution. Given a value λ, the decision problem is to decide whether
λ ≥ λ∗.

Agarwal, Sharir, and Welzl [9] gave an O(n4/3 log5 n) time algorithm by solving the
decision problem first. A key subproblem in their decision algorithm [9] is the following.
Preprocess P to compute a collection P of canonical subsets of P , {P1, P2, . . . , }, so that
given a query point p in the plane, the set Pp of points of P outside the unit disk centered at
p can be represented as the union of a sub-collection Pp of canonical subsets and Pp can be
found efficiently (it suffices to give the “names” of the canonical subsets of Pp). Note that
here the radius of unit disks is λ.

Roughly speaking, suppose we can solve the above key subproblem with preprocess-
ing time T such that

∑
Pi∈P |Pi| = M and |Pp| for any query point p is bounded by O(τ)

(and |Pp| can be found in O(τ) time); then the algorithm of Agarwal, Sharir, and Welzl [9]
can solve the decision problem in O(T + M log n + τ · n log3 n) time. With the decision
algorithm, the optimal radius λ∗ can be found by doing binary search on all pairwise dis-
tances of the points of P (in each iteration, find the k-th smallest distance using a distance
selection algorithm); the total time is O((T1 +T2) log n), where T1 is the time of the distance
selection algorithm and T2 is the time of the decision algorithm.

Note that the logarithmic factor of M log n in the above running time of the decision
algorithm of [9] is due to that for each canonical subset Pi ∈ P , we need to compute the
common intersection of all unit disks centered at the points of Pi, which takes O(|Pi| log n)
time [29]. However, if all points of Pi are sorted (e.g., by x-coordinate or y-coordinate),
then the common intersection can be computed in O(|Pi|) time [41]. Therefore, if we can
guarantee that all canonical subsets are sorted, then the runtime of the decision algorithm
of [9] can be bounded by O(T +M + τ · n log3 n).

In the following, we present new solutions to the above key subproblem. We will
show that after T = O(n4/3 log2 n(log log n)1/3) expected time preprocessing by a ran-
domized algorithm, we can compute M = O(n4/3 log2 n/(log log n)2/3) sorted canonical
subsets of P so that τ = O(n1/3(log log n)1/3/ log n) holds with high probability. Conse-
quently, the decision problem can be solved in O(n4/3 log2 n(log log n)1/3) expected time,

http://jocg.org/


JoCG 14(1), 343–394, 2023 374

Journal of Computational Geometry jocg.org

and thus λ∗ can be computed in O(n4/3 log3 n(log log n)1/3) expected time if we use the
O(n4/3 log2 n) time distance selection algorithm in [30]. We also have another slightly
slower deterministic result. After T = O(n4/3 log7/3 n(log log n)1/3) time preprocessing al-
gorithm, we can compute M = O(n4/3 log7/3 n/(log log n)2/3) sorted canonical subsets of
P so that τ = O(n1/3(log log n)O(1)/ log2/3 n). Consequently, the decision problem can
be solved in O(n4/3 log7/3 n(log log n)O(1)) time, and computing λ∗ can then be done in
O(n4/3 log10/3 n(log log n)O(1)) time.

Remark. It is straightforward to modify our algorithms to achieve the same results for the
following inside-disk problem: represent the subset of points of P inside D as a collection
of pairwise-disjoint canonical sets for any query disk D.

In what follows, we present our solutions to the above subproblem. We apply
Lemma 1 on the set P to compute the set C of square cells. As before, we first reduce the
problem to the same problem with respect to pairs of cells (C,C ′) of C, by using Lemma 1
as well as the following lemma (whose proof is based on a modification of the algorithm for
Lemma 1); then we will solve the problem using our techniques for disk range searching.

Lemma 13. We can compute in O(n log n) time a collection of O(n) sorted canonical subsets
of P whose total size is O(n log n), such that for any cell C of C, there are O(log n) pairwise-
disjoint canonical subsets whose union consists of the points of P that are not in the cells of
N(C), and we can find those canonical subsets in O(log n) time.

Proof. Recall that in the algorithm for Lemma 1 we have at most n vertical strips that
contain the points of P . Let T be a complete binary tree whose leaves correspond to the
strips from left to right. Each leaf has a canonical subset that is the set of points of P in the
strip. Each internal node also has a canonical subset that is the union of all canonical subsets
in the leaves of the subtree rooted at the node. In this way, T has O(n) canonical subsets
whose total size is O(n log n). The tree T with all canonical subsets can be constructed in
O(n log n) time. In addition, if we sort all points of P by their x-coordinates at the outset,
then all canonical subsets are sorted.

For each vertical strip A, there are multiple rectangles. Similarly as above, TA be a
complete binary tree whose leaves correspond to these rectangles from top to bottom. We
construct the canonical subsets for TA in a similar way as above (with canonical subsets
sorted by y-coordinate). In this way, the trees for all strips together have O(n) canonical
subsets and their total size is O(n log n). All trees along with their sorted canonical subsets
can be constructed in O(n log n) time.

For each rectangle R in each strip, we have a list LR of all non-empty cells, sorted
by their indices. We build a complete binary search tree TR whose leaves correspond to
these cells in order. We construct canonical subsets for TR in a similar way as above
(with each canonical subset sorted by x-coordinate). The tree TR can be constructed in
O(|P (R)| log |P (R)|) time, where P (R) = P ∩ R. Indeed, we can sort all points of P (R)
initially by x-coordinate. Observe that the canonical subsets of all nodes in the same level of
T (R) form a partition of P (R). Since P (R) are already sorted, sorting all canonical subsets

http://jocg.org/


JoCG 14(1), 343–394, 2023 375

Journal of Computational Geometry jocg.org

in the same level of TR takes O(|P (R)|) time. Therefore, the total time for constructing
TR with all sorted canonical subsets is O(|P (R)| log |P (R)|). In this way, the trees for all
rectangles in all vertical strips together can be constructed in O(n log n) time; the trees have
O(n) canonical subsets in total and their total size is O(n log n).

Consider a cell C ∈ C. Suppose it is in a rectangle R of a vertical strip A. Using
the tree T , we can find in O(log n) time O(log n) disjoint canonical subsets whose union is
exactly the set of points of P in the vertical strips right (resp., left) of A. Similarly, using
the tree TA, we can find in O(log n) time O(log n) disjoint canonical subsets whose union is
exactly the set of points of P in the rectangles of A above (resp., below) R. Finally, we find
the canonical subsets whose union is exactly the set of points of P (R) outside the cells of
N(C). Recall that N(C) contains only cells in the five rows around R and the cells in each
row are consecutive (e.g., see Fig. 1). Hence, removing N(C) from the list LR divides LR
into at most five sublists, which can be found in O(log n) time by doing binary search using
cell indices. For each such sublist, by searching TR, we can find in O(log n) time O(log n)
disjoint canonical subsets whose union is exactly the set of points of P (R) in the cells of the
sublist. In summary, we can find in O(log n) time O(log n) disjoint canonical subsets whose
union is exactly the set of points of P not in the cells of N(C).

Let Dp be the unit disk centered at a point p in the plane. If p is not in any cell of C,
then Dp ∩P = ∅ and thus we can return the entire set P as a canonical subset. Henceforth,
we only consider the case where p is in a cell C of C. According to Lemma 13, it suffices
to find canonical subsets to cover all points of P ∩ C ′ not in Dp for all cells C ′ ∈ N(C).
As |N(C)| = O(1), it suffices to consider one such cell C ′ ∈ N(C). Hence, as before, the
problem reduces to a pair of square cells (C,C ′) of C with C ′ ∈ N(C). If C ′ = C, then we
know that all points of P ∩ C ′ are in Dp. Hence, we assume that C ′ 6= C. Without loss
of generality, we assume that C ′ and C are separated by a horizontal line and C is below
the line. The problem is to process all points of P ∩ C ′, such that given any query disk Dp

whose center p is in C, we can find a collection of disjoint canonical subsets whose union is
the set of points of P ∩C ′ not in Dp. To simplify the notation, we assume that all n points
of P are in C ′.

Our data structure utilizes several techniques for the disk range searching problem.
As remarked before, all our results on disk range searching with respect to (C,C ′) can be
applied to find the number of points of P outside any query disk D whose center is in C
(indeed, D defines a spanning upper arc h in C ′, and points in D lie on one side of h while
points outside D lie on the other side of h). Hence, our main idea is to examine our disk
range searching data structures and define canonical subsets of P in these data structures.
For each query disk D, we apply the query algorithm on D, which will produce a collection
of canonical subsects. The crux is to carefully design the disk range searching data structure
(e.g., by setting parameters to some appropriate values) so that the following are as small as
possible (tradeoffs are needed): the preprocessing time, the total size of all canonical subsets
of the data structure, which is M , and the total number of canonical subsets for each query
disk D, which is τ . In the following, whenever we say “apply our query algorithm on D”, we
mean “finding points outside D”. We will present two results, a randomized result based on
Chan’s partition trees [13] and a slightly slower deterministic result.

http://jocg.org/


JoCG 14(1), 343–394, 2023 376

Journal of Computational Geometry jocg.org

3.3.1 The randomized result

Our data structure has three levels. We will present them from the lowest level to the highest
one. We start with the lowest level, which relies on the partition tree T built in Theorem 5.
For any disk D, we use P \D to refer to the subset of the points of P not in D.

Lemma 14. We can compute in O(n log n) expected time a data structure with O(n) sorted
canonical subsets of P whose total size is O(n log n), so that for any disk D whose center is
in C, we can find in O(κ) time O(κ) pairwise-disjoint canonical sets whose union is P \D,
where κ = O(

√
n) holds with high probability.

Proof. We build the partition tree T in Theorem 5. For each node v of T , we define Pv as a
canonical subset. Hence, there are O(n) canonical subsets. Since the height of T is O(log n),
each point of P is in O(log n) canonical subsets. Therefore, the total size of all canonical
subsets is O(n log n). To sort all canonical subsets, we sort all points of P initially. Observe
that all canonical subsets Pv for the nodes v at the same level of T form a partition of P ;
hence, sorting all these canonical subsets takes O(n) time based on the sorted list of P . As
T has O(log n) levels, sorting all canonical subsets of T takes O(n log n) time.

For any disk D whose center is in C, we apply the query algorithm on D (looking
for the points of P outside D). The algorithm produces in O(κ) time a collection of O(κ)
disjoint canonical subsets whose union is exactly P \D, where κ = O(

√
n) holds with high

probability.

In the next lemma we add the second level to the data structure of Lemma 14. In
fact, it is similar to the algorithm in Section 2.8 except that we replace the secondary data
structure Dσ for each cell σ of Ξk by Lemma 14.

Lemma 15. We can compute in O(n2 log log n/ log2 n) expected time a data structure with
O(n2/ log2 n) sorted canonical subsets of P whose total size is O(n2 log log n/ log2 n), so
that for any disk D whose center is in C, we can find in O(κ) time O(κ) pairwise-disjoint
canonical sets whose union is P \D, where κ = O(log n) holds with high probability.

Proof. Let H be the set of lower arcs in C dual to the points of P , which are in C ′. Consider
a disk D whose center q is in C. The points of P \ D are dual to the arcs of H whose
underlying disks do not contain q. We compute a hierarchical (1/r)-cutting Ξ0, . . . ,Ξk for
H with r = n/ log2 n. Consider a cell σ ∈ Ξi for i < k. For each child cell σ′ of σ in Ξi+1, let
Hσ\σ′ denote the subset of the arcs of H crossing σ but not crossing σ′. We partition Hσ\σ′
into two subsets: one, denoted by H1(σ′), consists of the arcs of Hσ\σ′ whose underlying
disks contain σ′ and the other, denoted by H2(σ′), consists of the remaining arcs of Hσ\σ′
(hence, the underlying disk of each arc of H2(σ′) does not contain any point of σ′). We call
H1(σ′) and H2(σ′) the canonical subsets of σ′. We store H2(σ′) explicitly at σ′. For each cell
σ of Ξk, we store at σ the set Hσ of arcs of H crossing σ. Note that |Hσ| ≤ n/r = log2 n.
Let Pσ be the set of points of P dual to the arcs of Hσ. We build the data structure in
Lemma 14 on Pσ, denoted by Dσ. By Lemma 14, the canonical subsets in the secondary
data structure have already been sorted. To sort other canonical subsets, we can first sort

http://jocg.org/


JoCG 14(1), 343–394, 2023 377

Journal of Computational Geometry jocg.org

all points of P . With the help of the sorted list of P , all canonical subsets can be sorted in
time linear in their total size. This finishes the preprocessing.

For the preprocessing time, similar to the analysis of Lemma 11, constructing the
hierarchical cutting, along with all canonical subsets, takes O(nr) time. Constructing the
secondary data structures Dσ for all cells σ of Ξk takes O(r2 log2 n log log n) expected time.
Hence, the total expected time is O(nr + r2 log2 n log log n) = O(n2 log log n/ log2 n), ex-
cluding the time for sorting all canonical subsets not in the secondary data structure. The
total size of all canonical subsets excluding those in the secondary data structures is O(nr).
Hence, the total time for sorting these canonical subsets is O(nr), after P is sorted in
O(n log n) time. The total size of all canonical subsets of the secondary data structure Dσ

is O(r2 · log2 n log log n) by Lemma 14. Therefore, the total size of all canonical subsets
is O(n2 log log n/ log2 n). The number of all canonical subsets excluding those in the sec-
ondary data structure is O(nr). The number of all canonical subsets in the secondary data
structure is O(r2 log2 n) by Lemma 14. Hence, the total number of all canonical subsets is
O(n2/ log2 n).

Given a disk Dq with center q ∈ C, using the hierarchical cutting, we locate the cell
σi containing q in each Ξi for all 0 ≤ i ≤ k. For each σi, we report the canonical subset
H2(σi) (note that we only need to report the “name” of this subset). There are O(log n) such
canonical subsets, which can be found in O(log n) time. In addition, for σk, by Theorem 5,
we use the secondary data structure Dσk to output the O(κ) canonical subsets of Dσk in
O(κ) time, where κ = O(log n) holds with high probability. Hence, the total number of
canonical subsets for Dq is O(κ + log n). Clearly, these canonical subsets are disjoint and
together form the set P \D.

We finally add the top-level data structure in the following lemma.

Lemma 16. For any r < n/ logω(1) n, we can compute in O(n log n + nr log log r/ log2 r)
expected time a data structure with O(nr/ log2 r) sorted canonical subsets of P whose total
size is O(n log(n/r) + nr log log r/ log2 r), so that for any disk D whose center is in C, we
can find in O(κ) time O(κ) pairwise-disjoint canonical sets whose union is P \ D, where
κ = O(

√
n/r log r) holds with high probability.

Proof. As in [13], we build a r-partial partition tree T for P in the same way as the algorithm
of Theorem 5, except that we stop the construction when a cell has less than r points.
Following the same algorithm of [13, Theorem 4.2] and using our new algorithms for our
problem as discussed in Section 2.7, for any r < n/ logω(1) n, we can build a r-partition tree
T of size O(n/r) in expected O(n log n) time with query time bounded by O(

√
n/r) with

high probability (more specifically, for each disk D whose center is in C, the number of leaf
cells crossed by h is O(κ′) and they can be found in O(κ′) time, where κ′ = O(

√
n/r) holds

with high probability).

As discussed in Section 2.7, each node of T corresponds to a cell σ (which is a
pseudo-trapezoid) in C ′. Let P (σ) be the set of points of P in σ, and we define P (σ) as the
canonical subset of σ. Note that |P (σ)| = O(r) if σ is a leaf cell. As T has O(n/r) nodes,
there are O(n/r) canonical subsets in T . Since the height of T is O(log(n/r)), the total size

http://jocg.org/


JoCG 14(1), 343–394, 2023 378

Journal of Computational Geometry jocg.org

of all these canonical subsets is O(n log(n/r)) as each point of P is in the canonical subset
of only one cell in each level of T . If we sort P initially, all these canonical subsets can be
sorted in O(n log n) time.

Next, for each leaf cell σ of T , we build the data structure Dσ in Lemma 15 on P (σ)
as a secondary data structure. For all the secondary data structures, the total expected con-
struction time is O(n/r · r2 log log r/ log2 r) = O(nr log log r/ log2 r), and the total number
of canonical subsets is O(nr/ log2 r), whose total size is O(nr log log r/ log2 r).

This finishes our preprocessing. Based on the above discussions, the preprocessing
takes O(n log n+nr log log r/ log2 r) expected time. The number of canonical subsets, which
are all sorted, is O(nr/ log2 r), and their total size is O(n log(n/r) + nr log log r/ log2 r).

Let D be a disk whose center is in C. Let h = ∂D ∩ C ′, which is an upper arc of
C ′ (note that the case h = ∅ can be easily handled). Using T , we can find O(κ′) canonical
subsets in O(κ′) time as well as a set Σ of O(κ′) leaf cells σ crossed by h, where κ′ =

√
n/r

holds with high probability; those canonical subsets are disjoint and their union is exactly
the set of points of P \D not in the cells of Σ. Next, for each cell σ ∈ Σ, using the secondary
data structure Dσ, we compute in O(κ′′) time O(κ′′) canonical subsets whose union is exactly
the points of P \D in σ, where κ′′ = O(log r) holds with high probability. Therefore, in total
we can find in O(κ) time O(κ) pairwise-disjoint canonical subsets whose union is P \ D,
where κ = O(

√
n/r log r) holds with high probability.

By setting r = n1/3 log4 n/(log log n)2/3 in the preceding lemma, we can obtain the
following result.

Corollary 3. We can compute in O(n4/3 log2 n(log log n)1/3) expected time by a randomized
algorithm a data structure with O(n4/3 log2 n/(log log n)2/3) sorted canonical subsets of P
whose total size is O(n4/3 log2 n(log log n)1/3), so that for any disk D whose center is in C,
we can find in O(κ) time O(κ) pairwise-disjoint canonical sets whose union is P \D, where
κ = O(n1/3(log log n)1/3/ log n) holds with high probability.

As discussed before, plugging our above result in the algorithm of [9], we can solve
the decision version of the discrete 2-center problem in O(n4/3 log2 n(log log n)1/3) expected
time. Using the decision algorithm and the O(n4/3 log2 n)-time distance selection algorithm
in [30], the discrete 2-center problem can be solved in O(n4/3 log3 n(log log n)1/3) expected
time.

Theorem 10. Given a set P of n points in the plane, the discrete 2-center problem can be
solved in O(n4/3 log3 n(log log n)1/3) expected time by a randomized algorithm.

3.3.2 The deterministic result

The deterministic result also has three levels, which correspond to Lemmas 14, 15, and
16, respectively. The following lemma gives the lowest level, by using the partition tree of
Theorem 3.

Lemma 17. We can compute in O(n log n) time a data structure with O(n) sorted canonical
subsets of P whose total size is O(n log log n), so that for any disk D whose center is in C, we

http://jocg.org/


JoCG 14(1), 343–394, 2023 379

Journal of Computational Geometry jocg.org

can find in O(
√
n(log n)O(1)) time O(

√
n(log n)O(1)) pairwise-disjoint canonical sets whose

union is P \D.

Proof. We build the partition tree T in Theorem 3. For each node v of T , we define Pv
as a canonical subset. As T has O(n) nodes, there are O(n) canonical subsets. Since the
height of T is O(log log n), each point of P is in O(log log n) canonical subsets. Therefore,
the total size of all canonical subsets is O(n log log n). These canonical subsets can be sorted
in O(n log log n) time after all points of P are sorted initially.

For any disk D whose center is in C, we apply the query algorithm on D. The algo-
rithm produces in O(

√
n(log n)O(1)) time a collection of O(

√
n(log n)O(1)) pairwise-disjoint

canonical subsets whose union is exactly P \D.

The following lemma follows the same algorithm as in Lemma 15, except that we
use the data structure in Lemma 17 as the secondary data structure.

Lemma 18. We can compute in O(n2 log log n/ log2 n) time a data structure with O(n2/ log2 n)
sorted canonical subsets of P whose total size is O(n2 log log log n/ log2 n), so that for any
disk D whose center is in C, we can find in O(log n(log log n)O(1)) time O(log n(log log n)O(1))
pairwise-disjoint canonical sets whose union is P \D.

Proof. We follow the same algorithm as that for Lemma 15, except that for each cell σ of Ξk,
we build the data structure of Lemma 17 on Pσ as the secondary data structure. Following
the same analysis will lead to the lemma.

We finally add a partial half-space decomposition scheme of Theorem 5.2 [35] as the
top level of our data structure.

Lemma 19. For any r ≤ n, we can compute in O((n2/r) log r log log(n/r)/ log2(n/r) +
n
√
r + n log n + r2) time a data structure with O(r log r + (n2/r) log r/ log2(n/r)) sorted

canonical subsets of P whose total size is O(n log2 r+(n2/r) log r log log log(n/r)/ log2(n/r)),
so that for any disk D whose center is in C, we can find O(

√
r log(n/r)(log log(n/r))O(1))

pairwise-disjoint canonical sets whose union is P \ D in O(
√
r log(n/r)(log log(n/r))O(1))

time.

Proof. We follow the algorithmic scheme of Theorem 5.2 [35] and adapt it to our problem.

We first apply the Test Set Lemma to compute a test set H of r spanning upper
arcs in C ′. Recall in the proof of the Test Set Lemma that this is done by computing a
(Θ(
√
r))-cutting Ξ∗ of size O(r) for the lower-arcs of C dual to the points of P . For each

cell σ of Ξ∗, we define Sσ as the set of upper arcs of H dual to the at most four vertices of σ.
Following the terminology of [35], we call Sσ the guarding set of σ. Let S be the collection
of the guarding sets of all cells of Ξ∗.

The algorithm proceeds with K = O(log r) iterations. In each i-th iteration, 1 ≤
i ≤ K, a component of the data structure is computed, which has O(r) canonical subsets
of total size O(n log r) and is associated with a sub-collection S′i of guarding sets of S. We
describe the i-th iteration as follows. In the beginning we have a sub-collection Si of S;

http://jocg.org/


JoCG 14(1), 343–394, 2023 380

Journal of Computational Geometry jocg.org

initially, S1 = S. Let Hi be the union of all arcs of the sets of Si. By our Cutting Theorem,
we compute a hierarchical (1/

√
r)-cutting Ξ0, . . . , Ξk for Hi, whose total number of cells is

O(r). For each cell σ of each cutting Ξj , let P (σ) denote the subset of points of P in σ (for
ease of discussion, we assume that each point of P is in a single cell of Ξj). We say that a
cell σ ∈ Ξj is fat if |P (σ)| ≥ 2k−jn/r. We say that σ is active if all its ancestor cells are fat,
and σ is a leaf cell if it is active and either not fat or in Ξk.

For each active cell σ in any Ξj , we call P (σ) a canonical subset of P . Hence, the
total number of canonical subsets is O(r), whose total size is O(n log r) as each point is in
the canonical subset of a single cell at each Ξi. For each leaf cell σ, if P (σ) contains more
than n/r points, then we further partition it into subsets with sizes between n/(2r) and n/r;
we call them standard subsets (P (σ) itself is also a standard subset if |P (σ)| ≤ n/r). As
the number of leaf cells is O(r), the number of standard subsets is O(r). For each standard
subset, we build the data structure in Lemma 18 as a secondary data structure.

Next, we define S′i. For any upper arc h in C ′, let Kj(h) be the set of active cells of
Ξj crossed by h, and K(h) =

⋃k
j=1Kj(h). We define the weight of h as

w(h) =
k∑
j=1

4k−j |Kj(h)|+ 1

k

∑
σ∈K(h)

√
r

n
|P (σ)| +

∑
σ∈Kk(h)

r

n
|P (σ)|.

We define the weight of a guarding set Sσ ∈ Si as the sum of the weights of its arcs. Let
W be the average weight of all guarding sets of Si. We define S′i as the set of the guarding
sets whose weights are at most 2W . Then, |S′i| ≥ |Si|/2. We set Si+1 = Si \ S′i. The whole
algorithm stops once Si+1 = ∅. Note that the algorithm has O(log r) steps.

This finishes the description of the preprocessing. Before analyzing the preprocessing
time, we first show an observation. Let D be a disk such that its center is in a cell σ of the
cutting Ξ∗ whose guarding set belongs to S′i. Let h = ∂D ∩C ′, which is an upper arc in C ′.
Then, by the same analysis as in Theorem 5.2 [35], we can show the following observation:
h crosses at most O(

√
r) active cells of all cuttings Ξj , 1 ≤ j ≤ k, and the total number of

standard subsets in all leaf cells crossed by h is O(
√
r).

We now analyze the preprocessing time. Computing the test set H takes O(n
√
r)

time by the Cutting Theorem. Afterwards, the algorithm has O(log r) iterations. Consider
the i-th iteration. Computing the hierarchical cutting can be done in O(|Hi|

√
r) time by

our Cutting Theorem. Computing the canonical subsets P (σ) for all cells of all cuttings
Ξj takes O(n log r) time. For each arc h ∈ Hi, as the hierarchical cutting has O(r) cells,
computing the weight w(h) can be done in O(r) time. Hence, computing the weights for all
arcs of Hi takes O(|Hi|r) time. As |Hi| is geometrically decreasing, the total sum of |Hi|
in all iterations is O(|H|) = O(r). Excluding those in the secondary data structures, each
iteration computes O(r) canonical subsets, whose total size is O(n log r); these subsets can
be sorted in O(n log r) time if P is initially sorted (before the first iteration). Therefore,
excluding the secondary data structures, the algorithm for all iterations runs in O(n log n+
n log2 r + r2) time and computes a total of O(r log r) sorted canonical subsets, whose total
size is O(n log2 r).

For the secondary data structures, because there are O(r) standard subsets of P gen-
erated in each iteration and the size of each subset is O(n/r), by Lemma 18, the total time for

http://jocg.org/


JoCG 14(1), 343–394, 2023 381

Journal of Computational Geometry jocg.org

building the secondary data structures is bounded by O((n2/r) log r log log(n/r)/ log2(n/r)),
and these data structures have a total of O((n2/r) log r/ log2(n/r)) sorted canonical subsets,
whose total size is O((n2/r) log r log log log(n/r)/ log2(n/r)).

In summary, our preprocessing computes O(r log r + (n2/r) log r/ log2(n/r)) sorted
canonical subsets, whose total size is O(n log2 r + (n2/r) log r log log log(n/r)/ log2(n/r)).
The runtime of the processing is O(n

√
r+n log n+ r2 + (n2/r) log r log log(n/r)/ log2(n/r))

time.

Consider a diskD whose center q is in C. Let h = ∂D∩C ′, which is an upper arc of C ′
(note that the case h = ∅ can be easily handled). Using the cutting Ξ∗, we find the cell σ of Ξ∗

that contains q in O(log r) time. Suppose the guarding set of σ is in S′i. Then, according to
the observation discussed before, using the hierarchical cutting computed in the i-th iteration
of the preprocessing algorithm, we can find in O(

√
r) time O(

√
r) canonical subsets as well

as a set Σ of leaf cells σ crossed by h, such that those canonical subsets are pairwise disjoint
and their union is exactly the set of points of P \D not in the cells of Σ. Next, for each cell
σ ∈ Σ, for each standard subset P ′ of P (σ), using the secondary data structure built on P ′,
we compute in O(log(n/r)(log log(n/r))O(1)) time O(log(n/r)(log log(n/r))O(1)) canonical
subsets whose union is the exactly the set of the points of P \ D in P ′. According to the
above observation, there are O(

√
r) such standard subsets. Therefore, in total we can find

in O(
√
r log(n/r)(log log(n/r))O(1)) time O(

√
r log(n/r)(log log(n/r))O(1)) pairwise-disjoint

canonical subsets whose union is P \D.

By setting r = n2/3(log log n)2/3/ log10/3 n in the preceding lemma, we obtain the
following result.

Corollary 4. We can compute in O(n4/3 log7/3 n(log log n)1/3) time a data structure with a
total of O(n4/3 log7/3 n/(log log n)2/3) sorted canonical subsets of P whose total size is upper-
bounded by O(n4/3 log7/3 n log log log n/(log log n)2/3), so that for any disk D whose center
is in C, we can find in O(n1/3(log log n)O(1)/ log2/3 n) time O(n1/3(log log n)O(1)/ log2/3 n)
pairwise-disjoint canonical sets whose union is P \D.

According to our earlier discussion, if we plug the result in the above corollary into
the algorithm of [9], then the decision version of the discrete 2-center problem can be solved
in O(n4/3 log7/3 n(log log n)O(1)) time. Using the decision algorithm and the O(n4/3 log2 n)-
time distance selection algorithm in [30], the discrete 2-center problem can be solved in
O(n4/3 log10/3 n(log log n)O(1)) time.

Theorem 11. Given a set P of n points in the plane, the discrete 2-center problem can be
solved in O(n4/3 log10/3 n(log log n)O(1)) time.

4 Concluding remarks

In this paper, we present algorithms to adapt the techniques for simplex range searching to
unit-disk range searching. We also show that our techniques can be used to derive improved
algorithms for several classical problems.

http://jocg.org/


JoCG 14(1), 343–394, 2023 382

Journal of Computational Geometry jocg.org

Our techniques are likely to find other applications. Generally speaking, our tech-
niques may be useful for solving problems involving a set of congruent disks in the plane. Our
paper demonstrates that well-studied techniques for arrangements of lines may be adapted
to solving problems involving arrangements of congruent disks. The general idea is to first
reduce the problem to the same problem with respect to a pair of square cells using an
algorithm like Lemma 1. Then, to tackle the problem on a pair of square cells (C,C ′), we
need to deal with an arrangement of spanning upper arcs in C ′ such that the centers of
the underlying disks of these arcs are all in C. The properties of spanning upper arcs (e.g.,
Observation 1), along with the duality between the upper arcs in C ′ and the points in C,
make an upper-arc arrangement “resemble” a line arrangement so that many algorithms and
techniques on line arrangements may be easily adapted to the upper-arc arrangements.

References

[1] Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three dimensions. In
Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 180–
186, 2009.

[2] Pankaj K. Agarwal. Range searching. In Handbook of Discrete and Computational Geometry, Csaba
D. Tóth, Joseph O’Rourke, and Jacob E. Goodman (eds.), pages 1057–1092. CRC Press, 3rd edition,
2017.

[3] Pankaj K. Agarwal. Simplex range searching and its variants: a review. In A Journey Through Discrete
Mathematics, pages 1–30. Springer, 2017.

[4] Pankaj K. Agarwal, Boris Aronov, Micha Sharir, and Subhash Suri. Selecting distances in the plane.
Algorithmica, 9:495–514, 1993.

[5] Pankaj K. Agarwal and Jiří Matoušek. On range searching with semialgebraic sets. Discrete and
Computational Geometry, 11:393–418, 1994.

[6] Pankaj K. Agarwal, Jiří Matoušek, and Micha Sharir. On range searching with semialgebraic sets. II.
SIAM Journal on Computing, 42:2039–2062, 2013.

[7] Pankaj K. Agarwal, Marco Pellegrini, and Micha Sharir. Counting circular arc intersections. SIAM
Journal on Computing, 22:778–793, 1993.

[8] Pankaj K. Agarwal and Micha Sharir. Pseudoline arrangements: Duality, algorithms, and applications.
SIAM Journal on Computing, 34:526–552, 2005.

[9] Pankaj K. Agarwal, Micha Sharir, and Emo Welzl. The discrete 2-center problem. Discrete and
Computational Geometry, 20:287–305, 1998.

[10] Alok Aggarwal, Mark Hansen, and Tom Leighton. Solving query-retrieval problems by compacting
Voronoi diagrams. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing
(STOC), pages 331–340, 1990.

[11] Jon L. Bentley and Hermann A. Maurer. A note on Euclidean near neighbor searching in the plane.
Information Processing Letters, 8:133–136, 1979.

[12] Timothy M. Chan. On enumerating and selecting distances. International Journal of Computational
Geometry and Application, 11:291–304, 2001.

[13] Timothy M. Chan. Optimal partition trees. Discrete and Computational Geometry, 47:661–690, 2012.

[14] Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d and 3-d
shallow cuttings. Discrete and Computational Geometry, 56:866–881, 2016.

[15] Timothy M. Chan and Da Wei Zheng. Hopcroft’s problem, log-star shaving, 2D fractional cascading,
and decision trees. In Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 190–210, 2022.

http://jocg.org/


JoCG 14(1), 343–394, 2023 383

Journal of Computational Geometry jocg.org

[16] Bernard Chazelle. An improved algorithm for the fixed-radius neighbor problem. Information Processing
Letters, 16:193–198, 1983.

[17] Bernard Chazelle. New techniques for computing order statistics in Euclidean space. In Proceedings of
the 1st Annual Symposium on Computational Geometry (SoCG), pages 125–134, 1985.

[18] Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete and Computational Geometry,
9:145–158, 1993.

[19] Bernard Chazelle, Richard Cole, Franco P. Preparata, and Chee-Keng Yap. New upper bounds for
neighbor searching. Information and Control, 68:105–124, 1986.

[20] Bernard Chazelle and Herbert Edelsbrunner. Optimal solutions for a class of point retrieval problems.
Journal of Symbolic Computation, 1:47–56, 1985.

[21] Bernard Chazelle and Franco P. Preparata. Halfspace range search: An algorithmic application of
k-sets. Discrete and Computational Geometry, 1:83–93, 1986.

[22] Bernard Chazelle and Emo Welzl. Quasi-optimal range searching in spaces of finite VC-dimension.
Discrete and Computational Geometry, 4:467–489, 1989.

[23] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational Geometry
— Algorithms and Applications. Springer-Verlag, Berlin, 3rd edition, 2008.

[24] Martin E. Dyer. Linear time algorithms for two- and three-variable linear programs. SIAM Journal on
Computing, 13:31–45, 1984.

[25] Herbert Edelsbrunner. Algorithmis in Combinatorial Geometry. Heidelberg, 1987.
[26] Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi. Optimal point location in a monotone

subdivision. SIAM Journal on Computing, 15:317–340, 1986.
[27] Jeff Erickson. New lower bounds for Hopcroft’s problem. Discrete and Computational Geometry,

16:389–418, 1996.
[28] Michael T. Goodrich. Geometric partitioning made easier, even in parallel. In Proceedings of the 9th

Annual Symposium on Computational Geometry (SoCG), pages 73–82, 1993.
[29] John Hershberger and Subhash Suri. Finding tailored partitions. Journal of Algorithms, 3:431–463,

1991.
[30] Matthew J. Katz and Micha Sharir. An expander-based approach to geometric optimization. SIAM

Journal on Computing, 26:1384–1408, 1997.
[31] David G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing, 12:28–35,

1983.
[32] Jiří Matoušek. Cutting hyperplane arrangement. Discrete and Computational Geometry, 6:385–406,

1991.
[33] Jiří Matoušek. Efficient partition trees. Discrete and Computational Geometry, 8:315–334, 1992.
[34] Jiří Matoušek. Reporting points in halfspaces. Computational Geometry: Theory and Applications,

2:169–186, 1992.
[35] Jiří Matoušek. Range searching with efficient hierarchical cuttings. Discrete and Computational Ge-

ometry, 10:157–182, 1993.
[36] Jiří Matoušek. Geometric range searching. ACM Computing Survey, 26:421–461, 1994.
[37] Jiří Matoušek. Approximations and optimal geometric divide-and-conquer. Journal of Computer and

System Sciences, 50:203–208, 1995.
[38] Jiří Matoušek and Zuzana Patáková. Multilevel polynomial partitions and simplified range searching.

Discrete and Computational Geometry, 54:22–41, 2015.
[39] Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related problems. SIAM

Journal on Computing, 12:759–776, 1983.
[40] Micha Sharir. Computational geometry column 65. SIGACT News, 48:68–85, 2017.
[41] Haitao Wang. On the planar two-center problem and circular hulls. Discrete and Computational

Geometry, 68:1175–1226, 2022.
[42] Frances F. Yao. A 3-space partition and its applications. In Proceedings of the 15th Annual ACM

Symposium on Theory of Computing (STOC), pages 258–263, 1983.

http://jocg.org/


JoCG 14(1), 343–394, 2023 384

Journal of Computational Geometry jocg.org

APPENDIX

A Proof of Theorem 1

In this section, we provide the detailed algorithm for Theorem 1, by adapting Chazelle’s
algorithm [18]. We actually present a more general algorithm that also works for other
curves in the plane (e.g., circles or circular arcs of different radii, pseudo-lines, line segments,
etc.).

Let S be a set of algebraic arcs of constant complexity in the plane, i.e., each arc
s of S is a connected portion (or the entire portion) of an algebraic curve defined by O(1)
real parameters (e.g., s is an arc of a circle or the entire circle), such that any two arcs of
S intersect at most O(1) times. For each arc s of S, a point p in the interior of s is called
a break point if s has a vertical tangent at p (i.e., s is not x-monotone at p). Since s is of
constant complexity, s has O(1) break points, implying that s can be partitioned into O(1)
x-monotone sub-arcs at these break points.

A region σ in the plane is called pseudo-trapezoid if σ is bounded from the left
(resp., right) by a vertical line segment and bounded from the above (resp., below) by an
x-monotone sub-arc of an arc of S.

We define a hierarchical (1/r)-cutting of S in the same way as that forH in Section 2.3
except that each cell of the cutting is a pseudo-trapezoid defined above. We follow the similar
notation to those in Section 2.3 but with respect to S, e.g., Sσ, ρ, Ξi, k, χ, etc. In particular,
χ is the number of intersections of all arcs of S. We will prove the following theorem, which
immediately leads to Theorem 1.

Theorem 12. For any r ≤ n, a hierarchical (1/r)-cutting of size O(r2) for S (together with
the sets Sσ for every cell σ of Ξi for all 0 ≤ i ≤ k) can be computed in O(nr) time; more
specifically, the size of the cutting is bounded by O(r1+δ + χ · r2/n2) and the running time
of the algorithm is bounded by O(nrδ + χ · r/n), for any small δ > 0.

In the following, we first introduce some basic concepts (some of them are adapted
from [18]) and then describe the algorithm. For ease of exposition, we make a general
position assumption that no three arcs of S have a common intersection point.

A.1 Basic concepts

For any subset R of S and for any compact region A in the plane, we use RA to denote the
subset of arcs of R that cross the interior of A (note that if A is a sub-arc of an arc s of R,
then RA does not contain s). The vertical pseudo-trapezoidal decomposition of R, denoted
by VD(R), is to extend a vertical line upwards (resp., downwards) until meeting an arc of
R or going to the infinity from each endpoint and each break point of each arc of R as well
as from each intersection of any two arcs of R. Each cell of VD(R) is a pseudo-trapezoid.
For any pseudo-trapezoid σ, we use nσ(R) to denote the number of intersections of the arcs
of R in the interior of σ.

http://jocg.org/


JoCG 14(1), 343–394, 2023 385

Journal of Computational Geometry jocg.org

We call e a canonical arc if either e is a vertical line segment or e is a sub-arc of an
arc of S. Note that each side of a pseudo-trapezoid is a canonical arc.

We adapt the concepts ε-approximations and ε-nets [18,37] to our case. We say that
a subset R of S is an ε-approximation for S if, for any canonical arc e, the following holds∣∣∣∣∣ |Se||S| − |Re||R|

∣∣∣∣∣ < ε.

A subset R of S is an ε-net for S if, for any canonical arc e, |Se| > ε ·n implies that Re 6= ∅.
The following lemma can be considered as a generalization of an ε-approximation,

which shows that an ε-approximation of S can be used to estimate nσ(S) for any canonical
trapezoid σ. The proof of the lemma follows that of Lemma 2.1 in [18].

Lemma 20. Suppose R is an ε-approximation of S. Then, for any pseudo-trapezoid σ,∣∣∣∣∣nσ(S)

|S|2
− nσ(R)

|R|2

∣∣∣∣∣ < ε.

Proof. Let m = |R|. Let s1, s2, . . . , sn denote the arcs of S and let r1, r2, . . . , rm denote the
arcs of R. For each 1 ≤ i ≤ n, let s′i denote the portion of si inside σ; note that s′i may have
multiple sub-arcs of si. For each 1 ≤ j ≤ m, let r′i denote the portion of ri inside σ.

We first observe that
∑n

i=1 |Ss′i | = 2 · nσ(S) and
∑m

j=1 |Rr′j | = 2 · nσ(R). Also, it
holds that

∑n
i=1 |Rs′i | =

∑m
j=1 |Sr′j |.

As R is an ε-approximation for S, for 1 ≤ i ≤ n, it holds that∣∣∣∣∣ |Ss′i ||S| − |Rs′i ||R|
∣∣∣∣∣ < ε.

Taking the sum for 1 ≤ i ≤ n leads to∣∣∣∣∣
∑n

i=1 |Ss′i |
|S|

−
∑n

i=1 |Rs′i |
|R|

∣∣∣∣∣ < |S| · ε.
Since

∑n
i=1 |Ss′i | = 2 · nσ(S), we obtain∣∣∣∣∣2 · nσ(S)

|S|2
−
∑n

i=1 |Rs′i |
|R| · |S|

∣∣∣∣∣ < ε. (4)

On the other hand, as R is an ε-approximation for S, for 1 ≤ j ≤ m, it holds that∣∣∣∣∣ |Sr′j ||S| − |Rr′j ||R|
∣∣∣∣∣ < ε.

http://jocg.org/


JoCG 14(1), 343–394, 2023 386

Journal of Computational Geometry jocg.org

Taking the sum for all 1 ≤ j ≤ m leads to∣∣∣∣∣
∑m

j=1 |Sr′j |
|S|

−
∑m

j=1 |Rr′j |
|R|

∣∣∣∣∣ < |R| · ε.
Since

∑m
j=1 |Rr′i | = 2 · nσ(R), we obtain∣∣∣∣∣

∑m
j=1 |Sr′j |
|S| · |R|

− 2 · nσ(R)

|R|2

∣∣∣∣∣ < ε. (5)

Since
∑n

i=1 |Rs′i | =
∑m

j=1 |Sr′i |, combining (4) and (5) leads to∣∣∣∣∣nσ(S)

|S|2
− nσ(R)

|R|2

∣∣∣∣∣ < ε.

This proves the lemma.

Our approach needs to compute ε-approximations and ε-nets. To this end, the fol-
lowing lemma shows that Matoušek’s algorithms [37] can be applied.

Lemma 21. An ε-approximation of size O((1/ε)2 log(1/ε)) for S and an ε-net of size
O((1/ε) log(1/ε)) for S can be computed in O(n/ε8 · log4(1/ε)) time.

Proof. To avoid the lengthy background explanation, we use concepts from [37] directly.
Consider the range space with “point set” S and ranges of the form {s ∈ S | s ∩ e 6= ∅},
where e is a canonical arc. The shatter function of this range space is bounded by O(n4).
To see this, first observe that the distinct ranges defined by the sub-arcs e of the arcs of S is
O(n4). On the other hand, consider the vertical pseudo-trapezoidal decomposition VD(S)
of S. For each vertical line segment e, if it is in a single cell of VD(S), the range defined
by e is ∅; otherwise, the two endpoints of e lie in two cells of VD(S), and the subset of arcs
of S vertically between the two cells (i.e., those arcs of S intersecting e) defines a distinct
range. As VD(S) has O(n2) cells, the size of ranges defined by vertical segments e is O(n4).
Therefore, the shatter function of the range space is bounded by O(n4).

Thus, we can apply Theorem 4.1 [37]. Applying Theorem 4.1 [37] also requires a
subspace oracle, which can be constructed as follows. Given a subset S′ ⊆ S, we can
construct all ranges of S′ in O(m5) time with m = |S′|, as follows. For each arc s ∈ S′,
we compute the intersections between s and all other arcs of S′; consequently, all ranges
defined by sub-arcs e ⊆ s can be easily obtained in O(m3) time. In this way, all ranges
defined by sub-arcs of the arcs of S′ can be constructed in O(m4) time. To construct the
ranges defined by vertical line segments, we first compute the vertical pseudo-trapezoidal
decomposition VD(S′). For every two cells of VD(S′) that are intersected by a vertical line
segment, we output the subset of all arcs of S′ vertically between them. This computes all
ranges of S′ defined by vertical line segments. As VD(S′) has O(m2) cells, the running time
is easily bounded by O(m5).

http://jocg.org/


JoCG 14(1), 343–394, 2023 387

Journal of Computational Geometry jocg.org

As such, by applying Theorem 4.1 [37], an ε-approximation of size O((1/ε)2 log(1/ε))
for S can be computed in O(n/ε8 · log4(1/ε)) time. Similarly, by applying Corollary 4.5 [37],
an ε-net of size O((1/ε) log(1/ε)) for S can be computed in O(n/ε8 · log4(1/ε)) time.

An ε-net R of S is sparse for a pseudo-trapezoid σ if nσ(R)/nσ(S) ≤ 4|R|2/|S|2. We
have the following lemma adapted from Lemma 3.2 in [18].

Lemma 22. For any pseudo-trapezoid σ, an ε-net of S sparse for σ of size O(1/ε · log n)
can be computed in time polynomial in n.

Proof. We adapt the algorithm for Lemma 3.2 in [18]. We sketch the main idea and focus
on the differences.

We first show that a random sample R ⊆ S of size m = min{d5ε−1 log ne, n} forms
an ε-net sparse for s with probability greater than 1/2. We assume that m < n. In the same
way as in Lemma 3.2 [18], we can show that Prob[ns(R)/ns(S) > 4m2/n2] < 1/4.

We define a collection S of subsets of S, as follows. For each arc s ∈ S, the inter-
sections of s with the other arcs of S cut s into sub-arcs; for any pair of points (p, q) on
different sub-arcs of s, we add the subsets of arcs of S crossing the sub-arc of s between p
and q to S. Clearly, at most O(n4) subsets of S can be added to S. On the other hand, for
any two cells of the decomposition VD(S) that intersect the same vertical line segment, we
add to S the subset of arcs of S vertically between these two cells; at most O(n4) subsets
can be added to S in this way as VD(S) has O(n2) cells. As such, the size of S is O(n4).

According to the definition of S, to ensure that R is an ε-net of S, it suffices to
guarantee that |S′| > εn implies S′ ∩ R 6= ∅ for each subset S′ of S. In the same way as
in Lemma 3.2 [18], we can prove that the probability pS′ for S′ ∈ S failing that test is less
than 1/n5. Since |S| = O(n4), for large n,

∑
S′∈S pS′ < 1/4 holds. Therefore, we obtain

Prob
[
ns(R)

ns(S)
> 4 · m

2

n2

]
+
∑
S′∈S

pS′ < 1/2.

As such, the probability that R is an ε-net sparse for σ is larger than 1/2.

Following the approach of Lemma 3.2 [18], the above proof can be converted to
a polynomial time algorithm to find such a subset R. Refer to Lemma 3.2 [18] for the
details.

A.2 The algorithm

We are now in a position to describe the algorithm for computing a hierarchical (1/r)-cutting
for S. We first assume that r ≤ n/8, and the case r > n/8 will be discussed later.

Since a (1/r)-cutting is also a (1/r′)-cutting for any r′ < r, we can assume that r ≥ ρ
for some appropriate constant ρ such that r = ρk for some integer k. Thus k = Θ(log r). The
algorithm has k iterations. For each 1 ≤ i ≤ k, the i-th iteration computes a (1/ρi)-cutting
Ξi by refining the cutting Ξi−1. Each cell of Ξi is a pseudo-trapezoid. Initially, we let Ξ0

http://jocg.org/


JoCG 14(1), 343–394, 2023 388

Journal of Computational Geometry jocg.org

be the entire plane. Clearly, Ξ0 is a (1/ρ0)-cutting for S. Next, we describe the algorithm
for a general iteration to compute Ξi based on Ξi−1. We assume that the subsets Sσ are
available for all cells σ ∈ Ξi−1, which is true initially when i = 1.

Consider a cell σ of Ξi−1. We process σ as follows. If |Sσ| ≤ n/ρi, then we do nothing
with σ, i.e., σ becomes a cell of Ξi. Otherwise, we first compute a (1/(8ρ0))-approximation
A of size O(ρ2

0 log ρ0) for Sσ by Lemma 21, and then compute a (1/(8ρ0))-net R of size
O(ρ0 log ρ0) for A that is sparse for σ by Lemma 22, with ρ0 = (ρi/n) · |Sσ|.

Remark. The parameter 8ρ0 is 4ρ0 in [18]. We use a different parameter in order to prove
Lemma 23 because each cell in our cutting is a pseudo-trapezoid. This is also the reason we
assume r ≤ n/8.

We compute the vertical pseudo-trapezoidal decomposition of the arcs of R, and clip
it inside σ; let VDσ(R) denote the resulting decomposition inside σ. We include VDσ(R)
into Ξi. Finally, for each cell σ0 ∈ VDσ(R), we compute Sσ0 , i.e., the subset of the arcs
of S that intersect the interior of σ0, by simply checking every arc of Sσ. This finishes the
processing of σ.

The cutting Ξi is obtained after we process every cell σ of Ξi−1 as above. The next
lemma shows that Ξi is a (1/ρi)-cutting of S.

Lemma 23. Ξi thus obtained is a (1/ρi)-cutting of S.

Proof. We follow the notation discussed above. Consider a cell σ0 created in σ as discussed
above. Our goal is to show that |Sσ0 | ≤ n/ρi.

We claim that for any canonical arc e in σ0, the number of arcs of Sσ crossing the
interior of e is no more than |Sσ|/(4ρ0). Indeed, assume to the contrary that this is not true.
Then, since A is a 1/(8ρ0)-approximation of Sσ, the interior of e would intersect more than

|Sσ|
4ρ0
· |A|
|Sσ|

− |A|
8ρ0

=
|A|
8ρ0

segments of A. Thus, the interior of e must be crossed by at least one arc of R, for R is a
(1/(8ρ0))-net of A. But this is impossible because e is in σ0 (and thus its interior cannot be
crossed by any arc of R).

Note that each vertex of σ0 is on an arc of S, which bounds σ0. By the general
position assumption, Sσ0 has at most one arc through a vertex of σ0. Hence, Sσ0 has at
most four arcs through vertices of σ0. Let S′σ0

denote the subset of arcs of Sσ0 not through
any vertex of σ0. Let ei, i = 1, 2, 3, 4, be the four canonical arcs on the boundary of σ0,
respectively. For any arc s of S′σ0

, since it does not contain any vertex of σ0, s must cross the
interiors of two of ei, for i = 1, 2, 3, 4. As the interior of each ei, 1 ≤ i ≤ 4, can be crossed
by at most |Sσ|/(4ρ0) arcs of Sσ, the size of S′σ0

is at most |Sσ|/(4ρ0) · 4/2 = |Sσ|/(2ρ0).
Therefore, |Sσ0 | ≤ |S′σ0

|+ 4 ≤ |Sσ|/(2ρ0) + 4 = n/(2ρi) + 4.

Since r = ρk and i ≤ k, ρi ≤ r. As r ≤ n/8, we obtain ρi ≤ n/8, and thus
4 ≤ n/(2ρi). Therefore, we obtain |Sσ0 | ≤ n/ρi.

http://jocg.org/


JoCG 14(1), 343–394, 2023 389

Journal of Computational Geometry jocg.org

The size of Ξi. We next analyze the size of Ξi. First notice that ρ0 ≤ ρ. Since A is a
(1/(8ρ0))-approximation of Sσ, by Lemma 20, we have∣∣∣∣∣nσ(Sσ)

|Sσ|2
− nσ(A)

|A|2

∣∣∣∣∣ < 1

8ρ0
.

Because R is a (1/(8ρ0))-net of A sparse for σ, we have nσ(R)/nσ(A) ≤ 4|R|2/|A|2. This
implies that

nσ(R) ≤ 4 · |R|
2

|Sσ|2
· nσ(Sσ) +

|R|2

2ρ0
.

Since |R| = O(ρ0 log ρ0), the number of cells of VDσ(R) is proportional to |R| + nσ(R),
which is at most proportional to

ρ2
0 log2 ρ0

|Sσ|2
· nσ(Sσ) + ρ0 log2 ρ0. (6)

Recall that ρ0 = (ρi/n) · |Sσ| and ρ0 ≤ ρ. Hence, ρ0 log ρ0

|Sσ | ≤
ρi

n log ρ. Recall that χ
is the total number of intersections of all arcs of S. Observe that

∑
σ∈Ξi−1

nσ(Sσ) ≤ χ. Let
|Ξi| denote the number of cells in Ξi. Taking the sum of (6) for all cells σ ∈ Ξi−1, we obtain
that the following holds for a constant c:

|Ξi| ≤ c ·
(
ρi log ρ

n

)2

· χ+ c · ρ log2 ρ · |Ξi−1|.

Since |Ξ0| = 1, we can prove by induction that |Ξi| ≤ ρ2(i+1) · χ/n2 + ρ(i+1)(1+δ)

for a large enough constant ρ, for any δ > 0. As such, the size of the last cutting Ξk is
O(χ · r2/n2 + r1+δ) since r = ρk and ρ is a constant.

The time analysis. Using the above bound of |Ξi|, we can show that the running time of
the algorithm is bounded by O(nrδ+χ·r/n). Indeed, for each σ ∈ Ξi−1, since ρ0 ≤ ρ and ρ is
a constant, by Lemma 21, it takes O(|Sσ|) time to compute A and constant time to compute
R and obtain the decomposition VDσ(R). The subsets Sσ′ for all cells σ′ ∈ VDσ(R) can also
be obtained in O(|Sσ|) time since |R| = O(1). Therefore, the total time of the algorithm is
at most proportional to

k∑
i=0

∑
σ∈Ξi

|Sσ| ≤
k∑
i=0

|Ξi| ·
n

ρi
≤

k∑
i=0

(
ρ2(i+1) · χ

n2
+ ρ(i+1)(1+δ)

)
· n
ρi
,

which is bounded by O(nrδ + χ · r/n) since r = ρk and ρ is a constant.

This proves Theorem 12 for r ≤ n/8. Note that each cell in the last cutting Ξk is a
pseudo-trapezoid.

http://jocg.org/


JoCG 14(1), 343–394, 2023 390

Journal of Computational Geometry jocg.org

The case r > n/8. If r > n/8, then we first run the above algorithm with respect to
r′ = n/8 to compute a hierarchical (1/r′)-cutting Ξ0,Ξ1, . . . ,Ξk. We then perform additional
processing as follows. For each cell σ ∈ Ξk, we know that |Sσ| ≤ 8. We compute the vertical
pseudo-trapezoidal decomposition of the arcs of Sσ inside σ. The resulting pseudo-trapezoids
in the decompositions of all cells σ ∈ Ξk constitute Ξk+1. It is easy to see that Sσ′ = ∅ for
each σ′ ∈ Ξk+1. Hence, Ξk+1 is a (1/r)-cutting for S (more precisely, Ξ0,Ξ1, . . . ,Ξk+1 form
a hierarchical (1/r)-cutting). Also, since |Sσ| ≤ 8 for all cells σ ∈ Ξk, following the analysis
as above, the complexities of Theorem 12 hold.

Remark. Chan and Tsakalidis [14] derived a simpler algorithm than Chazelle’s algorithm [18]
for computing cuttings for a set of lines in the plane (e.g., ε-nets and ε-approximations are
avoided). However, it appears that there are some difficulties to adapt their technique to
computing cuttings for curves in the plane. One difficulty, for example, is that their algo-
rithm uses the algorithm of Megiddo [39] and Dyer [24] to construct a (7/8)-cutting of size
4, which relies on the slopes of lines. For curves, however, it is not clear to us how to define
“slopes” (e.g., how to define slope for a circle?).

B Proof of Theorem 7

The problem is to compute for each upper arc h of H the number of points of P below it
(i.e., the number of points of P inside the underlying disk of h), where H = {hq | q ∈ Q}.
Recall that n = |P | and m = |H|. We refer to it as the symmetric case if n = m and
asymmetric case otherwise. Let T (m,n) denote the time complexity for the problem (H,P )
of size (m,n). In what follows, we first present two algorithms and then combine them.

The first algorithm. Using our Cutting Theorem, we compute in O(mr) time a hierarchical
(1/r)-cutting Ξ0, . . . ,Ξk for H. For any cell σ of Ξi, 0 ≤ i ≤ k, let P (σ) = P ∩ σ, i.e., the
subset of points of P in σ. For each point p ∈ P , we find the cell σ of Ξk that contains p.
For reference purpose later, we call this step the point location step, which can be done in
O(n log r) time for all points of P . After this step, the subsets P (σ) for all cells σ ∈ Ξk are
computed. We also need to maintain the cardinalities |P (σ)| for cells in other cuttings Ξi,
0 ≤ i ≤ k − 1. To this end, we can compute them in a bottom-up manner following the
hierarchical cutting (i.e., process cells of Ξk−1 first and then Ξk−2, and so on), using the
fact that |P (σ)| is equal to the sum of |P (σ′)| for all children σ′ of σ. As each cell has O(1)
children, this step can be easily done in O(r2) time as the total number of all cells of all Ξi’s
is O(r2). Note that r2 = O(mr).

For each arc h ∈ H, our goal is to compute the number of points of P below h,
denoted by Nh, which is initialized to 0. Starting from Ξ0, suppose σ is a cell of Ξi crossed
by h and i < k. For each child cell σ′ of σ in Ξi+1, if σ′ is below h, then we increase Nh by
|P (σ′)| because all points of P (σ′) are below h. Otherwise, if h crosses σ′, then we proceed
on σ′. In this way, the points of P below h not counted in Nh are those contained in cells
σ ∈ Ξk that are crossed by h. To count those points, we perform further processing as
follows.

http://jocg.org/


JoCG 14(1), 343–394, 2023 391

Journal of Computational Geometry jocg.org

For each cell σ in Ξk, if |Pσ| > n/r2, then we arbitrarily partition P (σ) into subsets
of size between n/(2r2) and n/r2, called standard subsets of P (σ). As Ξk has O(r2) cells
and |P | = n, the number of standard subsets of all cells of Ξk is O(r2). Denote by Hσ the
subset of arcs of H that cross σ. Our problem is to compute for each arc h ∈ Hσ the number
of points of P (σ) below h, for all cells σ ∈ Ξk. To this end, for each cell σ of Ξk, for each
standard subset P ′(σ) of P (σ), we solve the subproblem on (Hσ, P

′(σ)) of size (m/r, n/r2)
recursively as above. We thus obtain the following recurrence relation:

T (m,n) = O(mr + n log r) +O(r2) · T (m/r, n/r2). (7)

In particular, the factor O(n log r) is due to the point location step.

The second algorithm. Our second algorithm solves the problem using duality. Recall
that Q is the set of centers of the arcs of H. Let P ∗ be the set of lower arcs in C defined
by points of P . In the dual setting, the problem is equivalent to computing for each point
of Q the number of arcs of P ∗ below it. Using our Cutting Theorem, we compute in O(nr)
time a hierarchical (1/r)-cutting Ξ0, . . . ,Ξk for P ∗. Consider a cell σ ∈ Ξi for i < k. For
each child cell σ′ of σ in Ξi+1, let P ∗σ\σ′ denote the subset of the arcs of P ∗ crossing σ but
not crossing σ′ and below σ′. We store the cardinality of P ∗σ\σ′ at σ

′. For each cell σ of Ξk,
we store at σ the set P ∗σ of arcs of P ∗ crossing σ. Note that |P ∗σ | ≤ n/r. All above can be
done in O(nr) time.

For each point q ∈ Q, our goal is to compute the number of arcs of P ∗ above
q, denoted by Mq, which is initialized to 0. Starting from Ξ0, suppose σ is a cell of Ξi
containing q and i < k. We find the child cell σ′ of σ in Ξi+1 that contains q. We add |P ∗σ\σ′ |
to Mq and then proceed on σ′. In this way, the arcs of P ∗ below q not counted in Mq are
those contained in the cell σ ∈ Ξk that contains q. To count those arcs, we perform further
processing as follows.

For each cell σ in Ξk, let Q(σ) be the subset of points of Q contained in σ. If
|Qσ| > m/r2, then we arbitrarily partition Q(σ) into subsets of size between m/(2r2) and
m/r2, called standard subsets of Q(σ). As Ξk has O(r2) cells and |Q| = m, the number
of standard subsets of all cells of Ξk is O(r2). Our problem is to compute for each point
q ∈ Q(σ) the number of arcs of P ∗σ below q, for all cells σ ∈ Ξk. To this end, for each cell
σ of Ξk, for each standard subset Q′(σ) of Q(σ), we solve the subproblem on (Q′(σ), P ∗σ ) of
size (m/r2, n/r) recursively as above. We thus obtain the following recurrence relation:

T (m,n) = O(nr +m log r) +O(r2) · T (m/r2, n/r). (8)

Combining the two algorithms. By setting m = n and applying (8) and (7) in succession
(using the same r), we obtain the following

T (n, n) = O(nr log r) +O(r4) · T (n/r3, n/r3).

Setting r = n1/3/ log n leads to

T (n, n) = O(n4/3) +O((n/ log3 n)4/3) · T (log3 n, log3 n).

http://jocg.org/


JoCG 14(1), 343–394, 2023 392

Journal of Computational Geometry jocg.org

If we apply the recurrence three times, we can derive the following:

T (n, n) = O(n4/3) +O((n/b)4/3) · T (b, b), (9)

where b = (log log log n)3.

Solving the subproblem T (b, b). Due to the property that the value b is tiny, we next show
that after O(2poly(b)) time preprocessing, where poly(·) represents a polynomial function,
each T (b, b) can be solved in O(b4/3) time. Since b = (log log log n)3, we have 2poly(b) = O(n).
As such, applying (9) solves T (n, n) in O(n4/3) time, which proves Theorem 7 for the
symmetric case; we will solve the asymmetric case at the end by using the symmetric case
algorithm as a subroutine.

For notational convenience, we still use n to represent b. We wish to show that
after O(2poly(n)) time preprocessing, T (n, n) can be solved in O(n4/3) time. To this end, we
show that T (n, n) can be solved using O(n4/3) comparisons, or alternatively, T (n, n) can be
solved by an algebraic decision tree of height O(n4/3). Since building the algebraic decision
tree can be done in O(2poly(n)) time, each T (n, n) can be solved in O(n4/3) time using the
decision tree. As such, in what follows, we focus on proving that T (n, n) can be solved using
O(n4/3) comparisons.

Observe that it is the point location step in the recurrence (7) in our first algorithm
that prevents us from obtaining an O(n4/3) time bound for T (n, n) because each point
location introduces an additional logarithmic factor. To overcome the issue, Chan and
Zheng [15] propose an Γ-algorithm framework for bounding decision tree complexities (see
Section 4.1 [15] for the details). To reduce the complexity for the point location step in their
algorithm, Chan and Zheng proposed a basic search lemma (see Lemma 4.1 [15]). We can
follow the similar idea as theirs (see Section 4.3 [15]). We only sketch the main idea below
and the reader can refer to [15] for details.

Following the notation in [15], for any operation or subroutine of the algorithm, we
use ∆Φ to denote the change of the potential Φ. Initially Φ = O(n log n). The potential
Φ only decreases during the algorithm. Hence, ∆Φ ≤ 0 always holds and the sum of −∆Φ
during the entire algorithm is O(n log n).

We modify the point location step of the first algorithm with the following change.
To find the cell of Ξk containing each point of P , we apply Chan and Zheng’s basic search
lemma on the O(r2) cells of Ξk, which needs O(1−r2∆Φ) comparisons (instead of O(log r)).
As such, excluding the O(−r2∆Φ) terms, we obtain a new recurrence for the number of
comparisons for the first algorithm:

T (m,n) = O(mr + n) +O(r2) · T (m/r, n/r2). (10)

Using the same r, we stop the recursion until m = Θ(r), which is the base case. In
the base case we have T (m,n) = O(n+ r2) (again excluding the term O(−r2∆Φ)). Indeed,
we first construct the arrangement of the m = Θ(r) upper arcs in O(r2) time and then
apply the basic search lemma to find the face of the arrangement containing each point.
The above obtains the total number of points inside each face of the arrangement. Our

http://jocg.org/


JoCG 14(1), 343–394, 2023 393

Journal of Computational Geometry jocg.org

goal is to compute for each upper arc the number of points below it. This can be done in
additional O(r2) time by traversing the arrangement (see Lemma 5.1 [15]). In this way, the
recurrence (10) solves to T (m,n) = (m2 +n) · 2O(logrm). By setting r = mε/2, we obtain the
following bound on the number of comparisons excluding the term O(−mε∆Φ).

T (m,n) = O(m2 + n). (11)

Now we apply recurrence (8) with m = n and r = n1/3 and obtain the following

T (n, n) = O(n4/3) +O(n2/3) · T (n1/3, n2/3).

Applying (11) for T (n1/3, n2/3) gives T (n, n) = O(n4/3) with the excluded terms sum to
O(nε · n log n). As such, by setting ε to a small value (e.g., ε = 1/4), we conclude that
T (n, n) can be solved using O(n4/3) comparisons.

The asymmetric case. The above proves Theorem 7 for the symmetric case with an
O(n4/3) time algorithm for solving T (n, n). For the asymmetric case, depending on whether
m ≥ n, there are two cases.

1. If m ≥ n, depending on whether m < n2, there are two subcases.

(a) If m < n2, then let r = m/n, and thus m/r2 = n/r. Applying (8) and solv-
ing T (m/r2, n/r) by the symmetric case algorithm give T (m,n) = O(m log n +
n2/3m2/3).

(b) Ifm ≥ n2, then we solve the problem in the dual setting for Q and P ∗ as discussed
in the above second algorithm, i.e., compute for each point of Q the number of
arcs of P ∗ below it. We first construct the arrangement A of the arcs of P ∗

in O(n2) time and then build a point location data structure on A in O(n2)
time [26, 31]. Next, for each point of Q, we find the face of A that contains it in
O(log n) time using the point location data structure. In addition, it takes O(n2)
time to traverse A to compute for each face of A the number of arcs below it.
The total time is O(n2 +m log n), which is O(m log n) as m ≥ n2.

Hence in the case where m ≥ n, we can solve the problem in O(m log n + n2/3m2/3)
time.

2. If m < n, depending on whether n < m2, there are two subcases.

(a) If n < m2, then let r = n/m, and thus m/r = n/r2. Applying (7) and solv-
ing T (m/r, n/r2) by the symmetric case algorithm give T (m,n) = O(n logm +
n2/3m2/3).

(b) If n ≥ m2, then we first construct the arrangement A of the arcs of H in O(m2)
time and then build a point location data structure on A in O(m2) time [26,31].
Next, for each point of P , we find the face of A that contains it in O(logm) time
using the point location data structure. In addition, as discussed above, it takes
O(m2) time to traverse A to compute for each arc of H the number of points of
P below it. The total time is O(m2 + n logm), which is O(n logm) as n ≥ m2.

http://jocg.org/


JoCG 14(1), 343–394, 2023 394

Journal of Computational Geometry jocg.org

Hence in the case where m < n, we can solve the problem in O(n logm + n2/3m2/3)
time.

This proves Theorem 7.

http://jocg.org/

	Introduction
	Unit-disk range searching
	Reducing the problem to pairs of grid cells
	Basic concepts and observations
	Computing hierarchical cuttings for disk arcs
	Test Set Lemma
	A data structure based on pseudo-trapezoidal partitions
	A data structure based on hierarchical cuttings
	A randomized result
	Trade-offs
	Wrapping things up

	Applications
	Batched unit-disk range counting
	The distance selection problem
	The discrete 2-center problem
	The randomized result
	The deterministic result


	Concluding remarks
	Proof of Theorem 1
	Basic concepts
	The algorithm

	Proof of Theorem 7

