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We study the problem of covering barrier points by mobile sensors. Each sensor is repre-
sented by a point in the plane with the same covering range r so that any point within
distance r from the sensor can be covered by the sensor. Given a set B of m points
(called “barrier points”) and a set S of n points (representing the “sensors”) in the
plane, the problem is to move the sensors so that each barrier point is covered by at
least one sensor and the maximum movement of all sensors is minimized. The problem
is NP-hard. In this paper, we consider two line-constrained variations of the problem
and present efficient algorithms that improve the previous work. In the first problem, all
sensors are given on a line £ and are required to move on £ only while the barrier points
can be anywhere in the plane. We propose an O((n +m)log(n +m)) time algorithm for
the problem. We also consider the weighted case where each sensor has a weight; we give
an O(mlogm+n log? n) time algorithm for this case. In the second problem, all barrier
points are on £ while all sensors are in the plane but are required to move onto £ to cover
all barrier points. We also solve the weighted case in O(mlogm + n log? n) time.

Keywords: Barrier coverage; disk coverage; geometric coverage; barrier points; mobile
sensors; line-constrained; algorithms; computational geometry.

1. Introduction

Let B be a set of m points and D be a set of n disks of the same radius r in the
plane. We consider the problem of moving the disks of D to cover all points of B
so that the maximum moving distance of all disks is minimized. The problem is

*A preliminary version of this paper appeared in Proceedings of the 33rd Canadian Conference
on Computational Geometry (CCCG 2021). This research was supported in part by NSF under
Grants CCF-2005323 and CCF-2300356.
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NP-hard.? In this paper, we consider two line-constrained variations of the problem
and present efficient algorithms for them.
Due to its potential applications in barrier coverage of mobile sensors in wireless

14,15,17 we consider the problem from the barrier coverage point of

sensor networks,
view. We call the points of B the barrier points. Let S be the set of centers of all
disks of D, and points of S are called sensors. All sensors have the same covering
range (or sensing range) T so that any point within distance r from a sensor s can
be covered by s (i.e., s covers all points in the disk centered at s with radius r).
Hence, our problem becomes the following: move sensors of S to cover all barrier
points of B such that the maximum moving distance of all sensors is minimized.

We study a line-constrained variation of the problem where all sensors are given
on a line ¢ and are required to move on ¢ only while the barrier points can be
anywhere in the plane. We also consider its weighted case where each sensor s; has
a weight w; > 0 and the moving cost of s; is defined to be its moving distance
times w;.

To the best of our knowledge, we are not aware of any previous work on this
particular problem. If all barrier points are all on ¢, which becomes a 1D problem
(our original problem can be considered as a 1.5D problem), the algorithm of Li and
Wang!® can solve the unweighted case in O(mlogm + nlogmlogn) time. In this
paper, we present an O((n + m)log(n + m)) time for the unweighted case and an
O((n+m)log®(n+m)) time algorithm for the weighted case. Hence, our algorithm
for the unweighted case, albeit solving the 1.5D problem, improves the algorithm
of Ref. 18 by roughly a logarithmic factor.

We also consider another problem variation in which all barrier points are on
a line ¢ while sensors can be anywhere in the plane. We want to move all sensors
onto ¢ to cover all barrier points so that the maximum moving cost of all sensors

1.** studied the unweighted case and gave an

is minimized. Previously, Huang et a
O(n(m + nlogn)log(n + m)) time algorithm. Our techniques solve the weighted
case in O(mlogm + nlog?n) time. This improves the algorithm of Huang et al.'*
by almost a linear factor. Note that we do not have a faster algorithm for the
unweighted case. As all barrier points are on £ and all sensors will finally move to £,
once a sensor s moves to £, the portion of the covering disk of s that is relevant is an
interval of £. For this reason, we refer to this problem as the mobile interval coverage
problem; for differentiation, we refer to the first problem above as the mobile disk
coverage problem. Note that if sensors have different ranges, even the 1D problem

(i.e., all sensors and barrier points are on £) is NP-hard.4

1.1. Related work
Many variations of mobile sensor barrier coverage problem have been studied in the

literature.

aThis can be proved by an easy reduction from the minimum disk coverage problem;'3 e.g., see
Ref. 19 for a reduction for a similar problem.
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Czyzowicz et al.® studied the problem of covering a barrier segment on a line
¢ by moving a set of n sensors on ¢ (the sensors are initially given on ¢); they
gave an O(n?) time algorithm. Chen et al.® presented a more efficient O(nlogn)
time algorithm. Chen et al.? also studied the case where sensors may have different
covering ranges and proposed an O(n?logn) time algorithm. For the weighted case
where the sensors have weights as defined in our problems (but sensors have the
same range), Lee et al.'® derived an algorithm of O(n?lognloglogn) time.

Li and Shen!” studied the same problem as our interval coverage problem
except that their barrier is not a set of points but a single line segment on /.
They proposed an O(n3logn) time algorithm. The algorithm was later improved
to O(n?lognloglogn) time by Li and Wang.'® Li and Wang'® also studied a more
general problem setting where the barrier is a set of m disjoint line segments on
£ (and the sensors are still in the plane and are required to move to £); they gave
an O(n?lognloglogn + nmlogm) time algorithm. Further, for the 1D case where
all sensors are initially on ¢, the algorithm of Li and Wang'® solves the problem in
O(mlogm + nlognlogm) time. These results are for the case where sensors have
the same range; if sensors have different ranges, even the 1D problem is NP-hard
by a simple reduction from the Partition Problem as in Ref. 6.

The min-sum version of the line-constrained barrier coverage was also studied
in the literature where sensors are given on £ and a barrier segment is also on ¢, and
the goal is to move sensors to cover the barrier segment such that the total sum of
the moving distances of all sensors is minimized. If sensors have different ranges,
the problem is NP-hard.” Otherwise, Czyzowicz et al.” solved the problem in O(n?)
time. Later Andrews and Wang! proposed a faster algorithm of O(nlogn) time.

A circular barrier coverage problem was also considered, where the barrier is
a circle and sensors are initially located inside the circle and the goal is to move
all sensors to the circle to form a regular n-gon (to form a coverage) so that the
maximum moving distance of all sensors is minimized. Bhattacharya? first gave an
algorithm of O(n3®logn) time. An improved algorithm of O(nlog®n) time was
later derived by Chen et al.*

There are also other variations of the barrier coverage problem, e.g., see Refs. 8,
9, 20 and 21.

1.2. Owur approach

We first discuss the mobile disk coverage problem. Let A* denote the optimal moving
cost, i.e., the maximum moving cost of all sensors in an optimal solution. In both
the unweighted and weighted cases, we first consider the decision problem: Given
any value A, determine whether A\ > A\*.

For the unweighted case, a critical property is an order-preserving property:
There exists an optimal solution in which the order of the sensors are consistent
with their order in the input. Due to the property, we can solve the decision problem
in linear time by a simple greedy algorithm (after all barrier points and all sensors
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are sorted). Next, we use the decision algorithm to compute A*. To this end, we
define 2m arrays of size n each and we show that \* must be an element of one of
the arrays. To search \* in these arrays in an efficient way, we form these arrays
implicitly. A helpful observation is that each of these arrays is sorted. Consequently,
by using our decision algorithm, we apply a sorted matriz searching technique'® 12
(or a simpler implementation called binary search on sorted arrays in Ref. 5) to find
A* in these arrays in O((n 4+ m)log(n + m)) time.

For the weighted case, unfortunately the order-preserving property does not
hold anymore. In fact, the major difficulty is to find the correct order for sensors
in an optimal solution. This is also the case for solving the decision problem. So
we have to use a different approach to solve the decision problem. The runtime
of the algorithm is O((n + m)log(n + m)). To compute the optimal cost A*, we
implicitly form 2n arrays of size m each such that A* is one of the array elements. To
apply the sorted matrix searching technique, we manage to find a way to order the
array elements implicitly so that the arrays are still sorted. Then, with the decision
algorithm, the value A* can be found in O(mlogm + nlog? n) time.

For the mobile interval coverage problem, we solve the weighted cases directly
(without having a faster algorithm for the unweighted case). As above, we also
solve the decision problem first, and then form sorted arrays and apply the sorted
array searching technique. To solve the decision algorithm, we use an algorithm
similar to the weighted case of the above mobile disk coverage problem, but with a
simpler and slightly faster implementation. The runtime of our decision algorithm
is O(m + nlogn) after O((n + m)log(n + m)) time preprocessing for sorting all
sensors and barrier points. The time of the overall algorithm (for computing the
optimal value \*) is O(mlogm + nlog® n).

Outline. The rest of the paper is organized as follows. We define notation in Sec. 2.
In Sec. 3, we present our algorithm for the unweighted case of the mobile disk
coverage problem, while the weighted case is discussed in Sec. 4. The algorithm for
the mobile interval coverage is described in Sec. 5. Section 6 concludes with some
remarks on the 1D problem.

2. Preliminaries

For each problem we consider, we use A* to denote the optimal moving cost. Given
any A, the decision problem is to decide whether A > \*  i.e., whether it is possible
to move sensors to cover all barrier points so that the moving cost of each sensor
is at most A. If A > A*, we say that X is a feasible value. We use feasibility test to
refer to the procedure for determining whether A > A*. For differentiation, we refer
to our original problem for computing \* as the optimization problem.

Without loss of generality, we assume that the line ¢ is the z-axis. Let S =
{51, 82, ..., 8n} be the set of sensors (unless otherwise stated, the order is arbitrary).
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For each s;, we use (x;,y;) to denote its coordinate in the input. For differentiation,
for each barrier point b € B, we use (zp, yp) to denote its coordinate.

In each problem, we use a configuration to refer to a specification of where each
sensor s; is located. For example, in the input configuration, each sensor s; is at
(i, Yi)-

For each sensor s, we use D(s) to refer to its covering disk, i.e., the disk of radius
r centered at s. For any disk D, we use 0D to denote its boundary, which is a circle.
The left half-circle of D refers to the portion of 9D to the left of the vertical line
through the center of Dj; the right half-circle is defined similarly.

For the mobile disk coverage problem, for simplicity of discussion, we assume
that all barrier points are above or on £ since if a barrier point is below ¢, then
we can use its symmetric point about ¢ to replace it and that does not affect the
solution of the problem.

For any point p on ¢, for convenience, sometimes we also use p to refer to its
z-coordinate. For example, for two points p and g on £, p < ¢ means that p is to the
left of ¢ (including the case where p and ¢ are coincident) and p < ¢ means that p
is strictly to the left of q.

For each problem, for ease of exposition, we assume that it is always possible to
cover all barrier points by moving sensors (i.e., the covering range r is big enough).
Our algorithm can actually determine whether the assumption is true or not. This
implies that in the mobile disk coverage problem, for each barrier point b, y, < r
must hold since otherwise no sensor on £ can cover b. Also, for each problem we
assume that A* > 0, i.e., one has to move at least one sensor in order to form a
coverage for all barrier points. Note that whether \* = 0 can be easily determined
in O(n + m)log(n + m) time for each problem (which does not affect the time
complexity of the overall algorithm asymptotically).

For a barrier point b and the covering disk D(s) of a sensor s, we say that D(s)
is strictly to the left (resp., right) of b if D(s) does not cover b and the a-coordinate
of s is smaller (resp., larger) than that of b.

3. The Mobile Disk Coverage Problem: The Unweighted Case

In this section, we consider the unweighted case of the mobile disk coverage problem.
In this problem, all sensors of S are on the line ¢ while each barrier of B can be
anywhere in the plane.

We first present an algorithm to solve the decision algorithm. Consider a value
A If A > A%, we use a feasible solution to refer to a configuration in which all
barrier points are covered and the moving cost of each sensor is no more than \. As
all sensors have the same range, it is not difficult to see that the order-preserving
property in the following observation holds.

Observation 1 (The order-preserving property). If A > \*| then there exists
a feasible solution in which the order of sensors is the same as in the input.
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Due to the order-preserving property, we can solve the decision problem by a
simple greedy algorithm in linear time (after sensors and barrier points are sorted).

Lemma 1. After O(nlogn + mlogm) time preprocessing, given any A, whether
A > A* can be decided in O(n + m) time.

Proof. In the preprocessing, we sort all sensors of S from left to right on ¢; let
S = {s1,82,...,8,} be the sorted list. We also sort all barrier points of B by their
a-coordinates from left to right; let B = {by,ba,..., by} be the sorted list. Given
any A, in what follows we describe our O(n+m) time algorithm for deciding whether
A > X\*, which is based on the greedy strategy.

We first move each sensor rightwards on ¢ by distance A\ and we use C to refer
to the configuration, i.e., in Cp, the location of each s; is x; + A. Then, during the
algorithm, each sensor will not be allowed to move rightwards anymore but can
move leftwards by 2.

Starting from ¢ = 1 and j = 1, we process sensors s; and barrier points b;
incrementally. We first check whether b; is covered by s;. If yes, we increase j by
one (if j = m before the increase, then all barrier points are covered and we have
found a feasible solution; in this case, we can stop the algorithm and report that A
is a feasible value, i.e., A > \*). Otherwise, either b; is to the right of the covering
disk D(s;) of s; or b; is to the left of D(s;). In the former case, we increase i by one
and proceed as above (if i« = n before the increase, then we can stop the algorithm
and report that A is not a feasible value, i.e., A < A*). In the latter case, we check
whether it is possible to move s; leftwards by distance at most 2 to cover b;. If not,
then we can stop the algorithm and report that A is not a feasible value. Otherwise,
we move s; leftwards until b; is covered (i.e., b; is on the left half-circle of 0D(s;));
we then increase j by one and proceed as above (if 7 = m before the increase, then
all barrier points are covered and thus we can stop the algorithm and report that
A is a feasible value). This finishes the description of the algorithm.

The correctness of the algorithm is based on the order-preserving property. It is
not difficult to see that the running time of the algorithm is O(n + m). |

We next tackle the optimization problem for computing A\*, by making use of
our decision algorithm in Lemma 1 as a subroutine. For this, we have the following
lemma.

Lemma 2. \* is equal to x; — /72 — yg —xp OT T — /T2 — yg — x; for a semsor

s; and a barrier point b.

Proof. Consider an optimal solution OPT', where A\* is the maximum moving dis-
tance of all sensors. Then, \* is equal to the moving distance of a sensor s;. For
ease of discussion, we assume that the moving distances of all other sensors are
strictly smaller than A\* (otherwise, we could apply the following analysis to all
these sensors). Let 2} be the position of s; in OPT. If z} < x;, then s; has been
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moved leftwards. In this case, there must be a barrier point b on the left half-circle
of OD(s;) since otherwise we could move D(s;) rightwards slightly so that D(s;)
still covers the same set of barrier points as before but the moving distance of s;
is strictly smaller than A*, a contradiction to the definition of A*. Thus, we have

z;, = \/r? — y2 + x. Hence, \* = x; — a} = x; — \/r? — y? — xp. If 2} > x;, then by

similar analysis as above, we can show that \* =z, — \/r2 — y? — z;. O

We sort all sensors of S from left to right on ¢; let S = {s1,82,...,8,} be
the sorted list. For each barrier point b € B, we define two arrays Ap[l---n| and
Aj[1---n] of size n each as follows: For each i € [1,n], define A,[i] = x;—+/r? — yi —
xp and Ag[i] =2, — /7?2 — yg — x;. According to Lemma 2, \* is an element in
one of the 2m arrays A, and Aj for all b € B. We next find A* in these arrays.
Computing these arrays explicitly will take Q(nm) time. Below, we present a near
linear time algorithm without computing these arrays explicitly. Indeed, given an
index i € [1,n] and a barrier point b € B, we can obtain the values A[i] and Aj[4]
in constant time.

An easy observation is that elements of the array A, are sorted in ascending
order and elements of A; are sorted in descending order. Therefore, we are searching
A* in 2m sorted arrays of size n each. Note that A\* is actually the smallest feasible
value in these 2m arrays. We can use the sorted matrix searching techniques'® 12
(or a simpler implementation, called binary search on sorted arrays, in Ref. 5) to
search sorted arrays with the following lemma.

Lemma 3 (Refs. 5 and 10-12). Suppose we have a set of M sorted arrays of size
at most N each such that each array element can be evaluated in O(1) time (i.e.,
given the index of an array, the element of the array can be obtained in O(1) time).
Then, the smallest feasible value in these arrays can be computed by O(log(N + M))
feasibility tests and the total time of the algorithm excluding the feasibility tests is
O(MlogN).

Applying Lemma 3 and using our decision algorithm in Lemma 1, A\* can be
found in O((n + m)log(n 4+ m)) time. We summarize our result in the following
theorem.

Theorem 1. Given a set of m barrier points in the plane and a set of n sensors
on a line £, the problem of moving sensors on £ to cover all barrier points such
that the mazimum moving cost of all sensors is minimized can be solved in O((n +
m)log(n +m)) time.

4. The Mobile Disk Coverage Problem: The Weighted Case

In this section, we solve the weighted case of the mobile disk coverage problem. Here
also, we start with the decision problem and later solve the optimization problem
by applying sorted array searching techniques in Lemma 3. In the weighted case,
each sensor s; is associated with a weight w; > 0.
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4.1. The decision problem

Given any A, the problem is to decide whether A > A*. Although our algorithm is
similar in spirit to those in the previous work,316:18 our algorithm is for a more
general problem setting in that the barrier points are in the plane while the barriers
k3:16:18 are on . In the following, we first describe our algorithm,
and then prove its correctness; finally, we will discuss how to efficiently implement
the algorithm in O((n + m)log(n +m)) time.

in all previous wor

4.1.1. The algorithm description

For each sensor s;, define z} = x; — A\/w; and 2 = x; + A\/w;, i.e., z! is the leftmost
location on ¢ where s; can move to and ] is the rightmost location on ¢ where s;
can move to with respect to A\. We call z (resp., 27) the leftmost (resp., rightmost)
A-reachable location.

For each barrier point b, we use ¢(b) to denote the center of the circle of radius r
whose center is on ¢ and whose left half-circle contains b, i.e., ¢(b) = zp + /1% — y7.
We sort all barrier points b € B in the order of the values ¢(b). Alternatively, it is
also the order of the barrier points of B encountered by sweeping a left half-circle
centered at ¢ from left to right. Let B = {b1,ba,...,by} be the sorted list.

Initially, we move each sensor s; to z} and thus s; will not be allowed to move
rightwards anymore but can move leftwards by 2A/w;. Let Cy denote the resulting
configuration. If A > A\*, our algorithm will find a subset of sensors with their new
locations such that all barrier points are covered and the maximum moving cost of
each sensor is at most A (sensors not in the subset are still in their positions of Cp).

Consider the i-th iteration of the algorithm (initially, ¢ = 1). Let C;—; be
the configuration right before the iteration. Our algorithm maintains the following
invariants.

(1) A subset of sensors S;_1 = {sg,,...,8q,_, } has been computed, where g; is the
index of the sensor sy, for each j € [1,7 — 1].

(2) In C;_1, each sensor s; of S;_1 is at a location, denoted by z}, which may not
be equal to z, while sensors of S\\S;_1 are still in their locations of Cy (i.e.,
each sensor of S\:S;_; is at its rightmost A-reachable location).

(3) An index h;—; of a barrier point is maintained such that in the configuration
Ci_1, the barrier point by, , is not covered by any sensor of S;_; while by is
covered by a sensor in S;_1 for each k < h;_; (note that it is possible that by
for some k > h;_; is also covered by a sensor in S;_1, which cannot happen in
the problem settings of the previous work;>1618 this case makes our problem
more challenging to solve).

(4) The locations of the sensors sq,, Sg,,...,84,_, in C;_1 are sorted from left to
right on /.

(5) The barrier point by, , is strictly to the right of the covering disk D(sg, ,) of
Sgi_1 if Si71 75 (Z)
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Initially when 7 = 1, we have Sy = @ and we set hy = 1; thus, all algorithm
invariants trivially hold. The i-th iteration of the algorithm finds a sensor from
S\Si_1, denoted by s,,, and move it to a new location z), € [z} 2} ] to obtain a
new configuration C; with S; = S;_1 U {sy, }. The details of the i-th iteration of the
algorithm are described below.

Define S;;1 to be the set of sensors that cover the barrier point by, , in the
configuration C;_;. According to our algorithm invariants, by, , is not covered by
any sensor in S;_;. Hence, S;; C S\S;—1.

If Siy # 0, we pick an arbitrary sensor from S;; as sg, and set 2, = x7_ (i.e., the
sensor does not move from its position in C;_1); thus C; = C;_1. We set h; = k+1,
where k is the largest index in [h;—1,n] such that barrier points b; for all j € [h;_1, k]
are covered by sensors of S;. If h; = m + 1, all barrier points b; for all j € [hi_1,n]

are covered, and thus we can stop the algorithm and report A > \*.

Lemma 4. All algorithm invariants hold.

Proof. We go through every invariant. Invariant (1) trivially holds. Invariant (2)
holds because C; = C;_;. Invariant (3) follows immediately from how our algorithm
computes h;. Invariant (4) holds because sq, covers by, , in C;. For Invariant (5),
it suffices to show that sg,_, is to the left of the sy, in C;. Indeed, according to
Invariant (6) in Cj_1, by, , is strictly to the right of the covering disk D(sq, ,).
Since by, _, is covered by s4, in C;, we obtain that sg,_, must be to the left of 5,4, in
C;. For Invariant (6), since the sensor s,4, covers by, , but does not cover by, and
hi—_1 < h;, according to the definition of the indices of the barrier points, we can
obtain that by, must be strictly to the right of the covering disk D(sg,) of s, (e.g.,
see Fig. 1). This proves Invariant (6). O

If S;y = 0, we define S;s = {s; \xfc < e(bp, ,) < x}, sk € S\Si—1}, i.e., the set
of sensors sj that do not cover by, , in C;_; but can be moved leftwards to cover
b, _,; e.g., see Fig. 2. Note that each sensor of ;3 is currently at its rightmost
A-reachable location in C;_j.

If Sia # (), then among all sensors of S;2, we choose the leftmost one (with
respect to their positions in C;_1) as sy, and add it to S;—; to obtain S;. We move

Fig. 1. Illustrating the Invariant (6) in the proof of Lemma 4: the circle is the boundary of D(sg,).
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Fig. 2. Illustrating the definition of S;2: The solid circle shows the position of s in C;_1, i.e., at
z},, and the dashed circle shows its leftmost A-reachable location, i.e., zfg

sg, leftwards until by, , is covered (i.e., it is on the left half-circle of 0D,,); this
obtains the configuration C;. Next, we set h; = k + 1, where k is the largest index
in [h;_1,n] such that barrier points b; for all j € [h;_1,k] are covered by sensors
of S;. If h; = n + 1, then all barrier points are covered and thus we can stop the
algorithm and report A > A*. Following the similar analysis as Lemma 4, we can
show that all algorithm invariants hold.

If S;> = ), then we terminate the algorithm and report that A < A\*.

In summary, if S;1 = S;2 = 0, then the algorithm will terminate and report
A < A*. Otherwise, a sensor s,, is found from either S;; (if it is not empty) or Sjo
and added to S;_1 to obtain S;. In either case, h; = k + 1, where k is the largest
index in [h;—1,n] such that barrier points b; for all j € [h;_1, k] are covered by
sensors of S;. If h; = m + 1, then the algorithm will terminate and report A > \*;
otherwise, the algorithm will proceed to the next iteration ¢ + 1 and all algorithm
invariants hold. As there are m barrier points and a new barrier point is covered in
each iteration, the algorithm has at most m iterations. On the other hand, as there
are n sensors and each iteration finds a new sensor to form .S;, the algorithm has
at most n iterations. Hence, the algorithm will stop in min{n, m} iterations.

4.1.2. The algorithm correctness

We now prove the correctness of the algorithm. The high-level idea of the proof is
k,316:18 although the details are quite different because
in our problem barrier points are in the plane while the barriers in the previous

similar to the previous wor

work®16:18 are all on /.

Suppose the algorithm reports A > A\*, say, in the i-th iteration of the algorithm.
Then, according to our algorithm, the configuration C; is a feasible solution. Thus,
it suffices to show that if the algorithm reports A < A*, then no feasible solution
exists.

For any index ¢ € [0,m] for the barrier points, we say that [0,i] is a prefix
interval of [0, m]. For convenience, depending on the context, we may also use [0, ]
to represent the subset of barrier points b; for all j € [0,4] (the subset is @ if i = 0).
For example, we say that the interval [0, ] is covered by a set of sensors if all barrier
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points b;, 0 < j < %, are covered by the set of sensors. We say that another prefix
interval [0,¢'] is larger than [0,1] if i/ > i.

Lemma 5. Consider the configuration C; produced in the i-th iteration of our algo-
rithm with i > 1. Suppose S} is the set of sensors of S whose covering disks are
strictly to the left of b, in C;. Then, [0, h; — 1] is the largest possible prefix interval
that can be covered by sensors of S} with respect to A (i.e., the moving cost of each
sensor of S. is at most ).

Before proving Lemma 5, we use it to prove the correctness of our algorithm,
i.e., we prove that if the algorithm reports A < A*, then no feasible solution exists.

Suppose our algorithm reports A < A* in the i-th iteration. Then, according to
our algorithm, by, , is not covered by any sensor in C;_; and S;; = S;z = 0. By
Lemma 5 (replacing the index ¢ in the lemma by ¢ — 1), [0, h;—1 — 1] is the largest
prefix interval that can be covered by sensors of S,_;. According to our algorithm
invariants, the covering disk of each sensor of S;_1 is strictly to the left of by, , in
C;—1. Hence, S;_1 is a subset of S;_,. Since both S;; and S;2 are empty in C;_1, no
sensor in S\S/_; can cover the barrier point by, ,. Therefore, it is not possible to
cover all barrier points in the interval [0, h;_1] using the sensors of S (with respect
to the maximum moving cost A). This implies that no feasible solution exists.

4.1.3. The proof of Lemma 5

We now prove Lemma 5. We follow the notation in Lemma 5. Note that according
to our algorithm invariants, S; = {sg,, 84, ..., Sg, } is a subset of S].
We first prove the following lemma and then use the lemma to prove Lemma 5.

Lemma 6. If C is a configuration in which a prefix interval [0,t] is covered by the
sensors of S., then there also exists a configuration C* in which [0,t] is covered and
the location of each sensor sy, of S; in C* is the same as its location in C;.

Proof. We prove the lemma by induction. We assume that the lemma statement
holds for k — 1, 1 < k < i, i.e., there exists a configuration C’ in which the interval
[0,] is covered and the location of each sensor s, of S; with 1 < j <k—1in C* is
the same as its location in Cj (i.e., z’gj ). The assumption trivially holds when k = 1.
Below we show that the lemma statement holds for general k.

Our goal is to find a configuration C” in which barrier points of the interval
[0,¢] are also covered and the location of each sensor g, of S; with 1 < j <kin
C" is x;j. We refer to such a configuration that satisfies the above condition as a
satisfying configuration.

According to our algorithm, in the configuration Cy, s, is at x;j forall1 <j <
k, and the interval [0, by — 1] is covered by sensors of Si. Hence, if ¢t < hy — 1, then
we can simply let C” = C}, which is a satisfying configuration. In the following,
we assume that ¢ > hy. Let z¢v(sg,) be the location of sy, in the configuration C.
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If 2o (8g,) = T, then let C = C', which is a satisfying configuration. In what
follows, we assume that xc(sy,) # 5, . According to our algorithm, sy, is either
from Syq or from Sio. We discuss the two cases below.
The case sy, € Sg1. If 54, is from Sy, then according to our algorithm, x;k = xgk.
As xo/(sg,) # wy,, it must be that xcr(sy,) < zj,. Let C” be the configuration
obtained from C’” by moving s, from zc(sg, ) rightwards to :cf%. In the following,
we show that C” is a satisfying configuration.

Indeed, in light of the induction hypothesis, the location of each sensor s, of S;
with 1 < j <kin C”is 2y, (i.e., the same as its location in C;). Thus, it suffices to
show that the interval [0, ¢] is covered by sensors of S} in C". Consider any barrier

point b, with I € [1,¢].

— If I < hy — 1, then according to our algorithm, b; is covered by a sensor s in S
in C;. As S, € S; C S, s is in S]. Further, since s € S, its location position
in C” is the same as in C;. Therefore, b; is covered by s in C” and thus b; is
covered by sensors of S} in C” since s € S].

— If I > hg, then depending on whether b; is covered by a sensor of Si in C;, there
are two subcases. If b; is covered by a sensor of S; in C;, then following the
same analysis as above, b; is covered by sensors of S} in C”. Otherwise, since the
locations of the sensors of S;_; in C” are the same as in C’, b; must be covered
in C’ by either s4, or a sensor in S;\Sk.

We claim that b; cannot be covered by s, in C’. Indeed, according to our
algorithm invariants, the covering disk of s, is strictly to the left of by, in Cj.

Since zcv(sg,) < xy, , i.e., the location of s, in C” is strictly to the left of its

location in CY, the covering disk D(s,, ) is also strictly to the left of by, in C.

Since [ > hy, by our definition of the indices of the barrier points, b; cannot be

in D(sg,) in C".

The above claim implies that b; is covered in C’ by a sensor s of S}\S. Since

the location of s in C” is the same as its location in C”, s still covers b; in C”.

Therefore, b; is covered by sensors of S} in C”.

This proves that C” is a satisfying configuration.

The case sy, € Sga. If 54, is from Sjo, then according to our algorithm, Sy = 0
and sg, is the leftmost sensor of Sy in the configuration Cj_; and a:;k is the
rightmost location for s, to cover by, , (i.e., by, , is on the left half-circle of
0D(sg,)). I xcr(sg,) < xy, , then we can use the same argument as the above case to
obtain a satisfying configuration. In the following, we assume that zc(sg,) > x;k.
This also implies that sg, does not cover by, , in C'. Since t > hy, > hy_1, there
must be a sensor s, that covers the barrier point by, _, in C’. Also, because Si1 = ()
and the positions of the sensors Sg; forall1 < j < k—11in C’ are the same as in
Cr—1, 5, must be from Si2. As 54, is the leftmost sensor of Sk in Cj_1, it must
hold that x;k <al.
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Fig. 3. Illustrating the sensors sq and sg, in the two configurations C’ and C”.

Let C” be the configuration obtained from C’ by moving s, to zc/(sg,) and
.ng7
position in Cf, (e.g., see Fig. 3). Below we argue that C” is a satisfying configuration.

moving sq, to x , i.e., s, moves to the position of s4, in C’ and sg, moves to its
For this, we will show the following: (1) The interval [0, ¢] is still covered by sensors
of S/ in C”; (2) the moving cost of s, is no more than A (note that since the position
of s4, in C" is the same as its position in C, we know that its moving cost in C”
is no more than A; other sensors do not change locations from C’ to C").

We first prove the above (1). Since the locations of the senors of s, for all
J € [1,k] in C" are the same as their locations in C}, these sensors together cover
all barrier points of the interval [0, hx, — 1]. Consider any other barrier point b; with
l € [hg,t]. To prove (1), it suffices to show that b; is covered by a sensor of S} in
C". Recall that b; is covered by a sensor of S, in C’; let s be such a sensor.

(1) If s is s4, for any j < k — 1, since s has the same location in C’ and C”, s also
covers b; in C”.

(2) If s is s4, then we claim that b; must be covered by sy, in C”. Indeed, recall
that by, , is on the left half-circle of the covering disk of s4, when s, is at
ry, in C” (and also in C%). Since by, _, is covered by s, in C’, we obtain that

rer(sa) < xy, , where zcr(s,) is the location of s, in C' (e.g., see Fig. 4). Since

Sq also covers by and [ > hy, > hi_1, if we move a disk D of radius r centered at

xcr(8q) rightwards until a:’gk, D starts at the covering disk of s, in C” and stops

at the covering disk of s4, in C”. Hence, in the beginning of the movement of

D, it covers b, and at the end of the movement, by, _, is on the left half-circle of

Fig. 4. Tllustrating the relative positions of sq, sg;, bp,_,, and b;: the locations of s, and sg,

are ¢/ (sq) and :c;k, respectively.



February 23, 2024 12:23 110-1JCGA 2450001

14 P. Jain & H. Wang

dD. Since | > hj_1, during the above movement of D, its left half-circle cannot
encounter the barrier point b;. This implies that b; is always inside D during
the movement of D. This further implies that b; is covered by s4, in C”.

(3) If s is s4,, then since s, moves to the position of sy, in C”, s, also covers b,
in C”.

(4) If s is not a sensor in the above three cases, then s does not change its location
from C’ to C". Hence, s still covers b; in C"”.

In summary, the barrier point b; is still covered by sensors of S} in C”.
We proceed to prove the above (2), i.e., the moving cost of s, is no more than

Ain C”. Let xcr(sq) denote the location of s, in C”. It suffices to show that

zor(sa) € [2g, 7).

According to our definition of C”, xcn(sa) = 7, . Recall that x}, < 7. Since
x;k <z}, , we obtain that zov(s,) = quk_ <y <ap.

On the other hand, recall that zj, < zc/(sg,) = Tcr(sa). Also, zor(sa) > zl,
where x¢(s,) is the location of s, in C’. Since by, _, is on the left half-circle of
dD(sg,,) when s, is at xy, and by, _, is covered by s, in C" when s, is at z¢/(s4),
we obtain that zc(sq) < . Therefore, we can derive z!, < zci(sq) < ), <
zcr(sg,) = e (Sa)-

This proves that xcr(s,) € [2),27]. Hence, C" is a satisfying configuration. O

Proving Lemma 5. In what follows, we use Lemma 6 to prove Lemma 5.

Let [0,t] be the largest prefix interval of sensors that can be covered by sensors
of S/ (with respect to the maximum moving cost A). By Lemma 6, there exists a
configuration C* in which [0, ] is still covered and the location of each sensor s,
of S; in C* is the same as its location in Cj, i.e., gc;j.

Consider any sensor si € S;\S;. According to our algorithm, sy is at z},. By the
definition of S}, the covering disk D(sy) is strictly to the left of by, in C;. Hence, s,
cannot be used to cover by, in any configuration (with respect to A), in particular, in
C*. On the other hand, according to our algorithm, all barrier points of the interval
[0, h; — 1] are covered by sensors of S; in C;. As the sensors of S; have the same
locations in C* as in Cj, all barrier points of [0, h; — 1] are covered by sensors of S;
in C*. Combining the above, we can conclude that [0, h; — 1] is the largest prefix
interval that can be covered by sensors of S, in C*, i.e., t = h; — 1. This proves
Lemma 5.

4.1.4. The algorithm implementation

We now provide an efficient way to implement the algorithm in O((n + m)log(n +
m)) time. For differentiation, we use “algorithm implementation” to refer to the
algorithm we will discuss below and use “algorithm description” to refer to the
algorithm we described in Sec. 4.1.1.

We sweep a point p on ¢ from left to right. The event point set is F = {¢(b) | b €
B}yu{al, ar|s; € S}. To sort E, we sort {c(b) |b € B} in the preprocessing. Then,
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we only need to sort #7 and ! for all sensors s; € S in O(nlogn) time, after which,
we merge this sorted list with that of {c(b)|b € B}. As such, we can obtain the
sorted list of the event set E in O(m + nlogn) time. Using the sorted list F as a
guide, we sweep p on ¢ from left to right. When p encounters a point xi for some
sensor sk, we insert s to a balanced binary search tree T in which the sensors sy
are ordered by their values z}. As will be shown later, the tree T" is used to maintain
the set S;2. When p encounters a point x},, we remove s from 7" and store s;, at a
variable s* (if s* already stores a sensor, we simply update s* to si). Our algorithm
implementation maintains the following invariant: the sensor sj stored in s* and all
sensors of T' are at their positions in Cj.

Now consider the case where p encounters c(b;) for some barrier point b;. We
assume that j is equal to h;—; for some ¢ as defined in the algorithm description.
The assumption is true initially when j7 = 1 and ¢ = 1. This means that we are at the
beginning of the i-th iteration in the algorithm description. We first need to check
whether S;; = 0. To this end, we have the following Lemma 7. But before giving
Lemma 7, we prove the following observation, which will be used in the proofs of
Lemma 7 and other lemmas.

Observation 2. Consider a barrier point b and two sensors s and s’. Suppose the
followings hold (e.g., see Fig. 5): (1) s’ is to the right of s; (2) s covers b; (3) b is
to the right of the left half-circle of 0D(s"). Then, s’ also covers b.

Proof. Assume to the contrary that s’ does not cover b. Then, since b is to the
right of the left half-circle of 9D(s"), b must be strictly to the right of the right
half-circle of 9D(s’). Because s’ is to the right of s, b must also be strictly to the
right of the right half-circle of 9D(s). But this means that s does not cover b, a
contradiction. D

Lemma 7. If the sensor s, stored in s* covers b; when sy is at xy, then s, € Si;
otherwise (including the case where s* does not store any sensor) S; = 0.

Proof. Suppose the sensor sj stored in s* covers b; when s;, is at . To prove the
lemma, it suffices to show that if S;; # (), then s must be S;;. In the following, we

Fig. 5. Illustrating Observation 2.
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assume that S;; # (). Our goal is to prove that sy is in S;;. Since s, is stored in s*,
according to our algorithm implementation invariant, s is at zj. Hence, to prove
sk € Si1, by the definition of S;q, it is sufficient to show that s, covers b; (when s
is at x},).

Let s, be a sensor of S;;. If s, is sg, then it is vacuously true that sx € S;1.
In what follows, we assume that s, is not sg. Because s, is in .S;1, according to
our algorithm description, s, is at z], and has never been moved during the algo-
rithm, and further, s, covers b;. Since the sweeping point p is at ¢(b;), which is
the rightmost position on ¢ for the center of a circle of radius r to cover b;, p must
have passed z},. Therefore, according to our algorithm implementation, s, had been
stored in s* before and later s* got updated to sg. This implies that s, is to the right
of s, (and both of them are at their rightmost A-reachable locations). Because p is
now at c¢(b;), p has already passed x},. Therefore, b; is to the right of left half-circle
of OD(sy). Since b; is covered by s, and sy is to the right of s,, by Observation 2,
b; must be covered by sy. O

By Lemma 7, if s* does not store any sensor or if the sensor stored at s* does
not cover bj;, then S;; = (. Otherwise, the sensor stored at s*, denoted by sy, covers
b; and is in S;;. Depending on whether S;; = (b, there are two cases to proceed.

The case S;; # 0. We first consider the case S;; # 0. In this case, according to
our algorithm description, we can simply choose s; as s, and add it to S;—; to
obtain S;. Next, we need to determine h;, which is equal to [+ 1 with [ as the largest
index such that all barrier points b;,b;41,...,b can be covered by sensors of ;.
To find [, we initialize [ = j and then keep sweeping p rightwards. If p encounters
a point xfe or xj, we process the event in the same way as before. If p encounters
a point ¢(b;/), we know that j° = [+ 1. We need to determine whether b;; can be
covered by sensors of S;. For this, we have the following lemma.

Lemma 8. b;: can be covered by sensors of S; if and only if b can be covered
by sg, .

Proof. If b; is covered by sy, then it is vacuously true that b; is covered by
sensors of S; because sg, is in S;.

Now assume that b;s is covered by a sensor s, € S;. We need to prove that
54, also covers b;. This is obviously true if @ = i. We now assume a # ¢, implying
that @ < 4. According our algorithm implementation, b;s is to the right of the left
half-circle of 0D(sy) and sy, = s,. According to our algorithm invariants in the
algorithm description, sg, is to the left of s,4,. Since s, covers b;/, by Observation 2,
Sg, also covers bj. O
In light of Lemma 8, we check whether b;/ is covered by sg,. If yes, we increment
l by one and proceed as above (if [ = n, then all barrier points are covered and

we can stop the algorithm and report A > A*). Otherwise, we set h; = j'; in this
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case, we have finished the i-th iteration of the algorithm and we then proceed to
the (i + 1)-th iteration.

The case S;; = 0. We now consider the case S;; = ). In this case, we need to
know whether S;o = (), and if not, we need to find the leftmost sensor in ;5. For
this, we have the following lemma.

Lemma 9. The sensors stored in the current tree T are exactly the sensors of S;s.

Proof. We prove the lemma by analyzing our algorithm implementation. Recall
that the sweeping point p is now at ¢(b;) and j = h;_;.

— Let s, be a sensor of S;5. We show that s, is stored in T'. Indeed, since s, is
in S;2, by the definition of S;2, we have z! < c(b;) < zi. According to our

algorithm implementation, when p encounters x!, s, is inserted to 7' and will

as
not be removed from T until p counters z},. Since p is at ¢(b;) right now and
c(bj) < al, sq s still in T

— Let s, be a sensor stored in 1. We show that s, is in S;5. Indeed, since s, is in
T, according to our algorithm implementation, p has already passed z! but not
encountered z”, yet. Since p is at ¢(b;) right now, we obtain that z!, < c(b;) < a7,
Further, according to our algorithm implementation invariant, s, has not been

moved from its position in Cy, i.e., s, is still at z],. Therefore, s, is in S;o.

This proves the lemma. DO

In light of Lemma 9, we can use T to find the leftmost sensor of T in O(logn)
time; let sj, denote the sensor. We choose s as sy, and add it to S;_; to obtain S;.
Then, we move sy leftwards to c(b;), i.e., setting zj = c(b;), and remove s from
T. We also remove both events ar;éc and zj, from the list £/ because we do not need
to process these two events anymore.”? Next, we need to determine h;. This can be
done using the same method as in the above case where S;; # 0 (i.e., keep sweeping
p rightwards and making use of Lemma 8, which is still applicable here). After h; is
found, we finish the é-th iteration of the algorithm and begin the (i+1)-th iteration.

This finishes the description of the algorithm implementation. The proof of the
following lemma analyzes the running time of the algorithm.

Lemma 10. After O(mlogm) time preprocessing, given any A, whether A > \*
can be decided in O(m + nlogn) time.

Proof. First of all, it takes O(mlogm) time to sort {c(b) |b € B} in the prepro-
cessing. We next analyze the running time of our implementation for determining

bTo implement each remove operation in constant time, we can store the list E by a doubly-linked
list and associate each of the values xé and z;, for all sensors s, € S with a pointer pointing to
its location in E.



February 23, 2024 12:23 110-1JCGA 2450001

18 P. Jain & H. Wang

whether A > A*. In the beginning, computing the sorted list E takes O(m +nlogn)
time. There are O(n+m) operations on F, each of which takes O(1) time. The time
we spent on the binary search tree T is bounded by O(nlogn) as there are n sensors
and each sensor can be inserted and removed from T at most once (also, there are
at most n operations of “finding the leftmost sensor”). Therefore, the total time of
the algorithm is O(m + nlogn). O

4.2. The optimization problem

We now solve the optimization problem, i.e., computing A*, by using the algorithm
of Lemma 10 as a subroutine. We begin with the following lemma.

Lemma 11. \* is equal to (x; — /1% — ygj —xp;) /w; or (Ty; — /7% — yfj —x;)/w;

for a sensor s; and a barrier point b;.

Proof. The proof is almost the same as that of Lemma 2 except that we have to
consider the weight in the last step of the proof. We briefly discuss it below.
Consider an optimal solution OPT, where A\* is the maximum moving cost of
all sensors. Then, A* is equal to the moving cost of some sensor s;. Let x} be the z-
coordinate of s; in OPT. If ) < x;, then s; has been moved leftwards and there must

be a barrier point b; on the left-circle of 9D(s;). Thus, we have 2} = , /r? — yfj +p; -
Hence, \* = (x; —z})/w; = (x;— /1?2 — ygj —xp;)/w;. If 2} > x4, by similar analysis,

we can show that \* = (zy, — /12 =y — @) /wi. O

For each sensor s;, we will define two sorted arrays A;[1---m] and B;[1---m] of
size m each. Unlike the unweighted case where defining sorted arrays is relatively
straightforward, here the definitions are quite subtle. We define the array A; first,

which consists of the values (x; — , /72 — y{;’j —ay,)/w; for all j =1,...,m. For each

j € [1,m], let a; = (/r? —ygj + ;. We sort the values a; for all j = 1,...,m
in ascending order. For each j € [1,m], we let m(j) = k if a; ranks the j-th place
in the above sorted list. Hence, 7(-) is a permutation of the indices 1,2,...,m;
note that we can obtain 7(-) in O(mlogm) time. For each j € [1,m], we define
Ailj] = (w5 — ar¢j))/w;i. In light of the definition of m(-), A; is a sorted array.
Analogously, we can define a sorted array B; for the m values (z, — /7% — ygj -

x;)/w;, j =1,...,m. Note that the permutation 7(-) can be used to define A; for
alli=1,2,...,n. Hence, in O(n 4+ mlogm) time, we can implicitly form 2n sorted
arrays A; and B; for all : = 1,2,...,n, such that given any index j and any array
A; (resp., B;), we can obtain the array element A;[j] (resp., B;[j]) in O(1) time.
Also, Lemma 11 implies that A* is the smallest feasible value of all elements of these
arrays. By applying Lemma 3 and using our decision algorithm in Lemma 10, A*
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can be computed in O(mlogm + (m + nlogn)log(n +m)) time, which is bounded
by O(mlogm + nlog?n).c

Theorem 2. Given a set of m barrier points in the plane and a set of n weighted
sensors on a line ¢, the problem of moving sensors on £ to cover all barrier points
such that the mazimum moving cost of all sensors is minimized can be solved in
O(mlogm + nlog?n) time.

5. The Mobile Interval Coverage Problem

In this section, we consider the mobile interval coverage problem, where the barrier
points are on the z-axis ¢ while the sensors can be anywhere in the plane. The
problem is to move all sensors to £ to cover all barrier points so that the minimum
moving cost of all sensors is minimized.

We first sort all barrier points from left to right on ¢ in O(mlogm) time; let
B = {by,ba,...,b,} be the sorted list. Recall that for each sensor s; € S, (x;,y;)
is its coordinate. In the weighted case, each sensor s; has a weight w; > 0. In the
following, we only give an algorithm for the weighted case because we do not have
a faster algorithm for the unweighted case. Our goal is to compute the optimal
moving cost A*. Note that since we require that all sensors finally move to ¢, it must
hold that \* > max;<;<p w; - y;.

We again first consider the decision problem: Given any A, decide whether A >
A*. We present an algorithm of O(m + nlogn) time (not including the time for
sorting the barrier points) for the problem. Later we will solve the optimization
problem (i.e., computing A\*) using Lemma 3 and the decision algorithm.

5.1. The decision problem

Consider a value A. We assume that A > maxj<i<, w; - y; since otherwise it is
impossible to move all sensors to ¢ (and thus we immediately report A < A*). For
each sensor s;, define 27 = z; + /(A w;)? — y? and z! = z; — /(A /w;)? — y?. We
call 27 (resp., %) the rightmost (resp., leftmost) A-reachable location of s;.

At the outset, we move each sensor s; to ] on £. Let Cj denote the resulting
configuration. The rest of the algorithm is similar to the one in Sec. 4.1. In fact,
we can basically apply the same algorithm. But since the problem setting here is
simpler (because all barrier points are now on £), below we describe the algorithm
in a simpler way (the running time is also slightly faster if m is significantly larger
than n).

Consider the i-th iteration of the algorithm (initially ¢ = 1). Let C;_; denote
the configuration right before the iteration. Our algorithm maintains the following

¢To see this, first notice that mlogm+ (m+mnlogn)log(n+m) = O(mlogm+nlognlog(n+m)).
Further, if m > n2, then mlogm + nlognlog(n + m) = O(mlogm); otherwise, log(n + m) =
©(logn) and thus mlogm + nlognlog(n + m) = O(mlogm + nlog?n).



February 23, 2024 12:23 110-1JCGA 2450001

20 P. Jain & H. Wang
invariants:

(1) A subset S;_1 = {s4(1), Sg(2)s---»5g(i—1)} of sensors has been computed.

(2) In C;_1, each sensor sy of S;_; is at a location, denoted by , which may not
be equal to z},, while sensors of S\S;_; are still in their locations of Cj.

(3) An index h;_; of a barrier point is maintained such that in the configuration
Ci_1, the barrier point by, , is not covered by any sensor of S;_; while by is
covered by a sensor in S;_1 for each k < h;_1.

(4) The locations of the sensors sq,,Sg,,...,8g,_, in C;_1 are sorted from left to
right on /.

(5) The barrier point by,
Sgi_1 if Si—l 75 @

is strictly to the right of the covering disk D(s,, ,) of

i—1

Initially when ¢ = 1, we have Sy = () and set hg = 1; thus all algorithm invariants
hold. The i-th iteration of the algorithm finds a sensor sy, from S\S;_; and move it
to a new location x;i; we thus obtain a new configuration C; with S; = S;_1U{s, }.
We briefly discuss algorithm below.

Define S;; be the set of sensors that cover the barrier point by, , in C;_;. Again,
due to our algorithm invariants, S;; C S\S;_1.

If S;1 # 0, we choose an arbitrary sensor in S;; as sg, and set x;i = ajg Hence,
C; = C;_1. Next, we set h; = k+ 1, where k is the largest index such that all barrier
points of [h;_1,k] are covered by S; (it is easy to see that a barrier point b; with
[ > hi_; is covered by S; if and only if b; is covered by s, i.e., Lemma 8 is still
applicable). If k = m, then we stop the algorithm and report A > \*.

If S;1 = 0, we define S;2 as the set of sensors of S\S;_; that do not cover by,_, in
C;—1 but can be moved leftwards to cover by,_,. If S;a # (), we choose the leftmost
sensor of Sj2 as sy, and set x’gi = xp + r to obtain a new configuration C;, where
b =bp,_,. Next, we set h; in the same way as above. If S;3 = ), then we terminate
the algorithm and report A < A*.

The algorithm will terminate in at most min{m,n} iterations. The correctness
of the algorithm can be proved in a similar way as before.

To implement the algorithm, as in Sec. 4.1, we sort {c¢(b)|b € B} in the pre-
processing, which takes O(mlogm) time. Then, given any A, we can implement the
algorithm in O(m + nlogn) time using essentially the same implementation as in
Sec. 4.1. We briefly discuss it below.

We first compute 27 and ! for each sensor s; € S, and sort all these 2n values
in O(nlogn) time. Since we already have the sorted list of {c¢(b)|b € B} in the
preprocessing, by merging it with the sorted list of 2} and xﬁ for all sensors s; € 5,
we can obtain the sorted list of the event set £ = {c(b)|b € B}U{z!,27|s; € S} in
additional O(n +m) time. Using E, we run the same sweeping algorithm as before.
We still use a binary search tree T' to maintain the sensors of S;2 and use a variable
s* to store a sensor of S;1. When p encounters m% for a sensor sg, we insert s to 7.
When p encounters zj,, we remove sy from 1" and set s* to s;. When p encounters



February 23, 2024 12:23 110-1JCGA 2450001

Algorithms for Covering Barrier Points by Mobile Sensors with Line Constraint 21

a barrier point b;, we determine the sensor s,, using the variable s* and the tree T’
in the same way as before. As analyzed in the proof of Lemma 10, the total time of
the algorithm is O(m + nlogn).

Lemma 12. After O(mlogm) time preprocessing, given any A, whether A > \*
can be decided in O(m + nlogn) time.

5.2. The optimization problem

We now show how to compute \*. Using analysis similar to Lemmas 2 and 11, we
can show that A\* is equal to \/(xl —r—axp,)% +y?/w; or \/(a:bj —r— 1) + Y2 w;.
In the former case we have x; —r — xp; > 0 while in the latter case xp, —r —x; > 0
holds. As such, for each sensor s;, we implicitly form two sorted arrays of at most
m elements as follows. Recall that B = {by,ba,...,by} is in ascending order by
z-coordinate. Let j be smallest index such that x;; —r —x; > 0. Then, we define an

array A;[0---m — j] for the above latter case: A;[k] = y/(xy,,, —r — x4)? + 2 /w,
for each 0 < k < m — j. It is easy to see that A; is sorted. Similarly, we define
another sorted array for the above former case. As such, \* must be in one of the
2n sorted arrays thus defined by all sensors. Then, as in Sec. 4.2, applying Lemma 3
with our decision algorithm in Lemma 12 can compute A* in O(m logm + nlog? n)
time.

Theorem 3. Given a set of m barrier points on a line £ and a set of n weighted
sensors in the plane, the problem of moving sensors to £ to cover all barrier points
such that the mazximum moving cost of all sensors is minimized can be solved in
O(mlogm + nlog®n) time.

6. Concluding Remarks

In this paper, we present efficient algorithms for solving line-constrained mobile
sensor coverage problems. Future work includes investigating whether a logarithmic
factor can be further shaved for the weighted case of the mobile disk coverage
problem as well as for the mobile interval coverage problem. In particular, it would
be interesting to see whether a faster algorithm exists for the unweighted case of
the mobile interval coverage problem.

Note that for the 1D problem, i.e., all sensors and barrier points are given on
¢ and sensors are allowed to move on ¢ only, the algorithm can be simplified as
follows. For the unweighted case, we can use the same algorithm as in Sec. 3 but
the algorithm becomes simpler as y, = 0 for each barrier point b € B. The runtime
of the algorithm is O((n + m)log(n + m)). For the weighted case, we can use the
same algorithm as in Sec. 5 but the algorithm becomes simpler as y; = 0 for each
sensor s; € S. The runtime of the algorithm is O(mlogm + nlog?n).
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