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We study the problem of covering barrier points by mobile sensors. Each sensor is repre-
sented by a point in the plane with the same covering range r so that any point within

distance r from the sensor can be covered by the sensor. Given a set B of m points

(called “barrier points”) and a set S of n points (representing the “sensors”) in the
plane, the problem is to move the sensors so that each barrier point is covered by at

least one sensor and the maximum movement of all sensors is minimized. The problem
is NP-hard. In this paper, we consider two line-constrained variations of the problem

and present efficient algorithms that improve the previous work. In the first problem, all

sensors are given on a line ` and are required to move on ` only while the barrier points
can be anywhere in the plane. We propose an O((n+m) log(n+m)) time algorithm for

the problem. We also consider the weighted case where each sensor has a weight; we give

an O(m logm+n log2 n) time algorithm for this case. In the second problem, all barrier
points are on ` while all sensors are in the plane but are required to move onto ` to cover

all barrier points. We also solve the weighted case in O(m logm+ n log2 n) time.

Keywords: Barrier coverage; disk coverage; geometric coverage; barrier points; mobile
sensors; line-constrained; algorithms; computational geometry.

1. Introduction

Let B be a set of m points and D be a set of n disks of the same radius r in the

plane. We consider the problem of moving the disks of D to cover all points of B

so that the maximum moving distance of all disks is minimized. The problem is

∗A preliminary version of this paper appeared in Proceedings of the 33rd Canadian Conference

on Computational Geometry (CCCG 2021). This research was supported in part by NSF under

Grants CCF-2005323 and CCF-2300356.
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NP-hard.a In this paper, we consider two line-constrained variations of the problem

and present efficient algorithms for them.

Due to its potential applications in barrier coverage of mobile sensors in wireless

sensor networks,14,15,17 we consider the problem from the barrier coverage point of

view. We call the points of B the barrier points. Let S be the set of centers of all

disks of D, and points of S are called sensors. All sensors have the same covering

range (or sensing range) r so that any point within distance r from a sensor s can

be covered by s (i.e., s covers all points in the disk centered at s with radius r).

Hence, our problem becomes the following: move sensors of S to cover all barrier

points of B such that the maximum moving distance of all sensors is minimized.

We study a line-constrained variation of the problem where all sensors are given

on a line ` and are required to move on ` only while the barrier points can be

anywhere in the plane. We also consider its weighted case where each sensor si has

a weight wi > 0 and the moving cost of si is defined to be its moving distance

times wi.

To the best of our knowledge, we are not aware of any previous work on this

particular problem. If all barrier points are all on `, which becomes a 1D problem

(our original problem can be considered as a 1.5D problem), the algorithm of Li and

Wang18 can solve the unweighted case in O(m logm + n logm log n) time. In this

paper, we present an O((n + m) log(n + m)) time for the unweighted case and an

O((n+m) log2(n+m)) time algorithm for the weighted case. Hence, our algorithm

for the unweighted case, albeit solving the 1.5D problem, improves the algorithm

of Ref. 18 by roughly a logarithmic factor.

We also consider another problem variation in which all barrier points are on

a line ` while sensors can be anywhere in the plane. We want to move all sensors

onto ` to cover all barrier points so that the maximum moving cost of all sensors

is minimized. Previously, Huang et al.14 studied the unweighted case and gave an

O(n(m + n log n) log(n + m)) time algorithm. Our techniques solve the weighted

case in O(m logm + n log2 n) time. This improves the algorithm of Huang et al.14

by almost a linear factor. Note that we do not have a faster algorithm for the

unweighted case. As all barrier points are on ` and all sensors will finally move to `,

once a sensor s moves to `, the portion of the covering disk of s that is relevant is an

interval of `. For this reason, we refer to this problem as the mobile interval coverage

problem; for differentiation, we refer to the first problem above as the mobile disk

coverage problem. Note that if sensors have different ranges, even the 1D problem

(i.e., all sensors and barrier points are on `) is NP-hard.14

1.1. Related work

Many variations of mobile sensor barrier coverage problem have been studied in the

literature.

aThis can be proved by an easy reduction from the minimum disk coverage problem;13 e.g., see
Ref. 19 for a reduction for a similar problem.
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Czyzowicz et al.6 studied the problem of covering a barrier segment on a line

` by moving a set of n sensors on ` (the sensors are initially given on `); they

gave an O(n2) time algorithm. Chen et al.3 presented a more efficient O(n log n)

time algorithm. Chen et al.3 also studied the case where sensors may have different

covering ranges and proposed an O(n2 log n) time algorithm. For the weighted case

where the sensors have weights as defined in our problems (but sensors have the

same range), Lee et al.16 derived an algorithm of O(n2 log n log log n) time.

Li and Shen17 studied the same problem as our interval coverage problem

except that their barrier is not a set of points but a single line segment on `.

They proposed an O(n3 log n) time algorithm. The algorithm was later improved

to O(n2 log n log log n) time by Li and Wang.18 Li and Wang18 also studied a more

general problem setting where the barrier is a set of m disjoint line segments on

` (and the sensors are still in the plane and are required to move to `); they gave

an O(n2 log n log log n+ nm logm) time algorithm. Further, for the 1D case where

all sensors are initially on `, the algorithm of Li and Wang18 solves the problem in

O(m logm + n log n logm) time. These results are for the case where sensors have

the same range; if sensors have different ranges, even the 1D problem is NP-hard

by a simple reduction from the Partition Problem as in Ref. 6.

The min-sum version of the line-constrained barrier coverage was also studied

in the literature where sensors are given on ` and a barrier segment is also on `, and

the goal is to move sensors to cover the barrier segment such that the total sum of

the moving distances of all sensors is minimized. If sensors have different ranges,

the problem is NP-hard.7 Otherwise, Czyzowicz et al.7 solved the problem in O(n2)

time. Later Andrews and Wang1 proposed a faster algorithm of O(n log n) time.

A circular barrier coverage problem was also considered, where the barrier is

a circle and sensors are initially located inside the circle and the goal is to move

all sensors to the circle to form a regular n-gon (to form a coverage) so that the

maximum moving distance of all sensors is minimized. Bhattacharya2 first gave an

algorithm of O(n3.5 log n) time. An improved algorithm of O(n log3 n) time was

later derived by Chen et al.4

There are also other variations of the barrier coverage problem, e.g., see Refs. 8,

9, 20 and 21.

1.2. Our approach

We first discuss the mobile disk coverage problem. Let λ∗ denote the optimal moving

cost, i.e., the maximum moving cost of all sensors in an optimal solution. In both

the unweighted and weighted cases, we first consider the decision problem: Given

any value λ, determine whether λ ≥ λ∗.
For the unweighted case, a critical property is an order-preserving property:

There exists an optimal solution in which the order of the sensors are consistent

with their order in the input. Due to the property, we can solve the decision problem

in linear time by a simple greedy algorithm (after all barrier points and all sensors
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are sorted). Next, we use the decision algorithm to compute λ∗. To this end, we

define 2m arrays of size n each and we show that λ∗ must be an element of one of

the arrays. To search λ∗ in these arrays in an efficient way, we form these arrays

implicitly. A helpful observation is that each of these arrays is sorted. Consequently,

by using our decision algorithm, we apply a sorted matrix searching technique10–12

(or a simpler implementation called binary search on sorted arrays in Ref. 5) to find

λ∗ in these arrays in O((n+m) log(n+m)) time.

For the weighted case, unfortunately the order-preserving property does not

hold anymore. In fact, the major difficulty is to find the correct order for sensors

in an optimal solution. This is also the case for solving the decision problem. So

we have to use a different approach to solve the decision problem. The runtime

of the algorithm is O((n + m) log(n + m)). To compute the optimal cost λ∗, we

implicitly form 2n arrays of size m each such that λ∗ is one of the array elements. To

apply the sorted matrix searching technique, we manage to find a way to order the

array elements implicitly so that the arrays are still sorted. Then, with the decision

algorithm, the value λ∗ can be found in O(m logm+ n log2 n) time.

For the mobile interval coverage problem, we solve the weighted cases directly

(without having a faster algorithm for the unweighted case). As above, we also

solve the decision problem first, and then form sorted arrays and apply the sorted

array searching technique. To solve the decision algorithm, we use an algorithm

similar to the weighted case of the above mobile disk coverage problem, but with a

simpler and slightly faster implementation. The runtime of our decision algorithm

is O(m + n log n) after O((n + m) log(n + m)) time preprocessing for sorting all

sensors and barrier points. The time of the overall algorithm (for computing the

optimal value λ∗) is O(m logm+ n log2 n).

Outline. The rest of the paper is organized as follows. We define notation in Sec. 2.

In Sec. 3, we present our algorithm for the unweighted case of the mobile disk

coverage problem, while the weighted case is discussed in Sec. 4. The algorithm for

the mobile interval coverage is described in Sec. 5. Section 6 concludes with some

remarks on the 1D problem.

2. Preliminaries

For each problem we consider, we use λ∗ to denote the optimal moving cost. Given

any λ, the decision problem is to decide whether λ ≥ λ∗, i.e., whether it is possible

to move sensors to cover all barrier points so that the moving cost of each sensor

is at most λ. If λ ≥ λ∗, we say that λ is a feasible value. We use feasibility test to

refer to the procedure for determining whether λ ≥ λ∗. For differentiation, we refer

to our original problem for computing λ∗ as the optimization problem.

Without loss of generality, we assume that the line ` is the x-axis. Let S =

{s1, s2, . . . , sn} be the set of sensors (unless otherwise stated, the order is arbitrary).
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For each si, we use (xi, yi) to denote its coordinate in the input. For differentiation,

for each barrier point b ∈ B, we use (xb, yb) to denote its coordinate.

In each problem, we use a configuration to refer to a specification of where each

sensor si is located. For example, in the input configuration, each sensor si is at

(xi, yi).

For each sensor s, we use D(s) to refer to its covering disk, i.e., the disk of radius

r centered at s. For any disk D, we use ∂D to denote its boundary, which is a circle.

The left half-circle of ∂D refers to the portion of ∂D to the left of the vertical line

through the center of D; the right half-circle is defined similarly.

For the mobile disk coverage problem, for simplicity of discussion, we assume

that all barrier points are above or on ` since if a barrier point is below `, then

we can use its symmetric point about ` to replace it and that does not affect the

solution of the problem.

For any point p on `, for convenience, sometimes we also use p to refer to its

x-coordinate. For example, for two points p and q on `, p ≤ q means that p is to the

left of q (including the case where p and q are coincident) and p < q means that p

is strictly to the left of q.

For each problem, for ease of exposition, we assume that it is always possible to

cover all barrier points by moving sensors (i.e., the covering range r is big enough).

Our algorithm can actually determine whether the assumption is true or not. This

implies that in the mobile disk coverage problem, for each barrier point b, yb ≤ r

must hold since otherwise no sensor on ` can cover b. Also, for each problem we

assume that λ∗ > 0, i.e., one has to move at least one sensor in order to form a

coverage for all barrier points. Note that whether λ∗ = 0 can be easily determined

in O(n + m) log(n + m) time for each problem (which does not affect the time

complexity of the overall algorithm asymptotically).

For a barrier point b and the covering disk D(s) of a sensor s, we say that D(s)

is strictly to the left (resp., right) of b if D(s) does not cover b and the x-coordinate

of s is smaller (resp., larger) than that of b.

3. The Mobile Disk Coverage Problem: The Unweighted Case

In this section, we consider the unweighted case of the mobile disk coverage problem.

In this problem, all sensors of S are on the line ` while each barrier of B can be

anywhere in the plane.

We first present an algorithm to solve the decision algorithm. Consider a value

λ. If λ ≥ λ∗, we use a feasible solution to refer to a configuration in which all

barrier points are covered and the moving cost of each sensor is no more than λ. As

all sensors have the same range, it is not difficult to see that the order-preserving

property in the following observation holds.

Observation 1 (The order-preserving property). If λ ≥ λ∗, then there exists

a feasible solution in which the order of sensors is the same as in the input.
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Due to the order-preserving property, we can solve the decision problem by a

simple greedy algorithm in linear time (after sensors and barrier points are sorted).

Lemma 1. After O(n log n + m logm) time preprocessing, given any λ, whether

λ ≥ λ∗ can be decided in O(n+m) time.

Proof. In the preprocessing, we sort all sensors of S from left to right on `; let

S = {s1, s2, . . . , sn} be the sorted list. We also sort all barrier points of B by their

x-coordinates from left to right; let B = {b1, b2, . . . , bm} be the sorted list. Given

any λ, in what follows we describe our O(n+m) time algorithm for deciding whether

λ ≥ λ∗, which is based on the greedy strategy.

We first move each sensor rightwards on ` by distance λ and we use C0 to refer

to the configuration, i.e., in C0, the location of each si is xi + λ. Then, during the

algorithm, each sensor will not be allowed to move rightwards anymore but can

move leftwards by 2λ.

Starting from i = 1 and j = 1, we process sensors si and barrier points bj
incrementally. We first check whether bj is covered by si. If yes, we increase j by

one (if j = m before the increase, then all barrier points are covered and we have

found a feasible solution; in this case, we can stop the algorithm and report that λ

is a feasible value, i.e., λ ≥ λ∗). Otherwise, either bj is to the right of the covering

disk D(si) of si or bj is to the left of D(si). In the former case, we increase i by one

and proceed as above (if i = n before the increase, then we can stop the algorithm

and report that λ is not a feasible value, i.e., λ < λ∗). In the latter case, we check

whether it is possible to move si leftwards by distance at most 2λ to cover bj . If not,

then we can stop the algorithm and report that λ is not a feasible value. Otherwise,

we move si leftwards until bj is covered (i.e., bj is on the left half-circle of ∂D(si));

we then increase j by one and proceed as above (if j = m before the increase, then

all barrier points are covered and thus we can stop the algorithm and report that

λ is a feasible value). This finishes the description of the algorithm.

The correctness of the algorithm is based on the order-preserving property. It is

not difficult to see that the running time of the algorithm is O(n+m).

We next tackle the optimization problem for computing λ∗, by making use of

our decision algorithm in Lemma 1 as a subroutine. For this, we have the following

lemma.

Lemma 2. λ∗ is equal to xi −
√
r2 − y2b − xb or xb −

√
r2 − y2b − xi for a sensor

si and a barrier point b.

Proof. Consider an optimal solution OPT , where λ∗ is the maximum moving dis-

tance of all sensors. Then, λ∗ is equal to the moving distance of a sensor si. For

ease of discussion, we assume that the moving distances of all other sensors are

strictly smaller than λ∗ (otherwise, we could apply the following analysis to all

these sensors). Let x′i be the position of si in OPT . If x′i < xi, then si has been
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moved leftwards. In this case, there must be a barrier point b on the left half-circle

of ∂D(si) since otherwise we could move D(si) rightwards slightly so that D(si)

still covers the same set of barrier points as before but the moving distance of si
is strictly smaller than λ∗, a contradiction to the definition of λ∗. Thus, we have

x′i =
√
r2 − y2b + xb. Hence, λ∗ = xi − x′i = xi −

√
r2 − y2b − xb. If x′i > xi, then by

similar analysis as above, we can show that λ∗ = xb −
√
r2 − y2b − xi.

We sort all sensors of S from left to right on `; let S = {s1, s2, . . . , sn} be

the sorted list. For each barrier point b ∈ B, we define two arrays Ab[1 · · ·n] and

A′b[1 · · ·n] of size n each as follows: For each i ∈ [1, n], define Ab[i] = xi−
√
r2 − y2b−

xb and A′b[i] = xb −
√
r2 − y2b − xi. According to Lemma 2, λ∗ is an element in

one of the 2m arrays Ab and A′b for all b ∈ B. We next find λ∗ in these arrays.

Computing these arrays explicitly will take Ω(nm) time. Below, we present a near

linear time algorithm without computing these arrays explicitly. Indeed, given an

index i ∈ [1, n] and a barrier point b ∈ B, we can obtain the values Ab[i] and A′b[i]

in constant time.

An easy observation is that elements of the array Ab are sorted in ascending

order and elements of A′b are sorted in descending order. Therefore, we are searching

λ∗ in 2m sorted arrays of size n each. Note that λ∗ is actually the smallest feasible

value in these 2m arrays. We can use the sorted matrix searching techniques10–12

(or a simpler implementation, called binary search on sorted arrays, in Ref. 5) to

search sorted arrays with the following lemma.

Lemma 3 (Refs. 5 and 10–12). Suppose we have a set of M sorted arrays of size

at most N each such that each array element can be evaluated in O(1) time (i.e.,

given the index of an array, the element of the array can be obtained in O(1) time).

Then, the smallest feasible value in these arrays can be computed by O(log(N+M))

feasibility tests and the total time of the algorithm excluding the feasibility tests is

O(M logN).

Applying Lemma 3 and using our decision algorithm in Lemma 1, λ∗ can be

found in O((n + m) log(n + m)) time. We summarize our result in the following

theorem.

Theorem 1. Given a set of m barrier points in the plane and a set of n sensors

on a line `, the problem of moving sensors on ` to cover all barrier points such

that the maximum moving cost of all sensors is minimized can be solved in O((n+

m) log(n+m)) time.

4. The Mobile Disk Coverage Problem: The Weighted Case

In this section, we solve the weighted case of the mobile disk coverage problem. Here

also, we start with the decision problem and later solve the optimization problem

by applying sorted array searching techniques in Lemma 3. In the weighted case,

each sensor si is associated with a weight wi > 0.



February 23, 2024 12:23 110-IJCGA 2450001

8 P. Jain & H. Wang

4.1. The decision problem

Given any λ, the problem is to decide whether λ ≥ λ∗. Although our algorithm is

similar in spirit to those in the previous work,3,16,18 our algorithm is for a more

general problem setting in that the barrier points are in the plane while the barriers

in all previous work3,16,18 are on `. In the following, we first describe our algorithm,

and then prove its correctness; finally, we will discuss how to efficiently implement

the algorithm in O((n+m) log(n+m)) time.

4.1.1. The algorithm description

For each sensor si, define xli = xi−λ/wi and xri = xi +λ/wi, i.e., xli is the leftmost

location on ` where si can move to and xri is the rightmost location on ` where si
can move to with respect to λ. We call xli (resp., xri ) the leftmost (resp., rightmost)

λ-reachable location.

For each barrier point b, we use c(b) to denote the center of the circle of radius r

whose center is on ` and whose left half-circle contains b, i.e., c(b) = xb+
√
r2 − y2b .

We sort all barrier points b ∈ B in the order of the values c(b). Alternatively, it is

also the order of the barrier points of B encountered by sweeping a left half-circle

centered at ` from left to right. Let B = {b1, b2, . . . , bm} be the sorted list.

Initially, we move each sensor si to xri and thus si will not be allowed to move

rightwards anymore but can move leftwards by 2λ/wi. Let C0 denote the resulting

configuration. If λ ≥ λ∗, our algorithm will find a subset of sensors with their new

locations such that all barrier points are covered and the maximum moving cost of

each sensor is at most λ (sensors not in the subset are still in their positions of C0).

Consider the i-th iteration of the algorithm (initially, i = 1). Let Ci−1 be

the configuration right before the iteration. Our algorithm maintains the following

invariants.

(1) A subset of sensors Si−1 = {sg1 , . . . , sgi−1
} has been computed, where gj is the

index of the sensor sgj for each j ∈ [1, i− 1].

(2) In Ci−1, each sensor sk of Si−1 is at a location, denoted by x′k, which may not

be equal to xrk, while sensors of S\Si−1 are still in their locations of C0 (i.e.,

each sensor of S\Si−1 is at its rightmost λ-reachable location).

(3) An index hi−1 of a barrier point is maintained such that in the configuration

Ci−1, the barrier point bhi−1 is not covered by any sensor of Si−1 while bk is

covered by a sensor in Si−1 for each k < hi−1 (note that it is possible that bk
for some k > hi−1 is also covered by a sensor in Si−1, which cannot happen in

the problem settings of the previous work;3,16,18 this case makes our problem

more challenging to solve).

(4) The locations of the sensors sg1 , sg2 , . . . , sgi−1 in Ci−1 are sorted from left to

right on `.

(5) The barrier point bhi−1 is strictly to the right of the covering disk D(sgi−1) of

sgi−1
if Si−1 6= ∅.
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Initially when i = 1, we have S0 = ∅ and we set h0 = 1; thus, all algorithm

invariants trivially hold. The i-th iteration of the algorithm finds a sensor from

S\Si−1, denoted by sgi , and move it to a new location x′gi ∈ [xlgi , x
r
gi ] to obtain a

new configuration Ci with Si = Si−1 ∪{sgi}. The details of the i-th iteration of the

algorithm are described below.

Define Si1 to be the set of sensors that cover the barrier point bhi−1
in the

configuration Ci−1. According to our algorithm invariants, bhi−1
is not covered by

any sensor in Si−1. Hence, Si1 ⊆ S\Si−1.

If Si1 6= ∅, we pick an arbitrary sensor from Si1 as sgi and set x′gi = xrgi (i.e., the

sensor does not move from its position in Ci−1); thus Ci = Ci−1. We set hi = k+ 1,

where k is the largest index in [hi−1, n] such that barrier points bj for all j ∈ [hi−1, k]

are covered by sensors of Si. If hi = m+ 1, all barrier points bj for all j ∈ [hi−1, n]

are covered, and thus we can stop the algorithm and report λ ≥ λ∗.

Lemma 4. All algorithm invariants hold.

Proof. We go through every invariant. Invariant (1) trivially holds. Invariant (2)

holds because Ci = Ci−1. Invariant (3) follows immediately from how our algorithm

computes hi. Invariant (4) holds because sgi covers bhi−1
in Ci. For Invariant (5),

it suffices to show that sgi−1 is to the left of the sgi in Ci. Indeed, according to

Invariant (6) in Ci−1, bhi−1
is strictly to the right of the covering disk D(sgi−1

).

Since bhi−1 is covered by sgi in Ci, we obtain that sgi−1 must be to the left of sgi in

Ci. For Invariant (6), since the sensor sgi covers bhi−1
but does not cover bhi

and

hi−1 < hi, according to the definition of the indices of the barrier points, we can

obtain that bhi
must be strictly to the right of the covering disk D(sgi) of sgi (e.g.,

see Fig. 1). This proves Invariant (6).

If Si1 = ∅, we define Si2 = {sk |xlk ≤ c(bhi−1
) < xrk, sk ∈ S\Si−1}, i.e., the set

of sensors sk that do not cover bhi−1
in Ci−1 but can be moved leftwards to cover

bhi−1
; e.g., see Fig. 2. Note that each sensor of Si2 is currently at its rightmost

λ-reachable location in Ci−1.

If Si2 6= ∅, then among all sensors of Si2, we choose the leftmost one (with

respect to their positions in Ci−1) as sgi and add it to Si−1 to obtain Si. We move

sgi

bhi−1
bhi

`

Fig. 1. Illustrating the Invariant (6) in the proof of Lemma 4: the circle is the boundary of D(sgi ).



February 23, 2024 12:23 110-IJCGA 2450001

10 P. Jain & H. Wang

bhi−1

`
sk

xrkxrl

Fig. 2. Illustrating the definition of Si2: The solid circle shows the position of sk in Ci−1, i.e., at

xrk, and the dashed circle shows its leftmost λ-reachable location, i.e., xlk.

sgi leftwards until bhi−1
is covered (i.e., it is on the left half-circle of ∂Dgi); this

obtains the configuration Ci. Next, we set hi = k + 1, where k is the largest index

in [hi−1, n] such that barrier points bj for all j ∈ [hi−1, k] are covered by sensors

of Si. If hi = n + 1, then all barrier points are covered and thus we can stop the

algorithm and report λ ≥ λ∗. Following the similar analysis as Lemma 4, we can

show that all algorithm invariants hold.

If Si2 = ∅, then we terminate the algorithm and report that λ < λ∗.

In summary, if Si1 = Si2 = ∅, then the algorithm will terminate and report

λ < λ∗. Otherwise, a sensor sgi is found from either Si1 (if it is not empty) or Si2
and added to Si−1 to obtain Si. In either case, hi = k + 1, where k is the largest

index in [hi−1, n] such that barrier points bj for all j ∈ [hi−1, k] are covered by

sensors of Si. If hi = m + 1, then the algorithm will terminate and report λ ≥ λ∗;

otherwise, the algorithm will proceed to the next iteration i + 1 and all algorithm

invariants hold. As there are m barrier points and a new barrier point is covered in

each iteration, the algorithm has at most m iterations. On the other hand, as there

are n sensors and each iteration finds a new sensor to form Si, the algorithm has

at most n iterations. Hence, the algorithm will stop in min{n,m} iterations.

4.1.2. The algorithm correctness

We now prove the correctness of the algorithm. The high-level idea of the proof is

similar to the previous work,3,16,18 although the details are quite different because

in our problem barrier points are in the plane while the barriers in the previous

work3,16,18 are all on `.

Suppose the algorithm reports λ ≥ λ∗, say, in the i-th iteration of the algorithm.

Then, according to our algorithm, the configuration Ci is a feasible solution. Thus,

it suffices to show that if the algorithm reports λ < λ∗, then no feasible solution

exists.

For any index i ∈ [0,m] for the barrier points, we say that [0, i] is a prefix

interval of [0,m]. For convenience, depending on the context, we may also use [0, i]

to represent the subset of barrier points bj for all j ∈ [0, i] (the subset is ∅ if i = 0).

For example, we say that the interval [0, i] is covered by a set of sensors if all barrier
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points bj , 0 < j ≤ i, are covered by the set of sensors. We say that another prefix

interval [0, i′] is larger than [0, i] if i′ > i.

Lemma 5. Consider the configuration Ci produced in the i-th iteration of our algo-

rithm with i ≥ 1. Suppose S′i is the set of sensors of S whose covering disks are

strictly to the left of bhi
in Ci. Then, [0, hi− 1] is the largest possible prefix interval

that can be covered by sensors of S′i with respect to λ (i.e., the moving cost of each

sensor of S′i is at most λ).

Before proving Lemma 5, we use it to prove the correctness of our algorithm,

i.e., we prove that if the algorithm reports λ < λ∗, then no feasible solution exists.

Suppose our algorithm reports λ < λ∗ in the i-th iteration. Then, according to

our algorithm, bhi−1
is not covered by any sensor in Ci−1 and Si1 = Si2 = ∅. By

Lemma 5 (replacing the index i in the lemma by i− 1), [0, hi−1 − 1] is the largest

prefix interval that can be covered by sensors of S′i−1. According to our algorithm

invariants, the covering disk of each sensor of Si−1 is strictly to the left of bhi−1
in

Ci−1. Hence, Si−1 is a subset of S′i−1. Since both Si1 and Si2 are empty in Ci−1, no

sensor in S\S′i−1 can cover the barrier point bhi−1
. Therefore, it is not possible to

cover all barrier points in the interval [0, hi−1] using the sensors of S (with respect

to the maximum moving cost λ). This implies that no feasible solution exists.

4.1.3. The proof of Lemma 5

We now prove Lemma 5. We follow the notation in Lemma 5. Note that according

to our algorithm invariants, Si = {sg1 , sg2 , . . . , sgi} is a subset of S′i.

We first prove the following lemma and then use the lemma to prove Lemma 5.

Lemma 6. If C is a configuration in which a prefix interval [0, t] is covered by the

sensors of S′i, then there also exists a configuration C∗ in which [0, t] is covered and

the location of each sensor sgj of Si in C∗ is the same as its location in Ci.

Proof. We prove the lemma by induction. We assume that the lemma statement

holds for k − 1, 1 ≤ k ≤ i, i.e., there exists a configuration C ′ in which the interval

[0, t] is covered and the location of each sensor sgj of Si with 1 ≤ j ≤ k− 1 in C∗ is

the same as its location in Ci (i.e., x′gj ). The assumption trivially holds when k = 1.

Below we show that the lemma statement holds for general k.

Our goal is to find a configuration C ′′ in which barrier points of the interval

[0, t] are also covered and the location of each sensor sgj of Si with 1 ≤ j ≤ k in

C ′′ is x′gj . We refer to such a configuration that satisfies the above condition as a

satisfying configuration.

According to our algorithm, in the configuration Ck, sgj is at x′gj for all 1 ≤ j ≤
k, and the interval [0, hk − 1] is covered by sensors of Sk. Hence, if t ≤ hk − 1, then

we can simply let C ′′ = Ck, which is a satisfying configuration. In the following,

we assume that t ≥ hk. Let xC′(sgk) be the location of sgk in the configuration C ′.
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If xC′(sgk) = x′gk , then let C ′′ = C ′, which is a satisfying configuration. In what

follows, we assume that xC′(sgk) 6= x′gk . According to our algorithm, sgk is either

from Sk1 or from Sk2. We discuss the two cases below.

The case sgk ∈ Sk1. If sgk is from Sk1, then according to our algorithm, x′gk = xrgk .

As xC′(sgk) 6= x′gk , it must be that xC′(sgk) < x′gk . Let C ′′ be the configuration

obtained from C ′ by moving sgk from xC′(sgk) rightwards to x′gk . In the following,

we show that C ′′ is a satisfying configuration.

Indeed, in light of the induction hypothesis, the location of each sensor sgj of Si
with 1 ≤ j ≤ k in C ′′ is x′gj (i.e., the same as its location in Ci). Thus, it suffices to

show that the interval [0, t] is covered by sensors of S′i in C ′′. Consider any barrier

point bl with l ∈ [1, t].

— If l ≤ hk − 1, then according to our algorithm, bl is covered by a sensor s in Sk
in Ci. As Sk ⊆ Si ⊆ S′i, s is in S′i. Further, since s ∈ Sk, its location position

in C ′′ is the same as in Ci. Therefore, bl is covered by s in C ′′ and thus bl is

covered by sensors of S′i in C ′′ since s ∈ S′i.
— If l ≥ hk, then depending on whether bl is covered by a sensor of Sk in Ci, there

are two subcases. If bl is covered by a sensor of Sk in Ci, then following the

same analysis as above, bl is covered by sensors of S′i in C ′′. Otherwise, since the

locations of the sensors of Sk−1 in C ′′ are the same as in C ′, bl must be covered

in C ′ by either sgk or a sensor in S′i\Sk.

We claim that bl cannot be covered by sgk in C ′. Indeed, according to our

algorithm invariants, the covering disk of sgk is strictly to the left of bhk
in Ck.

Since xC′(sgk) < x′gk , i.e., the location of sgk in C ′ is strictly to the left of its

location in Ck, the covering disk D(sgk) is also strictly to the left of bhk
in C ′.

Since l ≥ hk, by our definition of the indices of the barrier points, bl cannot be

in D(sgk) in C ′.

The above claim implies that bl is covered in C ′ by a sensor s of S′i\Sk. Since

the location of s in C ′′ is the same as its location in C ′, s still covers bl in C ′′.

Therefore, bl is covered by sensors of S′i in C ′′.

This proves that C ′′ is a satisfying configuration.

The case sgk ∈ Sk2. If sgk is from Sk2, then according to our algorithm, Sk1 = ∅
and sgk is the leftmost sensor of Sk2 in the configuration Ck−1 and x′gk is the

rightmost location for sgk to cover bhk−1
(i.e., bhk−1

is on the left half-circle of

∂D(sgk)). If xC′(sgk) < x′gk , then we can use the same argument as the above case to

obtain a satisfying configuration. In the following, we assume that xC′(sgk) > x′gk .

This also implies that sgk does not cover bhk−1
in C ′. Since t ≥ hk > hk−1, there

must be a sensor sa that covers the barrier point bhk−1
in C ′. Also, because Sk1 = ∅

and the positions of the sensors sgj for all 1 ≤ j ≤ k − 1 in C ′ are the same as in

Ck−1, sa must be from Sk2. As sgk is the leftmost sensor of Sk2 in Ck−1, it must

hold that xrgk ≤ x
r
a.
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Fig. 3. Illustrating the sensors sa and sgk in the two configurations C′ and C′′.

Let C ′′ be the configuration obtained from C ′ by moving sa to xC′(sgk) and

moving sgk to x′gk , i.e., sa moves to the position of sgk in C ′ and sgk moves to its

position in Ck (e.g., see Fig. 3). Below we argue that C ′′ is a satisfying configuration.

For this, we will show the following: (1) The interval [0, t] is still covered by sensors

of S′i in C ′′; (2) the moving cost of sa is no more than λ (note that since the position

of sgk in C ′′ is the same as its position in Ck, we know that its moving cost in C ′′

is no more than λ; other sensors do not change locations from C ′ to C ′′).

We first prove the above (1). Since the locations of the senors of sgj for all

j ∈ [1, k] in C ′′ are the same as their locations in Ck, these sensors together cover

all barrier points of the interval [0, hk− 1]. Consider any other barrier point bl with

l ∈ [hk, t]. To prove (1), it suffices to show that bl is covered by a sensor of S′i in

C ′′. Recall that bl is covered by a sensor of S′i in C ′; let s be such a sensor.

(1) If s is sgj for any j ≤ k − 1, since s has the same location in C ′ and C ′′, s also

covers bl in C ′′.

(2) If s is sa, then we claim that bl must be covered by sgk in C ′′. Indeed, recall

that bhk−1
is on the left half-circle of the covering disk of sgk when sgk is at

x′gk in C ′′ (and also in Ck). Since bhk−1
is covered by sa in C ′, we obtain that

xC′(sa) ≤ x′gk , where xC′(sa) is the location of sa in C ′ (e.g., see Fig. 4). Since

sa also covers bl and l ≥ hk > hk−1, if we move a disk D of radius r centered at

xC′(sa) rightwards until x′gk , D starts at the covering disk of sa in C ′ and stops

at the covering disk of sgk in C ′′. Hence, in the beginning of the movement of

D, it covers bl, and at the end of the movement, bhk−1
is on the left half-circle of

bhk−1

`
sgk

bl

sa

Fig. 4. Illustrating the relative positions of sa, sgk , bhk−1
, and bl: the locations of sa and sgk

are xC′ (sa) and x′gk , respectively.
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∂D. Since l > hk−1, during the above movement of D, its left half-circle cannot

encounter the barrier point bl. This implies that bl is always inside D during

the movement of D. This further implies that bl is covered by sgk in C ′′.

(3) If s is sgk , then since sa moves to the position of sgk in C ′′, sa also covers bl
in C ′′.

(4) If s is not a sensor in the above three cases, then s does not change its location

from C ′ to C ′′. Hence, s still covers bl in C ′′.

In summary, the barrier point bl is still covered by sensors of S′i in C ′′.

We proceed to prove the above (2), i.e., the moving cost of sa is no more than

λ in C ′′. Let xC′′(sa) denote the location of sa in C ′′. It suffices to show that

xC′′(sa) ∈ [xla, x
r
a].

According to our definition of C ′′, xC′′(sa) = x′gk . Recall that xrgk ≤ xra. Since

x′gk ≤ x
r
gr , we obtain that xC′′(sa) = x′gk ≤ x

r
gr ≤ x

r
a.

On the other hand, recall that x′gk < xC′(sgk) = xC′′(sa). Also, xC′(sa) ≥ xla,

where xC′(sa) is the location of sa in C ′. Since bhk−1
is on the left half-circle of

∂D(sgk) when sgk is at x′gk and bhk−1
is covered by sa in C ′ when sa is at xC′(sa),

we obtain that xC′(sa) ≤ x′gk . Therefore, we can derive xla ≤ xC′(sa) ≤ x′gk <

xC′(sgk) = xC′′(sa).

This proves that xC′′(sa) ∈ [xla, x
r
a]. Hence, C ′′ is a satisfying configuration.

Proving Lemma 5. In what follows, we use Lemma 6 to prove Lemma 5.

Let [0, t] be the largest prefix interval of sensors that can be covered by sensors

of S′i (with respect to the maximum moving cost λ). By Lemma 6, there exists a

configuration C∗ in which [0, t] is still covered and the location of each sensor sgj
of Si in C∗ is the same as its location in Ci, i.e., x′gj .

Consider any sensor sk ∈ S′i\Si. According to our algorithm, sk is at xrk. By the

definition of S′i, the covering disk D(sk) is strictly to the left of bhi in Ci. Hence, sk
cannot be used to cover bhi

in any configuration (with respect to λ), in particular, in

C∗. On the other hand, according to our algorithm, all barrier points of the interval

[0, hi − 1] are covered by sensors of Si in Ci. As the sensors of Si have the same

locations in C∗ as in Ci, all barrier points of [0, hi − 1] are covered by sensors of Si
in C∗. Combining the above, we can conclude that [0, hi − 1] is the largest prefix

interval that can be covered by sensors of S′i in C∗, i.e., t = hi − 1. This proves

Lemma 5.

4.1.4. The algorithm implementation

We now provide an efficient way to implement the algorithm in O((n+m) log(n+

m)) time. For differentiation, we use “algorithm implementation” to refer to the

algorithm we will discuss below and use “algorithm description” to refer to the

algorithm we described in Sec. 4.1.1.

We sweep a point p on ` from left to right. The event point set is E = {c(b) | b ∈
B} ∪ {xli, xri | si ∈ S}. To sort E, we sort {c(b) | b ∈ B} in the preprocessing. Then,
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we only need to sort xri and xli for all sensors si ∈ S in O(n log n) time, after which,

we merge this sorted list with that of {c(b) | b ∈ B}. As such, we can obtain the

sorted list of the event set E in O(m + n log n) time. Using the sorted list E as a

guide, we sweep p on ` from left to right. When p encounters a point xlk for some

sensor sk, we insert sk to a balanced binary search tree T in which the sensors sk
are ordered by their values xrk. As will be shown later, the tree T is used to maintain

the set Si2. When p encounters a point xrk, we remove sk from T and store sk at a

variable s∗ (if s∗ already stores a sensor, we simply update s∗ to sk). Our algorithm

implementation maintains the following invariant: the sensor sk stored in s∗ and all

sensors of T are at their positions in C0.

Now consider the case where p encounters c(bj) for some barrier point bj . We

assume that j is equal to hi−1 for some i as defined in the algorithm description.

The assumption is true initially when j = 1 and i = 1. This means that we are at the

beginning of the i-th iteration in the algorithm description. We first need to check

whether Si1 = ∅. To this end, we have the following Lemma 7. But before giving

Lemma 7, we prove the following observation, which will be used in the proofs of

Lemma 7 and other lemmas.

Observation 2. Consider a barrier point b and two sensors s and s′. Suppose the

followings hold (e.g., see Fig. 5): (1) s′ is to the right of s; (2) s covers b; (3) b is

to the right of the left half-circle of ∂D(s′). Then, s′ also covers b.

Proof. Assume to the contrary that s′ does not cover b. Then, since b is to the

right of the left half-circle of ∂D(s′), b must be strictly to the right of the right

half-circle of ∂D(s′). Because s′ is to the right of s, b must also be strictly to the

right of the right half-circle of ∂D(s). But this means that s does not cover b, a

contradiction.

Lemma 7. If the sensor sk stored in s∗ covers bj when sk is at xrk, then sk ∈ Si1;

otherwise (including the case where s∗ does not store any sensor) Si1 = ∅.

Proof. Suppose the sensor sk stored in s∗ covers bj when sk is at xrk. To prove the

lemma, it suffices to show that if Si1 6= ∅, then sk must be Si1. In the following, we

`
s′

b

s

Fig. 5. Illustrating Observation 2.
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assume that Si1 6= ∅. Our goal is to prove that sk is in Si1. Since sk is stored in s∗,

according to our algorithm implementation invariant, sk is at xrk. Hence, to prove

sk ∈ Si1, by the definition of Si1, it is sufficient to show that sk covers bj (when sk
is at xrk).

Let sa be a sensor of Si1. If sa is sk, then it is vacuously true that sk ∈ Si1.

In what follows, we assume that sa is not sk. Because sa is in Si1, according to

our algorithm description, sa is at xra and has never been moved during the algo-

rithm, and further, sa covers bj . Since the sweeping point p is at c(bj), which is

the rightmost position on ` for the center of a circle of radius r to cover bj , p must

have passed xra. Therefore, according to our algorithm implementation, sa had been

stored in s∗ before and later s∗ got updated to sk. This implies that sk is to the right

of sa (and both of them are at their rightmost λ-reachable locations). Because p is

now at c(bj), p has already passed xrk. Therefore, bj is to the right of left half-circle

of ∂D(sk). Since bj is covered by sa and sk is to the right of sa, by Observation 2,

bj must be covered by sk.

By Lemma 7, if s∗ does not store any sensor or if the sensor stored at s∗ does

not cover bj , then Si1 = ∅. Otherwise, the sensor stored at s∗, denoted by sk, covers

bj and is in Si1. Depending on whether Si1 = ∅, there are two cases to proceed.

The case Si1 6= ∅. We first consider the case Si1 6= ∅. In this case, according to

our algorithm description, we can simply choose sk as sgi and add it to Si−1 to

obtain Si. Next, we need to determine hi, which is equal to l+1 with l as the largest

index such that all barrier points bj , bj+1, . . . , bl can be covered by sensors of Si.

To find l, we initialize l = j and then keep sweeping p rightwards. If p encounters

a point xlk or xrk, we process the event in the same way as before. If p encounters

a point c(bj′), we know that j′ = l + 1. We need to determine whether bj′ can be

covered by sensors of Si. For this, we have the following lemma.

Lemma 8. bj′ can be covered by sensors of Si if and only if bj′ can be covered

by sgi .

Proof. If bj′ is covered by sgi , then it is vacuously true that bj′ is covered by

sensors of Si because sgi is in Si.

Now assume that bj′ is covered by a sensor sga ∈ Si. We need to prove that

sgi also covers bj′ . This is obviously true if a = i. We now assume a 6= i, implying

that a < i. According our algorithm implementation, bj′ is to the right of the left

half-circle of ∂D(sk) and sgi = sk. According to our algorithm invariants in the

algorithm description, sga is to the left of sgi . Since sga covers bj′ , by Observation 2,

sgi also covers bj′ .

In light of Lemma 8, we check whether bj′ is covered by sgi . If yes, we increment

l by one and proceed as above (if l = n, then all barrier points are covered and

we can stop the algorithm and report λ ≥ λ∗). Otherwise, we set hi = j′; in this
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case, we have finished the i-th iteration of the algorithm and we then proceed to

the (i+ 1)-th iteration.

The case Si1 = ∅. We now consider the case Si1 = ∅. In this case, we need to

know whether Si2 = ∅, and if not, we need to find the leftmost sensor in Si2. For

this, we have the following lemma.

Lemma 9. The sensors stored in the current tree T are exactly the sensors of Si2.

Proof. We prove the lemma by analyzing our algorithm implementation. Recall

that the sweeping point p is now at c(bj) and j = hi−1.

— Let sa be a sensor of Si2. We show that sa is stored in T . Indeed, since sa is

in Si2, by the definition of Si2, we have xla ≤ c(bj) < xra. According to our

algorithm implementation, when p encounters xla, sa is inserted to T and will

not be removed from T until p counters xra. Since p is at c(bj) right now and

c(bj) < xra, sa is still in T .

— Let sa be a sensor stored in T . We show that sa is in Si2. Indeed, since sa is in

T , according to our algorithm implementation, p has already passed xla but not

encountered xra yet. Since p is at c(bj) right now, we obtain that xla ≤ c(bj) < xra.

Further, according to our algorithm implementation invariant, sa has not been

moved from its position in C0, i.e., sa is still at xra. Therefore, sa is in Si2.

This proves the lemma.

In light of Lemma 9, we can use T to find the leftmost sensor of T in O(log n)

time; let sk denote the sensor. We choose sk as sgi and add it to Si−1 to obtain Si.

Then, we move sk leftwards to c(bj), i.e., setting x′k = c(bj), and remove sk from

T . We also remove both events xlk and xrk from the list E because we do not need

to process these two events anymore.b Next, we need to determine hi. This can be

done using the same method as in the above case where Si1 6= ∅ (i.e., keep sweeping

p rightwards and making use of Lemma 8, which is still applicable here). After hi is

found, we finish the i-th iteration of the algorithm and begin the (i+1)-th iteration.

This finishes the description of the algorithm implementation. The proof of the

following lemma analyzes the running time of the algorithm.

Lemma 10. After O(m logm) time preprocessing, given any λ, whether λ ≥ λ∗

can be decided in O(m+ n log n) time.

Proof. First of all, it takes O(m logm) time to sort {c(b) | b ∈ B} in the prepro-

cessing. We next analyze the running time of our implementation for determining

bTo implement each remove operation in constant time, we can store the list E by a doubly-linked

list and associate each of the values xla and xra for all sensors sa ∈ S with a pointer pointing to
its location in E.
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whether λ ≥ λ∗. In the beginning, computing the sorted list E takes O(m+n log n)

time. There are O(n+m) operations on E, each of which takes O(1) time. The time

we spent on the binary search tree T is bounded by O(n log n) as there are n sensors

and each sensor can be inserted and removed from T at most once (also, there are

at most n operations of “finding the leftmost sensor”). Therefore, the total time of

the algorithm is O(m+ n log n).

4.2. The optimization problem

We now solve the optimization problem, i.e., computing λ∗, by using the algorithm

of Lemma 10 as a subroutine. We begin with the following lemma.

Lemma 11. λ∗ is equal to (xi−
√
r2 − y2bj −xbj )/wi or (xbj −

√
r2 − y2bj −xi)/wi

for a sensor si and a barrier point bj.

Proof. The proof is almost the same as that of Lemma 2 except that we have to

consider the weight in the last step of the proof. We briefly discuss it below.

Consider an optimal solution OPT , where λ∗ is the maximum moving cost of

all sensors. Then, λ∗ is equal to the moving cost of some sensor si. Let x′i be the x-

coordinate of si in OPT . If x′i < xi, then si has been moved leftwards and there must

be a barrier point bj on the left-circle of ∂D(si). Thus, we have x′i =
√
r2 − y2bj +xbj .

Hence, λ∗ = (xi−x′i)/wi = (xi−
√
r2 − y2bj−xbj )/wi. If x′i > xi, by similar analysis,

we can show that λ∗ = (xbj −
√
r2 − y2bj − xi)/wi.

For each sensor si, we will define two sorted arrays Ai[1 · · ·m] and Bi[1 · · ·m] of

size m each. Unlike the unweighted case where defining sorted arrays is relatively

straightforward, here the definitions are quite subtle. We define the array Ai first,

which consists of the values (xi−
√
r2 − y2bj −xbj )/wi for all j = 1, . . . ,m. For each

j ∈ [1,m], let aj =
√
r2 − y2bj + xbj . We sort the values aj for all j = 1, . . . ,m

in ascending order. For each j ∈ [1,m], we let π(j) = k if ak ranks the j-th place

in the above sorted list. Hence, π(·) is a permutation of the indices 1, 2, . . . ,m;

note that we can obtain π(·) in O(m logm) time. For each j ∈ [1,m], we define

Ai[j] = (xi − aπ(j))/wi. In light of the definition of π(·), Ai is a sorted array.

Analogously, we can define a sorted array Bi for the m values (xbj −
√
r2 − y2bj −

xi)/wi, j = 1, . . . ,m. Note that the permutation π(·) can be used to define Ai for

all i = 1, 2, . . . , n. Hence, in O(n+m logm) time, we can implicitly form 2n sorted

arrays Ai and Bi for all i = 1, 2, . . . , n, such that given any index j and any array

Ai (resp., Bi), we can obtain the array element Ai[j] (resp., Bi[j]) in O(1) time.

Also, Lemma 11 implies that λ∗ is the smallest feasible value of all elements of these

arrays. By applying Lemma 3 and using our decision algorithm in Lemma 10, λ∗
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can be computed in O(m logm+ (m+ n log n) log(n+m)) time, which is bounded

by O(m logm+ n log2 n).c

Theorem 2. Given a set of m barrier points in the plane and a set of n weighted

sensors on a line `, the problem of moving sensors on ` to cover all barrier points

such that the maximum moving cost of all sensors is minimized can be solved in

O(m logm+ n log2 n) time.

5. The Mobile Interval Coverage Problem

In this section, we consider the mobile interval coverage problem, where the barrier

points are on the x-axis ` while the sensors can be anywhere in the plane. The

problem is to move all sensors to ` to cover all barrier points so that the minimum

moving cost of all sensors is minimized.

We first sort all barrier points from left to right on ` in O(m logm) time; let

B = {b1, b2, . . . , bm} be the sorted list. Recall that for each sensor si ∈ S, (xi, yi)

is its coordinate. In the weighted case, each sensor si has a weight wi > 0. In the

following, we only give an algorithm for the weighted case because we do not have

a faster algorithm for the unweighted case. Our goal is to compute the optimal

moving cost λ∗. Note that since we require that all sensors finally move to `, it must

hold that λ∗ ≥ max1≤i≤n wi · yi.
We again first consider the decision problem: Given any λ, decide whether λ ≥

λ∗. We present an algorithm of O(m + n log n) time (not including the time for

sorting the barrier points) for the problem. Later we will solve the optimization

problem (i.e., computing λ∗) using Lemma 3 and the decision algorithm.

5.1. The decision problem

Consider a value λ. We assume that λ ≥ max1≤i≤n wi · yi since otherwise it is

impossible to move all sensors to ` (and thus we immediately report λ < λ∗). For

each sensor si, define xri = xi +
√

(λ/wi)2 − y2i and xli = xi −
√

(λ/wi)2 − y2i . We

call xri (resp., xli) the rightmost (resp., leftmost) λ-reachable location of si.

At the outset, we move each sensor si to xri on `. Let C0 denote the resulting

configuration. The rest of the algorithm is similar to the one in Sec. 4.1. In fact,

we can basically apply the same algorithm. But since the problem setting here is

simpler (because all barrier points are now on `), below we describe the algorithm

in a simpler way (the running time is also slightly faster if m is significantly larger

than n).

Consider the i-th iteration of the algorithm (initially i = 1). Let Ci−1 denote

the configuration right before the iteration. Our algorithm maintains the following

cTo see this, first notice that m logm+(m+n logn) log(n+m) = O(m logm+n logn log(n+m)).
Further, if m ≥ n2, then m logm + n logn log(n + m) = O(m logm); otherwise, log(n + m) =

Θ(log n) and thus m logm+ n logn log(n+m) = O(m logm+ n log2 n).
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invariants:

(1) A subset Si−1 = {sg(1), sg(2), . . . , sg(i−1)} of sensors has been computed.

(2) In Ci−1, each sensor sk of Si−1 is at a location, denoted by x′k, which may not

be equal to xrk, while sensors of S\Si−1 are still in their locations of C0.

(3) An index hi−1 of a barrier point is maintained such that in the configuration

Ci−1, the barrier point bhi−1
is not covered by any sensor of Si−1 while bk is

covered by a sensor in Si−1 for each k < hi−1.

(4) The locations of the sensors sg1 , sg2 , . . . , sgi−1 in Ci−1 are sorted from left to

right on `.

(5) The barrier point bhi−1 is strictly to the right of the covering disk D(sgi−1) of

sgi−1
if Si−1 6= ∅.

Initially when i = 1, we have S0 = ∅ and set h0 = 1; thus all algorithm invariants

hold. The i-th iteration of the algorithm finds a sensor sgi from S\Si−1 and move it

to a new location x′gi ; we thus obtain a new configuration Ci with Si = Si−1∪{sgi}.
We briefly discuss algorithm below.

Define Si1 be the set of sensors that cover the barrier point bhi−1
in Ci−1. Again,

due to our algorithm invariants, Si1 ⊆ S\Si−1.

If Si1 6= ∅, we choose an arbitrary sensor in Si1 as sgi and set x′gi = xrgi . Hence,

Ci = Ci−1. Next, we set hi = k+1, where k is the largest index such that all barrier

points of [hi−1, k] are covered by Si (it is easy to see that a barrier point bl with

l ≥ hi−1 is covered by Si if and only if bl is covered by sgi , i.e., Lemma 8 is still

applicable). If k = m, then we stop the algorithm and report λ ≥ λ∗.
If Si1 = ∅, we define Si2 as the set of sensors of S\Si−1 that do not cover bhi−1

in

Ci−1 but can be moved leftwards to cover bhi−1 . If Si2 6= ∅, we choose the leftmost

sensor of Si2 as sgi and set x′gi = xb + r to obtain a new configuration Ci, where

b = bhi−1 . Next, we set hi in the same way as above. If Si2 = ∅, then we terminate

the algorithm and report λ < λ∗.

The algorithm will terminate in at most min{m,n} iterations. The correctness

of the algorithm can be proved in a similar way as before.

To implement the algorithm, as in Sec. 4.1, we sort {c(b) | b ∈ B} in the pre-

processing, which takes O(m logm) time. Then, given any λ, we can implement the

algorithm in O(m + n log n) time using essentially the same implementation as in

Sec. 4.1. We briefly discuss it below.

We first compute xri and xli for each sensor si ∈ S, and sort all these 2n values

in O(n log n) time. Since we already have the sorted list of {c(b) | b ∈ B} in the

preprocessing, by merging it with the sorted list of xri and xli for all sensors si ∈ S,

we can obtain the sorted list of the event set E = {c(b) | b ∈ B}∪{xli, xri | si ∈ S} in

additional O(n+m) time. Using E, we run the same sweeping algorithm as before.

We still use a binary search tree T to maintain the sensors of Si2 and use a variable

s∗ to store a sensor of Si1. When p encounters xlk for a sensor sk, we insert sk to T .

When p encounters xrk, we remove sk from T and set s∗ to sk. When p encounters



February 23, 2024 12:23 110-IJCGA 2450001

Algorithms for Covering Barrier Points by Mobile Sensors with Line Constraint 21

a barrier point bj , we determine the sensor sgi using the variable s∗ and the tree T

in the same way as before. As analyzed in the proof of Lemma 10, the total time of

the algorithm is O(m+ n log n).

Lemma 12. After O(m logm) time preprocessing, given any λ, whether λ ≥ λ∗

can be decided in O(m+ n log n) time.

5.2. The optimization problem

We now show how to compute λ∗. Using analysis similar to Lemmas 2 and 11, we

can show that λ∗ is equal to
√

(xi − r − xbj )2 + y2i /wi or
√

(xbj − r − xi)2 + y2i /wi.

In the former case we have xi− r− xbj ≥ 0 while in the latter case xbj − r− xi ≥ 0

holds. As such, for each sensor si, we implicitly form two sorted arrays of at most

m elements as follows. Recall that B = {b1, b2, . . . , bm} is in ascending order by

x-coordinate. Let j be smallest index such that xbj − r−xi ≥ 0. Then, we define an

array Ai[0 · · ·m− j] for the above latter case: Ai[k] =
√

(xbk+j
− r − xi)2 + y2i /wi,

for each 0 ≤ k ≤ m − j. It is easy to see that Ai is sorted. Similarly, we define

another sorted array for the above former case. As such, λ∗ must be in one of the

2n sorted arrays thus defined by all sensors. Then, as in Sec. 4.2, applying Lemma 3

with our decision algorithm in Lemma 12 can compute λ∗ in O(m logm+ n log2 n)

time.

Theorem 3. Given a set of m barrier points on a line ` and a set of n weighted

sensors in the plane, the problem of moving sensors to ` to cover all barrier points

such that the maximum moving cost of all sensors is minimized can be solved in

O(m logm+ n log2 n) time.

6. Concluding Remarks

In this paper, we present efficient algorithms for solving line-constrained mobile

sensor coverage problems. Future work includes investigating whether a logarithmic

factor can be further shaved for the weighted case of the mobile disk coverage

problem as well as for the mobile interval coverage problem. In particular, it would

be interesting to see whether a faster algorithm exists for the unweighted case of

the mobile interval coverage problem.

Note that for the 1D problem, i.e., all sensors and barrier points are given on

` and sensors are allowed to move on ` only, the algorithm can be simplified as

follows. For the unweighted case, we can use the same algorithm as in Sec. 3 but

the algorithm becomes simpler as yb = 0 for each barrier point b ∈ B. The runtime

of the algorithm is O((n + m) log(n + m)). For the weighted case, we can use the

same algorithm as in Sec. 5 but the algorithm becomes simpler as yi = 0 for each

sensor si ∈ S. The runtime of the algorithm is O(m logm+ n log2 n).
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