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ALGORITHMS FOR SUBPATH CONVEX HULL QUERIES AND
RAY-SHOOTING AMONG SEGMENTS\ast 

HAITAO WANG\dagger 

Abstract. In this paper, we first consider the subpath convex hull query problem: Given a
simple path \pi of n vertices, preprocess it so that the convex hull of any query subpath of \pi can
be quickly obtained. Previously, Guibas, Hershberger, and Snoeyink [Int. J. Comput. Geom. Appl.,
1 (1991), pp. 1--22; first appeared in SODA 1990] proposed a data structure of O(n) space and
O(logn log logn) query time; they also reduced the query time to O(logn) by increasing the space to
O(n log logn). We present an improved result that uses O(n) space while achieving O(logn) query
time. Like the previous work, our query algorithm returns a compact interval tree representing the
convex hull so that standard binary-search-based queries on the hull can be performed in O(logn)
time each. The preprocessing time of our data structure is O(n) after the vertices of \pi are sorted by
x-coordinate. As the subpath convex hull query problem has many applications, our new result leads
to improvements for several other problems. In particular, with the help of the above result, along
with other techniques, we present new algorithms for the ray-shooting problem among segments.
Given a set of n (possibly intersecting) line segments in the plane, preprocess it so that the first
segment hit by a query ray can be quickly found. We give a data structure of O(n logn) space that
can answer each query in (

\surd 
n logn) time. If the segments are nonintersecting or if the segments

are lines, then the space can be reduced to O(n). As a by-product, given a set of n (possibly
intersecting) segments in the plane, we build a data structure of O(n) space that can determine
whether a query line intersects a segment in O(

\surd 
n logn) time. The preprocessing time is O(n1.5)

for all four problems, which can be reduced to O(n logn) time by a randomized algorithm so that
the query time is bounded by O(

\surd 
n logn) with high probability. All these are classical problems

that have been studied extensively. Previously data structures of \widetilde O(
\surd 
n) query time were known in

the early 1990s (the notation \widetilde O suppresses a polylogarithmic factor); nearly no progress has been
made for more than two decades. For all these problems, our new results provide improvements by
reducing the space of the data structures by at least a logarithmic factor while the preprocessing and
query times are the same as before or even better.

Key words. subpath hull queries, convex hulls, compact interval trees, ray-shooting
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1. Introduction. In this paper, we first consider the subpath convex hull query
problem. Let \pi be a simple path of n vertices in the plane. A subpath hull query
specifies two vertices of \pi and asks for the convex hull of the subpath between the two
vertices. The goal is to preprocess \pi so that the subpath hull queries can be answered
quickly. Ideally, the query should return a representation of the convex hull so that
standard queries on the hull can be performed in logarithmic time.

The problem has been studied by Guibas, Hershberger, and Snoeyink [25], who
proposed a method of using compact interval trees. After O(n logn) time preprocess-
ing, Guibas et al. [25] built a data structure of O(n) space that can answer each query
in O(logn log logn) time. Their query algorithm returns a compact interval tree that
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SUBPATH CONVEX HULL QUERIES AND RAY-SHOOTING 1133

represents the convex hull so that all binary-search-based queries on the hull can be
performed in O(logn) time each. The queries on the hull include (but are not limited
to) the following: find the most extreme vertex of the convex hull along a query direc-
tion; find the intersection between a query line and the convex hull; find the tangents
from a query point to the convex hull; determine whether a query point is inside the
convex hull, etc. Guibas et al. [25] reduced the subpath hull query time to O(logn)
but the space becomes O(n log logn). A trade-off was also made with O(logn log\ast n)
query time and O(n log\ast n) space [25].

As compact interval trees are quite amenable, the results of Guibas et al. [25]
have found many applications, e.g., [5, 17, 15, 16, 18, 19, 36]. Clearly, there is still
some room for further improvement on the results of Guibas et al. [25]; the ultimate
goal might be an O(n) space data structure with O(logn) query time. In this paper,
we achieve this goal. The preprocessing time of our data structure is O(n), after the
vertices of \pi are sorted by x-coordinate. Like the results of Guibas et al. [25], our
query algorithm also returns a compact interval tree that can support logarithmic time
queries for all binary-search-based queries on the convex hull of the query subpath;
the edges of the convex hull can be retrieved in time linear in the number of vertices
of the convex hull. Note that like those in [25] our results are for the random access
machine (RAM) model.

With our new result, previous applications that use the results of Guibas et al. [25]
can now be improved accordingly. We will demonstrate some of them, including the
problem of enclosing polygons by two minimum area rectangles [6, 5], computing a
guarding set for simple polygons in a wireless location [18], computing optimal time-
convex hulls [19], L1 top-k weighted sum aggregate nearest and farthest neighbor
searching [36], etc. For all these problems, we reduce the space of their algorithms by
a log logn factor while the time complexities are the same as before or even better.

We should point out that Wagener [35] proposed a parallel algorithm for comput-
ing a data structure, called bridge tree, for representing the convex hull of a simple
path \pi . If using one processor, for any query subpath of \pi , Wagener [35] showed
that the bridge tree can be used to answer decomposable queries1 on the convex
hull of the query subpath in logarithmic time each. Wagener [35] claimed that some
nondecomposable queries can also be handled; however no details were provided. In
contrast, our approach returns a compact interval tree that is more amenable (indeed,
the bridge trees [35] were mainly designed for parallel processing) and can support
both decomposable and nondecomposable queries. In addition, if one wants to output
the convex hull of the query subpath, our approach can do so in time linear in the
number of the vertices of the convex hull, while the method of Wagener [35] needs
O(n) time.

1.1. Ray-shooting. With the help of our subpath hull query data structure
and many other new techniques, we present improved results for several classical ray-
shooting problems. These problems have been studied extensively. Previously, data
structures of \widetilde O(

\surd 
n) query time and near-linear space were known in the early 1990s;

nearly no progress has been made for over two decades. Our new results reduce the

1A convex hull query is decomposable if the answer to the query on a point set S can be obtained
in constant time from the answers to the queries on S1 and S2, where S1 and S2 form a disjoint
partition of S. For example, the following queries are decomposable: find the most extreme vertex
of the convex hull along a query direction; find the two tangents to the convex hull from a query
point outside the hull. The following query is not decomposable: find the intersection of the convex
hull with a query line.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

3/
24

 to
 7

3.
65

.1
74

.3
5 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



1134 HAITAO WANG

space by at least a logarithmic factor while still achieving the same or even better
preprocessing and query times.

In the following, we use a triple (T (n), S(n),Q(n)) to represent the complexity of
a data structure, where T (n) is the preprocessing time, S(n) is the space, and Q(n) is
the query time. We will confine the discussion of the previous work to data structures
of linear or near-linear space. Refer to Table 1 for a summary. Throughout the paper,
we use \delta to refer to an arbitrarily small positive constant.

Ray-shooting among lines. Given a set of n lines in the plane, the problem is to
build a data structure so that the first line hit by a query ray can be quickly found.

For this problem, Bar-Yehuda and Fogel [4] gave a data structure of complexity
O(n1.5, n log2 n,

\surd 
n logn). Cheng and Janardan [17] gave a data structure of complex-

ity O(n1.5 log2 n,n logn,
\surd 
n logn). Agarwal and Sharir [2] developed a data structure

of complexity O(n logn,n logn,n1/2+\delta ).
By using our subpath hull query data structure and a result from Chazelle and

Guibas [12], we present a new data structure of complexity O(n1.5, n,
\surd 
n logn). This

is the first time that this problem has been solved in \widetilde O(
\surd 
n) time while using only

O(n) space.
We also consider a more general first-k-hits query, i.e., given a query ray and an in-

teger k, report the first k lines hit by the ray. This problem was studied by Bar-Yehuda
and Fogel [4], who gave a data structure of complexity O(n1.5, n log2 n,

\surd 
n logn +

k log2 n). Our new result is a data structure of complexity O(n1.5, n,
\surd 
n logn +

k logn).
Intersection detection. Given a set of n line segments in the plane, the prob-

lem is to build a data structure to determine whether a query line intersects at

Table 1
Summary of the results. The big-O notation is omitted. \delta can be any small positive constant.

The results marked with * hold with high probability (except that the result of Chan [9] is expected),
and the corresponding preprocessing times are expected times.

Preprocessing

time Space Query time Source

n1.5 n log2 n
\surd 
n logn BF [4]

Ray-shooting n1.5 log2 n n logn
\surd 
n logn CJ [17]

among lines n logn n logn n0.5+\delta AS [2]

n1.5 n
\surd 
n logn Thm 4.2

n logn n
\surd 
n logn* Thm 4.2

Intersection n1.5 log2 n n logn
\surd 
n logn CJ [17]

detection n1.5 n
\surd 
n logn Thm 4.14

among segments n logn n
\surd 
n logn* Thm 4.5

n\alpha (n) log3 n n log2 n n0.695 logn OSS [34]

n\alpha (n) log3 n n\alpha (n) n2/3+\delta GOS [26]

Ray-shooting n1.5 log4.33 n n\alpha (n) log4 n
\sqrt{} 

n\alpha (n) log2 n A [1]

among (n\alpha (n))1.5 n\alpha (n) log2 n
\sqrt{} 

n\alpha (n) logn BF [4]
intersecting n1.5 log2 n n log2 n

\surd 
n logn CJ [17]

segments n log2 n n log2 n n0.5+\delta AS [2]

n log3 n n log2 n
\surd 
n log2 n * C [9]

n1.5 n logn
\surd 
n logn Thm 4.14

n log2 n n logn
\surd 
n logn * Thm 4.7

Ray-shooting n logn n n0.695 logn OSS [34]

among n1.5 log4.33 n n\alpha (n) log3 n
\surd 
n log2 n A [1]

nonintersecting n1.5 n logn
\surd 
n logn BF [4]

segments n1.5 n
\surd 
n logn Thm 4.14

n logn n
\surd 
n logn * Thm 4.6

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SUBPATH CONVEX HULL QUERIES AND RAY-SHOOTING 1135

least one segment. Cheng and Janardan [17] gave a data structure of complexity
O(n1.5 log2 n,n logn,

\surd 
n logn). By adapting the interval partition trees of Overmars

et al. [34] (which relies on the conjugation trees of Edelsbrunner and Welzl [23]) to
the partition trees of Matou\v sek [31, 32], we obtain a data structure of complexity
O(n1.5, n,

\surd 
n logn). To this end, we have to use Matou\v sek's techniques in both [31]

and [32] and modify them in a not-so-trivial manner.
Ray-shooting among segments. Given a set of n (possibly intersecting) line seg-

ments in the plane, the problem is to build a data structure to find the first seg-
ment hit by a query ray. For this problem, Overmars et al. [34] developed a data
structure of complexity O(n\alpha (n) log3 n,n log2 n,n0.695 logn), where \alpha (n) is the in-
verse Ackermann function. Guibas et al. [26] presented a data structure of complex-
ity O(n\alpha (n) log3 n,n\alpha (n), n2/3+\delta ). Agarwal [1] gave a data structure of complexity
O(n1.5 log4.33 n,n\alpha (n) log4 n,

\sqrt{} 
n\alpha (n) log2 n). Bar-Yehuda and Fogel [4] gave a data

structure of complexity O((n\alpha (n))1.5, n\alpha (n) log2 n,
\sqrt{} 
n\alpha (n) logn). Cheng and Janar-

dan [17] developed a data structure of complexity O(n1.5 log2 n,n log2 n,
\surd 
n logn).

Agarwal and Sharir's data structure [2] has complexity O(n log2 n,n log2 n,n0.5+\delta ).
Chan's randomized techniques [9] yielded a data structure with the following com-
plexity: O(n log3 n,n log2 n,

\surd 
n log2 n), where the query time is expected.

Cheng and Janardan's algorithm [17] relies on their results for the ray-shooting
problem among lines and the intersection detection problem. Following their al-
gorithmic scheme and using our new results above for these two problems, we ob-
tain a data structure for the ray-shooting problem among segments with complexity
O(n1.5, n logn,

\surd 
n logn). This is the first data structure of \widetilde O(

\surd 
n) query time that

uses only O(n logn) space.
If the segments are nonintersecting, better results exist. Overmars et al. [34]

gave a data structure of complexity O(n logn,n,n0.695 logn). Agarwal [1] presented
a data structure of complexity O(n1.5 log4.33 n,n\alpha (n) log3 n,

\surd 
n log2 n). Bar-Yehuda

and Fogel [4] proposed a data structure of complexity O(n1.5, n logn,
\surd 
n logn). Our

new data structure has complexity O(n1.5, n,
\surd 
n logn). This is the first result of\widetilde O(

\surd 
n) query time that uses only O(n) space. If the segments form the boundary of

a simple polygon, there exist data structures of complexity O(n,n, logn) [11, 13, 28].
Randomized results. Using Chan's randomized techniques [9], the preprocessing

time of all our above results can be reduced to O(n logn) expected time (except
O(n log2 n) expected time for the ray-shooting problem among intersecting segments),
while the same query time complexities hold with high probability (i.e., probability
at least 1 - 1/nc for any large constant c).

Outline. The rest of the paper is organized as follows. In section 2 we review
some previous work of the subpath hull query problem; section 3 presents our new
data structure for the problem. Section 4 is concerned with the ray-shooting problem.
Other applications of our subpath hull query result are discussed in section 5.

2. Preliminaries. Let p1, . . . , pn be the vertices of a simple path \pi ordered along
\pi . For any two indices i and j with 1\leq i\leq j \leq n, we use \pi (i, j) to refer to the subpath
of \pi from pi to pj . Given a pair (i, j) of indices with 1 \leq i \leq j \leq n, the subpath hull
query asks for the convex hull of \pi (i, j).

The convex hull of a simple path can be found in linear time, e.g., [24, 33]. Note
that the convex hull of a simple path is the same as the convex hull of its vertices. For
this reason, in our discussion a subpath \pi \prime of \pi actually refers to its vertex set. For
each subpath \pi \prime of \pi , we use | \pi \prime | to denote the number of vertices of \pi \prime ; we consider
the endpoint of \pi \prime that is closer to p1 in \pi as the first vertex of \pi \prime while the other

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1136 HAITAO WANG

endpoint is the last vertex of \pi \prime . So pi is the first vertex and pj is the last vertex of
\pi (i, j).

For any set P of points in the plane, let H(P ) denote the convex hull of P . Denote
by HU (P ) and HL(P ) the upper and lower hulls, respectively.

Interval trees. Let S be a set of n points in the plane. The interval tree T (S) is
a complete binary tree whose leaves from left to right correspond to the points of S
sorted from left to right. Each internal node corresponds to the interval between the
rightmost leaf in its left subtree and the leftmost leaf in its right subtree. We say that
a segment joining two points of S spans an internal node v if v is between the two
endpoints of the segment in the in-order traversal of the nodes of T (S) (or equivalently,
the projection of the interval of v on the x-axis is contained in the projection of the
segment on the x-axis).

We store each edge e of the upper hull HU (S) at the highest node of T (S) that e
spans (e.g., see Figure 1). By also storing the edges of the lower hull HL(S) in T (S) in
the same way, we can answer all standard binary-search-based queries on the convex
hull H(S) in O(logn) time by following a path from the root of T (S) to a leaf [25].
The main idea is that the edge of HU (S) (resp., HL(S)) spanning a node v of T (S)
is stored either at v or at one of v's ancestors and only at most two ancestors closest
to v (one to the left and the other to the right of v) need to be remembered during
the search (see [25, Lemma 4.1] for details).

Compact interval trees. As the size of T (S) is \Theta (n) while | H(S)| may be much
smaller than n, where | H(S)| is the number of edges of H(S), using T (S) to store
H(S) may not be space-efficient. Guibas et al. [25] proposed to use a compact interval
tree TU (S) of O(| HU (S)| ) size to store HU (S), as follows. In T (S), a node v is empty
if it does not store an edge of HU (S); otherwise it is full. It was shown in [25] that
if two nodes of T (S) are full, then their lowest common ancestor is also full. We
remove empty nodes from T (S) by relinking the tree to make each full node the child
of its nearest full ancestor. Let TU (S) be the new tree and we still use T (S) to
refer to the original interval tree without storing any hull edges. Each node of TU (S)
stores exactly one edge of HU (S), and thus TU (S) has | HU (S)| nodes. After O(n)
time preprocessing on T (S) (specifically, build a lowest common ancestor query data
structure [7, 27], with constant query time), TU (S) can be computed from HU (S)
in O(| HU (S)| ) time (see [25, Lemma 4.4]). Similarly, we use a compact interval tree
TL(S) of | HL(S)| nodes to storeHL(S). Then, using the three trees TU (S), TL(S), and

Fig. 1. Illustrating an interval tree that stores upper hull edges: The (blue) dashed lines with
arrows indicate where edges are stored. Note that some leaves do not correspond to any points, and
that is because the points corresponding to these leaves are not vertices of the upper hull. (Color
available online.)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SUBPATH CONVEX HULL QUERIES AND RAY-SHOOTING 1137

T (S), all standard binary-search-based queries on H(S) can be answered in O(logn)
time. The main idea is that the algorithm walks down through the compact interval
trees while keeping track of the corresponding position in T (S) (see [25, Lemma 4.3]
for details). We call T (S) a reference tree. In addition, using TU (S) and TL(S), H(S)
can be output in O(| H(S)| ) time.

As discussed above, to represent H(S), we need two compact interval trees, one
for HU (S) and the other for HL(S). To make our discussion more concise, we will
simply say ``the compact interval tree"" for S and use T+(S) to refer to it, which
actually includes two trees.

Compact interval trees for \pi . Consider two consecutive subpaths \pi 1 and \pi 2 of
\pi (i.e., the concatenation of \pi 1 and \pi 2 is a subpath of \pi ). Suppose their compact
interval trees T+(\pi 1) and T+(\pi 2) as well as the interval tree T (\pi ) of \pi are available.
It is known that the convex hulls of two consecutive subpaths of a simple path have
at most two outer common tangents [12]. Hence, H(\pi 1) and H(\pi 2) have at most
two outer common tangents. By using the path-copying method of persistent data
structures [20], Guibas et al. [25] obtained the following result.

Lemma 2.1 (Guibas et al. [25]). Without altering T+(\pi 1) and T+(\pi 2), the com-
pact interval tree T+(\pi 1 \cup \pi 2) can be produced (the root of the tree will be returned)
in O(logn) time and O(logn) additional space.

Lemma 2.2 (Guibas et al. [25]). Given the interval tree T (\pi ), with O(n) time
preprocessing, we can compute T+(\pi \prime ) for any subpath \pi \prime of \pi in O(| \pi \prime | ) time.

Proof. We preprocess T (\pi ) in the same way T (S) is preprocessed, which was
discussed before (i.e., build a lowest common ancestor query data structure [7, 27],
with constant query time). For any subpath \pi \prime of \pi , we first compute its convex hull
H(\pi \prime ) in O(| \pi \prime | ) time [24, 33]. Then, as discussed before, T+(\pi \prime ) can be constructed
in O(| H(\pi \prime )| ) time [25, Lemma 4.4].

3. Subpath hull queries. In this section, we present our new data structure
for subpath hull queries. We first compute a sorted list of all vertices of \pi by x-
coordinate. As will be seen later, the rest of the preprocessing of our data structure
takes O(n) time in total.

3.1. A decomposition tree. After having the interval tree T (\pi ), we construct
a decomposition tree \Psi (\pi ), which is a segment tree on the vertices of \pi following their
order along \pi . Specifically, \Psi (\pi ) is a complete binary tree with n leaves corresponding
to the vertices of \pi in order along \pi . Each internal node v of \Psi (\pi ) corresponds to the
subpath \pi (av, bv), where av (resp., bv) is defined to be the index of the vertex of \pi 
corresponding to the leftmost (resp., rightmost) leaf of the subtree of \Psi (\pi ) rooted at
v; we call \pi (av, bv) a canonical subpath of \pi and use \pi (v) to denote it.

Next, we remove some nodes in the lower part of \Psi (\pi ), as follows. For each node v
whose canonical path has at most log2 n vertices and whose parent canonical subpath
has more than log2 n vertices, we remove both the left and the right subtrees of v
from \Psi (\pi ) but explicitly store \pi (v) at v, after which v becomes a leaf of the new tree.
From now on we use \Psi (\pi ) to refer to the new tree. It is not difficult to see that \Psi (\pi )
now has O(n/ log2 n) nodes.

We then compute compact interval trees T+(\pi (v)) for all nodes v of \Psi (\pi ) in a
bottom-up manner. Specifically, if v is a leaf, then \pi (v) has at most log2 n vertices,
and we compute T+(\pi (v)) from scratch, which takes O(log2 n) time by Lemma 2.2.
If v is not a leaf, then T+(\pi (v)) can be obtained by merging the two compact interval

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1138 HAITAO WANG

trees of its children, which takes O(logn) time by Lemma 2.1. In this way, computing
compact interval trees for all nodes of \Psi (\pi ) takes O(n) time in total, for \Psi (\pi ) has
O(n/ log2 n) nodes.

3.2. A preliminary query algorithm of \bfitO (log2\bfitn ) time. Consider a sub-
path hull query (i, j). We first present an O(log2 n) time query algorithm using \Psi (\pi )
and then reduce the time to O(logn). Depending on whether the two vertices pi and
pj are in the same canonical subpath of a leaf of \Psi (\pi ), there are two cases.
Case 1. If yes, let v be the leaf. Then, \pi (i, j) is a subpath of \pi (v) and thus has at

most log2 n vertices. We compute T+(\pi (i, j)) from scratch in O(log2 n) time
by Lemma 2.2.

Case 2. Otherwise, let v be the leaf of \Psi (\pi ) whose canonical subpath contains pi and
u the leaf whose canonical subpath contains pj . Let w be the lowest common
ancestor of u and v. As in [25], we partition \pi (i, j) into two subpaths \pi (i, k)
and \pi (k + 1, j), where k = bw\prime with w\prime being the left child of w (recall the
definition of bw\prime given before). We will compute the compact interval trees
for the two subpaths separately and then merge them to obtain T+(\pi (i, j))
in additional O(logn) time by Lemma 2.1. We only discuss how to compute
T+(\pi (i, k)) since the other tree can be computed likewise.
We further partition \pi (i, k) into two subpaths \pi (i, bv) and \pi (bv + 1, k). We
will compute the compact interval trees for them separately and then merge
the two trees to obtain T+(\pi (i, k)).
For computing T+(\pi (i, bv)), as \pi (i, bv) is a subpath of \pi (v), it has at most
log2 n vertices. Hence, we can compute T+(\pi (i, bv)) from scratch in O(log2 n)
time.
For computing T+(\pi (bv+1, k)), observe that \pi (bv+1, k) is the concatenation
of the canonical subpaths of O(logn) nodes of \Psi (\pi ); precisely, these nodes
are the right children of their parents that are in the path of \Psi (\pi ) from
v's parent to w\prime and these nodes themselves are not on the path. Since
the compact interval trees of these nodes are already available due to the
preprocessing, we can produce T+(\pi (bv+1, k)) in O(log2 n) time by merging
these trees.

In summary, we can compute T+(\pi (i, j)) in O(log2 n) time in either case.

3.3. Reducing the query time to \bfitO (log\bfitn ). In what follows, we reduce the
query time to O(logn), with additional preprocessing time O(n).

To reduce the time for Case 1, we perform the following preprocessing. For
each leaf v of \Psi (\pi ), we preprocess the path \pi (v) in the same way as above for
preprocessing \pi . This means that we construct an interval tree T (\pi (v)) as well as
a decomposition tree \Psi (\pi (v)) for the subpath \pi (v). To answer a query for Case 1,
we instead use \Psi (\pi (v)) (and use T (\pi (v)) as the reference tree). The query time be-
comes O(log2 logn) as | \pi (v)| \leq log2 n. Note that to construct T (\pi (v)) and \Psi (\pi (v))
in O(| \pi (v)| ) time, we need to sort all vertices of \pi (v) by x-coordinate in O(| \pi (v)| )
time. Recall that we already have a sorted list of all vertices of \pi , from which we can
obtain sorted lists for \pi (v) for all leaves v of \Psi (\pi ) in O(n) time altogether. Hence,
the preprocessing for \pi (v) for all leaves v of \Psi (\pi ) takes O(n) time.

We proceed to Case 2. To reduce the query time to O(logn), we will discuss
how to perform additional preprocessing so that T+(\pi (i, k)) can be computed in
O(logn) time. Computing T+(\pi (k + 1, j)) can be done in O(logn) time similarly.
Finally we can merge the two trees to obtain T+(\pi (i, j)) in additional O(logn) time by
Lemma 2.1.
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SUBPATH CONVEX HULL QUERIES AND RAY-SHOOTING 1139

To compute T+(\pi (i, k)) in O(logn) time, according to our algorithm it suffices to
compute both T+(i, bv) and T+(bv+1, k) in O(logn) time. We discuss T+(i, bv) first.

Dealing with T+(\pi (i, bv)). To compute T+(i, bv) in O(logn) time, we perform the
following additional preprocessing. For each leaf v of \Psi (\pi ), recall that | \pi (v)| \leq log2 n;
we partition \pi (v) into tv \leq logn subpaths each of which contains at most logn vertices.
We use \pi v(1), \pi v(2), . . . , \pi v(tv) to refer to these subpaths in order along \pi (v). For each
subpath \pi v(i), we compute T+(\pi v(i)) from scratch in O(logn) time. The total time
for computing all such trees is O(log2 n). Next, we compute compact interval trees
for tv prefix subpaths of \pi (v). Specifically, for each t\in [1, tv], we compute T+(\pi v[1, t]),
where \pi v[1, t] is the concatenation of the paths \pi v(1), \pi v(2), . . . , \pi v(t). This can be
done in O(log2 n) time by computing T+(\pi v[1, t]) incrementally for t = 1,2, . . . , tv
using the merge algorithm of Lemma 2.1. Indeed, initially T+(\pi v[1, t]) = T+(\pi v(1)),
which is already available. Then, for each 2 \leq t \leq tv, T

+(\pi v[1, t]) can be produced
by merging T+(\pi v[1, t - 1]) and T+(\pi v(t)) in O(logn) time. Similarly, we compute
compact interval trees for tv suffix subpaths of \pi (v): T+(\pi v[t, tv]) for all t= 1,2, . . . , tv,
where \pi v[t, tv] is the concatenation of the paths \pi v(t), \pi v(t+ 1), . . . , \pi v(tv). This can
be done in O(log2 n) time by a similar algorithm as above. Thus, the preprocessing
on v takes O(log2 n) time; the preprocessing on all leaves of \Psi (\pi ) takes O(n) time in
total.

We can now compute T+(i, bv) in O(logn) time as follows. Recall that \pi (i, bv) is
a subpath of \pi (v) and bv is the last vertex of \pi (v). We first determine the subpath
\pi v(t) that contains i. Let g be the last vertex of \pi v(t). We partition \pi (i, bv) into
two subpaths \pi (i, g) and \pi (g + 1, bv), and we will compute their compact interval
trees separately and then merge them to obtain T+(\pi (i, bv)). For \pi (i, g), as \pi (i, g)
is a subpath of \pi v(t) and | \pi v(t)| \leq logn, we can compute T+(\pi (i, g)) from scratch
in O(logn) time. For \pi (g + 1, bv), observe that \pi (g + 1, bv) is exactly the suffix
subpath \pi v[t+ 1, tv], whose compact interval tree has already been computed in the
preprocessing. Hence, T+(i, bv) can be produced in O(logn) time.

Dealing with T+(\pi (bv + 1, k)). To compute T+(bv + 1, k) in O(logn) time, we
perform the following preprocessing, which was also used by Guibas et al. [25]. Recall
that \pi (bv + 1, k) is the concatenation of the canonical paths of O(logn) nodes that
are right children of the nodes on the path in \Psi (\pi ) from v's parent to the left child of
w (and these nodes themselves are not on the path). Hence, this sequence of nodes
can be uniquely determined by the leaf-ancestor pair (v,w); we use \pi v,w to denote
the above concatenated subpath of \pi .

Correspondingly, in the preprocessing, for each leaf v we do the following. For
each ancestor w of v, we compute the compact interval tree for the subpath \pi v,w. As
v has O(logn) ancestors, computing the trees for all ancestors takes O(log2 n) time
using the merge algorithm of Lemma 2.1. Hence, the total preprocessing time on
v is O(log2 n), and thus the total preprocessing time on all leaves of \Psi (\pi ) is O(n),
since \Psi (\pi ) has O(n/ log2 n) leaves. Due to the above preprocessing, T+(bv + 1, k) is
available during queries.

Wrapping up. In summary, with O(n) time preprocessing (excluding the time
for sorting the vertices of \pi ), we can build a data structure of O(n) space that can
answer each subpath hull query in O(logn) time. Compared to the method of Guibas
et al. [25], our innovation is threefold. First, we process subpaths individually to
handle queries of Case 1. Second, we precompute the compact interval trees for
convex hulls of the prefix and suffix subpaths of \pi (v) for each leaf v of \Psi (\pi ). Third,
we use a smaller decomposition tree \Psi (\pi ) of only O(n/ log2 n) nodes. The following
theorem summarizes our result.
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1140 HAITAO WANG

Theorem 3.1. Given a simple path \pi of n vertices in the plane, after all vertices
are sorted by x-coordinate, a data structure of O(n) space can be built in O(n) time so
that each subpath hull query can be answered in O(logn) time. The query algorithm
produces a compact interval tree representing the convex hull of the query subpath,
which can support all binary-search-based operations on the convex hull in O(logn)
time each. These operations include (but are not limited to) the following (let \pi \prime 

denote the query subpath and let H(\pi \prime ) be its convex hull):
1. Given a point, decide whether the point is in H(\pi \prime ).
2. Given a point outside H(\pi \prime ), find the two tangents from the point to H(\pi \prime ).
3. Given a direction, find the most extreme point of \pi \prime along the direction.
4. Given a line, find its intersection with H(\pi \prime ).
5. Given a convex polygon (represented in any data structure that supports binary

search), decide whether it intersects H(\pi \prime ), and if not, find their common
tangents (both outer and inner).

In addition, H(\pi \prime ) can be output in time linear in the number of vertices of H(\pi \prime ).

Proof. Refer to Guibas et al. [25] for some details on how to perform operations
on the convex hull H(\pi \prime ) using compact interval trees.

Note that other than the ray-shooting problem in section 4, the results of Theo-
rem 3.1 have direct applications to many problems, which will be discussed in section 5.

4. Ray-shooting. In this section, we present our results on the ray-shooting
problem. The ray-shooting problem among lines is discussed in section 4.1. Section 4.2
is concerned with the intersection detection problem and the ray-shooting problem
among segments.

4.1. Ray-shooting amid lines. Given a set of n lines in the plane, we wish to
build a data structure so that the first line hit by a query ray can be found efficiently.
The problem is usually tackled in the dual plane, e.g., [17]. Let P be the set of dual
points of the lines. In the dual plane, the problem is equivalent to the following:
Given a query line lq, a pivot point q \in lq, and a rotation direction (clockwise or
counterclockwise), find the first point of P hit by rotating lq around q.

A spanning path \pi (P ) of P is a polygonal path connecting all points of P such
that P is the vertex set of the path. Hence, \pi (P ) corresponds to a permutation of
P . For any line l in the plane, let \sigma (l) denote the number of edges of \pi (P ) crossed
by l. The stabbing number of \pi (P ) is the largest \sigma (l) of all lines l in the plane. It
is known that a spanning path of P with stabbing number O(

\surd 
n) always exists [14],

which can be computed in O(n1+\delta ) time using Matou\v sek's partition tree [32] (e.g.,
by a method in [14]). Let \pi \prime (P ) denote such a path. Note that \pi \prime (P ) may have
self-intersections. Using \pi \prime (P ), Edelsbrunner et al. [21] gave an algorithm that can
produce another spanning path \pi (P ) of P such that the stabbing number of \pi (P )
is also O(

\surd 
n) and \pi (P ) has no self-intersections (i.e., \pi (P ) is a simple path); the

runtime of the algorithm is O(n1.5). Below we will use \pi (P ) to solve our problem.
We first build a data structure using the following lemma for \pi (P ).

Lemma 4.1 (Chazelle and Guibas [12]). We can build a data structure of O(n)
size in O(n logn) time for any simple path of n vertices, so that given any query line
lq, if lq intersects the path in k edges, then these edges can be found in O(k log n

k )
time.

Then, we construct the subpath hull query data structure of Theorem 3.1 for
\pi (P ). This finishes our preprocessing.
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SUBPATH CONVEX HULL QUERIES AND RAY-SHOOTING 1141

Given a query line lq, along with the pivot q and the rotation direction, we first
use Lemma 4.1 to find the edges of \pi (P ) intersecting lq. As the stabbing number
of \pi (P ) is O(

\surd 
n), this step finds O(

\surd 
n) edges intersecting lq in O(

\surd 
n logn) time.

Then, using these edges, we can partition \pi (P ) into O(
\surd 
n) subpaths, each of which

does not intersect lq. For each subpath, we use our subpath hull query data structure
to compute its convex hull in O(logn) time. Next, we compute the tangents from the
pivot q to each of these O(

\surd 
n) convex hulls, in O(logn) time each by Theorem 3.1.

Using these O(
\surd 
n) tangents, based on the rotation direction of lq, we can determine

the first point of P hit by lq in additional O(
\surd 
n) time (more specifically, the first

point should be the one that causes lq to rotate the smallest angle to reach along the
given rotation direction). Hence, the total time of the query algorithm is O(

\surd 
n logn).

Theorem 4.2. There exists a data structure of complexity O(n1.5, n,
\surd 
n logn)

for the ray-shooting problem among lines. The preprocessing time can be reduced
to O(n logn) time by a randomized algorithm while the query time is bounded by
O(

\surd 
n logn) with high probability.

Proof. We first discuss the deterministic result. The query time is O(
\surd 
n logn),

as explained above. The space is used for the data structure in Lemma 4.1 and the
subpath hull query data structure in Theorem 3.1, which is O(n). For the prepro-
cessing time, computing \pi (P ) takes O(n1.5) time. Building the data structure for
Lemma 4.1 and the subpath hull query data structure can be done in O(n logn) time.
Hence, the total preprocessing time is O(n1.5).

For the randomized result, Chan [9] gave an O(n logn) time randomized algorithm
to compute a spanning path \pi \prime \prime (P ) for P such that \pi \prime \prime (P ) is a simple path and the
stabbing number of \pi \prime \prime (P ) is at most O(

\surd 
n) with high probability. After having

\pi \prime \prime (P ), we build the data structure for Lemma 4.1 and the subpath hull query data
structure. Hence, the preprocessing takes O(n logn) time and O(n) space, and the
query time is bounded by O(

\surd 
n logn) with high probability.

Remark. As indicated in [21], ray-shooting can be used to determine whether two
query points p and q are in the same face of the arrangement of a set of lines. Indeed,
let \rho be the ray originated from p towards q. Then, p and q are in the same face of
the arrangement if and only if \rho hits the first line after q.

We can extend the above algorithm to obtain the following result on the first-k-hit
queries.

Theorem 4.3. Given a set of n lines in the plane, we can build a data structure
of O(n) space in O(n1.5) time so that given a ray and an integer k, we can find the
first k lines hit by the ray in O(

\surd 
n logn+ k logn) time. The preprocessing time can

be reduced to O(n logn) by a randomized algorithm while the query time is bounded
by O(

\surd 
n logn+ k logn) with high probability.

Proof. We still work in the dual plane and use the same notation as above. In
the dual plane, the problem is equivalent to finding the first k points that are hit by
lq when it is rotating around the pivot q following the given direction. We perform
exactly the same processing as before. Let p1, p2, . . . , pn be the points of P ordered
along \pi (P ).

Consider a query with lq and q. We first determine a set \Pi of O(
\surd 
n) subpaths of

\pi (P ) that do not intersect lq. Then, we find the first point pi hit by rotating lq in the
same way as before. This takes O(

\surd 
n logn) time. We continue rotating lq to find the

second point. To this end, we need to update the set \Pi so that the new \Pi contains
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lq q pi

pi+1

pi−1

lq q
pi

pi+1pi−1

lq q pi

pi+1pi−1

(a) (b) (c)

Fig. 2. Illustrating the three cases for Theorem 4.3: lq is the dashed line rotating clockwise
around q.

the O(
\surd 
n) subpaths of \pi (P ) that do not intersect lq at its current position (i.e., after

it rotated over pi). As lq has rotated over only one point of P , we can update \Pi in
constant time as follows.

If pi - 1 and pi+1 are in different sides of lq, then pi is an endpoint of a subpath \pi 1

of \Pi (e.g., see Figure 2(a)). Without loss of generality, we assume that pi - 1 is also
in \pi 1. Thus, pi+1 is the endpoint of another subpath \pi 2. To update \Pi , we remove pi
from \pi 1 and append pi to \pi 2 (so pi becomes a new endpoint of \pi 2).

If pi - 1 and pi+1 are in the same side of lq, then there are two subcases depending
on whether pi and pi - 1 are in the same side of lq, where lq refers to the line at its
original position before it rotated over pi. If pi and pi - 1 are in the same side of lq, then
all three points pi - 1, pi, pi+1 are in the same subpath \pi 3 of \Pi (e.g., see Figure 2(b)).
To update \Pi , we break \pi 3 into three subpaths by removing the two edges pi - 1pi and
pipi+1 (so pi itself forms a subpath). If pi and pi - 1 are not in the same side of lq,
then the three points pi - 1, pi, pi+1 are in three different subpaths of \Pi (in particular,
pi itself forms a subpath; e.g., see Figure 2(c)). To update \Pi , we merge these three
subpaths into one subpath.

Since updating \Pi only involves O(1) subpath changes as discussed above, we can
compute the convex hulls of the new subpaths and the tangents from q in O(logn)
time by Theorem 3.1. Hence, computing the next hit point takes O(logn) time. We
continue rotating lq in this way until k points are found. The total query time is
bounded by O(

\surd 
n logn+ k logn).

For the same reason as in Theorem 4.2, the randomized result also follows.

4.2. Intersection detection and ray-shooting amid segments. Given a set
S of n segments in the plane, an intersection detection query asks whether a query
line intersects at least one segment of S. One motivation to study the problem is that
it is a subproblem in our algorithm for the ray-shooting problem among segments.

To find a data structure to store the segments of S, we adapt the techniques
of Overmars et al. [34] to the partition trees of Matou\v sek [31, 32] (to obtain the
deterministic result) as well as that of Chan [9] (to obtain the randomized result).
To store segments, Overmars et al. [34] used a so-called interval partition tree, whose
underling structure is a conjugation tree of Edelsbrunner and Welzl [23]. The idea
is quite natural due to the nice properties of conjugation trees: Each parent region
is partitioned into exactly two disjoint children regions by a line. The drawback of
conjugation trees is the slow \widetilde O(n0.695) query time. When adapting the techniques to
more query-efficient partition trees such as those in [9, 31, 32], two issues arise. First,
each parent region may have more than two children. Second, children regions may
overlap. Chan's partition tree [9] does not have the second issue while both issues
appear in Matou\v sek's partition trees [31, 32]. As a matter of fact, the second issue
incurs a much bigger challenge. In the following, we first present our randomized
result by using Chan's partition tree [9], which is relatively easy, and then discuss
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SUBPATH CONVEX HULL QUERIES AND RAY-SHOOTING 1143

the deterministic result using Matou\v sek's partition trees [31, 32]. The description
of the randomized result may also serve as a ``warm-up"" for our more complicated
deterministic result.

We begin with the following lemma, which solves a special case of the problem.
The lemma will be needed in both our randomized and deterministic results.

Lemma 4.4. Suppose all segments of S intersect a given line segment.
1. We can build a data structure of O(n) space in O(n logn) time so that whether

a query line intersects any segment of S can be determined in O(logn) time.
2. If the segments of S are nonintersecting, then we can build a data structure

of O(n) space in O(n logn) time so that the first segment hit by a query ray
can be found in O(logn) time.

Proof. Let s be the line segment that intersects all segments of S. Without loss
of generality, we assume that s is horizontal. Let \ell be the line containing s. For each
segment s\prime \in S, we divide it into two subsegments by its intersection with \ell ; let S1

(resp., S2) be the set of all such subsegments above (resp., below) \ell . In the following
we describe our preprocessing algorithm for S1; the set S2 will be preprocessed by the
same algorithm.

We consider the line segment arrangement \scrA of all segments of S1 and the line
\ell in the closed halfplane above \ell . Alevizos et al. [3] proved that every cell of \scrA is of
complexity O(n). Let C denote the external cell of \scrA , i.e., the cell containing the left
endpoint of s. Alevizos et al. [3] gave an O(n logn) time algorithm to compute C. As
C is simply connected, we may treat it as a simple polygon; for this, we could add two
edges at infinity so that the closed halfplane above \ell becomes a big triangle and we
call the two edges dummy edges. In O(n) time we build a point location data structure
[22, 29] on C so that given any point p in the plane, we can determine whether p\in C
in O(logn) time. We also build a ray-shooting data structure [11, 13, 28] on C in
O(n) time so that given a ray whose origin is in C, the first edge of the boundary
\partial C hit by the ray can be found in O(logn) time. This finishes our preprocessing
for S1, which uses O(n logn) time and O(n) space. We do the same preprocessing
for S2.

Given a query line l, l intersects a segment of S if and only if it intersects a
segment of S1 \cup S2. Hence, it suffices to determine whether l intersects a segment of
S1 and whether l intersects a segment of S2. Below we show that whether l intersects
a segment of S1 can be determined in O(logn) time. The same is true for the case
of S2.

We first assume that l is not parallel to \ell . Let p be the intersection of l and \ell .
We first determine whether p is in C by the point location data structure on C. If
p \not \in C, then p is in an internal cell of \scrA , implying that l must intersect a segment
of S1. Otherwise, let \rho be the ray from p going upwards along l. Using the above
ray-shooting data structure for C, we find the first edge e of \partial C hit by \rho . Observe
that l intersects a segment of S1 if and only if e is not a dummy edge. Hence, we can
determine whether l intersects a segment of S1 in O(logn) time.

If l is parallel to \ell , we can use a similar algorithm. Indeed, l must intersect the
left dummy edge of C, say, at a point p. Let \rho be the ray from p going rightwards
along l. Using the above ray-shooting data structure for C, we find the first edge e of
\partial C hit by \rho . l intersects a segment of S1 if and only if e is not a dummy edge. Hence,
we can determine whether l intersects a segment of S1 in O(logn) time. This proves
the first statement of the lemma.
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1144 HAITAO WANG

For the second statement of the lemma, since the segments of S are nonintersect-
ing, C is the only cell of \scrA . This nice property can help us to answer the ray-shooting
problem on S. We build a ray-shooting data structure on C as above. We do the
same preprocessing for S2.

Given any query ray \rho with origin p, to find the first segment of S hit by \rho , it is
sufficient to find the first segment of S1 hit by \rho and find the first segment of S2 hit
by \rho . In the following, we show that the first segment of S1 hit by \rho can be found in
O(logn) time. The same algorithm works for the case S2 as well.

Without loss of generality, we assume that \rho is going upwards. If p is above \ell ,
then p is in C. Using the ray-shooting data structure, we find the first edge e of \partial C
hit by \rho . If e is a dummy edge, then \rho does not hit any segment of S1; otherwise, the
segment that contains e is the first segment of S1 hit by \rho . If p is below \ell , let p\prime be
the intersection between \rho and \ell . Now we can follow the same algorithm as above by
considering p\prime as the new origin of \rho . Hence, the query time is O(logn).

4.2.1. The randomized approach. We first briefly review Chan's partition
tree [9] (which works for any fixed dimensional space; but for simplicity we only
discuss it in 2D, which suffices for our problem). Chan's partition tree for a set P
of n points, denoted by T , is a hierarchical structure by recursively subdividing the
plane into triangles. Each node v of T corresponds to a triangle, denoted by \bigtriangleup (v).
If v is the root, then \bigtriangleup (v) is the entire plane. If v is not a leaf, then v has O(1)
children whose triangles form a disjoint partition of \bigtriangleup (v). Define P (v) = P \cap \bigtriangleup (v).
The set P (v) is not explicitly stored at v unless v is a leaf, in which case | P (v)| =O(1).
The height of T is O(logn). Let \kappa (T ) denote the maximum number of triangles of T
that are crossed by any line in the plane. Chan [9] gave a randomized algorithm of
O(n logn) expected time to compute T such that \kappa (T ) is at most O(

\surd 
n) with high

probability.
Let P be the set of the endpoints of all segments of S (so | P | = 2n). We first

build the tree T as above. We then store the segments of S in T , as follows. For each
segment s, we apply the following algorithm. Starting from the root of T , for each
node v, we assume that s is contained in \bigtriangleup (v), which is true when v is the root. If
v is a leaf, then we store s at v; let S(v) denote the set of all segments stored at v.
If v is not a leaf, then we check whether s is in \bigtriangleup (u) for a child u of v. If yes, we
proceed on u. Otherwise, for each child u, for each edge e of \bigtriangleup (u), if s intersects e,
then we store s at the edge e (in this case we do not proceed to the children of u);
denote by S(e) the set of edges stored at e. This finishes the algorithm for storing s.
As each node of T has O(1) children, s is stored O(1) times and the algorithm runs
in O(logn) time. In this way, it takes O(n logn) time to store all segments of S, and
the total sum of | S(e)| and | S(v)| for all triangle edges e and all leaves v is O(n). In
addition, | S(v)| =O(1) for any leaf v, since | P (v)| =O(1) and both endpoints of each
segment s\in S(v) are in P (v).

Next, for each triangle edge e, since all edges of S(e) intersect e, we preprocess
S(e) using Lemma 4.4(1). Doing this for all triangle edges e takes O(n logn) time
and O(n) space.

Consider a query line l. Our goal is to determine whether l intersects any segment
of S. Starting from the root, we determine the set of nodes v whose triangles \bigtriangleup (v) are
crossed by l. For each such node v, if v is a leaf, then we check whether s intersects
l for each segment s \in S(v); otherwise, for each edge e of \bigtriangleup (v), we use the query
algorithm of Lemma 4.4(1) to determine whether l intersects any segment of S(e).
As the number of nodes v whose triangles \bigtriangleup (v) crossed by l is at most \kappa (T ) and
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SUBPATH CONVEX HULL QUERIES AND RAY-SHOOTING 1145

S(v) = O(1) for each leaf v, the total time of the query algorithm is O(\kappa (T ) \cdot logn).
The correctness of the algorithm is discussed in the proof of Theorem 4.5.

Theorem 4.5. Given a set S of n (possibly intersecting) segments in the plane,
we can build a data structure of O(n) space in O(n logn) randomized time so that
whether a query line intersects any segment of S can be determined in O(

\surd 
n logn)

time with high probability.

Proof. We have discussed the preprocessing time and space. We have also shown
that the query time is O(\kappa (T ) \cdot logn). Since \kappa (T ) is bounded by O(

\surd 
n) with high

probability, the query time is bounded by O(
\surd 
n logn) with high probability. It re-

mains to show the correctness of the query algorithm. Indeed, if the algorithm reports
the existence of an intersection, then according to our algorithm, it is true that l in-
tersects a segment of S. On the other hand, suppose l intersects a segment s, say,
at a point p. If s is stored at S(v) for a leaf v, then l must cross \bigtriangleup (v) and thus our
algorithm will detect the intersection. Otherwise, s must be stored in S(e) for an edge
e of a triangle \bigtriangleup (u) that contains p. Since p\in l, l must cross \bigtriangleup (u). According to our
query algorithm, the query algorithm of Lemma 4.4(1) will be invoked on S(e), and
thus the algorithm will report the existence of an intersection.

Suppose the segments of S are nonintersecting. In the above algorithm, if we re-
place Lemma 4.4(1) by Lemma 4.4(2) in both the preprocessing and query algorithms,
then we can obtain the following result.

Theorem 4.6. Given a set S of n nonintersecting segments in the plane, we can
build a data structure of O(n) space in O(n logn) randomized time so that the first
segment of S hit by a query ray can be found in O(

\surd 
n logn) time with high probability.

Proof. In the preprocessing, we use Lemma 4.4(2) to preprocess S(e) for each
triangle edge e. The total preprocessing time is O(n logn) and the space is O(n).
Given a query ray \rho , we find the set of nodes v whose triangles \bigtriangleup (v) are crossed by
\rho in O(\kappa (T )) time. For each such node v, if v is a leaf, then we check whether \rho hits
s for each segment s \in S(v). Otherwise, for each edge e of \bigtriangleup (v), we use the query
algorithm of Lemma 4.4(2) to find the first segment of S(e) hit by \rho . Finally, among
all segments found above that are hit by \rho , we return the one whose intersection with
\rho is closest to the origin of \rho . The time analysis and algorithm correctness are similar
to those of Theorem 4.5.

To solve the ray-shooting problem among (possibly intersecting) segments, as
discussed in section 1.1, Cheng and Janardan [17] gave an algorithm that uses both
an algorithm for the ray-shooting problem among lines and an algorithm for the
intersection detection problem. If we replace their algorithms for these two problems
by our new results in Theorems 4.2 and 4.5, then we can obtain Theorem 4.7. For
the completeness of this paper, we reproduce Cheng and Janardan's algorithm [17] in
the proof of Theorem 4.7.

Theorem 4.7. Given a set S of n (possibly intersecting) segments in the plane,
we can build a data structure of O(n logn) space in O(n log2 n) randomized time such
that the first segment of S hit by a query ray can be found in O(

\surd 
n logn) time with

high probability.

Proof. We reproduce Cheng and Janardan's data structure [17] but instead use
our new results for the ray-shooting problem among lines and the intersection detec-
tion problem.
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1146 HAITAO WANG

For ease of discussion, we assume that no segment of S is vertical. The un-
derlying structure is a segment tree T on the segments of S [8]. Specifically, let
x1, x2, . . . , x2n be the x-coordinates of the endpoints of the segments of S sorted
from left to right. These values partition the x-axis into 4n+ 1 intervals as follows:
( - \infty , x1), [x1, x1], (x1, x2), [x2, x2], . . . , (x2n,+\infty ). T is a complete binary tree whose
leaves correspond to the above intervals in order from left to right. Each internal node
v is associated with an interval Int(v) that is the union of all intervals in the leaves of
T (v), where T (v) is the subtree rooted at v. Each segment s\in S is stored at a node v
if Int(v)\subseteq [x(s), x\prime (s)] and Int(parent(v)) \not \subseteq [x(s), x\prime (s)], where x(s) and x\prime (s) are the
x-coordinates of the left and right endpoints of s, respectively, and parent(v) is the
parent of v in T ; let S(v) denote the set of all segments stored at v. Each segment of
s is stored in O(logn) nodes and the total space is O(n logn).

The above describes a standard segment tree. For solving our problem, each
internal node v also stores another set S\prime (v) =

\bigcup 
u\in T (v) S(u). One can check that

both | S(v)| and | S\prime (v)| are bounded by O(| Tv| ), where | Tv| refers to the number of
leaves of Tv. Finally, we trim the segments of S\prime (v) by only keeping the portions in
the vertical strip Int(v)\times ( - \infty ,+\infty ), i.e., for each segment s \in S\prime (v), we only keep
its subsegment in the strip in S\prime (v).

For each node v \in T , we construct the ray-shooting-among-lines data structure in
Theorem 4.2 (using the randomized result with O(n logn) preprocessing time) on the
supporting lines of the segments of S(v); let R(v) denote the data structure. We also
construct the intersection detection data structure in Theorem 4.5 on the segments
of S\prime (v); let D(v) denote the data structure. This finishes the preprocessing for our
problem, which uses O(n log2 n) time and O(n logn) space. We discuss the query
algorithm below.

Consider a query ray \rho q, with origin q. Without loss of generality, we assume
that \rho q goes rightwards. Starting from the root of T , we locate the leaf whose interval
contains q. Then, from the leaf we go upwards in T until we find the first node whose
right node u is not on the path and \rho q intersects a segment of S\prime (u). Note that since
segments of S\prime (u) are all in the strip Int(u)\times ( - \infty ,+\infty ) and q is to the left of the strip
(and thus \rho q spans the strip), determining whether \rho q intersects a segment of S\prime (u)
is equivalent to determining whether the supporting line of \rho q intersects a segment of
S\prime (u), and thus we can use the data structure D(u). We call the above the percolate-up
procedure. Next, starting from u, we run a percolate-down procedure as follows. Sup-
pose the procedure is now considering a node v (initially v= u). We first find the first
segment (if it exists) of S(v) hit by \rho q within the strip Int(v)\times ( - \infty ,+\infty ). Notice that
all segments of S(v) span the strip. Thus, the above problem can be solved by calling
the ray-shooting data structure R(v) using the portion \rho \prime of \rho q that lies to the right of
the left vertical line of the strip. We keep the segment found by R(v) if and only if the
intersection of the segment and \rho \prime is in the trip. Let left(v) and right(v) denote the
left and right children of v, respectively. Next, we check whether \rho q intersects a seg-
ment of S\prime (left(v)), which, as discussed above, can be done by using the data structure
D(left(v)). If yes, then we proceed on left(v) recursively. Otherwise, we check whether
\rho q intersects a segment of S\prime (right(v)) by using the data structure D(right(v)). If
yes, then we proceed on right(v) recursively. Otherwise, we stop the algorithm. After
the percolate-down procedure, among the segments found above (by R(v)), the one
whose intersection with \rho q is closest to the origin q is the first segment of S hit by \rho q.

For the query time, it is not difficult to see that the percolate-up procedure
calls the intersection detection data structure D(v) for O(logn) nodes v, each taking
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SUBPATH CONVEX HULL QUERIES AND RAY-SHOOTING 1147

O(
\sqrt{} 

| S\prime (v)| logn) time with high probability. Notice that these nodes v are on distinct
levels of T . Recall that | S\prime (v)| =O(| Tv| ). Hence, | S\prime (v)| decreases geometrically if we
order these nodes v by their distances from the root. Therefore, the total time spent
on calling D(v) for all nodes v is O(

\surd 
n logn) with high probability.2 The percolate-

down procedure calls D(v) for O(logn) nodes v, and at most two such nodes are at
the same level of T . Hence, the total time is also O(

\surd 
n logn) with high probability.

The procedure also calls the ray-shooting data structure R(v) for O(logn) nodes v
at distinct levels of T . We also have | S(v)| = O(| Tv| ). Therefore, the total time of
the ray-shooting queries is O(

\surd 
n logn) with high probability. In summary, the query

algorithm runs in O(
\surd 
n logn) time with high probability.

Remark. Later we will present our deterministic result for the segment detection
problem with complexity O(n1.5, n,

\surd 
n logn) in Theorem 4.14. Using the above algo-

rithm and our deterministic result of the ray-shooting-among-lines problem in Theo-
rem 4.2, we can obtain our deterministic result for the ray-shooting-among-segments
problem. The space is O(n logn) and the query time is O(

\surd 
n logn), following the

same analysis as above. The preprocessing time satisfies the recurrence relation:
T (n) = 2T (n/2)+O(n1.5), as both | S(v)| and | S\prime (v)| are bounded by O(| Tv| ). Solving
the recurrence relation gives T (n) =O(n1.5).

4.2.2. The deterministic result. To obtain the deterministic result, we turn
to Matou\v sek's partition trees [31, 32]. As discussed before, a big issue is that the
triangles of these trees may overlap. To overcome the issue, we have to somehow
modify Matou\v sek's original algorithms.

An overview. To solve the simplex range searching problem (e.g., the count-
ing problem), Matou\v sek built a partition tree in [31] with the following complexity:
O(n logn,n,

\surd 
n(logn)O(1)); subsequently, he presented a more query-efficient result

in [32] with complexity O(n1+\delta , n,
\surd 
n). Ideally, we want to use his second approach.

In order to achieve the O(n1+\delta ) preprocessing time, Matou\v sek used multilevel data
structures (called the partial simplex decomposition scheme in [32]). In our problem,
however, the multilevel data structures no longer work because they do not provide
a ``nice"" way to store the segments of S. Without using multilevel data structures,
the preprocessing time would be too high (indeed Matou\v sek [32] gave a basic algo-
rithm without using multilevel data structures, but he only showed that its runtime is
polynomial). By a careful implementation, we can bound the preprocessing time by
O(n2). To improve it, we resort to the simplicial partition in [31]. Roughly speaking,
let P be the set of endpoints of the segments of S; we partition P into r = \Theta (

\surd 
n)

subsets of size
\surd 
n each, using r triangles such that any line in the plane only crosses

O(
\surd 
r) triangles. Then, for each subset, we apply the algorithm of [32]. This guaran-

tees the O(n1.5) upper bound on the preprocessing time for all subsets. To compute
the simplicial partition, Matou\v sek [31] first provided a basic algorithm of polynomial
time and then used other techniques to reduce the time to O(n logn). For our pur-
pose, these techniques are not suitable (for a reason similar to the reason multilevel
data structures do not work). Hence, we can only use the basic algorithm, whose
time complexity is only shown to be polynomial in [31]. Further, we cannot directly
use the algorithm because the produced triangles may overlap (the algorithm in [32]

2We provide some explanations here. Suppose calling D(v) for each node v takes O(
\sqrt{} 

| S\prime (v)| 
logn) time with probability at least 1 - 1/nc for a constant c. Let c\prime > 0 be a constant smaller than

c. Then, nc >nc\prime \cdot O(logn) for sufficiently large n. Hence, calling D(v) for all O(logn) nodes v takes

O(
\surd 
n logn) time with probability at least 1 - 1/nc \cdot O(logn)> 1 - 1/nc\prime . Therefore, the O(

\surd 
n logn)

time bound holds with high probability.
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1148 HAITAO WANG

has the same issue). Nevertheless, we manage to modify the algorithm and bound
its time complexity by O(n1.5). Also, even with the above modification that avoids
certain triangle overlap, using the approach in [32] directly still cannot lead to an
O(

\surd 
n logn) time query algorithm. Instead we have to further modify the algorithm

(e.g., choose a different weight function).
In the following, we first describe our algorithm for computing the simplicial

partition and then preprocess each subset in the partition by modifying Matou\v sek's
basic algorithm in [32]. The algorithms in [31, 32] are both for any fixed dimension.
To simplify the description, we will discuss the planar case only. For ease of reference,
we start a new section.

4.2.3. Computing a simplicial partition. We first review some concepts.
A cutting is a set of interior-disjoint triangles whose union is the entire plane; its size
is defined to be the number of triangles. Let H be a set of n lines and \Xi be a cutting.
For a triangle \bigtriangleup \in \Xi , let H\bigtriangleup denote the subset of lines of H intersecting the interior
of \bigtriangleup . We say that \Xi is an \epsilon -cutting for H if | H\bigtriangleup | \leq \epsilon \cdot n for each triangle \bigtriangleup \in \Xi .
We also need to handle the weighted case where each line l of H has a weight w(l),
which is a positive integer. We use (H,w) to denote the weighted line set. For each
subset H \prime \subseteq H, define w(H \prime ) =

\sum 
l\in H\prime w(l). A cutting \Xi is an \epsilon -cutting for (H,w) if

w(H\bigtriangleup )\leq \epsilon \cdot w(H) for every triangle \bigtriangleup \in \Xi .

Lemma 4.8 (see [10, 30]). Given a set of n weighted lines (H,w), for any param-
eter r\leq n, a (1/r)-cutting of size O(r2) can be computed in O(nr) time.

Recall that P is the set of the endpoints of S and | S| = n. To simplify the
notation, we let | P | = n in the following (and thus | S| = n/2).

A simplicial partition of size m for P is a collection \Pi = \{ (P1,\bigtriangleup 1), . . . , (Pm,\bigtriangleup m)\} 
with the following properties: (1) The subsets Pi's form a disjoint partition of P ; (2)
each \bigtriangleup i is an open triangle containing Pi; (3) max1\leq i\leq m | Pi| \leq 2 \cdot min1\leq i\leq m | Pi| ; (4)
the triangles may overlap and a triangle \bigtriangleup i may contain points in P \setminus Pi. We define
the crossing number of \Pi as the largest number of triangles that are intersected by
any line in the plane.

Lemma 4.9 (see [31]). For any integer z with 2\leq z < | P | , there exists a simplicial
partition \Pi of size \Theta (r) for P , whose subsets Pi's satisfy z \leq | Pi| < 2z, and whose
crossing number is O(

\surd 
r), where r= | P | /z.

To compute such a simplicial partition as in Lemma 4.9, Matou\v sek [31] first
presented a basic algorithm whose runtime is polynomial and then improved the
time to O(n logn) by other techniques. As discussed before, the techniques are not
suitable for our purpose and we can only use the basic algorithm. In addition, the
above property (4) prevents us from using the partition directly. Instead we use
an enhanced simplicial partition with the following modified/changed properties. In
property (2), each \bigtriangleup i is either a triangle or a convex quadrilateral; we now call \bigtriangleup i

a cell. In property (4), the cells may still overlap, and a cell \bigtriangleup i may still contain
points in P \setminus Pi; however, if \bigtriangleup i contains a point p \in Pj with j \not = i, then all points of
Pi are outside \bigtriangleup j (e.g., see Figure 3). This modified property (4), which we call the
weakly overlapped property, is the key to guarantee the success of our approach. We use
convex quadrilaterals instead of only triangles to make sure that the modified property
(4) can be achieved. The crossing number of the enhanced partition is defined as the
largest number of cells that are intersected by any line in the plane. We will show that
by modifying Matou\v sek's basic algorithm [31], we can compute an enhanced simplicial
partition with the same feature as Lemma 4.9. Roughly speaking, each cell of our

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SUBPATH CONVEX HULL QUERIES AND RAY-SHOOTING 1149

p

4j

4i

Fig. 3. Illustrating the weakly overlapped property: Pj consists of all circle points and Pi con-
sists of all disk points. A point p \in Pj is also contained in \bigtriangleup i, but all points of Pi are outside
\bigtriangleup j .

partition is a subset of a triangle of the partition computed by Matou\v sek's algorithm.
For our purpose, we are interested in the parameters z =

\surd 
n and thus r=\Theta (

\surd 
n). We

will show that such an enhanced simplicial partition with crossing number O(
\surd 
r) can

be computed in O(n1.5) time. To this end, we first review Matou\v sek's basic algorithm
[31]. Below we fix r=

\surd 
n (and thus z = n/r=

\surd 
n).

The first main step is to compute a test set H of r lines (i.e., Lemma 3.3 of [31]).
This is done by computing a (1/t)-cutting \Xi for the dual lines of the points of P such
that \Xi has at most r vertices in total, where t can be chosen so that t=\Theta (

\surd 
r). H is

just the set of lines in the primal plane dual to the vertices of \Xi . By Lemma 4.8, this
step can be done in O(n

\surd 
r) time.

The second main step is to construct the simplicial partition \Pi by using H (i.e.,
Lemma 3.2 of [31]). The algorithm has m iterations, and the ith iteration will compute
the pair (Pi,\bigtriangleup i), for 1 \leq i \leq m, with m = \Theta (r). Suppose that (P1,\bigtriangleup 1), . . . , (Pi,\bigtriangleup i)
have been computed. Let P \prime 

i = P \setminus (P1 \cup \cdot \cdot \cdot \cup Pi) and ni = | P \prime 
i | . The algorithm for

computing (Pi+1,\bigtriangleup i+1) works as follows. If ni < 2z, then set Pi+1 = P \prime 
i and set \bigtriangleup i+1

to be the whole plane, which finishes the entire algorithm. We next discuss the case
ni \geq 2z.

We define a weighted line set (H,wi): For each line l \in H, define wi(l) = 2ki(l),
where ki(l) is the number of triangles among \bigtriangleup 1, . . . ,\bigtriangleup i crossed by l. In light of
Lemma 4.8, we compute a (1/ti)-cutting \Xi i for (H,wi) for a value ti = \Theta (

\sqrt{} 
ni/z)

such that \Xi i has at most ni/z triangles. As \Xi i has at most ni/z triangles, it has
a triangle that contains at least z points of P \prime 

i . Let \bigtriangleup i+1 be such a triangle and
choose any z points of P \prime 

i \cap \bigtriangleup i+1 to constitute Pi+1. This finishes the construction of
(Pi+1,\bigtriangleup i+1).

Matou\v sek [31] proved that the crossing number of \Pi thus constructed is O(
\surd 
r).

To compute our enhanced simplicial partition, we slightly modify the above al-
gorithm as follows (we only point out the changes). In the case ni \geq 2z, let \bigtriangleup be a
triangle of \Xi i that contains at least z points of P \prime 

i . Let \ell be a line whose left side
contains exactly z points of P \prime 

i \cap \bigtriangleup . For example, \ell can be chosen as a vertical line
between the zth leftmost point and the (z + 1)th leftmost point of P \prime 

i \cap \bigtriangleup (if the
two points are on the same vertical line, then we slightly perturb the line so that its
left side contains exactly z points of P \prime 

i \cap \bigtriangleup ). Instead of arbitrarily picking z points
of P \prime 

i \cap \bigtriangleup to form Pi+1, we pick the z points to the left of \ell . We now use \bigtriangleup i+1

to refer to the region of \bigtriangleup to the left of \ell , which is either a triangle or a convex
quadrilateral.
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1150 HAITAO WANG

Since each cell \bigtriangleup i+1 is only a subset of its counterpart in the original algorithm,
the crossing number of our partition is also O(

\surd 
n). Let \Pi = \{ (P1,\bigtriangleup 1), . . . , (Pm,\bigtriangleup m)\} 

with m = \Theta (r) denote our partition. All the properties of the enhanced simplicial
partition hold for \Pi . In particular, the following lemma proves that the weakly
overlapped property holds.

Lemma 4.10 (the weakly overlapped property). For any cell \bigtriangleup i of \Pi , if \bigtriangleup i

contains a point p\in Pj with j \not = i, then all points of Pi are outside \bigtriangleup j.

Proof. Suppose \bigtriangleup i contains a point p \in Pj with j \not = i. When the algorithm
constructs Pi in the ith iteration, \bigtriangleup i does not contain any point of P \prime 

i - 1 \setminus Pi. Hence,
Pj must be constructed earlier than Pi, i.e., j < i. When the algorithm constructs
Pj in the jth iteration, \bigtriangleup j does not contain any point of P \prime 

j - 1 \setminus Pj . Since j < i,
Pi \subseteq P \prime 

j - 1 \setminus Pj . Therefore, \bigtriangleup j does not contain any point of Pi.

The next lemma shows that the algorithm can be implemented in O(n1.5) time.

Lemma 4.11. The enhanced simplicial partition \Pi can be computed in O(n1.5)
time.

Proof. As discussed before, the first main step runs in O(n
\surd 
r) time, which is

bounded by O(n1.5) as r=
\surd 
n. Below we discuss the second main step.

The second main step has m iterations. In each iteration, we need to compute the
(1/ti)-cutting \Xi i for (H,wi), which can be done in O(r \cdot ti) time by Lemma 4.8 since
| H| = r. This is O(r3/2) time for ti = \Theta (

\sqrt{} 
ni/z) and ni/z \leq n/z = r. However, we

cannot apply Lemma 4.8 directly to compute \Xi i as the weights of the lines of H might
be too large. Matou\v sek (in Lemma 3.4 [31]) suggested a method that can resolve the
issue when r is a constant. In Lemma 4.12, we extend the method and show that \Xi i

can be computed in O(r3/2) time.
After \Xi i is obtained, we need to find a triangle \bigtriangleup \ast of \Xi i that contains at least z

points. One approach is to first build a point location data structure on \Xi i [22, 29]
and then use it to find the triangle of \Xi i that contains each point of P \prime 

i . The total
time is O(r+ ni log r). However, this would lead to an overall time of O(nr log r) for
all m iterations, which is not bounded by O(n1.5). We can improve the algorithm in
the following way. We build a simplex range reporting data structure on P before the
first iteration. For example, we can use Matou\v sek's approach in [32], which builds a
data structure of O(n) space in O(n1+\delta ) that can answer each simplex range reporting
query on P in O(

\surd 
n + k) time, where k is the number of points of P in the query

simplex.3 Then, for each triangle \bigtriangleup of \Xi i, using a simplex range reporting query, we
find all points of P in \bigtriangleup , and for each point we determine whether it is in P \prime 

i (for
this we could put a mark on each point of P \prime 

i ). In this way, we can determine the
number of points P \prime 

i in \bigtriangleup in O(
\surd 
n+ k) time. Doing this for all triangles of \Xi i takes

O(r
\surd 
n+ n) time in total as \Xi i has at most r triangles, which are pairwise disjoint.

Subsequently, we can determine \bigtriangleup \ast , after which we can obtain the cell \bigtriangleup i+1 and the
subset Pi+1 in additional O(n) time. In summary, we can compute (\bigtriangleup i+1, Pi+1) in
O(r

\surd 
n+ n) time.

Next we update the crossing numbers of the lines of H. For each line l \in H, if l
crosses \bigtriangleup i+1, then ki+1(l) = ki(l)+1; otherwise, ki+1(l) = ki(l). This step takes O(r)
time.

3Because we can afford a preprocessing time of O(n1.5), we could use a simpler approach as long
as the space is O(n) and the query time is O(

\surd 
n+ k).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

3/
24

 to
 7

3.
65

.1
74

.3
5 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



SUBPATH CONVEX HULL QUERIES AND RAY-SHOOTING 1151

This finishes the ith iteration, which takes O(r3/2 + r
\surd 
n+ n) time in total. As

r=
\surd 
n and there are O(r) iterations, the total time of the algorithm is O(n1.5).

Lemma 4.12. Suppose the crossing numbers ki(l)'s are known for all lines l \in H.
Then, we can compute the (1/ti)-cutting \Xi i for (H,wi) in O(r3/2) time.

Proof. We extend the method suggested by Matou\v sek (in Lemma 3.4 [31]) and
the algorithm in Theorem 2.8 of [30] for computing a cutting for a set of weighted
lines.

Recall that wi(H) =
\sum 

l\in H wi(l) =
\sum 

l\in H 2ki(l). We first determine an integer a
such that 2a \leq wi(H) < 2a+1. Matou\v sek (in Lemma 3.2 [31]) already proved that
logwi(H) =O(

\surd 
r). Hence, a+1\leq c \cdot \surd r for a sufficiently large constant c. This also

implies ki(l)\leq c \cdot \surd r for each l \in H. We can compute a in O(r3/2) time as follows.
Let A be an array of size c \cdot \surd r. Initially, every element of A is 0. Let value(A)

denote the value of the binary code of the elements of A (each element of A is either
1 or 0; note that value(A) is only used for discussion). So initially value(A) = 0. For
each l \in H, we add 2ki(l) to value(A) by updating the array A. Since ki(l) \leq c \cdot \surd r,
the addition operation can be easily done in O(

\surd 
r) time by scanning the array. As

| H| = r, the total time for doing this for all lines of H is O(r3/2). Finally, if i is the
largest index of A with A[i] = 1, then we have a= i.

Let b= \lfloor log r\rfloor . Thus, 2b \leq r\leq 2b+1.
We define a multiset H \prime as follows. For each line l \in H, if b+ 1 + ki(l) - a \geq 0,

then we put 2b+1+ki(l) - a copies of l in H \prime ; otherwise, we put just one copy of l in H \prime .
Let | H \prime | denote the cardinality of H \prime , counted with the multiplicities. We have the
following:

| H \prime | \leq | H| +
\sum 
l\in H

2b+1+ki(l) - a = r+ 2b+1 - a \cdot 
\sum 
l\in H

2ki(l) = r+ 2b+1 - a \cdot wi(H)

\leq r+ 2b+1 - a \cdot 2a+1 = r+ 2b+2 \leq r+ 4r= 5r.

This also implies that the step of ``put 2b+1+ki(l) - a copies of l in H \prime "" for all l \in H
can be done in O(r) time. Therefore, generating the multiset H \prime takes O(r) time.

Now we compute a 1
5
\surd 
r
-cutting \Xi for the unweighted multiset H \prime in O(r3/2) time

by Lemma 4.8. In what follows, we prove that \Xi is a (1/ti)-cutting for the weighted
set (H,w). Thus, we can simply return \Xi as \Xi i. The total time of the algorithm is
O(r3/2). This will prove the lemma.

As ti =\Theta (
\surd 
r), our goal is to show that \Xi is a 1\surd 

r
-cutting for (H,w). Let \bigtriangleup be a

triangle of \Xi . Define H\bigtriangleup to be the subset of lines of H that cross \bigtriangleup . It is sufficient
to prove wi(H\bigtriangleup )\leq wi(H)/

\surd 
r.

Let H \prime 
\bigtriangleup denote the multiset of lines of H \prime crossing \bigtriangleup . Because \Xi is a 1

5
\surd 
r
-cutting

of H \prime and | H \prime | \leq 5r, it holds that | H \prime 
\bigtriangleup | \leq | H\prime | 

5
\surd 
r
\leq \surd 

r. Consequently, we can derive

wi(H\bigtriangleup ) =
\sum 
l\in H\bigtriangleup 

wi(l) =
\sum 
l\in H\bigtriangleup 

2ki(l) =
1

2b+1 - a
\cdot 
\sum 
l\in H\bigtriangleup 

2b+1+ki(l) - a \leq 1

2b+1 - a
\cdot | H \prime 

\bigtriangleup | 

\leq 
\surd 
r

2b+1 - a
=

2a \cdot \surd r

2b+1
\leq wi(H) \cdot \surd r

2b+1
\leq wi(H) \cdot \surd r

r
=

wi(H)\surd 
r

.

This proves that \Xi is a 1\surd 
r
-cutting for (H,w).

In the following, we will preprocess each subset Pi of \Pi by using/modifying the
basic algorithm in [32]. But before that, we give a picture of how we will use our
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1152 HAITAO WANG

simplicial partition to store edges of S to solve our segment detection and ray-shooting
queries.

Storing the segments in \Pi . For each segment s of S, if both endpoints of s are
in the same subset Pi of \Pi , then s is in the cell \bigtriangleup i as \bigtriangleup i is convex and we store s
in \bigtriangleup i; let Si denote the set of segments stored in \bigtriangleup i. Otherwise, let Pi and Pj be
the two subsets that contain the endpoints of s, respectively. The weakly overlapped
property in Lemma 4.10 leads to the following observation.

Observation 1. The segment s intersects the boundary of at least one cell of \bigtriangleup i

and \bigtriangleup j .

Proof. If s intersects the boundary of\bigtriangleup i, then the observation follows. Otherwise,
both endpoints of s are in \bigtriangleup i. Let p be the endpoint of s that is in Pj and let q be the
other endpoint, which is in Pi. Since \bigtriangleup i contains p, by Lemma 4.10, all points of Pi

are outside \bigtriangleup j . Hence, q is outside \bigtriangleup j , implying that s must intersect the boundary
of \bigtriangleup j .

By Observation 1, we find a cell \bigtriangleup of \bigtriangleup i and \bigtriangleup j whose boundary intersects s.
Let e be an edge of \bigtriangleup that intersects s. We store s at e; let S(e) denote the set of
segments of S that are stored at e. In this way, each segment of S is stored exactly
once. Next, for each cell \bigtriangleup \in \Pi and for each edge e of \bigtriangleup , we preprocess S(e) using
Lemma 4.4(1) or using Lemma 4.4(2) if the segments of S are nonintersecting. With
\Pi , the above preprocessing on S takes O(n logn) time and O(n) space. Later in
section 4.2.4 we will prove the following lemma.

Lemma 4.13.
1. For each subset Pi of \Pi , with O(| Pi| 2) time and O(| Pi| ) space preprocess-

ing, we can determine whether a query line intersects any segment of Si in
O(

\sqrt{} 
| Pi| log | Pi| ) time.

2. If the segments of Si are nonintersecting, then with O(| Pi| 2) time and O(| Pi| )
space preprocessing, we can determine the first segment of Si hit by a query
ray in O(

\sqrt{} 
| Pi| log | Pi| ) time.

We can thus obtain our results for the segment intersection problem and the
ray-shooting problem.

Theorem 4.14.
1. Given a set of n (possibly intersecting) line segments, we can build a data

structure of space O(n) in O(n1.5) time so that whether a query line intersects
any segment can be determined in O(

\surd 
n logn) time.

2. Given a set of n (possibly intersecting) line segments, we can build a data
structure of space O(n logn) in O(n1.5) time so that the first segment hit by
a query ray can be found in O(

\surd 
n logn) time.

3. Given a set of n nonintersecting line segments, we can build a data structure
of space O(n) in O(n1.5) time so that the first segment hit by a query ray can
be found in O(

\surd 
n logn) time.

Proof. We begin with part 1 of the theorem. For the preprocessing time, comput-
ing the enhanced simplicial partition \Pi as discussed above takes O(n1.5) time. Storing
the segments in \Pi and preprocessing them by Lemma 4.4 takes O(n logn) time. Ap-
plying Lemma 4.13 on all subsets Pi of \Pi takes O(n1.5) time in total, as the size of
each Pi is O(

\surd 
n). Hence, the overall preprocessing time is O(n1.5). Following the

same analysis, the space is O(n). Next we describe the query algorithm and analyze
the query time.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SUBPATH CONVEX HULL QUERIES AND RAY-SHOOTING 1153

Consider a query line \ell . First, for each cell \bigtriangleup i of \Pi , for each edge e of \bigtriangleup i, we
determine whether \ell intersects a segment of S(e), which can be done in O(logn) time
by Lemma 4.4(1); if the answer is yes, then we halt the entire query algorithm. As
\Pi has \Theta (

\surd 
n) cells and each cell has at most four edges, the total time of this step is

O(
\surd 
n logn). Second, by checking every cell of \Pi , we find those cells that are crossed

by \ell . For each such cell \bigtriangleup i, by Lemma 4.13(1), we determine whether \ell intersects any
segment of Si in O(n1/4 logn) time, for | Pi| = \Theta (

\surd 
n); if the answer is yes, then we

halt the entire algorithm. As \ell can cross at most O(n1/4) cells of \Pi , this step takes
O(

\surd 
n logn) time. Hence, the query time is O(

\surd 
n logn).

To see the correctness of the algorithm, suppose \ell intersects a segment s \in S. If
both endpoints of s are in the same subset Pi of \Pi , then s \in Si and \ell must cross the
cell \bigtriangleup i and thus the intersection will be detected in the second step of the algorithm
when we invoke the query algorithm of Lemma 4.13(1) on Pi. If the two endpoints of
s are not in the same subset Pi of \Pi , then by Observation 1, s must be stored at an
edge e of a cell of \Pi ; thus the intersection will be detected when we invoke the query
algorithm of Lemma 4.4(1) on S(e).

Part 2 of the theorem has been discussed in the proof of Theorem 4.7 (see the
remark at the end of the proof); i.e., we apply Cheng and Janardan's algorithmic
scheme [17] but instead use our result in Theorem 4.2 for the ray-shooting problem
among lines and use the result of part 1 of this theorem for the intersection detection
problem.

For part 3, the preprocessing is similar to part 1. The query algorithm is also
very similar. Consider a query ray \rho . First, for each cell \bigtriangleup i of \Pi , for each edge e of
\bigtriangleup i, we determine the first segment of S(e) hit by \rho , which can be done in O(logn)
time by Lemma 4.4(2). Second, for each cell \bigtriangleup i of \Pi , if it is crossed by \rho , then by
Lemma 4.13(2), we find the first segment of Si hit by \rho in O(n1/4 logn) time. Third,
among all segments found above, we return the one whose intersection with \rho is closest
to the origin of \rho . The total query time is O(

\surd 
n logn) time.

4.2.4. Proving Lemma 4.13. In this section, we prove Lemma 4.13. Since
both endpoints of s are in Pi for each segment s \in Si, | Si| \leq | Pi| /2. To simplify the
notation, let n= | Pi| , P = Pi, and S = Si. Hence, | S| \leq n/2. With this notation, we
restate Lemma 4.13 as follows.

Lemma 4.15 (a restatement of Lemma 4.13). Let P be a set of n points in the
plane and let S be a set of segments whose endpoints are in P .

1. With O(n2) time and O(n) space preprocessing, whether a query line inter-
sects any segment of S can be determined in O(

\surd 
n logn) time.

2. If the segments of S are nonintersecting, then with O(n2) time and O(n)
space preprocessing, the first segment of S hit by a query ray can be found in
O(

\surd 
n logn) time.

In the following, we prove Lemma 4.15. We resort to the techniques of Matou\v sek
[32], which provide a more efficient partition tree using Chazelle's algorithm for com-
puting hierarchical cuttings [10]. We still need to modify the algorithm in [32] as we
did before for computing the enhanced simplicial partition. In particular, we need
to have a similar weakly overlapped property. We also have to change the weight
function defined on the line sets in order to achieve the claimed query time. In the
following, we first review the algorithm of Matou\v sek in [32]. As discussed before, Ma-
tou\v sek first gave a basic algorithm of polynomial time and then reduced the time to
O(n1+\delta ) using multilevel data structures. Here we cannot use multilevel data struc-
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1154 HAITAO WANG

tures and thus only use his basic algorithm (i.e., the one in Theorem 4.1 of [32]). We
will show that his basic algorithm can be implemented in O(n2) time.

Review of Matou\v sek's algorithm [32]. We first construct a data structure for a
subset P \prime of at least half points of P . To build a data structure for the whole P , the
above construction is performed for P , then for P \setminus P \prime , etc., and thus a logarithmic
number of data structures with geometrically decreasing sizes will be obtained. Be-
cause the preprocessing time of the data structure for P \prime is \Omega (n) and the space is \Theta (n),
constructing all data structures for P takes asymptotically the same time and space as
those for P \prime only. To answer a simplex range query on P , each of these data structures
will be called. Since the query time for P \prime is \Omega (

\surd 
n), the total query time for P is

asymptotically the same as that for P \prime . Below we describe the data structure for P \prime .
The data structure has a set of triangles, \Psi 0 = \{ \bigtriangleup 1, . . . ,\bigtriangleup t\} , not necessarily

disjoint, with t=
\surd 
n logn. For each 1\leq i\leq t, we have a subset Pi \subseteq P of at most n

2t
points that are contained in \bigtriangleup i. The subsets Pi's form a disjoint partition of P \prime . For
each i, there is a rooted tree Ti whose nodes correspond to triangles, with \bigtriangleup i as the
root. Each internal node of Ti has O(1) children whose triangles are interior-disjoint
and together cover their parent triangle. For each triangle \bigtriangleup of Ti, let P (\bigtriangleup ) = Pi\cap \bigtriangleup .
If \bigtriangleup is a leaf, then the points of P (\bigtriangleup ) are explicitly stored at \bigtriangleup . Each point of Pi

is stored in exactly one leaf triangle of Ti. The depth of Ti is q = O(logn). Hence,
the data structure is a forest of t trees. Let \Psi j denote the set of all triangles of all
trees Ti's that lie at distance j from the root (note that \Psi 0 is consistent with this
definition). For any line l in the plane, let Kj(l) be the set of triangles of \Psi j crossed
by l; let Lj(l) be the set of leaf triangles of Kj(l). Define K(l) =

\bigcup q
j=0Kj(l) and

L(l) =
\bigcup q

j=0Lj(l). Matou\v sek [32] proved that
\sum q

j=0 | \Psi j | =O(n), and | K(l)| =O(
\surd 
n)

and
\sum 

\bigtriangleup \in L(l) | P (\bigtriangleup )| =O(
\surd 
n) hold for any line l in the plane.

We next review Matou\v sek's basic algorithm [32] for constructing the data struc-
ture described above. As in the algorithm for constructing simplicial partitions, the
first step is to compute a test set H (called a guarding set in [32]) of n lines, which
can be done in O(n

\surd 
n) time as discussed in section 4.2.3. After that, the algorithm

proceeds in t iterations; in the ith iteration, Ti, \bigtriangleup i, and Pi will be produced.
Suppose Tj , \bigtriangleup j , and Pj for all j = 1,2 . . . , i have been constructed. Define

P \prime 
i = P \setminus (P1 \cup \cdot \cdot \cdot \cup Pi). If | P \prime 

i | < n/2, then we stop the construction. Otherwise, we

proceed with the (i+ 1)th iteration as follows. Let \Psi 
(i)
0 , . . . ,\Psi 

(i)
q denote the already

constructed parts of \Psi 0, . . . ,\Psi q. Define K
(i)
j (l) and L

(i)
j (l) similarly as Kj(l) and

Lj(l). We define a weighted line set (H,wi). For each line l \in H, define a weight

wi(l) = exp

\left(   logn\surd 
n

\cdot 

\left[   q\sum 
j=0

4q - j \cdot | K(i)
j (l)| +

\sum 
\bigtriangleup \in K

(i)
q (l)

| P (\bigtriangleup )| 

\right]   
\right)   .(4.1)

The next step is to compute an efficient hierarchical (1/r)-cutting for (H,wi)
with r =

\surd 
n, which consists of a sequence of cuttings \Xi 0,\Xi 1, . . . ,\Xi k that satisfy the

following properties. (1) \Xi 0 is a single triangle that contains the entire plane. (2) For
two fixed constants C and \rho > 4, for each 1\leq j \leq k, \Xi j is a (1/\rho j)-cutting for (H,wi)
of size O(\rho 2j) such that each triangle of \Xi j is contained in a triangle of \Xi j - 1 and each
triangle of \Xi j - 1 contains at most C triangles of \Xi j (if a triangle \bigtriangleup \in \Xi j - 1 contains
a triangle \bigtriangleup \prime \in \Xi j , we say that \bigtriangleup is the parent of \bigtriangleup \prime and \bigtriangleup \prime is a child of \bigtriangleup ). (3)
\rho k - 1 < r\leq \rho k and thus k=\Theta (log r).

We let p be the largest index such that the size of \Xi p is at most t. As the size
of \Xi j is O(\rho 2j), we obtain that \rho 2p = \Theta (t) and \Xi p is a (1/rp)-cutting of (H,wi)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SUBPATH CONVEX HULL QUERIES AND RAY-SHOOTING 1155

with rp = \rho p = \Theta (
\surd 
t). We define q = k  - p. Note that \rho q = O(r/

\surd 
t) = O(

\sqrt{} 
n/t).

Since | P \prime 
i | \geq n/2 and \Xi p has at most t triangles, \Xi p has a triangle, denoted by \bigtriangleup i+1,

containing at least n
2t points of P \prime 

i . We arbitrarily select n
2t points of P \prime 

i \cap \bigtriangleup i+1 to
form the set Pi+1. Further, all triangles in \Xi p,\Xi p+1, . . . ,\Xi k contained in \bigtriangleup i+1 form
the tree Ti+1, whose root is \bigtriangleup i+1. Next, we remove some nodes from Ti+1 as follows;
we call it a pruning procedure. Starting from the root, we perform a depth-first-search
(DFS). Let \bigtriangleup be the triangle of the current node the DFS is visiting. Suppose \bigtriangleup 
belongs to \Xi p+j for some 0 \leq j \leq q. If \bigtriangleup contains at least 2q - j points of Pi+1 (\bigtriangleup 
is called a fat triangle in [32]), then we proceed on the children of \bigtriangleup ; otherwise, we
make \bigtriangleup a leaf node and return to its parent (and continue the DFS). In other words,
a triangle of Ti+1 is kept if and only if all its ancestor triangles are fat. This finishes
the construction of the (i+ 1)th iteration.

Our new algorithm. For our purpose, we modify the algorithm as follows (we
only point out the differences). Let \bigtriangleup \ast denote the above \bigtriangleup i+1 that contains at least
n
2t points of P \prime 

i . Let l\ast be a line such that its left side contains exactly n
2t points of

P \prime 
i \cap \bigtriangleup \ast (and we use these points to form Pi+1). We now set \bigtriangleup i+1 to the part of

\bigtriangleup \ast on the left side of l\ast . Hence, \bigtriangleup i+1 is either a triangle or a convex quadrilateral.
We form the tree Ti+1 in the same way as above except that each node of Ti+1 now
corresponds to a cell, which is either a triangle or a convex quadrilateral. This change
will guarantee a weakly overlapped property similar to that in Lemma 4.10.

The second change we make is that we set t to
\surd 
n instead of

\surd 
n logn. The third

change is that we redefine the weight function in (4.1) as follows (i.e., the second term
no longer has the logn factor):

wi(l) = exp

\left(   logn\surd 
n

\cdot 
q\sum 

j=0

4q - j \cdot | K(i)
j (l)| + 1\surd 

n
\cdot 

\sum 
\bigtriangleup \in K

(i)
q (l)

| P (\bigtriangleup )| 

\right)   .(4.2)

As a consequence, by following Matou\v sek's proof in [32, Theorem 4.1], we have the
following Lemma 4.16. Before proceeding to the lemma proof, we briefly explain why
we need to make these changes. As will be clear later, the time complexity of the query
algorithm for our problem is bounded by O(t logn+K(l) \cdot logn+\sum 

\bigtriangleup \in L(l) | P (\bigtriangleup )| ). To
guarantee the O(

\surd 
n logn) query time, we need to make sure that both t and K(l) are

bounded by O(
\surd 
n). For the simplex range searching problem, Matou\v sek's algorithm

needs to bound both K(l) and
\sum 

\bigtriangleup \in L(l) | P (\bigtriangleup )| by O(
\surd 
n), and to do so, the algorithm

needs to set t to
\surd 
n logn. For our problem, it is sufficient to bound

\sum 
\bigtriangleup \in L(l) | P (\bigtriangleup )| 

by O(
\surd 
n logn);4 consequently, we are able to use a smaller t with t=

\surd 
n.

Lemma 4.16.
1.

\sum q
j=0 | \Psi j | =O(n).

2. | K(l)| = O(
\surd 
n) and

\sum 
\bigtriangleup \in L(l) | P (\bigtriangleup )| = O(

\surd 
n logn), for any line l in the

plane.

Proof. The proof is almost the same as that in [32] (i.e., the proof of Theorem
4.1 in that reference). We briefly discuss it by referring to the corresponding parts in
[32].

The proof for
\sum q

j=0 | \Psi j | = O(n) is exactly the same as that in [32]. Indeed, the

algorithm adds O(\rho 2q) = O(n/t) new cells in each of the t iterations. Therefore, the
total number of cells is O(n).

4This is also reflected in our new weight function, where the second term does not have a logn
factor as in (4.1); intuitively this implies that the number of points in the leaves is less important
than before.
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1156 HAITAO WANG

For the second lemma statement, we claim that for any line l \in H the following
hold (which corresponds to [32, Lemma 4.2]):

| Kj(l)| =O(
\surd 
n \cdot 4 - (q - j)), j = 0,1, . . . , q,(4.3)

\sum 
\bigtriangleup \in Kq(l)

| P (\bigtriangleup )| =O(
\surd 
n logn).(4.4)

With the above claim, following literally the same proof as that in [32] (specifically,
the three paragraphs after Lemma 4.2 [32]), the second lemma statement can be
proved.

In the following, we prove the above claim, which is similar to the proof of [32,
Lemma 4.2]. We focus on the differences.

The key is to prove that logwt(H) = O(logn) (recall that wt(H) stands for the
total weight of all lines of H after the tth iteration of the algorithm). Indeed, by our
definition of the weight function, we have

logn\surd 
n

\cdot 
q\sum 

j=0

4q - j \cdot | Kj(l)| +
1\surd 
n
\cdot 

\sum 
\bigtriangleup \in Kq(l)

| P (\bigtriangleup )| \leq logwt(H), j = 0,1, . . . , q.

This leads to (4.3) and (4.4) for logwt(H) =O(logn).
It remains to prove logwt(H) = O(logn). The proof follows the same line as in

[32]. Indeed, the bound for fj (see [32] for the definition) is the same as before as it is
for the first term of (4.2), which is the same as Matou\v sek's weight definition in (4.1).
The bound for f(\bigtriangleup ) (which is f(s) in [32]), however, is different because our weight
definition does not have the logn factor. As a consequence, we have the following:

f(\bigtriangleup ) = 1+O

\biggl( 
exp(| P (\bigtriangleup )| /\surd n) - 1\surd 

n

\biggr) 
.

Note that | P (\bigtriangleup )| \leq n/(2t) =
\surd 
n/2. Using the inequalities 1 + x \leq ex \leq 1 + 2x (the

latter one holds for x\leq 1),5 we further obtain

f(\bigtriangleup ) = 1+O

\biggl( 
exp(| P (\bigtriangleup )| /\surd n) - 1\surd 

n

\biggr) 
\leq 1 +O

\biggl( | P (\bigtriangleup )| /\surd n\surd 
n

\biggr) 
\leq exp

\biggl( 
O

\biggl( | P (\bigtriangleup )| 
n

\biggr) \biggr) 
.

Following the rest of the argument in [32], we can still derive logwt(H)
=O(logn).6

This finishes our algorithm for constructing the data structure for P \prime . As dis-
cussed before, to construct the data structure for the whole set P , we perform the
above construction a logarithmic number of times; each time we obtain a forest. The
total number of all trees in all these forests is at most a number f \leq 2t. We order

5To guarantee | P (\bigtriangleup )| /
\surd 
n\leq 1 for using the inequality ex \leq 1+2x, it suffices to have n/(2t)\leq 

\surd 
n.

Hence, t\geq 
\surd 
n/2. Therefore,

\surd 
n/2 is the smallest possible value for t to make the proof work if we

choose the weight function as (4.2). Using Matou\v sek's original weight function, the smallest possible
value for t is

\surd 
n logn/2. Therefore, in order to set t to

\surd 
n (to guarantee the query time complexities

of our problems), we have to change the weight function in order to make sure the same proof works.
6Note that Matou\v sek [32] also showed that the weight of each line of H increases by at most a

constant factor in every iteration. This property no longer holds in our case. However, this does not
affect the proof of logwt(H) =O(logn); i.e., although we do not have a good bound for the increase
of the weight in each individual iteration, we can still achieve asymptotically the same bound as
before for the total weight after all iterations.
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SUBPATH CONVEX HULL QUERIES AND RAY-SHOOTING 1157

these trees by the time they are constructed: T1, T2, . . . , Tf . Correspondingly, we have
the cells \bigtriangleup 1, . . . ,\bigtriangleup f , and the subsets P1, . . . , Pf , which form a disjoint partition of P .
Because the sizes of the problems on which these logarithmic number of constructions
are based are geometrically decreasing, the bounds in Lemma 4.16 still hold for all
these f trees. The following lemma is analogous to Lemma 4.10.

Lemma 4.17 (the weakly overlapped property). Among the cells \bigtriangleup 1, . . . ,\bigtriangleup f , if
a cell \bigtriangleup i contains a point p\in Pj with j \not = i, then all points of Pi are outside \bigtriangleup j.

Proof. The proof is literally the same as that for Lemma 4.10. Suppose \bigtriangleup i

contains a point p \in Pj with j \not = i. When the algorithm constructs Pi, \bigtriangleup i does not
contain any point of P \prime 

i - 1 \setminus Pi, where P \prime 
i - 1 = P \setminus (P1 \cup \cdot \cdot \cdot \cup Pi - 1). Hence, Pj must be

constructed earlier than Pi, i.e., j < i. When the algorithm constructs Pj , \bigtriangleup j does
not contain any point of P \prime 

j - 1 \setminus Pj , where P \prime 
j - 1 = P \setminus (P1 \cup \cdot \cdot \cdot \cup Pj - 1). Since j < i,

Pi \subseteq P \prime 
j - 1 \setminus Pj . Therefore, \bigtriangleup j does not contain any point of Pi.

Lemma 4.18. The data structure for the whole P can be constructed in O(n2)
time and O(n) space.

Proof. As discussed before, it is sufficient to show that the data structure for
P \prime can be constructed in O(n2) time and O(n) space. The O(n) space follows from
Lemma 4.16(1). Below we bound the construction time.

As discussed before, computing the test set H takes O(n
\surd 
n) time. The algorithm

proceeds in t=
\surd 
n iterations. Consider the (i+ 1)th iteration.

For each line l \in H, define ki(l) as the exponent of its weight wi(l), i.e., ki(l) =
\mathrm{l}\mathrm{o}\mathrm{g}n\surd 

n
\cdot \sum q

j=0 4
q - j \cdot | K(i)

j (l)| + 1\surd 
n
\cdot \sum \bigtriangleup \in K

(i)
q (l)

| P (\bigtriangleup )| . Note that Lemma 4.16 proves

that ki(l) is bounded by O(logn). Lemma 4.19 shows that the efficient hierarchical
(1/

\surd 
n)-cuttings for (H,wi) can be constructed in O(n

\surd 
n) time in a similar way to

Lemma 4.12.
To find the triangle \bigtriangleup \ast of \Xi p that contains at least n

2t points of P
\prime 
i , we first build a

point location data structure on \Xi p in O(t) time [22, 29], for \Xi p has at most t triangles,
and then perform a point location for each point of P \prime 

i . In this way, determining \bigtriangleup \ast 

can be done in O(t+ n log t) time. After that, obtaining \bigtriangleup i+1 and the subset Pi+1

can be easily done in additional O(n) time.
Next, we perform the pruning procedure by running DFS on Ti+1, which is ini-

tially formed by all cells of \Xi p, . . . ,\Xi k contained in \bigtriangleup i+1. To this end, we need to
know the number of points of Pi+1 contained in each cell \bigtriangleup of Ti+1. For this, we again
apply the above point location algorithm on each \Xi j for j = p, p+1, . . . , k. Notice that
the total number of cells of all cuttings \Xi p, . . . ,\Xi k contained in \bigtriangleup i+1 is \rho 2q =O(n/t),
where q = k - p. Hence, the total time for building all point location data structures
is O(n/t). The total time for point location queries is O(| Pi+1| \cdot logn \cdot q), which is
O(nt log

2 n), for | Pi+1| = n
2t and q = O(logn). Therefore, computing the numbers of

points of Pi+1 contained in the cells of Ti+1 can be done in O(nt log
2 n) time. Subse-

quently, running DFS on Ti+1 takes O(| Ti+1| ) time, which is O(n/t) since the total
number of cells of the cuttings \Xi p, . . . ,\Xi k contained in \bigtriangleup i+1 is O(n/t).

Finally, we update the values ki(l)'s for all lines l \in H. For each line l \in H,
by traversing Ti+1, for each cell \bigtriangleup of the tree, if l crosses \bigtriangleup , then we can update
ki(l) as follows. Suppose l crosses \bigtriangleup and the depth of \bigtriangleup is j. Then, the term

| K(i)
j (l)| in the weight function increases by one, and thus we simply increment ki(l) by

4q - j \cdot logn/\surd n. If j = q, then\bigtriangleup is a leaf and we further increase ki(l) by | P (\bigtriangleup )| \cdot 
\sqrt{} 

1/n;
note that the size | P (\bigtriangleup )| is stored at \bigtriangleup . Since | Ti+1| =O(n/t) and | H| = n, updating
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1158 HAITAO WANG

the values ki(l)'s for all lines l \in H can be easily done in O(n2/t) time, which is
O(n

\surd 
n) time.

This finishes the algorithm for the (i+1)th iteration, which takes O(n
\surd 
n) time.

As there are t=
\surd 
n iterations, the total time of the algorithm is O(n2).

Lemma 4.19. Suppose the values ki(l)'s are known for all lines l \in H. Then, we
can compute an efficient hierarchical (1/

\surd 
n)-cutting for (H,wi) in O(n

\surd 
n) time.

Proof. The proof is very similar to that for Lemma 4.12, so we only point out
the differences. The algorithm first computes an integer a so that ea \leq wi(H)< ea+1.
For a similar task, an array A of size O(

\surd 
r) is used in Lemma 4.12. Here, since

logwi(H) = O(logn) by Lemma 4.16, we can use an array of size O(logn). Also,
value(A) is defined on the elements of A with base 2 in Lemma 4.12; here we use base
e. Following the same algorithm, we can compute a in O(n logn) time. After having a,
the rest of the algorithm is very similar to before (e.g., we use base e instead of base 2).
Also the algorithm for Lemma 4.12 only needs a cutting, while here we need an
efficient hierarchical cutting, but they are computed by exactly the same algorithm
of Lemma 4.8. The analysis is also similar. The total time is O(n

\surd 
n) (i.e., replace r

in Lemma 4.12 by
\surd 
n).

In summary, we have computed f trees, T1, . . . , Tf , along with cells \bigtriangleup 1, . . . ,\bigtriangleup f

and subsets P1, . . . , Pf , with the following properties: (1) The subsets Pi's are disjoint

and P =
\bigcup f

i=1Pi. (2) Each cell is either a triangle or a convex quadrilateral. (3) Each
subset Pi is contained in \bigtriangleup i. (4) The weakly overlapped property in Lemma 4.17
holds. (5) The bounds of Lemma 4.16 hold for all f trees. We use \Psi to refer to this
data structure.

Storing the segments in the data structure \Psi . We now store the segments of S in
\Psi . For each segment s \in S, if their endpoints are in two different subsets Pi and Pj ,
then we can prove Observation 1 again using Lemma 4.17. Let \bigtriangleup be a cell of \bigtriangleup i and
\bigtriangleup j whose boundary intersects s. Let e be an edge of \bigtriangleup that intersects s. We store s
at e; let S(e) be the set of all segments stored at e. If the endpoints of s are in the
same subset Pi, then we store e in the tree Ti in the same way as we store segments
in Chan's partition tree in section 4.2.1 (indeed Ti and Chan's partition tree share
similar properties: each internal node has O(1) children; children cells do not overlap
and together form a partition of their parent cell). After that, each edge e of each cell
of Ti stores a set S(e) of segments that intersect e. In addition, if both endpoints of
s are in a leaf cell \bigtriangleup of Ti, then we store s there; let S(\bigtriangleup ) be the set of all segments
stored in \bigtriangleup . In this way, each segment is stored O(1) times.

For each edge e of each cell of each tree of \Psi , we preprocess S(e) by Lemma 4.4(1),
or using Lemma 4.4(2) if the segments of S are nonintersecting. After \Psi is obtained,
the above preprocessing on S takes O(n logn) time and O(n) space.

This finishes our preprocessing for Lemma 4.15, which uses O(n2) time and O(n)
space. In the following, we describe the query algorithms.

Consider a query line \ell . First, for each \bigtriangleup i, 1 \leq i \leq f , for each edge e of \bigtriangleup i, we
determine whether \ell intersects a segment of S(e), which can be done in O(logn) time
by Lemma 4.4(1); if the answer is yes, then we halt the entire query algorithm. The
total time of this step is O(f logn); recall that f \leq 2t and t=

\surd 
n. Second, by checking

every cell \bigtriangleup i, 1\leq i\leq f , we determine those cells crossed by \ell ; this takes O(f) time.
For each such cell \bigtriangleup i, we determine whether \ell intersects a segment stored in Ti. This
can be done in the same way as our query algorithm using Chan's partition trees in
section 4.2.1. Starting from the root, we determine the set of cells \bigtriangleup of Ti crossed by \ell .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

3/
24

 to
 7

3.
65

.1
74

.3
5 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



SUBPATH CONVEX HULL QUERIES AND RAY-SHOOTING 1159

For each such cell \bigtriangleup , if it is a leaf, then we check whether s intersects \ell for each seg-
ment s \in S(\bigtriangleup ). Otherwise, for each edge e of \bigtriangleup , we use the query algorithm of
Lemma 4.4(1) to determine whether \ell intersects any segment of S(e). This finishes
the algorithm. Lemma 4.16(2) guarantees that the total query time is O(

\surd 
n logn),

for there are a total of O(
\surd 
n) cells crossed by \ell and the total number of points of P

in those leaf cells crossed by \ell is O(
\surd 
n logn) (which implies that the total number of

segments stored in those leaf cells crossed by \ell is O(
\surd 
n logn)). Therefore, the query

time is bounded by O(
\surd 
n logn).

Remark. If we set t to
\surd 
n logn as in [32], then the query time would become

O(
\surd 
n log2 n). Note that setting t=

\surd 
n logn does not cause any problem for simplex

range searching queries in [32] because the issue can be easily resolved by using multi-
level data structures. Here again we cannot effectively use multilevel data structures.
On the other hand, it can be easily checked from the proof of Lemma 4.18 that smaller
t also helps reduce the preprocessing time. As discussed in footnote 5,

\surd 
n is asymp-

totically the smallest value for t in order to guarantee the bounds of Lemma 4.16(2)
by following the same proof as in [32].

Suppose the segments of S are nonintersecting. Consider a query \rho . The algorithm
is similar as above but we use the query algorithm of Lemma 4.4(2) instead on each
set S(e). As a last step, among all segments hit by \rho found by the algorithm as above,
we return the segment whose intersection with \rho is closest to the origin of \rho . The
query time is O(

\surd 
n logn).

This proves Lemma 4.15 and thus Lemma 4.13.

5. Concluding remarks. We demonstrate several applications of the subpath
hull queries where our new result leads to improvement. In each problem, the algo-
rithm needs to preprocess a simple path for subpath hull queries, and the goal of each
query is usually to perform certain operations (e.g., one of those listed in Theorem 3.1)
on the convex hull of the query subpath. All algorithms use the previous result of
Guibas et al. [25]. We replace it by our new result in Theorem 3.1, which reduces the
space of the original algorithm by a log logn factor while the runtime is the same as
before or even better. In the following, for each problem, we will briefly discuss the
previous result and the operations on the convex hull of the query subpath needed in
the algorithm; we then present the improvement of using our new result. Refer to the
cited papers for the algorithm details of these problems.

Computing an optimal time-convex hull under the Lp metrics. Dai et al. [19]
presented an algorithm for computing an optimal time-convex hull for a set of n
points in the plane under the Lp metrics. The algorithm runs in O(n logn) time and
O(n log logn) space. In their algorithm, the operation on the convex hull of the query
subpath is the third operation in Theorem 3.1 (called one-sided segment sweeping
query in [19]; see section 4.2 of [19]). Using our new result in Theorem 3.1, the
problem can now be solved in O(n logn) time and O(n) space.

Computing a guarding set for simple polygons. Christ et al. [18] studied a new
class of art gallery problems motivated by applications in wireless localization. They
gave an O(n logn) time and O(n log logn) space algorithm to compute a guarding set
for a simple polygon of n vertices (see Corollary 11 in [18]). In their algorithm, the
operation on the convex hull of the query subpath is the third operation in Theo-
rem 3.1. Using our new result in Theorem 3.1, the space of the algorithm can be
reduced to O(n) while the runtime is still O(n logn).

Enclosing rectangles by two rectangles of minimum total area. Becker et al. [6]
considered the problem of finding two rectangles of minimum total area to enclose

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1160 HAITAO WANG

a set of n rectangles in the plane. They gave an algorithm of O(n logn) time and
O(n log logn) space. In their algorithm, the operation on the convex hull of the query
subpath is the third operation in Theorem 3.1. Using our new result in Theorem 3.1,
the problem can now be solved in O(n logn) time and O(n) space.

Enclosing polygons by two rectangles of minimum total area. Becker et al. [5] ex-
tended their work above and studied the problem of enclosing a set of simple polygons
using two rectangles of minimum total area. They gave an algorithm of O(n\alpha (n) logn)
time and O(n log logn) space, where n is the total number of vertices of all polygons
and \alpha (n) is the inverse Ackermann function. In their algorithm, the operation on the
convex hull of the query subpath is the third operation in Theorem 3.1. Using our
new result in Theorem 3.1, the space of the algorithm can be reduced to O(n) while
the runtime is still O(n\alpha (n) logn).

L1 top-k weighted sum aggregate nearest and farthest neighbor queries. Wang and
Zhang [36] studied top-k aggregate nearest neighbor queries (also called group nearest
neighbor queries) using the weighted sum operator under the L1 metric in the plane.
They built a data structure of O(n logn log logn) space in O(n logn log logn) time.
In their query algorithm, the operation on the convex hull of the query subpath is
the third operation in Theorem 3.1 (see [36, Lemma 8]). Using our new result in
Theorem 3.1, we can reduce both the space and the preprocessing time of their data
structure to O(n logn), while the query time is the same as before. Wang and Zhang
[36] also considered the farthest neighbor queries and obtained the same result as
above using similar techniques, which can also be improved as above by using our
new result in Theorem 3.1.
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