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Fixed point lattice actions are designed to have continuum classical properties unaffected by
discretization effects and reduced lattice artifacts at the quantum level. They provide a possible way to
extract continuum physics with coarser lattices, thereby allowing one to circumvent problems with critical
slowing down and topological freezing toward the continuum limit. A crucial ingredient for practical
applications is to find an accurate and compact parametrization of a fixed point action, since many of its
properties are only implicitly defined. Here we use machine learning methods to revisit the question of how
to parametrize fixed point actions. In particular, we obtain a fixed point action for four-dimensional SU(3)
gauge theory using convolutional neural networks with exact gauge invariance. The large operator space
allows us to find superior parametrizations compared to previous studies, a necessary first step for future

Monte Carlo simulations and scaling studies.
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I. INTRODUCTION

Lattice regularization is the tool of choice to study
nonperturbative properties of quantum field theories
starting from first principles [1]. Modern lattice QCD
simulations have attained a high level of precision, and
for some important Standard Model quantities, e.g., the
QCD coupling at the electroweak scale ag(u = my), they
provide the current most accurate determination [2].
Increased precision has amplified systematic issues relevant
to any lattice calculation, such as the extrapolation to the
continuum limit. Numerical simulations become rapidly
more costly as the lattice spacing is reduced, not only due to
the increased resolution at fixed physical volume, but also
due to the increased autocorrelation times (critical slowing
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down) in generating statistically independent samples in
Monte Carlo Markov chains and the related problem of
suppressed tunneling between sectors of different topologi-
cal charge (topological freezing) [3]. For a robust continuum
prediction, arange of lattice spacings is necessary, requiring a
delicate balance between the control of discretization arti-
facts on coarse lattices on the one hand and the increased cost
of simulating on finer lattices on the other.

Several different approaches are currently being fol-
lowed to deal with the problems of critical slowing down
and topological freezing. Simulations employing open
boundary conditions in time [4] or huge master fields
[5,6] both circumvent topological freezing, but they do not
address critical slowing down. Approaches using trivializ-
ing or normalizing flows [7] attempt to solve both problems
by finding invertible maps from a simple probability
distribution for the lattice configurations, which allows
efficient sampling, to the target one. Recently, the use of
machine-learning tools for parametrizing normalizing
flows has roused anew attention in this approach [8—12];
however, these attempts are so far restricted to simple field
theories, low dimensions or, in four-dimensional SU(3)
gauge theories, to very small and coarse systems [13].

Here we propose to follow a complementary approach in
order to solve both critical slowing down and topological
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freezing by using a lattice action with highly suppressed
lattice artifacts. Such an action in principle allows simu-
lations on very coarse lattices where both problems are
absent, while at the same time lattice artifacts can be kept so
small that a solid continuum limit can be taken. The
advantage of this approach is the immediate applicability
to gauge field theories in four dimensions without encoun-
tering scalability issues, once a highly improved action
is found.

There is a long history of designing improved lattice
actions to reduce discretization effects, bringing simula-
tions at coarser lattice spacing into the scaling regime. One
such program, Symanzik improvement [14—17], removes
lattice artifacts in some physical quantities order by order in
the lattice spacing a. In a lattice gauge theory, this can be
achieved, for example, by building a lattice action combin-
ing plaquettes and closed six-link loops. By construction,
such an approach involves a perturbative expansion at weak
coupling. A radically different approach makes use of
renormalization group (RG) properties to design lattice
actions where artifacts are removed completely to all
orders. The construction of such quantum perfect actions
is an extremely ambitious goal and is in general impossible
to achieve. In asymptotically free theories, such as QCD, a
constructive method can be designed based on the fixed
point (FP) of RG transformations, which yields lattice
actions without lattice artifacts at the classical level, i.e., for
on-shell quantities [18]. These so-called classically perfect
actions, or FP actions in short, are in general expected to
show suppressed lattice artifacts at sufficiently small gauge
coupling ¢g even at the quantum level. The FP action
approach was used to study the O(3) nonlinear c—model,
SU(3) pure gauge theory, and full QCD, with promising
indications of much-reduced cutoff dependence in
Monte Carlo simulations [19-29]. However, the increased
numerical cost of simulating FP gauge actions made it
difficult at that time to draw firm conclusions on the level of
improvement. Given the intervening dramatic increase in
computing capability, this is no longer an obstacle, and
pushing the FP approach to higher accuracy has in principle
become feasible.

The difficulty of implementing the FP program in
practice stems from the fact that many of the FP properties
are defined only implicitly without knowing the explicit
form of the FP action. Moreover, the FP action in principle
requires infinitely many loop operators in order to describe
the infinitely many gauge link couplings generated through
the RG transformations (RGTs). This is not a problem
per se, because reasonable choices of the RGT lead to FP
actions that are local, i.e., for which the couplings decay
exponentially with separation, and the RGT can in fact be
designed to optimize this decay. For the SU(3) gauge
theory, this has been achieved in Ref. [24]. One is then still
left with the challenging task of finding a compact and
accurate parametrization of the FP lattice action. This is an

essential first step before any Monte Carlo study can be
done. Recent advances in machine learning (ML), in
particular, the construction of lattice gauge equivariant
convolutional neural networks (L-CNNs) in Ref. [30], now
provide a completely new way to tackle this problem.
Rather than committing to a particular ansatz for the lattice
action, e.g., in terms of some of the smaller closed loops
like the plaquette and rectangle, one can have a much more
general and expressive neural network architecture, where
an optimal set of parameters can be found using ML
techniques once a sufficiently rich training dataset is
provided. An essential element is that gauge symmetry
must be exactly preserved in the network architecture. In
Ref. [30], this has been achieved by starting with the
original gauge links and local untraced plaquettes and
creating extended closed loops of gauge links through
successive layers using parallel transport and bilinear
products of local gauge equivariant operators. In this
way, a rapidly increasing number of possible loops is
generated with each additional layer. This was shown to be
far superior to convolutional neural networks (CNNs)
where gauge symmetry was not built into the architecture,
leading to poor predictions. The complete generality of the
L-CNN approach makes it an ideal method to parametrize
FP actions.

For any improved lattice action, the true test of how
much lattice artifacts are reduced in the full quantum theory
is only possible through Monte Carlo simulations. In this
paper, we focus on describing in detail the already
challenging first step, to parametrize an FP action, in
particular, for the four-dimensional SU(3) gauge theory,
using L-CNNs and ML techniques. This allows us to
compare with previous studies of the FP parametrization
and also serves as a proof of concept that ML can be
accurately used in this task. The end result is that the very
expressive nature of L-CNNs enables us to find a much
more accurate parametrization of the SU(3) FP gauge
action than previously possible. This conceptual success
constitutes the first necessary step toward future
Monte Carlo studies and ultimately toward the construction
of a (approximate) quantum perfect action with strongly
suppressed lattice artifacts.

The paper is organized as follows. In Sec. II, we first
recapitulate how the FP action emerges in the limit of
iterating RGTs of asymptotically free theories and how the
FP action and its classical properties are implicitly defined
through a classical saddle point equation. We then describe
the setup and training of the L-CNN architectures in
question, starting with a description of the construction
of the learning datasets in Sec. III, the explicit description
of the L-CNN architecture and ML model in Sec. IV, and
finally comparing the accuracy of the L-CNN parametriza-
tions to previous ones in Sec. V. We end with a view to
the next steps and possible further uses of L-CNNs and
ML for Monte Carlo simulations or more ambitiously for
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constructing the full renormalization group trajectory in
Sec. VI. A preliminary version of this work was presented
in [31].

II. THEORETICAL SETUP

The role of the Wilsonian renormalization group trans-
formation (RGT) is to reduce the number of degrees of
freedom of a particular physical system by integrating out
fluctuations at high-energy scales while leaving the under-
lying physics at low-energy scales entirely intact [32,33].
For a field theory regularized on a lattice, the lattice spacing
is increased with each RGT step. Starting from a very fine
lattice close to the continuum, for which any discretized
action has negligible lattice artifacts, one can follow a chain
of RGT steps leading to a very complicated lattice action on
a coarse lattice describing the same low-energy physics.
For SU(N,) lattice gauge theory, where the underlying
variables on the fine lattice A = {n€N*} are the gauge
links U,, with some lattice action A[U] and gauge
coupling f = 2N_/¢*, the RGT can be defined as

exp(—p A (V) = [ DUexp(-pLAU] + TIU.VID. (1
where the blocking kernel T[U, V] is given by

&Y _{ReTr(V,,, . Ohyu) =N} (2)

ng.p

T[U,V] =

and defines the coupling between the fine links U, , and
the coarse links V, , on the blocked coarse lattice
Ag = {ng €N*}. The free parameter x can be optimized,
which we later discuss. The Q, , variables are blocked
links constructed from the underlying fine links U, ,

(cf. Appendix D for the explicit gauge-link blocking used

Co

in this work). The normalization term N f, guarantees that
the partition function is invariant under the RGT, i.e.,
integrating Eq. (1) over the coarse gauge links with DV
yields Z(f') = Z(p). The form of the effective coarse
action A'[V] and the couplings {¢, c{,c},...} are deter-
mined by the choice of the kernel 7[U, V]. Under infini-
tesimal RGTs, the couplings map out a flow in the space of
all possible gauge-invariant operators, as illustrated in
Fig. 1 by the light red trajectories.

For asymptotically free gauge theories, the only relevant
coupling is the gauge coupling ¢ and the continuum is
approached in the weak coupling limit f — co. On the
critical surface, where £/a = oo, the irrelevant couplings
cp, Cq, -.. flow into a fixed point as shown in Fig. 1. The FP
couplings {cf¥, ctF, ...} are determined once the form of
the RG blocking is prescribed. Slightly off the critical
surface, the couplings first flow toward then away from the
fixed point, approaching the renormalized trajectory (RT),
which describes the flow starting from the FP in the
relevant direction of the gauge coupling. Along the RT,
the lattice theory is quantum perfect, with no lattice
artifacts at all, because it is connected back to the
continuum theory on the critical surface. The FP couplings
define the so-called FP action AP, When it is used at finite
values of p, it tracks the RT closely at sufficiently weak
coupling, cf. Fig. 1. The FP action can be shown to be
classically perfect [18,20]; i.e., it has no lattice artifacts of
O(a") to all orders on field configurations fulfilling the
equations of motions. Artifacts of O(g*aloga, g*a®) are,
however, present but suppressed for small g.

As pointed out by Hasenfratz and Niedermayer in
Ref. [18], the FP action A™ is implicitly given by the
f — oo limit of Eq. (1), namely by the saddle point equation

ATIY] = min ATV + T{U. V] 3)

— RT

fixed /
pomt

» FP action

1

FIG. 1.

p

A sketch of the renormalization group flow and the renormalized trajectory (RT) in the infinite-dimensional coupling space,

with the gauge coupling as the only relevant direction. The fixed point is on the critical surface f — oo, where £/a = oo for any physical
scale £, with the values of the critical couplings cE¥ determined by the specific form of the RG blocking. The FP action uses the same
coupling values at finite f, tracking the RT closely at sufficiently weak coupling.
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For a fixed coarse configuration V, the minimization is over
all possible fine configurations U, and the normalization term
in the limit f — oo becomes

N = max [ReTr(WQ, )] (4)

W eSU(N,)

It is easy to see that the FP action has no lattice artifacts
for field configurations fulfilling the equations of motion. It
becomes apparent when considering the variation of the FP
action using the chain rule,

SAT[V]
5V

5 SU ST[U.V]
= oot

where U, is the configuration minimizing the right-hand
side of Eq. (3). For a classical coarse configuration V, one
has

APV PN ST[U, V] 0 (©)

5V Vo ly.

since Uy, minimizes the sum A [U] 4 T[U, V]. Hence
T[U, V] takes its minimum value, namely zero. This in turn
forces

SAFP[U]

AFP[V] = AFP [Umin] ’ SU

=0, (7)
Umin

meaning the minimizing configuration U, is also
classical, and the FP action value is unchanged in the
minimizing step. This can be iterated until one reaches an
arbitrarily fine classical solution with the correct continuum
action value. In particular, the FP action allows for exact
instanton solutions at finite lattice spacing [23], and the
exact FP equation therefore preserves topology on
the lattice. Note, however, that this is not necessarily true
for the RGT step. Starting from a fine configuration U,
which is a classical solution, the resulting blocked con-
figuration V might not automatically be one as well. In fact,
this can directly be seen by blocking analytical instanton
solutions with a small radius in lattice units such that the
instanton properties are lost on the coarse configuration.
This process of instantons falling through the lattice is
discussed further in Sec. III.

A crucial question concerns the locality of the FP action
or, more generally, the action A" in Eq. (1). In order to
guarantee universality, the couplings must fall off expo-
nentially in the separation between fields. One can design
RGTs, which force an exponential decay and find the one
maximizing it so that beyond some separation the cou-
plings are small enough to be negligible and in practical
applications can be omitted. Some guidance for a good
choice of blocking kernel can be provided perturbatively
[19,20]. At weak coupling (and with some gauge fixing),

] \\ X poo
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— E S == exp(—3.4r/a)
S ]
I 10-1 X\
& E O b
=y ] X\\
; 1072 _: O \\\
~ 3
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FIG. 2. The leading couplings p,,(r) of the perturbative FP
action, from [24]. The blocking kernel T[U, V] is designed to
maximize the exponential decay of the couplings, with
exp(—3.4r/a) shown as a visual guide.

the FP action can be expanded in terms of the gauge
potential Af(x), only keeping terms up to quadratic order in
the potential. The resulting action can be expressed in terms
of couplings p,, () for fields A, (x) and A, (y) at separation
r = |x—y|. An optimal choice of the blocking and the
RGT with respect to locality was found in [24]. Figure 2
shows the corresponding largest perturbative couplings,
which fall off exponentially in magnitude with
~exp(—=3.4r/a). It is this RGT that we employ in our
work, and we give its details in Appendix D.

The FP action A" and its properties are defined only
implicitly through the FP Eq. (3), where A™ appears on
both sides. The FP equation is therefore iterative: On the
right-hand side of Eq. (3), the value of A™[U] can be
determined through a second minimization over even finer
gauge configurations U’, and so on, until we reach a
configuration so smooth that any (reasonable) lattice
discretization of the continuum Yang-Mills gauge action
can be used to calculate the inception value of the action. In
practice, instead of iterating the FP equation, one can
shortcut the procedure and, for sufficiently smooth fine
configurations, make use of existing approximate para-
metrizations of A [U]. Previous parametrizations include
linear combinations of plaquette, rectangular, and paral-
lelogram loops with various powers of their traces [24] or
combinations of thin-link and smeared-link plaquette traces

Uy, and w, ,, with various powers of the form

1
AFP[V] = N_ Z Z pklulj,yuwfc,uw (8)

Cxu<v k|l

with optimized coefficients py; [25]; cf. Appendix C for
further details. While this parametrization ansatz is already
very general and flexible, in practice one is restricted to a
rather small set of O(20-30) parameters. In this paper, we
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take a different approach using L-CNNs and ML in
connection with the FP data from Eq. (3) in order to
explore a much larger space of possible actions, with
the goal of finding a more accurate approximation than
previously feasible—that is the parametrization challenge
that we address in this paper.

III. FIXED POINT DATA

To parametrize the FP action accurately requires a large
set of data. In this section, we describe how this data is
obtained on the basis of Eq. (3). In this work, most of the
FP data stems from Monte Carlo ensembles generated
using the Wilson gauge action at various couplings ;. As
such, f,; simply serves as a proxy for the size and
characteristics of the gauge field fluctuations. For each
coarse configuration V, one needs to find the minimizing
fine configuration U ,;, on the right-hand side of Eq. (3),
which then yields the value A™[V].

As described in the previous section, for practical
reasons one employs a parametrization of A [U] for the
minimization procedure, and the question arises how this
approximation affects the true value A[V]. Since the RG
blocking increases the lattice spacing by a factor of 2 in
each RGT step, the action density on the fine configuration
U is at least a factor of 16 smaller than on the coarse
configuration V, and in practice is even smaller, because of
the sizable positive contribution from the blocking kernel
T[U, V]. In Fig. 3, we show the two contributions T[U, V|
and APP[U] to AT[V] averaged over 4* lattice ensembles
generated at the indicated coupling f3,,;;, and we find that for

14 4
— (AFPV])
12 m—(T'[U, V1)
— (AFP[U))
10 1
Z
g 84
5]
<
5 61
gl
Q
[S]
4 -
2 -
0 -
T T T T T T T T
5.0 6.0 7.0 80 10.0 15.0 20.0
Bwil
FIG. 3. Fixed point action density as a function of f3,; on a 4*

lattice. We show the ensemble-averaged FP action A™[V], the
blocking kernel T[U, V], and the parametrized FP action A [U]
used on the right-hand side of Eq. (3), normalized to the coarse
lattice volume. The mean values are obtained by averaging over
the ensemble at a given f,;. The shaded regions indicate the
standard deviation.

Buwit = 5.5 the action density for A[U] is about a factor
>30 smaller than the one for A™[V]. (Note that in the
figure the action density for AfP[U] is normalized to the
coarse lattice volume.) Hence, for the very smooth fine
configurations, any reasonably good approximation to
AFP[U] can be used on the right-hand side, and in practice
we employ the existing APE444 parametrization;
cf. Appendix C2 for details. This action is constructed
in such a way that the couplings of the FP action in the
quadratic approximation are reproduced [24] while explic-
itly maintaining the Symanzik “on-shell” conditions to
O(a?) [25], and it therefore is a very good approximation
on sufficiently smooth configurations. From Fig. 3, we can
estimate the error on A" [V] induced by using the APE444
parametrization on the right-hand side. Considering the
worst case f; = 5.0, for the minimizing configurations,
we find action densities <0.5 corresponding to
Pwi > 20.0. From the top plot in Fig. 8, we find that
for the APE444 parametrization the relative action error is
<0.3% inducing an error of <0.17% on Af[V] for
configurations at f,;; = 5.0 and far less than 0.1% already
at By = 6.0. The accuracy of AAPE#4[U] can of course
also be checked by further minimization over U’

Another potential error on the FP data AFP[V] may
originate from inaccurate minimization of the right-hand
side of Eq. (3). The minimization on each configuration
starts from an initial random fine configuration U and then
sequentially updates each link U,, with an adaptive
rotation in color space. Each iteration corresponds to a
pass through the entire volume. We show two typical
examples of this minimizing procedure in Fig. 4 for two
coarse configurations V on 8* volume generated with
Pwil = 6.0 (top plot) and p,; = 5.4 (bottom plot). As
shown in the figure, on smoother configurations at
Pwii = 6.0, the minimization converges quickly, while on
rougher configurations at f,; = 5.4, as expected, it takes
somewhat longer to reach a similar level of convergence. In
any case, we see from the illustrations that even in those
cases, the error on the value of the FP action A™[V] is
negligible. Note that the minimization procedure is the
most expensive step in generating the FP data. This is
because the update of a single link U, , contributes both to
AAPEHA[U] and several blocked links Q,, ,[U] in a com-
plicated way that requires the expensive recalculation of
many intermediate quantities and the resulting contribu-
tions; cf. Appendixes C 2 and D.

The action value A™[V] is only one datum of informa-
tion for each coarse configuration V. However, the FP
Eq. (3) contains much more information, which can be
extracted from the derivatives with respect to the gauge
links [25]. Since the first term on the right-hand side of
Eq. (5) vanishes for the minimizing configuration U ;,, the
derivative can be determined solely from the blocking
kernel evaluated on the minimizing configuration. To be
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FIG. 4. Examples of minimization on 8* lattice configurations

with fB,; = 6.0 (top) and 5.4 (bottom). The insets show the
decrease of A[U]+ T[U, V] in each iteration.

explicit, one has

SA®V]  ST[U,V]
sve, — 8ve,

= —kReTr(itV, ,0%,), (9)
Umin

with 7 the generators of SU(3) and the blocked links Q, ,
built from the minimizing configuration U,;,. The deriva-
tive notation concretely means

5f< ) 1 16
Ve, = lim—(£(e!V) = £(V)). X (y,

) =t 5xv5/w (10)
for any scalar function (V). Each coarse gauge configura-
tion V on a L* lattice therefore generates 4 x L* x (N2 — 1)
data of derivatives, one for each link and color index. Thisis a
large amount of information, which is very valuable in the
parametrization process as it tightly constrains the form of

the FP action. For later convenience, we combine the
derivatives in the form

FP
DI = Zt“ ?V” , (11)

which makes them independent of the choice of basis for the
generators.

Gauge invariance of the FP action means the derivatives
DY are not independent, which yields a very useful
consistency check. Under an infinitesimal transformation

of the links V', = R,V ﬂRHA with R, = exp(iaft*), the

action being unchanged forces

ZTr [(Dfa,)DEP [V]] = 0, (12)

with a, = aft* and the gauge covariant forward finite
difference D,f ay =V, Vfw — a,. After summation by
parts, this is equivalent to the condition

> Tr[a, DEDE V] =0, (13)

with the gauge covariant backward finite difference defined
as DEG, =G, — VT_” 4Gx—iVip, for a matrix-valued
field GX. Since Eq. (13) has to be satisfied for all possible

a,, this becomes a local condition
ZDBD =0 (14)

at each x to be true for exactly gauge invariant actions. We
note that Eq. (14) is a consequence of Noether’s second
theorem applied to the FP action.

In our approach, we compute the FP derivatives using
Eq. (9), relying on the fact that U is a (local) minimum of
the right-hand side of the FP equation. Since the numerical
minimization procedure to determine the fine configuration
U can only yield approximate minima, we may check, for
each coarse configuration V, how closely the numerically
obtained FP derivatives satisfy this requirement. This
allows us to directly assess the quality of the minimizing
configuration and the FP action data. In practice, we find
that the consistency check is satisfied up to the accuracy
achieved in the minimization.

In addition to Monte Carlo ensembles generated with the
Wilson gauge action, we can also examine the FP action
for instanton lattice configurations. Taking as input a fine
instanton configuration with some chosen value of instan-
ton radius p, we produce a coarse configuration V using the
RG blocking. If the topological properties are intact on
the coarse side, the FP action should be unchanged by
minimization, reproducing an instanton solution on the
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FIG. 5. Minimization of instanton configurations. In the upper
panel, an instanton of size p/a = 3.0 on a 16 lattice persists after
being blocked to the 8* lattice. The lower panel shows an
instanton with p/a = 1.5, which is too small to survive the
RG blocking, i.e., the instanton falls through the lattice.

fine side. We see tests of this in Fig. 5. Starting from a fine
instanton solution on a 16* volume, the coarse 8* configu-
ration V is produced via RG blocking and then fed into the
minimization procedure. The upper plot is for an instanton
originally of radius p/a = 3.0; under minimization, the
action is essentially unchanged, with a very small con-
tribution from the blocking kernel 7[U, V], meaning the
blocked configuration is also an instanton solution. The
inset shows the rapid convergence of A[U] + T[U, V] in
the minimization. The lower plot is for an instanton
originally of radius p/a = 1.5; once RG-blocked, the
instanton is lost, as T[U, V] becomes much larger during
minimization and the minimized total action A[U]+
T|U,V| is below the continuum value 4z%; i.e., the
topological features are lost because the instanton can no
longer be resolved at the level of the coarse lattice spacing
a’ = 2a. Note that with the RGT-III blocking employed in

this work, instantons fall through the lattice for radii
p/a’ £0.85. In order to embrace this specific classical
property of the FP action, we generate a set of coarse
configurations through blocking fine instanton configura-
tions with p/a ranging from 1.1 to 3.0. The corresponding
FP action values and derivatives provided by the minimi-
zation form part of the FP training dataset. Further details of
instanton solutions on the lattice are given in Appendix E.

IV. MACHINE LEARNING MODEL

Machine learning is being applied across a vast array of
fields [34-39]. Focused more specifically on lattice field
theory, it has been used in a range of topics, including
the identification of phase transitions and their underlying
critical exponents [40], the generation of decorrelated
Markov chains through normalizing [9] or trivializing
[12] flow transformations, inverting renormalization group
transformations in scalar field theory [41], the finite-temper-
ature deconfinement phase transition in SU(2) and SU(3)
pure gauge theory [42,43], preconditioning of lattice Dirac
operators [44,45], and the connection between machine
learning diffusion models and stochastic quantization of
field theories through Langevin dynamics [46]. A recent
review of some of this work is given in [47]. In our context,
we need a tool to parametrize a lattice action in a highly
general form, maintaining exact gauge invariance. The
necessary architecture has already been developed in [30]
with the lattice gauge equivariant convolutional neural net-
work (L-CNN).

A. Gauge equivariant network layers

The input to the L-CNN network is a set of gauge

configurations U, ,, which under a gauge transformation
change as U’ , = Qxe.ﬂQiﬂ;, with Q, € SU(3). From the
gauge links, we build untraced plaquette variables

Ux,w) = UY),}LUZ'-F[L,VU;J’_I}’MU;?y = }a (15)

which gauge transform locally as U’ ,, = Q, UMDQ)TC. We
refer to generic variables with local gauge transformations
as W, , with channel index 1 < a < N,. Gauge equivariant
convolutions of these variables (the “channels’) are built
through parallel transport via gauge links:

Wia = Za)a.b.ﬂ,k Ui Wik s Us o (16)
bk

with @, the convolution weights, channel indices
1 <a<Ngoy and 1 <b <Ny, and —(K—1) <k <
(K — 1) with K the kernel size. The parallel transporters
U, kj» which start at x and end at x + k - fz, are the products
of consecutive gauge links along the path. Products of
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predictions
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gauge invariant output

FIG. 6. An example of a lattice gauge equivariant convolutional neural network (L-CNN), taken from [30]. Given a lattice gauge
configuration as input, a sequence of layers builds untraced loops of gauge links of increasing size, with the total number of loops
increasing rapidly with the depth of the network. The loops are traced in the final layer to produce a gauge invariant output. Exact gauge

covariance is maintained throughout.

locally transforming variables are constructed in a bilinear
layer

Wx,a - Zaa,b,ch,hW;c,cv (17)
b,c

with parameters a, ;. and channel indices in the ranges
1<b<Ny;,1<c<Nj, and 1 <a< Ny, a crucial
point being that gauge covariance is maintained exactly as
the product is of variables at the same lattice site. For the
L-CNN models used in this work, we use a combination of
the convolutional and bilinear layer (a bilinear convolu-
tion), which can be expressed as

+
Wx,a - E C‘)a.b,c.k,y Wx.b Ux,k-ﬁ Wx+k~f4.c Ux,k‘ﬁ ’ (18)
b,c.k.u

where @, ., are real-valued weights and 1 < a < Ny,
(output channels), 1 <c¢,b < N;, (input channels), and
—(K—-1) <k < (K-1). We also note that each bilinear
convolutional layer considers both orientations of a par-
ticular input variable (e.g., both W, ; and W;[), which
effectively doubles the number of input channels, and a
residual term. The number of trainable parameters asso-
ciated with Eq. (18) is given by (2D(K —1)Ny, +1)-
(2N, + 1) - Ngy with D the dimension of the lattice.

As depicted in Fig. 6, the full architecture can have
alternating convolutional and bilinear layers (or combina-
tions thereof), building up more and more loops of
increasing length. In principle, any arbitrary loop can be
generated once sufficiently many layers are combined. The
model also has the possibility to add activation and
exponentiation of the variables W, ,, which are not used
in this particular work. As a final layer, a trace over the
variables produces a gauge invariant scalar. In Ref. [30],
L-CNN models were used to accurately predict traces of
planar Wilson loops of size up to 4 x 4 in SU(2) gauge
theory and were far superior to CNN models, which were
not constructed with exact gauge invariance.

B. Parametrizing actions using L-CNNs

L-CNN:s built from multiple bilinear convolutions with a
final trace layer at the end of the network can be used to
express a large class of gauge invariant scalar functions on
the lattice. However, there are a few additional require-
ments to parametrize gauge invariant actions. The first
requirement is a normalization condition: the output of a
parametrization A“NN[V] must approach the Yang-Mills
action Syy[A,(x)]/p for sufficiently smooth gauge
configurations V, , ~ exp(iaA,(x)). Secondly, one may
require that the naive continuum limit @ — 0 is reached
in a particular way such that lattice artifacts of certain
observables are suppressed to some desired order, along the
lines of Symanzik improvement. A third condition is that
the parametrized action should be positive for all gauge
configurations. Finally, we require the action to be local,
which means that the parametrization should be expressible
as a sum over lattice sites of finite-length Wilson loops and
their products.

All four requirements can be explicitly realized by
choosing a particular ansatz for the parametrization model:

ALCNN[y] = ZA)F;“*[V] zoo: bW (N, [V] = N, [1])".  (19)

X n=0

where AY[V] is the local contribution of a prefactor action,
APV =S ARYE[V]. The term N [V] is the local output of
an L-CNN, and N,[1] is the network evaluated on a link
configuration of unit matrices. Finally, 5") are manually
chosen coefficients with the constraint 5©) = 1. As we will
show below, the prefactor part is used to control the naive
continuum behavior of the action, whereas the L-CNN
provides corrections for coarse configurations.

We consider prefactor actions of the form

e 1 M m
APC([V] = N_Z S e ReTr(1 - U,e)l™. (20)
¢ C m=1
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where we sum over a set of Wilson loops U, ¢ (specifically
plaquettes, rectangles, chairs, and parallelograms) starting at
the lattice site x and cém) are real-valued coefficients. By
construction, the prefactor action is ultralocal, with zero

coupling beyond some separation. Additionally, there are

constraints on the coefficients cém) that ensure positivity.

Particular choices for the coefficients guarantee that the
prefactor action approaches the Yang-Mills action smoothly
(normalization) and is optionally improved to some particu-
lar order (Symanzik improvement). Suitable choices for the
prefactor action are the Wilson action (which only consists of
the linear plaquette term) or the Symanzik improved action
(linear plaquette and rectangle contributions). The specific
form of Eq. (20) also allows for the fixed point action
parametrizations considered in [24], specifically the type
[a, ITIb, and Ilc parametrizations, which include all terms
except chairs up to order M = 4. If the set of Wilson loops
includes plaquettes, rectangles, parallelograms, and chairs,
the normalization condition is

c(i) + 86,(11) + 861();) + 16c£}11) =1, (21)
while the Symanzik conditions that can be imposed are [16]

m_ 1

1 1 1
O —ely -5 AW =0 (22)

Crt” —Cpg —Cepp —

The most frequently used Symanzik improved gauge action

sets cgl) = 0, combining only plaquettes and rectangles with

cstl) =—1/12and cS) = 5/3. Note that the parametrized FP

action of [24] set cgl) = 0 but included parallelogram loops

as well. While the prefactor part of AX“N[V] is designed to
provide a good approximation to A™[V] for smooth gauge
fields, we use the term N,[V] to deal with coarse configu-
rations. We represent N, [V] as the real trace of a stack of
Niayer 2 1 bilinear convolutional layers. The output of the
L-CNN is thus a linear combination of Wilson loops of
various sizes and therefore local. We regularize the output of
the model such that the difference N, [V] — N [1] vanishes in
the vacuumforV, , =1 ! Furthermore, since the L-CNN can
be written as a linear combination of Wilson loops, a naive
continuum expansion using V, , = exp(iaA,(x)) yields

N,[V = 1] = N [1] ~ 0(a?). (23)
The leading order term of the parametrized action is thus

ALCNN[Y 1] > AP [V](1 + 6D O(a?)).  (24)

"This also holds for gauge equivalent vacuum configurations

i
=QQ ;.

Our chosen ansatz therefore guarantees the correct con-
tinuum behavior of the action.

The positivity requirement is realized if the prefactor
action is positive everywhere and if the coefﬁcients b are
chosen appropriately. For example, we may use b") = 1/n!,
which allows us to write the parametrized action as

> AFVIexp(N.[V] = N.[1]).  (25)

X

fQLACPHJ[ }

(exp)

which is positive for all gauge configurations. Another
simple choice is to truncate at order n = 1:

D AEVI(L+ N[V] = NJ[1]).  (26)

X

AL CNN[ ]

(lin)

We note however that this ansatz is not manifestly positive.

C. Training

In the present context, we train the L-CNN using
ensembles of gauge configurations {V;}, for which the
values of the fixed point action and associated derivatives
have been obtained through minimization as in Eqgs. (3) and
(9). The output of the L-CNN is AL™N[V]. The predicted
derivatives DY CNN[V] = 37 196 AVNN[V]/5V¢, [analo-
gous to Eq. (11)] are calculated exactly through back-
propagation: Instead of varying the output of the neural
network with respect to the parameters of the model to
minimize a loss function, we calculate the derivative of the
network output with respect to the input variables, the
gauge links. With this information, the loss function £ for
the L-CNN is a combination of

cfg

FP L-CNN
£, L4chg 2 MATIV] = AN,
T DL CNN 2
£~ iy 2 SO AN
L= W1£1 + W2£2, (27)

where N, is the number of configurations in the dataset.
The weights w; , for the loss function are hyperparameters
of the model. Typically, we use w; = 0.1 and w, = 1. The
model is trained by minimizing £ using the AdamW
optimizer. Note that £, contains the group derivatives
DLENN of the model, which we compute by relating them
to matrix-valued Wirtinger derivatives (see Appendix A for
details). Unless stated otherwise, we use single precision
for floating-point arithmetic during training and testing.
The data used to train and evaluate the network are SU(3)
gauge ensembles on volumes 44, 6, and 8* with the Wilson
gauge action and bare gauge couplings f,,; ranging from
5.0 to 100.0, with more dense spacing in f3; at the stronger
coupling end. Each member of these ensembles represents
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a possible coarse configuration V in Eq. (3); the minimi-
zation procedure begins with a random starting fine
configuration U and a parametrization of A™[U] appro-
priate for smooth gauge links. Here, we use the APE444
parametrization (see Appendix C 2 for details). Minimizing
APP[U] + T[U, V] by adaptively updating of the links U
produces sets of fine configurations with matching volumes
84 124, and 16*. Each ensemble consists of 200 saved
configurations equally spaced from Markov chains of
length 10°, and the ensembles are split into 80% training,
10% validation, and 10% test data.

V. RESULTS

A. Architecture search

The flexibility of the L-CNN architecture allows for a
large variation of the network hyperparameters, namely
the number of bilinear convolution layers, the number of
channels, and the kernel size for convolutions. To gain
some insight as to the optimal choices for these hyper-
parameters, we train a large set of models on the same
dataset, gauge ensembles with lattice volume 4* generated
with the Wilson gauge action, and bare coupling f; from
5.0 to 10.0, for which minimization was first done to find
the corresponding values of the FP action and derivatives.
In the L-CNN models, we use the local Wilson action
density as the prefactor AY°[V]. Details about the various
architectures are shown in Table I, where we list the number
of bilinear convolutional layers and their associated kernel
sizes and output channels. We also provide the number of
trainable parameters. As detailed at the end of Sec. IVA,
the number of parameters for each bilinear convolution
grows quickly with the number of channels, the kernel size,

TABLE I.  Architecture details of the hyperparameter scan. All
architectures use the Wilson action density as a prefactor action
and use clover leaf plaquettes (24 input channels). After the last
convolution, we take the real part of the trace and use a final linear
layer to map the remaining channels to a single real number.

Layers Kernel sizes Channels Parameters
1 1 4 9.61K
2 8 170K
2 16 340K
2 1, 1 4,8 10.3K
2,1 8, 16 174K
2,2 16, 12 454K
3 2, 1,1 4,4, 8 85.8K
2,2, 1 8, 8,16 194K
2,2, 1 12, 24, 24 443K
2,2, 1 16, 16, 32 527K
4 2,1, 1,1 8, 8, 16, 32 212K
2,2, 1,1 16, 16, 16, 32 544K
2,2,2,1 16, 24, 24, 32 1.15M

and the number of dimensions. For each unique architecture
of the thirteen listed in the table, we use both Egs. (25) and
(26) and train each architecture five times using random
initial weights. This amounts to a total of 130 unique models.

We show a summary of the hyperparameter scan in
Fig. 7, with 130 L-CNN models used to estimate the
distributions, examining the accuracy in predicting the FP
action value and the FP derivatives. To compare a variety of
models, we study their performance in terms of the model
depth, the model width, and the size of the receptive field.
The depth of the model is determined by the number of
layers, while the width is related to the number of channels
in each layer. As a simple measure of the model width, we
take the sum of the number of channels in each layer. The
size of the receptive field, which limits the locality of the
action, is approximated by the sum of the kernel size for
each layer. A general trend is clear: Increasing the depth,
width, or receptive field reduces both the action and
derivative errors, as one might expect. The firm indication
is that L-CNN models with three layers, cumulative kernel
sizes of five, and cumulative number of channels approx-
imately 60 are highly accurate, predicting the FP action
with an error well below 1%. Although not explicitly
shown in Fig. 7, we remark that we find little difference in
the choice of function that is used to combine the prefactor
action with the regularized L-CNN: Both the exponential
and linear functions in Egs. (25) and (26) show virtually the
same performance across all tested architectures. Since the
exponential function is manifestly positive and thus more
likely to produce strictly positive parametrizations, we
deem it the more suitable choice for further studies. We
note that results for models with up to three layers were
obtained using 400 training epochs, whereas models with
four layers required 1000 epochs for convergence. During
the training phase of models with four layers, we encoun-
tered a single outlier, which did not converge.

The broad scan allows us to narrow the search for the
optimal L-CNN, for which training can be extended to a
larger number of epochs to ensure convergence. We can
also avail of previous studies of the FP action for SU(3)
gauge theory, where the accuracy of those parametrizations
provides a baseline. The older study [24] used the ansatz as
in Eq. (20), with plaquette, rectangle, and parallelogram
loops, and powers up to M =4, with the coefficients
c(cm) determined through y? minimization. Borrowing their
nomenclature, we refer to this parametrization as Illc-4 in
the figures. The later study [25] used a very different ansatz
as in Eq. (8), with powers of plaquettes of original and
smeared gauge links, with the smearing sensitive to the
local fluctuations of the gauge links. This yielded two
parametrizations, one designed to be accurate on smooth
gauge configurations close to the continuum (denoted
APE444 in our figures) and a second to be used on rough
configurations with a lattice spacing as large as 0.35 fm
(referred to as APE431), cf. Appendix C 2 for details.
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FIG.7. Results of training an ensemble of 130 models, ranging from small to large architectures, on lattice volume of size 4* with S,
ranging from 5.0 to 10.0. Test data consisted of the same lattice size and f,,; range. All models use the Wilson action as a prefactor
action. We show box plots of the relative errors and derivative errors averaged over all test data. The thick central lines show the median
error. The box extends from the 25% to the 75% quantile, and the whiskers denote the 0% (minimum) and 95% quantile (to remove
outliers). The left panels show the dependence of the errors on the model depth, i.e., the number of bilinear convolutional layers. The
middle panels show the dependence on the model width given by the sum of channels across all layers. The right panels show the
dependence on the size of the receptive field of the models, which we approximate by the sum of kernel sizes in each layer. We observe
that larger models (more layers, more channels, larger receptive field) typically lead to better approximations of the data.

Motivated by the hyperparameter scan, we decide on
training architectures with three bilinear convolutional
layers, using kernel sizes {2,2,1} and output channels
{12,24,24}, respectively. To improve the behavior in the
continuum f; — oo we opt for a prefactor action of type
ITlc-4 and extend the range of training data to 5.0 < f;; <
20.0 on 4* lattices. Furthermore, we may consider the
parameters of the prefactor in Eq. (20) to be adjusted during
training while ensuring that the normalization and Symanzik
conditions remain satisfied. Instead of using random initial-
ization, we set the coefficients c(Cm) to the values originally
found in [24]; cf. Appendix C 1 for details. Thus, both the
prefactor coefficients and the weights of the L-CNN are
optimized during training. We train these models using
multiple random initializations for 800 epochs. Later on,
we will employ fine-tuning to further improve our models, as
detailed in Sec. V E. Figures 8—12, which we discuss in detail
in the following section, are produced with our best model
found through this training procedure including fine-tuning
on instantons.

B. Detailed results

In Fig. 8, we compare the older FP parametrizations with
the best L-CNN model on gauge ensembles with f;
ranging from 5.0 to 20.0. We see that the L-CNN clearly
outperforms the previous parametrizations across this

range, with its predicted action value and derivatives much
closer to the ground truth FP values. (The absolute value of
the relative action error is plotted, as used in the loss
function.) Even on much smoother gauge ensembles at
Pwit = 20.0, the range for which APE444 was designed
with small fluctuations, the L-CNN model is superior in
predicting the action and derivatives. Overall, the L-CNN
performs well across the entire range from coarse to fine
lattice spacing.

To amplify the superiority of the trained network, we
show in Fig. 9 the difference between predicted and actual
FP action values for APE431 (designed for coarse lattices)
and L-CNN in the range 5.0 < B,; < 7.0. The difference
changes sign for APE431 as we scan across bare coupling;
the L-CNN model gives a visibly much more accurate
prediction. The effect of the model can be drawn out as
shown in Fig. 10 through the ratio of the L-CNN output
AVCNNTY] o the prefactor AP®[V], which varies up to
~30% on the coarsest gauge ensembles, approaching 1 in
the continuum limit fB,; — oo.

Because the FP derivatives represent a volume-sized
amount of information for each gauge configuration, the
distributions of the error DY ,[V] — DIS%![V] are an
additional probe of the accuracy of each model used for
parametrization. As shown in Fig. 11, the distributions
narrow with reduced error going to finer lattices, with all
parametrizations becoming more accurate. The L-CNN
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FIG. 8. Comparison of different parametrizations of the FP action

evaluated on MC ensembles from f,; = 5.0 to f,; = 20.0 on
4* lattice volumes. The errors of a particular parametrization are
defined as the deviations from the numerical fixed point data. The
top panel shows the relative error £; computed from action values.
The bottom panel shows the gauge invariant derivative error £,. The
error bars are given by the standard deviation within each ensemble.
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FIG. 9. Comparison of different parametrizations of the FP
action evaluated on MC ensembles from f; = 5.0 to f,; = 7.0
on a 4* lattice. We plot the relative linear deviations from the
numerical fixed point action data for our best L-CNN model and
the APE431 parametrization.

model has the sharpest distributions of all across all
bare couplings, even at f,; = 20.0, the range where
the APE444 parametrization was optimally designed.
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FIG. 10. Ratio of our best L-CNN model A““NN[U] and its
associated prefactor action AP*[U] (in this case, a learned Illc
action) as a function of f,; on a 4* lattice. By construction, the
L-CNN model approaches the prefactor in the limit of smooth
configurations f; — oo.
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The superiority of the L-CNN model at f,; = 6.0 is
particularly interesting, as this corresponds to a lattice
spacing a ~ 0.1 fm in the range of coarsest lattice spacings
used in current large-scale simulations.
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FIG. 12. Locality measure (p,,(r)) as a function of distance |r|
of our best L-CNN model. The expectation value has been
evaluated on five configurations at f,; = 6.0 on a 6* lattice. Blue
crosses show parallel couplings p,,, whereas orange circles
correspond to orthogonal couplings p,, with p # v. An expo-
nential fit is shown as a red dashed line. Couplings beyond r,,,x &
4.3a are zero due to the finite receptive field of the L-CNN.

According to arguments of universality, locality of the
discretized theory guarantees the correct continuum limit.
While the exact FP action has infinitely many couplings, it
is still a local action because the couplings decrease
exponentially with the separation r = |x — y| of the gauge
links at positions x and y, as shown for the perturbative
couplings p,, (r) in Fig. 2. To test if the optimal L-CNN
model shares this feature beyond the perturbative regime,
we look at a quantity analogous to the perturbative
coupling, namely the variation of the action AYCNN[V]
with respect to gauge links at locations x and y and in
directions g and v. As described in more detail in
Appendix B, a gauge invariant observable p,,(r) can be
built from the square of this second-order derivative. The
behavior of this coupling for the L-CNN model is shown in
Fig. 12, measured on 6* volumes at f,; = 6.0 and
normalized by pgo(0). The couplings do indeed decrease
rapidly with separation, with a relative change of 107> by
separation r/a = 4. From this, we deduce that the L-CNN
network does not significantly couple fields at large
separation and that the finite extent of the model does
not lead to poor accuracy. We note that the numerical
evaluation of the locality measure requires double-
precision arithmetic to resolve the small couplings at large
distances.

C. Restricted training ranges

We also investigate how the selection of training data
affects the performance of the L-CNN to make accurate
predictions. To do so, we split the training data into low f3
values B €[5,7] and high values f; € [7,20] and train
multiple models with random initializations on the low,

3
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FIG. 13. Effect of data selection on trained models. We show

the average relative error on 4* lattices of three different models
for each MC ensemble from f; =5 to fy; = 20. The models
have been trained on different data: low (f,,; €[5, 7], light blue
region), high (B.; €17,20], light orange region), and the full
range (By; € [5,20]). The averages across all S, are reported in
Table II.

high and original f; ranges. The results are shown in
Fig. 13 and Table II. We find that each model generally
performs well on the data it has been trained on.
Surprisingly, the model trained on the full range performs
best on coarse configurations. This might be due to the fact
that this full model has been trained with the most data. On
the other hand, the high model works best on high $ values.
Comparing the low and high models, these results might
suggest a lack of generalization of our models to data
outside the original training range. Models only trained on
very coarse configurations tend to make less accurate
predictions for smooth configurations and vice versa. In
a sense, this suggests that despite overall good perfor-
mance, the L-CNN does not truly learn the FP action that
underlies the training data. However, it is unlikely that this

TABLE II. Effect of training data selection on model perfor-
mance. The left column denotes the range of f,; used for
evaluation, whereas the first row shows the range for training. We
report the relative error of the predicted action with respect to
numerical FP data, averaged over all configurations within the
respective f,; range. The smallest error in each column is
highlighted in bold. It is apparent that the model performance
strongly depends on the training range and that there is a trade-off
between accuracy on particular ensembles and generality across
many ensembles.

Test data range

Training data range [5, 71 [7, 20] [5, 20]
[5, 7] 0.298% 1.787% 0.827%
[7, 20] 2.432% 0.033% 1.702%
[5, 20] 0.217% 0.138% 0.195%
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would hinder the practical use of an FP parametrization
based on L-CNNs or that this is a problem affecting only
L-CNN models. Similarly, parametrizations based on
simple loops as in Eq. (20) and even more sophisticated
approaches using asymmetrically smeared links such as
APE431 and APE444 require data from a large range of
Pwi in order to determine suitable coefficients with good
accuracy for both coarse and smooth configurations. From
a practical viewpoint, especially concerning the use of FP
parametrizations in a Monte Carlo simulation, it might not
even be necessary to have a model that generalizes to all
values of f,;. If one intends to perform a simulation at a
particular f, it is sufficient to use a parametrization that
works well on a specific level of coarseness. Much coarser
and much smoother configurations are both unlikely to
occur during the simulation and thus less than optimal
performance outside a particular f range does not pose a
problem in practice. We also stress that the L-CNN models
approach the continuum limit by construction; i.e., for
sufficiently smooth fields our models reproduce the Yang-
Mills action.

D. Fine-tuning for different lattice sizes

Up until now, we have only considered models trained
and tested on 4* lattices. We employ transfer learning to our
best type Illc L-CNN model obtained in the last section
(before fine-tuning on instantons) by additional training
with data from larger lattices. Specifically, we fine-tune on
6* and 8* in the range f,; € [3, 20] for 400 epochs, starting
from our previous best model. For better comparison, we
also fine-tune our previous best model on 4* with the same
number of epochs. Through experimentation, we found that
it is beneficial to change the loss function during this fine-
tuning procedure. In contrast to Eq. (27), which optimizes
the absolute errors of the action values and derivatives, we
opt for a new loss function based on relative errors:

) |AT[V] = ANV
S D 7
[ — Z quTr[(DE[Vl] - D%,_/ACNN[VJ)Z]
g i quTr[(D?; [Vl])z] '
E/ = w’1£’1 + W,2£/2v (28)

with typical choices w| = w}, = 1.

The performance of these three fine-tuned models can
then be compared across different lattice sizes. The results
are summarized in Table III, where we list the relative error
measured by the action values and the gauge invariant
derivative error for each lattice size. Remarkably, we find
that the performance improves only slightly with additional
transfer learning and is consistent for all considered lattice
sizes. This suggests that training on small lattice sizes is
sufficient to obtain FP parametrizations with high accuracy,

TABLE III. Effect of transfer learning with different lattice
sizes. Starting from our previous best model, we use transfer
learning to obtain models that have been fine-tuned to 4% 6% and
84 data. The left column denotes three different models, and we
report the relative error and derivative error on various lattice
sizes for f,; €[5,20]. The smallest errors in each column are
highlighted in bold. The lattice size appears to have a negligible
effect on model performance.

Relative error (test data)

Fine-tuned model 44 64 g4

44 0.178% 0.201% 0.181%
64 0.185% 0.196% 0.177%
84 0.191% 0.202% 0.176%

Derivative error (test data)

Fine-tuned model 44 64 84

44 7.63 x 1072 8.19 x 1072 8.22 x 1072
64 739%x 1072 793 x 1072 7.96x 1072
84 736 x1072 791x102 793 x10°2

which generalize beyond the original training data in terms
of lattice size. This is highly advantageous because training
on small lattices is much more efficient: A typical model
trained for 100 epochs requires approximately 4 h on 4%,
7 h on 6%, and 22 h on 8* on an NVidia 3090 RTX GPU.

E. Fine-tuning with instantons

We have seen that the performance of a trained model
strongly depends on the properties of the training configu-
rations. The largest effect stems from the coarseness of
equilibrated configurations, controlled by f,;, as demon-
strated in Sec. V C. We may extend our training procedure
to also include nonequilibrium configurations, for example,
instanton solutions. One might expect that an L-CNN
trained to subpercent accuracy within S € [5, 20] would
also produce similarly accurate predictions for instantons,
but we find that this is not necessarily the case. If instantons
are absent during training, then predictions for their FP
action values appear to be mostly determined by the
prefactor action AP*[V]. In the case of the IIlc-4 prefactor
action, we find a relative error of ~10% for instanton radii
between p/a = 0.5 and p/a = 1.5.

Predictions for instantons can be drastically improved
by including them as training configurations in the fine-
tuning procedure. Starting from our best 4* model found in
Sec. V D, we extend the training dataset from equilibrated
configurations within f; € [5,20] to include 20 different
instantons and perform transfer learning with a reduced
learning rate and increased batch size for 1000 additional
epochs with w| = 1 and w/, = 0.1. This parameter choice
puts more weight on accurate action values at the cost
of slightly more inaccurate predictions for derivatives.
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FIG. 14. Evaluating different parametrizations of the FP action
on instanton configurations with radii p/a on an 8* lattice. The
black points show the numerical fixed point data. The L-CNN
model is a type Illc-inspired action with Symanzik-constrained
trainable parameters. As detailed in the main text, it has been fine-
tuned on instanton configurations.

To avoid data imbalance, the instantons are included
multiple times such that we obtain effectively 200 training
instantons.

We test our fine-tuned model on instantons of various
sizes. The results are shown in Fig. 14, where we plot the
predicted action as a function of the instanton radius. We
see that our model predicts the numerical FP data much
better than the IIlc-4 action and even the APE431 action.
The predictions closely follow the FP data, except for the
kink around p/a = 0.85. Moreover, we find that our fine-
tuning procedure does not lead to a loss of performance on
equilibrated configurations. Our fine-tuned model has a
relative error of 0.12% and a gauge-invariant derivative
error £, = 8.731 x 1072 within f,; € [5,20]. We note that
this fine-tuned model is the one presented in Sec. V B.

F. Approximate lattice symmetries

Finally, we may check the trained model for discrete
lattice symmetries. The L-CNN used in this work is, by
construction, equivariant with respect to lattice translations.
As a result, if U and U’(Shim are two gauge configurations
that are the same up to a shift on the lattice, then the
predictions will agree exactly

AL—CNN [U/( chift) ] — AL—CNN [U] . (29)

On the other hand, other lattice symmetries such as rotations
and reflections are not implemented exactly. A rotated gauge

configuration U/(rot) is generally assigned a different action

value

AL—CNN [Ul(rot)] # AL—CNN [U] . (30)

0.30
— =—®— prediction error
X 0257 A rotations
§ 0.20 X reflections
)
.5 0.15 4
B
< 0.10
[
2
S 0.05
E
0.00 = mmm
T T T T
5.0 6.0 7.0 8.0
Buwil
FIG. 15. Relative error due to breaking of rotational and

reflection symmetry as a function of j,,;. We also show the relative
prediction error for comparison (black dots).

In principle, the L-CNN architecture can be extended to
include such discrete lattice symmetries exactly [48], but
only at considerable computational cost. Thus, with the goal
in mind to use the trained model in a future Monte Carlo
study, we only consider the more efficient translationally-
equivariant L-CNNs and test symmetry properties after
training.

For rotational invariance, we consider all 90° rotations
about a single origin on the lattice. Taking into account both
clockwise and counterclockwise rotations, these amount to
D(D — 1) transformations in D lattice dimensions. The
choice of origin is arbitrary due to translational equivariance.
Given a particular gauge configuration U g from the test set,
we generate the set of rotated configurations U(; with
je{1,2,...,D(D — 1)}. For each of these configurations,
we compute the predicted action A ;) = AXN[U;)]. We
then define the relative error due to broken rotational
invariance as the standard deviation of the set {A(;}
normalized to the mean value. A similar measure can be
defined for reflections along lattice axes.

We present our results in Fig. 15, where we evaluate the
measures for broken symmetry on equilibrated configura-
tions on a 4* lattice from f,,; = 5.0 to 8.0. We observe that
the variance between predictions due to symmetry trans-
formations (either rotations or reflections) is much smaller
than the prediction error for coarse configurations
(Bwit < 6). For smoother configurations, the errors become
comparable. Overall, we conclude that sufficiently well-
trained models exhibit approximate rotation and reflection
symmetry. These symmetries are a priori not present in the
L-CNN architecture and have been learned during training.

VI. CONCLUSIONS AND OUTLOOK

In the challenge of pushing lattice QCD calculations to
ever higher accuracy, one faces the imminent problems of
critical slowing down and topological freezing. In this
paper, we propose to overcome these obstacles by using
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highly improved gauge actions, such that simulations at
coarse lattice spacing are possible, where critical slowing
down and topological freezing are avoided, while keeping
lattice artifacts under sufficient control to take a reliable
continuum limit. In order to do so, we follow the FP action
approach [18] based on the properties of RG transforma-
tions. FP actions are lattice discretizations that have no
lattice artifacts at the classical level. They are also expected
to have suppressed lattice artifacts at the quantum level.
Parametrizing the complicated FP actions has been a major
challenge in the past [25], and in this paper, we address it
by employing a gauge equivariant convolutional neural
network (L-CNN) [30] and ML techniques. Studying the
quality and improvement achieved with the new para-
metrization is the first conceptual step in the construction of
highly improved RG actions.

The main observation in this paper is that trained L-CNN
models are able to achieve much higher accuracy than
previous parametrizations of the FP action over a larger
range of lattice spacings and corresponding gauge field
fluctuations. This is not surprising, given the flexibility and
large number of parameters of the neural network models.
It is particularly encouraging that the L-CNN accuracy
varies little in the range of coarsest lattice spacings as
shown in Fig. 9. The baseline FP parametrization APE431
was previously used in Monte Carlo studies of the
deconfinement phase transition, the static quark-antiquark
potential, and the glueball mass spectrum [25], with the
promising result that the parametrized FP action had very
small lattice artifacts in these physical observables up to
lattice spacings as coarse as a ~ 0.33 fm, at the level of
accuracy feasible at that time. In the same spirit, the
ultimate test of the L-CNN parametrization of the FP
action will of course be its performance in actual
Monte Carlo simulations, and conducting state-of-the-art
scaling tests on coarse lattices is therefore the crucial next
step in our attempt to construct highly improved RG actions.

In the course of this project, we gained valuable
experience in determining derivatives of the FP action
with respect to gauge links through backpropagation. This
method opens up interesting possibilities for simulation
methods based on derivatives such as HMC algorithms [49]
or Langevin dynamics [50-52]. Both simulation strategies
use the variation of the action with respect to the gauge
fields. Since the derivatives can be calculated efficiently
within the L-CNN architecture and constitute the major part
of the data used for the learning of the L-CNN, this aids the
feasibility of large-scale simulations.

A more ambitious and difficult goal—the holy grail of
RG improvement—is to find the exact RG trajectory as in
Fig. 1, for which cutoff artifacts are eliminated completely.
Such a quantum perfect action (or RG action) would in
principle allow one to extract continuum physics from
simulations at one (coarse) lattice spacing. A procedure to
determine the RG action using field derivatives is outlined

in [18]. Constructing and parametrizing the RG action is
another challenge that can be embraced using the L-CNN
and ML techniques. The FP action constructed in this paper
is a crucial and necessary first step in that direction.

Finally, in the context of FP actions, the inclusion of
FP fermions is natural and leads to the realization of chiral
symmetry and an exact index theorem at finite lattice
spacing [53-58]. The parametrization of the FP fermion
action is another delicate problem [59], which could be
tackled by L-CNNs and ML.
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APPENDIX A: AUTOMATIC GROUP
DIFFERENTIATION

Training parametrized actions, i.e., minimizing the loss
function in Eq. (27), requires efficient methods to compute
exact group derivatives of actions as defined in Eq. (10).
In this appendix, we show how group derivatives are related
to Wirtinger derivatives, which can be computed using
backpropagation.

Given a complex scalar function f:C — C, the
Wirtinger derivatives are defined by

0 1/0 %) 0 1/0 0
i:— —f—l_f s _Jj:_ _f+l_f ) (Al)
0z 2\ox dy 07 2 \ox ady

where z = x 4 iy, x, y €R, and Z is the complex conjugate.
Extending this definition to scalar functions of complex
matrices U, we use

(5%) - ) (aR:(@), - "alm?;f)ﬁ) 2

9N
),

of . of
(5R6<U)ij i laIm(U)ij> - A3

I
2
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Using these definitions, we obtain a compact expression for
the Taylor expansion of f around U’ = U + e¢5U up to
linear order in € < 1:

= f(U) +€Tr —f&U—&-i(SUT + O(€?).

1)
f(U +edU) 30 SO

(A4)

In the context of functions on SU(N,.), the group
derivative is understood as varying the matrix U along
the group manifold via

0 1 . d

_ — . iet”U L
oU“ e—0 € d€f(e )|670
(A5)

By expanding the matrix exponential in €, we find that this
corresponds to a variation matrix 6U = it*U. Inserting this
into Eq. (A4), we find

feU) = f(U + iet"U) (A6)
. of of
=f(U Tr|( U==——=U" |t*| + O(e?). A7
) +ier| (uSh - Lu)e| vo). @)
Thus, Eq. (AS5) becomes
0 of of
U)=iTr||U=-—-—=U"|r|. A8
5U“f() K oU oU* > ] (A8)
A relevant example is the function
1
f(U) =ReTr[UW] = E(Tr[UW] + Te[WTUT]), (A9)
for which the Wirtinger matrix derivatives are
of 1 of 1
=W, —— =W Al0
ou 2 'oUT 2 (A10)
Insertion into Eq. (A8) yields
s .
SU“ f(U) = %Tr[(UW - WiUN)#7] = ReTr[iUW],
(A11)

analogous to the FP action derivative and its connection to
the blocking kernel as in Eq. (9). This result enables the use
of exact group derivatives of parametrized actions because
the automatic differentiation engine of PyTorch is able to
compute matrix-valued Wirtinger derivatives of arbitrary
differentiable functions.

APPENDIX B: GAUGE INVARIANT LOCALITY
MEASURE

In this appendix, we explicitly formulate a gauge-
invariant observable, which measures the coupling of gauge
links for arbitrary gauge-invariant actions (the locality
measure) via the second functional derivative. Our con-
struction is motivated by the quadratic expansion of the
action A[U] considered in [24]

3 [ Spulx=nazonie) + o). (1)

where p,, (r) determines the coupling between gauge field
components A, and A, at distance r = |x—y| in the
perturbative limit.

The coefficients are related to the leading term of the
second functional derivative

A

SALKIOATD) (B2)

= p;w(r)(sab + O(A)

The problem with the above definition of locality is that it
is not invariant under gauge transformations. For con-
tinuum actions, the second functional derivative changes
according to

A, (x) = Q(x)(A, —i0,)Q (x), (B3)

5 A 5 A

———— > Q. () (V) ———. B4
saziear(y) ~ o 0w ) G oaryy BY
where the adjoint matrix is given by Q,, = 2Tr[t*Qt’QT].
Nevertheless, it is possible to define a gauge invariant
observable by squaring the second derivative. We define

Pu(r) = \/NZ— ZD‘”’ y)Dit(x.y).  (B5)
where
5A
Di(x,y) = SAL()SAL(Y) (B6)

Note that in Eq. (B5), only the color indices a and b are
summed over. Applying this definition to Eq. (B1) at
leading order yields
P () % |pyu ()] (B7)
In the lattice context, we can evaluate Eq. (B5) by
replacing the functional derivatives 6/6Af(x) with group
derivatives 6/6U¢ . Since gauge links U, , are extended
objects defined along the edge (x,x + i), we adapt the
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definition of the lattice distance r to measure the Euclidean
distance from the midpoints of each link. Thus, the distance
r(w) between U, , and U, , becomes

+1z +1
X — — —U .
2H )

Being a gauge invariant observable, Eq. (B5) can be
evaluated numerically by averaging over MC ensembles for
various specific values of the Yang-Mills coupling f;.

r(ﬂ”) = (BS)

APPENDIX C: EARLIER PARAMETRIZATIONS
OF FP ACTIONS

For convenience, we recall in the following two appen-
dixes the details of earlier parametrizations of the RGTIII
FP action, which we use in this paper.

1. Loop parametrization

The parametrization in Ref. [24] uses powers of traces of
simple loops,

M
ZZ U ReTr(1 - Up)]™,  (C1)

By
where U denotes the product of link variables U, , along

the closed path C. In this paper, we use the Illc-4 action,

which includes the plaquette (pl), the rectangle (rt), and the

parallelogram (pg) loops with M = 4. The parameters cém)

of this parametrization are given in Table I'V. Note that the
(1)

coefficents ¢’ fullfil the tree-level Symanzik condition for
spectral quantities,

eit) +20c}) — 4cy =0, (C2)
as well as the normalization condition
c<}> +8c) + 8cl(,lg) =1 (C3)

2. Asymmetrically smeared link parametrization

The parametrizations in Ref. [25] uses powers of traces
of plaquette loops built from single gauge links as well as
from asymmetrically smeared gauge links. The ansatz is
very general and flexible as it allows one to easily introduce

TABLE IV. Parameters of the approximate FP action denoted
by Ilc-4.

(1) e () (4)

loop C ce ce co e

pl 0.4792 0.22260 —-0.12730 0.024030
It —0.0091 —0.04471 0.02563 —0.003698
pg 0.0742 0.02047 —-0.02398 0.007730

more complex loops with corresponding couplings without
much difficulty. In the following, we recall the explicit
construction of these early parametrizations, denoted in this
paper by APE431 and APE444, and provide their precise
definitions.

We start by introducing the notation Si”,l for the sum of
two staples of gauge links in direction y in the uv plane

Sgcb/)t = Ux,zx Ux+z/ u U)E+/4 v + U)L 1, yUx—f/.ﬂ Ux—l?+[4,u‘ (C4)
For symmetric smearing, we define
Qx /4 ZSX H x o (CS)

ﬂ#ﬂ

not to be confused with @, , from Sec. II, and a local
measure of fluctuations

qu(x)

while for the asymmetrical smearing

1
(ZSM +n(q,)S >> - (1 +§f7(qﬂ)> P
AFp,v

(€7)

= ReTr (0}, UL,), (Co)

Using these matrices, we build the asymmetrically smeared
links

W)(Cl,/ﬁ)l = Ux.u +c (Qu)Q)(CI,/I)l + CZ(Qu)QJ(Cl:l)l UillQ)(Cljzl +

(C8)
Here, 1(q,), c¢;(q,) are polynomials with free coefficients,
n(q,) =0 +nq, +n?q; + ... (C9)
and
ci(q,) = CEO) + c,(»l)qﬂ + cgz)qi + ... (C10)
From these asymmetrically smeared links, we now
construct a smeared plaquette variable
Wy = ReTr(1 = W), (C11)
and the ordinary Wilson plaquette variable
Uy, = ReTr(1 — UR,,), (C12)
where
Whi = WaW /0, Wl W (c13)
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and
1 +
U = Uy Usip ULy Ul (C14)
The parametrized action then has the form
1
'A[U] = N_ Zf(”x.ﬂwwx,uv)v (ClS)

Cx.u<v

where f is a function of both plaquette variables,
flu.w) = Zpklukwl = piott + pow + paot® + pyjuw
kl

+ poaw? + ..., (C16)
with the coefficients p;; being free parameters.

The labeling of the parametrizations is as follows.
Denoting the maximal total power of the smeared and
unsmeared plaquettes by max(k + /) = K, the number of
nonvanishing functions c;(g,) in Eq. (C8) by L, and the
order of the expansions of 7(q,) and ¢;(g,) in Egs. (C9)
and (C10) by M, the FP parametrization is denoted by
APEKLM.

The parameters of the parametrized FP actions employed
in our work are tabulated in Tables V and VI for the

TABLE V. Parameters of the approximate FP action denoted by
APE431.

40 o0 o0 0

—0.038445 0.290643

Doi 0.442827
p1;i 0.051944 —-0.918625

—0.201505 0.084679

0.628828 —0.677790 0.176159
1.064711 —0.275300

P2 0.864881 —0.614357  0.165320
p3i —0.094366 —0.020693
p4i 0.022283
i=0 i=1 i=2 i=3 i=4
TABLE VI. Parameters of the approximate FP action denoted

by APE444.

20 o) ) o) o)

j =0 0.082000 0.282000 0.054000 —0.205384 —0.103279

j=1 0.706067 —0.243364 0.276309 —0.175080 0.073172
j=2 0.125561 —0.201682 0.008994 —0.064512 0.096844
Jj =3 -0.050982 —0.042246 —0.031423 0.001101 0.027258
Doi 0.629227 —0.650384 0.120777 0.140729
p; —0.368095 1.427075 0.032976 —0.554038
P2 —0.219668 —0.718869 0.777346
D3i 0.335423 —0.368106
Dai 0.041322

i=0 i=1 i=2 i=3 i =

TABLE VII. Parameters of the approximate FP action denoted
by APE121.
0 0
7 C(l ) Cg )
0.082000 0.282000 0.054000
Doi 0.629227
D1 —0.368095
i=0 i=1

APE431 and APE444 actions, respectively. In Table VII,
we additionally provide the parameters of the APE121
action, which was used in earlier works as the starting point
for the RG iterations. It is based on the couplings of the FP
action in the quadratic approximation [19,24], which are
fitted by the leading nonlinear parameters n(o),clo ,c20 s
and pjg, po1, while explicitly fulfilling the Symanzik
“on-shell” conditions to O(a?). We note that the APE444
action maintains these coefficients, while for the APE431,
the O(a?) Symanzik condition was released.

APPENDIX D: RENORMALIZATION GROUP
TRANSFORMATION

For convenience, we recollect here the details of the RG
transformation denoted by RGT III, which we use in this
work. It was introduced in Ref. [24] where its parameters
were tuned for optimal locality of the resulting FP action.
The RGT maps a gauge-field configuration U on a fine
lattice A = {n€N*} with lattice spacing a to a configu-
ration V on a (blocked) coarse lattice Az = {ng € N*} with
lattice spacing @’ = 2a according to Eq. (1) with the
blocking kernel T[U, V] as defined in Eq. (2). The blocked
link matrix @, , on the coarse lattice is obtained by first
smearing the fine links using a linear combination of the
original link with planar, spatially diagonal, and hyper-
diagonal staples.

To be specific, first the following matrices Wfq";), are
created, which connect the sites n and »n’, where n’ is a site
with coordinates nj, —n, = 0, |n; —n,| <1 (for any v):

7
Wit = 1, (D1a)
wl o =u (D1b)
n,n+v nyu»
we Ly oy U, U DI
n,n+f/+f)_§( ny n+13.p+ np n+[),u)’ ( C)
(3) 1

nnAi+p+i = 8 (Un,z/ Ut1+13,p Un+13+[).,/1 + permutatlons).

(D1d)

Here v, p, and A run over all (positive and negative)
@)

nn'

directions different from yx and from each other. W
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represents the “planar diagonal” link and Wfi/ the spatially

diagonal one. In Egs. (Dlc), (D1d), the sum is taken over
all shortest paths leading to the end point n’ of the
corresponding diagonal. The smeared link operator is
constructed by a modified smearing

3
_ (m) (m)
Wn” o Z Z SmWn.,n' U"”lan’-&-ﬂ,n-&-fl’
m=0 n'

where the coefficients s,, are free parameters. By this
construction, the blocked link receives contributions from
all gauge links within the associated hypercube. The
smearing can be (partially) illustrated according to

(D2)

+ 81

rirgl

(D3)

+S9 - +83-...,

where the spatially diagonal links in pink highlight the

)
construction of W.", ..

Finally, the blocked link matrix Q, , is given by the
product of two smeared links connecting the points 275 and
2ng + 21 on the fine lattice

Ql13.ﬂ = WZnB,yW2nB+ﬁ,/n (D4)
which when expanded can be seen to generate a large
number of paths connecting the two points. Note that the
blocked links should not be confused with the smeared
links of the APE parametrization (see Appendix C 2).

The four parameters s;,i =0,...,3 are subject to the
constraint

So +6S1 + 12S2 + 8S3 = 1, (DS)

which ensures that for a trivial field configuration, Q,, , is
equal to the unit matrix. [Note however that the smeared
links W, are in general no longer in the group SU(N,).]
Together with the quantity « in the blocking kernel 7[U, V|,
they are free parameters, which can be varied for
optimization. In [24], it was shown that the values
k= 8.8,5y =0.07,5, =0.016, 53 = 0.008, with s, set
via the constraint, are an optimal choice to maximize the
exponential decrease of the couplings with distance in the
perturbative FP action, as shown in Fig. 2.

APPENDIX E: ANALYTIC INSTANTON
SOLUTIONS

We give here details of the analytic instanton solutions
used to generate part of the FP training data. We start with
an analytic instanton solution with radius p centered at x =
0 [60]

Usa = cos(f(0)) = i —=msin(f()
Uss = cos(f(s) + == sin(/ (),

i=1,2,3,

)C—X

a+x
—— _"# _« |arctan
x? —xﬂ+p (,/x —x —|—p>
X
—arctan(—”) ,
\/ X=Xk 4 p?

the center of which should be shifted to any location x,
except a lattice site. Here, o; refers to the ith Pauli matrix.
To be consistent with periodic boundary conditions, a
dislocation is inserted through a singular gauge trans-
formation

f/d(x> =

(E1)

)C4 + l.)CiGi

U;c,,u = ngx.ugj;-q-/}’ 9x = (EZ)

&

These fine solutions U are RG blocked to produce coarse
configurations V, for which the FP action is given by the
minimization of Eq. (3).
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