
Computational Geometry: Theory and Applications 123 (2024) 102122
Contents lists available at ScienceDirect

Computational Geometry: Theory and

Applications
journal homepage: www.elsevier.com/locate/comgeo

On the line-separable unit-disk coverage and related

problems✩

Gang Liu ∗, Haitao Wang

Kahlert School of Computing, University of Utah, Salt Lake City, UT 84112, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 December 2023
Received in revised form 29 June 2024
Accepted 8 July 2024
Available online 22 July 2024

Keywords:
Disk coverage
Line-separable
Unit-disk
Line-constrained
Half-planes

Given a set P of n points and a set S of m disks in the plane, the disk coverage problem
asks for a smallest subset of disks that together cover all points of P . The problem is
NP-hard. In this paper, we consider a line-separable unit-disk version of the problem
where all disks have the same radius and their centers are separated from the points
of P by a line �. We present an O ((n + m) log(n + m)) time algorithm for the problem.
This improves the previously best result of O (nm +n logn) time. Our techniques also solve
the line-constrained version of the problem, where centers of all disks of S are located
on a line � while points of P can be anywhere in the plane. Our algorithm runs in
O ((n + m) log(m + n) + m logm logn) time, which improves the previously best result of
O (nm log(m +n)) time. In addition, our results lead to an algorithm of O (n3 logn) time for
a half-plane coverage problem (given n half-planes and n points, find a smallest subset of
half-planes covering all points); this improves the previously best algorithm of O (n4 logn)

time. Further, if all half-planes are lower ones, our algorithm runs in O (n logn) time while
the previously best algorithm takes O (n2 logn) time.

© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI
training, and similar technologies.

1. Introduction

Given a set P of n points and a set S of m disks in the plane, the disk coverage problem asks for a smallest subset of
disks such that every point of P is covered by at least one disk in the subset. The problem is NP-hard, even if all disks have
the same radius [20,27]. Polynomial time approximation algorithms have been proposed for the problem and many of its
variants, e.g., [1,7,9,10,21,25].

Polynomial time exact algorithms are known for certain special cases. If all points of P are inside a strip bounded by
two parallel lines and the centers of all disks lie outside the strip, then the problem is solvable in polynomial time [4]. If
all disks of S contain the same point, polynomial time algorithms also exist [15,16]; in particular, applying the result in [9]
(i.e., Corollary 1.7) yields an O (mn2(m + n)) time algorithm. In order to devise an efficient approximation algorithm for
the general coverage problem (without any constraints), the line-separable version was considered in the literature [4,8,14],
where disk centers are separated from the points by a given line �. A polynomial time 4-approximation algorithm is given in

✩ A preliminary version of this paper appeared in Proceedings of the 34th International Symposium on Algorithms and Computation (ISAAC 2023). This research
was supported in part by NSF under Grants CCF-2005323 and CCF-2300356.
* Corresponding author.

E-mail addresses: u0866264@utah.edu (G. Liu), haitao.wang@utah.edu (H. Wang).
https://doi.org/10.1016/j.comgeo.2024.102122
0925-7721/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://doi.org/10.1016/j.comgeo.2024.102122
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2024.102122&domain=pdf
mailto:u0866264@utah.edu
mailto:haitao.wang@utah.edu
https://doi.org/10.1016/j.comgeo.2024.102122

G. Liu and H. Wang Computational Geometry: Theory and Applications 123 (2024) 102122
Fig. 1. Illustrating the line-separable unit-disk case.

Fig. 2. Illustrating the line-constrained case (all disks are centred on �).

[8]. Ambühl et al. [4] derived an exact algorithm of O (m2n) time. An improved O (nm +n logn) time algorithm is presented
in [14] and another algorithm in [28] runs in O (n logn +m2 logn) in the worst case.

The line-constrained version of the disk coverage problem has also been studied, where disk centers are on the x-axis
while points of P can be anywhere in the plane. Pedersen and Wang [28] considered the weighted case in which each
disk has a weight and the objective is to minimize the total weight of the disks in the subset that cover all points. Their
algorithm runs in O ((m +n) log(m +n) +κ logm) time, where κ is the number of pairs of disks that intersect and κ = O (m2)

in the worst case. They reduced the runtime to O ((m + n) log(m + n)) for the unit-disk case, where all disks have the same
radius, as well as the L∞ and L1 cases, where the disks are squares and diamonds, respectively [28]. The 1D problem where
disks become segments on a line and points are on the same line is also solvable in O ((m +n) log(m +n)) [28]. Other types
of line-constrained coverage problems have also been studied in the literature, e.g., [3,5,6,24].

A related problem is when disks of S are half-planes. For the weighted case, Chan and Grant [9] proposed an algorithm
for the lower-only case where all half-planes are lower ones; their algorithm runs in O (n4) time when m = n. With the
observation that a half-plane may be considered as a unit disk of infinite radius, the techniques of [28] solve the problem
in O (n2 logn) time. For the general case where both upper and lower half-planes are present, Har-Peled and Lee [22] solved
the problem in O (n5) time. Pedersen and Wang [28] showed that the problem can be reduced to O (n2) instances of the
lower-only case problem and thus can be solved in O (n4 logn) time. To the best of our knowledge, we are not aware of any
previous work particularly on the unweighted half-plane coverage problem.

1.1. Our result

We assume that � is the x-axis and all disk centers are below or on � while all points of P are above or on �. We
consider the line-separable version of the disk coverage problem with the following single-intersection condition: For any
two disks, their boundaries intersect at most once in the half-plane above �. Note that this condition is satisfied in both
the unit-disk case (see Fig. 1) and the line-constrained case (see Fig. 2; more to explain below). Hence, an algorithm for
this line-separable single-intersection case works for both the unit-disk case and the line-constrained case. Note that all
problems considered in this paper are unweighted case in the L2 metric.

For the above line-separable single-intersection problem, we give an algorithm of O ((n + m) log(m + n) +m logm logn)

time in Section 3. Based on observations, we find that some disks are “useless” and thus can be pruned from S . After
pruning those useless disks, the remaining disks have certain properties so that we can reduce the problem to the 1D
problem, which can then be easily solved. The overall algorithm is fairly simple conceptually. One challenge, however, is
to show the correctness, that is, to prove why those “useless” disks are indeed useless. The proof is rather lengthy and
technical. The bottleneck of the algorithm is to find those useless disks.

The line-constrained problem. Observe that the line-constrained problem where all disks of S are centered on a line � while
points of P can be anywhere in the plane is also a special case of the line-separable single-intersection problem. Indeed, for
each point p of P below �, we could replace p by its symmetric point with respect to �; in this way, we can obtain a set of
points that are all above �. It is not difficult to see that an optimal solution using this new set of points is also an optimal
solution for P . Furthermore, since disks are centered on �, although their radii may not be equal, the boundaries of any two
disks intersect at most once above �. Hence, the problem is an instance of the line-separable single-intersection case. As
such, applying our algorithm in Section 3 solves the line-constrained problem in O ((n +m) log(m +n) +m logm logn) time;
this improves the previous algorithm in [28], which runs in O (n logn +m2 logm) time in the worst case.
2

G. Liu and H. Wang Computational Geometry: Theory and Applications 123 (2024) 102122
The unit-disk case. To solve the line-separable unit-disk case, the algorithm in Section 3 still works. However, by making use
of the property that all disks have the same radius, we further improve the runtime to O ((m + n) log(m + n)) in Section 4.
This improves the O (nm +n logn) time algorithm in [14] and the O (n logn +m2 logn) time algorithm in [28]. The main idea
of the improvement (over the algorithm in Section 3) is to explore the property that all disks have the same radius.

The half-plane coverage problem. As in [28], our techniques also solve the half-plane coverage problem. Specifically, for
the lower-only case, let � be a horizontal line that is below all points of P . If we consider each half-plane as a unit disk
of infinite radius with center below �, then the problem becomes an instance of the line-separable unit-disk coverage
problem. Therefore, applying our result leads to an algorithm of O ((m + n) log(m + n)) time. When m = n, this is O (n logn)

time, improving the previous algorithm of O (n2 logn) time [28]. For the general case where both the upper and lower
half-plane are present, using the method in [28] that reduces the problem to O (n2) instances of the lower-only case, the
problem is now solvable in O (n2(m + n)) log(m + n)) time. When m = n, this is O (n3 logn) time, improving the previous
algorithm of O (n4 logn) time [28].

An algorithm in the algebraic decision tree model. In the algebraic decision tree model, where only comparisons are
counted towards the time complexity, combining with a technique recently developed by Chan and Zheng [12], our method
shows that the line-separable single-intersection problem (and thus the line-constrained problem) can be solved using
O ((n + m) log(n + m)) comparisons. The details are presented at the end of Section 3. In the following discussion, unless
otherwise stated, all time complexities are measured in the standard real RAM model.

Remark. The results improve our original results in the conference version of this paper [26]. The high-level algorithm
framework (and its correctness proof) is the same as before, but this version provides more efficient algorithm implemen-
tations.

2. Preliminaries

In this section, we introduce some concepts and notations that we will use in the rest of the paper.
We follow the notation defined in Section 1, e.g., P , S , m, n, �. Without loss of generality, we assume that � is the x-axis

and points of P are all above or on � while centers of disks of S are all below or on �. Under this setting, for each disk
s ∈ S , only its portion above � matters for our coverage problem. Hence, unless otherwise stated, a disk s only refers to its
portion above �. As such, the boundary of s consists of an upper arc, i.e., the boundary arc of the original disk above �, and
a lower segment, i.e., the intersection of s with �. Notice that s has a single leftmost (resp., rightmost) point, which is the
left (resp., right) endpoint of the lower segment of s.

We assume that single-intersection condition holds, that is, for any two disks, their boundaries intersect at most once in
the half-plane above �.

We assume that each point of P is covered by at least one disk since otherwise there would be no feasible solution. Our
algorithm is able to check whether the assumption is met. We make a general position assumption that no point of P lies
on the boundary of a disk and no two points of A have the same x-coordinate, where A is the union of P and the set of the
leftmost and rightmost points of all disks. Degenerated cases can be easily handled by standard perturbation techniques,
e.g., [19].

For any point p in the plane, we denote its x- and y-coordinates by x(p) and y(p), respectively. We sort all points of P
in ascending order of their x-coordinates, resulting in a sorted list p1, p2, · · · , pn . We also sort all disks in ascending order
of the x-coordinates of their leftmost points, resulting in a sorted list s1, s2, · · · , sm . We use S[i, j] to denote the subset
{si, si+1, · · · , s j}; for convenience, S[i, j] = ∅ if i > j. For each disk si , let li and ri denote its leftmost and rightmost points,
respectively.

For any disk s, we use Sl(s) (resp., Sr(s)) to denote the set of disks S whose leftmost points are left (resp., right) of that
of s. As such, if the index of s is i, then Sl(s) = S[1, i − 1] and Sr(s) = S[i + 1, m]. If disk s′ ∈ Sl(s), then we also say that s′
is to the left of s; similarly, if s′ ∈ Sr(s), then s′ is to the right of s.

If S ′ is a subset of S that forms a coverage of P , then we call S ′ a feasible solution. If S ′ is a feasible solution of minimum
size, then S ′ is an optimal solution.

The non-containment property. Suppose a disk si contains another disk s j . Then s j is redundant for our problem, since any
point covered by s j is also covered by si . These redundant disks can be easily identified and removed from S mentioned in
Section 1 and 2 in O (m logm) time (indeed, this is a 1D problem by observing that si contains s j if and only if the lower
segment of si contains that of s j). Hence, to solve our problem, we first remove such redundant disks and work on the
remaining disks. For simplicity, from now on we assume that no disk of S contains another. Therefore, S has the following
non-containment property, which our algorithm relies on.

Observation 1. (Non-Containment Property) For any two disks si, s j ∈ S, x(li) < x(l j) if and only if x(ri) < x(r j).

3. The line-separable single-intersection case

In this section, we present our algorithm for the disk coverage problem in the line-separable single-intersection case. We
follow the notation defined in Section 2.
3

G. Liu and H. Wang Computational Geometry: Theory and Applications 123 (2024) 102122
For each disk si ∈ S , we define two indices a(i) and b(i) of points of P (where pa(i) and pb(i) are not contained in si),
which are critical to our algorithm.

Definition 1.

– Among all points of P covered by the union of the disks of S[1, i −1] but not covered by si , define a(i) to be the largest
index of these points; if no such point exists, then let a(i) = 0.

– Among all points of P covered by the union of the disks of S[i + 1, m] but not covered by si , define b(i) to be the
smallest index of these points; if no such point exists, then let b(i) = n + 1.

We say that a disk si ∈ S is prunable if a(i) ≥ b(i).
We now describe our algorithm. Although the algorithm description looks simple, it is quite challenging to prove the

correctness; we devote Section 3.1 to it. The implementation of the algorithm, which is also not trivial, is presented in
Section 3.2.

Algorithm description. The algorithm has three main steps.

1. We first find all prunable disks of S . Let S∗ denote the subset of disks of S that are not prunable. We will prove in
Section 3.1 that S∗ contains an optimal solution for the coverage problem on P and S . This means that it suffices to
work on S∗ and P .

2. We then compute a(i) and b(i) for all disks si ∈ S∗ . We will show in Section 3.2 that this step together with the above
first step for computing S∗ can be done in O ((n +m) log(n +m) +m logm logn) time.

3. We reduce the disk coverage problem on S∗ and P to a 1D coverage problem as follows. For each point of P , we project
it vertically onto �. Let P ′ be the set of all projected points. For each disk si ∈ S∗ , we create a line segment on � whose
left endpoint has x-coordinate equal to x(pa(i)+1) and whose right endpoint has x-coordinate equal to x(pb(i)−1) (if
a(i) + 1 = b(i), then let the x-coordinate of the right endpoint be x(pa(i)+1)). Let S ′ be the set of all the segments thus
created.
We solve the following 1D coverage problem: Find a minimum subset of the segments of S ′ that together cover all
points of P ′ . This problem can be easily solved in O ((|S ′| + |P ′|) log(|S ′| + |P ′|)) time [28],1 which is O ((m +n) log(m +
n)) since |P ′| = n and |S ′| ≤m.
Suppose S ′

1 is any optimal solution to the above 1D coverage problem. We create a subset S1 of S∗ as follows. For each
segment of S ′

1, suppose it is created from a disk si ∈ S∗; then we add si to S1. We will prove in Section 3.1 that S1 is
an optimal solution to the coverage problem for S∗ and P .

We summarize the result in the following theorem.

Theorem 1. Given a set P of n points and a set S of m disks in the plane such that the disk centers are separated from points of P by
a line, and the single-intersection condition is satisfied, the disk coverage problem for P and S is solvable in O ((n +m) log(m + n) +
m logm logn) time.

The unit-disk case. In Section 4, we will reduce the time to O ((n + m) log(n + m)) for the unit-disk case. The algorithm
follows the above except that we implement the first two steps in a more efficient way (i.e., in O ((n +m) log(n +m)) time)
by utilizing the property that all disks have the same radius.

3.1. Algorithm correctness

We now prove the correctness of our algorithm. Lemma 2 justifies the correctness of the first main step. To prove
Lemma 2, whose proof is lengthy and technical, we first prove the following Lemma 1 (which will also be useful in our
algorithm implementation in Section 3.2 for finding all prunable disks). Recall the definition of Sl(s) and Sr(s) in Section 2.

Lemma 1. A disk s is prunable if and only if there exists a point in P that is outside s but is covered by both a disk in Sl(s) and a disk
in Sr(s).

Proof. Let i be the index of s, i.e., s = si . Our goal is to show that si is prunable if and only if there exists a point in P that
is outside si but is covered by both a disk in S[1, i − 1] and a disk in S[i + 1, m].

1 The algorithm in [28], which uses dynamic programming, is for the weighted case where each segment has a weight. Our problem is simpler since it
is an unweighted case. We can use a simple greedy algorithm to solve it.
4

G. Liu and H. Wang Computational Geometry: Theory and Applications 123 (2024) 102122
Fig. 3. Illustrating the case where pb(i) ∈ sk .

Fig. 4. Illustrating the case where pb(i) 	∈ sk .

Fig. 5. Illustrating Observation 2.

The “if” direction. Suppose P has a point pt that is outside si but is covered by a disk sk and a disk s j with k < i < j. Our
goal is to prove that a(i) ≥ b(i), meaning that si is prunable by definition. Since sk covers pt and k < i, by definition we
have a(i) ≥ t . On the other hand, since s j covers pt and i < j, by definition we have b(i) ≤ t . As such, we obtain a(i) ≥ b(i).

The “only if” direction. Suppose si is a prunable disk. Our goal is to show that there exists a point p∗ ∈ P that is outside
si but covered by both a disk in S[1, i − 1] and a disk in S[i + 1, m]. Since si is a prunable disk, we have a(i) ≥ b(i), and
further, there are a disk sk with k < i that covers pa(i) and a disk s j with j > i that covers pb(i) . Depending on whether sk
covers pb(i) , there are two cases.

1. If sk covers pb(i) (see Fig. 3), then pb(i) is covered by both sk and s j . Since k < i and j > i, we can use pb(i) as our target
point p∗ .

2. If sk does not cover pb(i) (see Fig. 4), then since sk covers pa(i) , we have a(i) 	= b(i) and thus a(i) > b(i). Since k < j, sk
covers pa(i) , and s j covers pb(i) , due to the non-containment property of S , we have x(lk) < x(l j) < x(pb(i)) < x(pa(i)) <
x(rk) < x(r j), implying that the upper arcs of sk and s j must intersect, say, at point q (see Fig. 4). Since pb(i) is inside
s j but outside sk , x(q) < x(pb(i)) must hold. Hence, the region of sk to the right of q must be inside s j . Since x(q) <
x(pb(i)) < x(pa(i)) and pa(i) is in sk , pa(i) must be in s j as well. Therefore, pa(i) is in both sk and s j . As such, we can use
pa(i) as our target point p∗ .

The lemma thus follows. �
The following observation, which follows immediately from the non-containment property of S , is needed in the proof

of Lemma 2.

Observation 2. For any disk s and a point p outside s, if p is covered by both a disk si ∈ Sl(s) and a disk s j in Sr(s), then s ⊆ si ∪ s j
(see Fig. 5).

Lemma 2. S∗ contains an optimal solution to the coverage problem on S and P .

Proof. Let Sopt be an optimal solution. Let Q be the set of all prunable disks, i.e., Q = S \ S∗ . If Sopt ∩ Q = ∅, then Sopt ⊆ S∗
and thus the lemma trivially follows. In what follows, we assume that |Sopt ∩ Q | ≥ 1.

Pick an arbitrary disk from Sopt ∩ Q , denoted ŝ1. Below, we give a process that can find a disk s∗ from S∗ to replace ŝ1
in Sopt such that the new set S1opt = {s∗} ∪ Sopt \ {ŝ1} still forms a coverage of P (i.e., S1opt is a feasible solution), implying
5

G. Liu and H. Wang Computational Geometry: Theory and Applications 123 (2024) 102122
that S1opt is also an optimal solution since |S1opt| = |Sopt|. As s∗ ∈ S∗ , we have |S1opt ∩ Q | = |Sopt ∩ Q | − 1. If S1opt ∩ Q is still
nonempty, then we can repeat the above process for other points in S1opt ∩ Q until we obtain an optimal solution S∗

opt with
S∗
opt ∩ Q = ∅, which will prove the lemma.
We now give a process to find a target disk s∗ . The process involves induction. To help the reader understand it better,

we first provide details of the first two iterations of the process (we will introduce some notation that appears unnecessary
for the first two iterations, but these will be needed when we describe the induction).

The first iteration. Let S ′
opt = Sopt \ {ŝ1}. Since ŝ1 ∈ Q , by Lemma 1, P has a point p̂1 outside ŝ1 but is covered by a disk

ŝl1 ∈ Sl(ŝ1) and a disk ŝr1 ∈ Sr(ŝ1). By Observation 2, ŝ1 ⊆ ŝl1∪ ŝr1. Since p̂1 is outside ŝ1 and Sopt = S ′
opt∪{ŝ1} forms a coverage

of P , S ′
opt must have a disk s that covers p̂1. Clearly, s is either in Sl(ŝ1) or in Sr(ŝ1). Without loss of generality, we assume

that s ∈ Sr(ŝ1). Since ŝr1 refers to an arbitrary disk of Sr(ŝ1) that covers p̂1 and s is also a disk of Sr(ŝ1) that covers p̂1, for
notational convenience, we let ŝr1 refer to s. As such, ŝr1 is in S ′

opt.

Consider the disk ŝl1. Since ŝ1 ⊆ ŝl1 ∪ ŝr1 and ŝr1 is in S ′
opt, it is not difficult to see that the area covered by the union of

the disks of Sopt is contained in the area covered by the union of the disks of S ′
opt ∪ {ŝl1} and thus S ′

opt ∪ {ŝl1} is a feasible
solution. As such, if ŝl1 	∈ Q , then we can use ŝl1 as our target disk s∗ and our process (for finding s∗) is done. In what
follows, we assume ŝl1 ∈ Q .

For any subset S ′ of S , we define R(S ′) as the area covered by the union of the disks of S ′ , i.e., R(S ′) = ⋃
s∈S ′ s.

We let ŝ2 = ŝl1. Define A1 = {ŝr1}. According to the above discussion, we have A1 ⊆ S ′
opt, ŝ1 ⊆ R(A1) ∪ ŝ2, and S ′

opt ∪ {ŝ2}
is a feasible solution.

The second iteration. We are now entering the second iteration of our process. First notice that ŝ2 cannot be ŝ1 since
ŝ2 = ŝl1, which cannot be ŝ1. Our goal in this iteration is to find a candidate disk s′ to replace ŝ2 so that S ′

opt ∪ {s′} also forms
a coverage of P . Consequently, if s′ 	∈ Q , then we can use s′ as our target s∗; otherwise, we need to guarantee s′ 	= ŝ1 so
that our process does not enter a dead loop. The discussion here is more involved than in the first iteration.

Since ŝ2 ∈ Q , by Lemma 1, P has a point p̂2 outside ŝ2 but is covered by a disk ŝl2 ∈ Sl(ŝ2) and a disk ŝr2 ∈ Sr(ŝ2). By
Observation 2, ŝ2 ⊆ ŝl2 ∪ ŝr2. Depending on whether p̂2 is in R(A1), there are two cases.

– If p̂2 	∈ R(A1), then since p̂2 	∈ ŝ2 and ŝ1 ⊆ R(A1) ∪ ŝ2, we obtain p̂2 	∈ ŝ1. We can now basically repeat our argument
in the first iteration. Since p̂2 is outside ŝ2 and S ′

opt ∪ {ŝ2} is a feasible solution, S ′
opt must have a disk s that covers

p̂2. Clearly, s is either in Sl(ŝ2) or in Sr(ŝ2). Without loss of generality, we assume that s ∈ Sr(ŝ2). Since ŝr2 refers to an
arbitrary disk of Sr(ŝ2) that covers p̂2 and s is also a disk of Sr(ŝ2) that covers p̂2, for notational convenience, we let
ŝr2 refer to s. As such, ŝr2 is in S ′

opt.

We let ŝl2 be our candidate disk, which satisfies our need as discussed above for s′ . Indeed, since S ′
opt ∪ {ŝ2} is an

optimal solution, ŝ2 ⊆ ŝl2 ∪ ŝr2, and ŝr2 ∈ S ′
opt, we obtain that S ′

opt ∪ {ŝl2} also forms a coverage of P . Furthermore, since
ŝl2 contains p̂2 while ŝ1 does not, we know that ŝl2 	= ŝ1. Therefore, if ŝl2 	∈ Q , then we can use ŝl2 as our target s∗ and
we are done with the process. Otherwise, we let ŝ3 = ŝl2 and then enter the third iteration argument. In this case, we
let A2 = A1 ∪ {ŝr2}. According to our above discussion, we have A2 ⊆ S ′

opt, ŝ2 ⊆ R(A2) ∪ ŝ3, and {ŝ3} ∪ S ′
opt is a feasible

solution.
– If p̂2 ∈ R(A1), then we let ŝl2 be our candidate disk. We show in the following that it satisfies our need as discussed

above for s′ , i.e., {ŝl2} ∪ S ′
opt forms a coverage of P and ŝl2 	= ŝ1.

Indeed, since A1 = {ŝr1} and p̂2 ∈ R(A1), p̂2 is inside ŝr1. Since ŝ
r
1 is to the right of ŝ1, and ŝ2, which is ŝl1, is to the

left of ŝ1, we obtain that ŝr1 is to the right of ŝ2, i.e., ŝr1 ∈ Sr(ŝ2). Since ŝl2 contains p̂2, ŝl2 ∈ Sl(ŝ2), ŝr1 contains p̂2, and
ŝr1 ∈ Sr(ŝ2), by Observation 2, we obtain that ŝ2 ⊆ ŝl2 ∪ ŝr1, i.e., ŝ2 ⊆ ŝl2 ∪R(A1). Since S ′

opt ∪{ŝ2} is a feasible solution and
A1 ⊆ S ′

opt, it follows that {ŝl2} ∪ S ′
opt is also a feasible solution. On the other hand, since ŝl2 is in Sl(ŝ2) while ŝ2 (which

is ŝl1) is in Sl(ŝ1), we know that ŝl2 is in Sl(ŝ1) and thus ŝl2 	= ŝ1.
As such, if ŝl2 	∈ Q , we can use ŝl2 as our target s∗ and we are done with the process. Otherwise, we let ŝ3 = ŝl2 and
continue on the third iteration. In this case, we let A2 = A1. According to our above discussion, we have A2 ⊆ S ′

opt,
ŝ2 ⊆R(A2) ∪ {ŝ3}, and {ŝ3} ∪ S ′

opt is a feasible solution.

This finishes the second iteration of the process.

Inductive step. In general, suppose that we are entering the i-th iteration of the process with disk ŝi ∈ Q , i ≥ 2. We make
the following inductive hypothesis for i.

1. We have disks ŝk ∈ Q for all k = 1, 2, . . . , i − 1 in the previous i − 1 iterations such that ŝi 	= ŝk for any 1 ≤ k ≤ i − 1
2. We have subsets Ak for all k = 1, 2, . . . , i − 1 such that A1 ⊆ A2 ⊆ · · · ⊆ Ai−1 ⊆ S ′

opt, and ŝk ⊆ R(Ak) ∪ ŝk+1 holds for
each 1 ≤ k ≤ i − 1.

3. For any 1 ≤ k ≤ i, {ŝk} ∪ S ′
opt is a feasible solution.
6

G. Liu and H. Wang Computational Geometry: Theory and Applications 123 (2024) 102122
Fig. 6. Illustrating the proof of Lemma 2. Note that ŝli is ŝi+1.

Our above discussion showed that the hypothesis holds for i = 2 and i = 3. Next we discuss the i-th iteration for any
general i. Our goal is to find a candidate disk ŝi+1 so that S ′

opt ∪ {ŝi+1} is a feasible solution and the inductive hypothesis
holds for i + 1.

Since ŝi ∈ Q , by Lemma 1, P has a point p̂i outside ŝi but is covered by a disk ŝli ∈ Sl(ŝi) and a disk ŝri ∈ Sr(ŝi). By
Observation 2, ŝi ⊆ ŝli ∪ ŝri . Depending on whether p̂i is in R(Ai−1), there are two cases.

1. If p̂i 	∈ R(Ai−1), then since p̂i is outside ŝi and S ′
opt ∪ {ŝi} is a feasible solution, S ′

opt must have a disk s that covers
p̂i . Clearly, s is either in Sl(ŝi) or in Sr(ŝi). Without loss of generality, we assume that s ∈ Sr(ŝi). Since ŝri refers to an
arbitrary disk of Sr(ŝi) that covers p̂i and s is also a disk of Sr(ŝi) that covers p̂i , for notational convenience, we let ŝri
refer to s. As such, ŝri is in S ′

opt.

We let ŝi+1 be ŝli and define Ai = Ai−1 ∪ {ŝri }. We argue in the following that the inductive hypothesis holds.
– Indeed, since {ŝi} ∪ S ′

opt is a feasible solution, ŝi ⊆ ŝli ∪ ŝri , ŝ
r
i ∈ S ′

opt, and ŝi+1 = ŝli , we obtain that {ŝi+1} ∪ S ′
opt is a

feasible solution. This proves the third statement of the hypothesis.
– Since Ai = Ai−1 ∪ {ŝri }, Ai−1 ⊆ S ′

opt by the inductive hypothesis and ŝri ∈ S ′
opt, we obtain Ai ⊆ S ′

opt. Also, since ŝi ⊆
ŝli ∪ ŝri , ŝ

r
i ∈ Ai , and ŝi+1 = ŝli , we have ŝi ⊆R(Ai) ∪ ŝi+1. This proves the second statement of the hypothesis.

– For any disk ŝk with 1 ≤ k ≤ i − 1, to prove the first statement of the hypothesis, we need to show that ŝk 	= ŝi+1. To
this end, since p̂i ∈ ŝi+1, it suffices to show that p̂i 	∈ ŝk . Indeed, by the inductive hypothesis, ŝk ⊆ R(Ak) ∪ ŝk+1 and
ŝk+1 ⊆ R(Ak+1) ∪ ŝk+2. Hence, ŝk ⊆ R(Ak) ∪ R(Ak+1) ∪ ŝk+2. As R(Ak) ⊆ R(Ak+1), we obtain ŝk ⊆ R(Ak+1) ∪ ŝk+2.
Following the same argument, we can derive ŝk ⊆R(Ai−1) ∪ ŝi . Now that p̂i 	∈R(Ai−1) and p̂i 	∈ ŝi , we obtain p̂i 	∈ ŝk .

2. If p̂i ∈ R(Ai−1), then p̂i is covered by a disk of Ai−1, say s. As p̂i 	∈ ŝi , s 	= ŝi and thus s is in Sl(ŝi) or Sr(ŝi). Without
loss of generality, we assume that s ∈ Sr(ŝi).
We let ŝi+1 be ŝli and define Ai = Ai−1. We show in the following that the inductive hypothesis holds.
– Since p̂i is in both s and ŝli , ŝ

l
i ∈ Sl(ŝi), and s ∈ Sr(ŝi), by Observation 2, ŝi ⊆ ŝli ∪ s. Furthermore, since {ŝi} ∪ S ′

opt is a
feasible solution, s ∈ Ai−1 ⊆ S ′

opt, and ŝi+1 = ŝli , we obtain that {ŝi+1} ∪ S ′
opt is also a feasible solution. This proves the

third statement of the hypothesis.
– Since Ai−1 ⊆ S ′

opt by inductive hypothesis and Ai = Ai−1, we have Ai ⊆ S ′
opt. As discussed above, ŝi ⊆ ŝli ∪ s. Since

s ∈ Ai−1 = Ai and ŝi+1 = ŝli , we obtain ŝi ⊆R(Ai) ∪ ŝi+1. This proves the second statement of the hypothesis.
– For any disk ŝk with 1 ≤ k ≤ i − 1, to prove the first statement of the hypothesis, we need to show that ŝk 	= ŝi+1.

By hypothesis, we know that ŝk 	= ŝi , implying that ŝk ∈ Sl(ŝi) or ŝk ∈ Sr(ŝi). If ŝk ∈ Sr(ŝi), since ŝi+1 = ŝli ∈ Sl(ŝi), it is
obviously true that ŝk 	= ŝi+1. In the following, we assume that ŝk ∈ Sl(ŝi) and we will prove that ŝk does not contain
p̂i , which implies that ŝk 	= ŝi+1 as p̂i ∈ ŝi+1.
First of all, since p̂i is covered by both s ∈ Sr(ŝi) and ŝi+1 ∈ Sl(ŝi), it must hold that x(l̂i) < x(p̂i) < x(r̂i), where l̂i and
r̂i are the left and right endpoints of the lower segment of ŝi (i.e., the segment ŝi ∩ �), respectively (see Fig. 6). Hence,
since s ∈ Sr(ŝi) and p̂i ∈ s, the upper arcs of s and ŝi must cross each other, say, at a point q. As p̂i is in s but not in
ŝi , we have x(q) < x(p̂i).
Recall that {ŝi} ∪ S ′

opt is a feasible solution. Also, S ′
opt cannot be a feasible solution since that would contradict the

fact that Sopt is an optimal solution as |Sopt| = |S ′
opt| + 1. This implies that ŝi is not contained in R(S ′

opt). Since all
disk centers are below �, at least one point, say q′ , on the upper arc of ŝi is not in R(S ′

opt). As s ∈ S ′
opt, q′ is not in s.

Therefore, x(q′) < x(q) must hold. As x(q) < x(p̂i), we have x(q′) < x(p̂i) (see Fig. 6).
Recall that our goal is to prove that p̂i 	∈ ŝk . Let l̂k and r̂k be the left and right endpoints of the lower segment of
ŝk , respectively. If x(r̂k) ≤ x(q′), then since x(q′) < x(p̂i), it is obviously true that ŝk does not contain p̂i . We therefore
assume that x(r̂k) > x(q′) (see Fig. 6). Since ŝk ∈ Sl(ŝi), we have x(l̂k) < x(l̂i). As x(l̂i) < x(q′), we obtain x(l̂k) < x(q′).
Since x(l̂k) < x(q′) < x(r̂k), the vertical line through q′ must intersect the upper arc of ŝk at a point, say, q1 (see Fig. 6).
We claim y(q1) ≤ y(q′). Indeed, since q′ is not inside R(S ′

opt), q′ is on the upper envelope of all disks of S ′
opt ∪

{ŝi}, denoted by U . Recall that we have proved above (in the first case where p̂i ∈ R(Ai−1)) that sk ⊆ R(S ′
opt) ∪ ŝi .

Therefore, the upper arc of ŝk cannot be higher than U . As q′ ∈ U , it follows that y(q1) ≤ y(q′).
7

G. Liu and H. Wang Computational Geometry: Theory and Applications 123 (2024) 102122
Fig. 7. Illustrating the proof of Lemma 4.

Since x(l̂k) < x(l̂i) < x(q′) < x(r̂k), due to the non-containment property, the upper arcs of ŝk and ŝi must cross each
other at a single point, say z. Because y(q1) ≤ y(q′), we have x(z) ≤ x(q1). As such, the region of ŝk to the right of q1
must be inside ŝi (see Fig. 6). Recall that x(q1) = x(q′) < x(p̂i). As p̂i 	∈ ŝi , p̂i cannot be in ŝk .

This proves that the inductive hypothesis still holds for i + 1.
The inductive hypothesis implies that each iteration of the process always finds a new candidate disk ŝi such that

S ′
opt ∪ {ŝi} is a feasible solution. If ŝi 	∈ Q , then we can use ŝi as our target disk s∗ and we are done with the process.

Otherwise, we continue with the next iteration. Since each iteration finds a new candidate disk (that was never used
before) and |Q | is finite, eventually we will find a candidate disk ŝi not in Q .

This completes the proof of the lemma. �
It remains to prove the correctness of the third main step of our algorithm. For each disk si ∈ S∗ , a(i) < b(i) by definition;

define P (si) = {p j | a(i) < j < b(i)}.

Lemma 3. All points of P (si) are inside si .

Proof. Assume to the contrary that a point pk ∈ P (si) is not in si . By definition, a(i) < k < b(i). Recall that each point of P
is covered by a disk of S . Let s be a disk of S that covers pk . Since s 	= si , s is either in Sl(si) or in Sr(si). In the former
case, by the definition of a(i), a(i) ≥ k, but this contradicts a(i) < k. In the latter case, by the definition of b(i), b(i) ≤ k; but
this contradicts k < b(i). �

The following lemma justifies the correctness of the third main step of our algorithm.

Lemma 4. Suppose Sopt is an optimal solution to the coverage problem on S∗ and P , and si is a disk in Sopt. Then, any point of P \ P (si)
must be covered by a disk of Sopt \ {si}.

Proof. Let p be a point in P \ P (si). If p 	∈ si , then since the disks of Sopt form a coverage of P , there must be a disk of
Sopt \ {si} that covers p. In the following, we assume that p ∈ si . Since p 	∈ P (si), by Lemma 3, either x(p) ≤ x(pa(i)) or
x(p) ≥ x(pb(i)). In the following we only discuss the former case as the latter case is symmetric.

Since Sopt is an optimal solution, Sopt must have a disk s that covers pa(i) (see Fig. 7). By definition, pa(i) is not in si .
Hence, s 	= si and thus s is either in Sl(si) or in Sr(si). We claim that s must be in Sl(si). Indeed, assume to the contrary
that s ∈ Sr(si). Then, by the definition of b(i), b(i) ≤ a(i) must hold, which contradicts a(i) < b(i). Since s ∈ Sl(si), we next
prove that s must cover p, which will prove the lemma.

Indeed, since x(p) ≤ x(pa(i)), p is inside si , and s ∈ Sl(si), due to the non-containment property of S , the upper arcs of si
and s must intersect at a single point, say, q (see Fig. 7). Furthermore, since pa(i) is in s but not in si , x(pa(i)) ≤ x(q) must
hold. This implies that the region of si left of pa(i) is inside s. As p is in si and x(p) ≤ x(pa(i)), p must be inside s. �

In light of the preceding two lemmas, when considering the coverage of si , it suffices to consider only the points in P (i).
This establishes the correctness of the third main step of our algorithm.

3.2. Algorithm implementation

In this section, we describe the implementation of our algorithm. Recall that points of P are indexed in ascending
order of their x-coordinates as p1, p2, . . . , pn , and disks of S are indexed in ascending order of their leftmost points as
s1, s2, . . . , sm (which is also the order of their rightmost points due to the non-containment property). Also recall that all
points of P are above the x-axis � while the centers of all disks of S are below �.

To implement the algorithm, based on our algorithm description, it remains to perform the following two tasks: (1)
Compute the subset S∗ ⊆ S of disks that are not prunable; (2) for each disk si ∈ S∗ , compute a(i) and b(i).

To achieve the above (1), we resort to Lemma 1. To this end, for each point p ∈ P , we define σ1(p) as the smallest index
of the disk in S that covers p, and σ2(p) as the largest index of the disk in S that covers p. Note that both σ1(p) and σ2(p)

are well defined since every point in P is covered by at least one disk. We first compute σ1(p) and σ2(p) in the following
lemma.
8

G. Liu and H. Wang Computational Geometry: Theory and Applications 123 (2024) 102122
Lemma 5. Computing σ1(p) and σ2(p) for all points p ∈ P can be done in O ((n +m) logm) time.

Proof. We only discuss how to compute σ1(p) since the algorithm for σ2(p) is similar.
Let T be a complete binary search tree whose leaves from left to right correspond to disks in their index order. Since

m = |S|, the height of T is O (logm). For each node v ∈ T , let Sv denote the subset of disks of S in the leaves of the subtree
rooted at v . We use ξv to denote the upper envelope of the x-axis � and the upper arcs of all disks of Sv . Since all points
of P are above �, our algorithm is based on the observation that a point p ∈ P is inside a disk of Sv if and only if p is
below ξv . We construct ξv for every node v ∈ T . Due to the single-intersection condition that the upper arcs of every two
disks of S intersect at most once, ξv has at most O (|Sv |) vertices. To see this, we can view the upper envelope of each
upper arc of Sv and � as an extended arc. Every two such extended arcs still cross each other at most once and therefore
their upper envelope has O (|Sv |) vertices following the standard Davenport-Schinzel sequence argument [30] (see also [11,
Lemma 3] for a similar problem). Notice that ξv is exactly the upper envelope of these extended arcs and thus ξv has
O (|Sv |) vertices. Note also that ξv is x-monotone. In addition, given ξu and ξw , where u and w are the two children of
v , ξv can be computed in O (|Sv |) time by a straightforward line sweeping algorithm. As such, computing ξv for all nodes
v ∈ T can be accomplished in time linear in

∑
v∈T |Sv |, which is O (m logm).

Consider a point p ∈ P . We compute σ1(p) using T , as follows. Starting from the root of T , for each node v , we do the
following. Let u and w be the left and right children of v , respectively. We first determine whether p is below ξu ; since
|Sv | ≤m, this can be done in O (logm) time by binary search on the sorted list of the vertices of ξu by their x-coordinates.
If p is below ξu , then p must be inside a disk of Su ; in this case, we proceed with v = u. Otherwise, we proceed with
v = w . In this way, σ1(p) can be computed after searching a root-to-leaf path of T , which has O (logm) nodes as the height
of T is O (logm). Because we spend O (logm) time on each node, the total time for computing σ1(p) is O (log2m). The time
can be improved to O (logm) using fractional cascading [13], as follows.

The x-coordinates of all vertices of the upper envelope ξv of each node v ∈ T partition the x-axis into a set Iv of
intervals. To determine whether p is below ξv , it suffices to find the interval of Iv that contains x(p), the x-coordinate of p
(after the interval is known, whether p is below ξv can be determined in O (1) time). We construct a fractional cascading
data structure on the intervals of Iv of all nodes v ∈ T , which takes O (m logm) time [13] since the total number of such
intervals is O (m logm).

With the fractional cascading data structure, we only need to do binary search on the set of the intervals stored at the
root to determine the interval containing x(p), which takes O (logm) time. After that, for each node u during the algorithm
described above, the interval of Iu containing x(p) can be determined in O (1) time [13]. As such, computing σ1(p) takes
O (logm) time.

In summary, computing σ1(p) for all points p ∈ P takes O ((n +m) logm) time in total. �
We now describe our algorithm to compute S∗ , or alternatively, find all prunable disks of S . By Lemma 1, we have the

following observation.

Observation 3. A disk si ∈ S is prunable if and only if there exists a point p ∈ P such that p 	∈ si and σ1(p) ≤ i ≤ σ2(p).

Proof. Suppose that si is prunable. Then, by Lemma 1, there exists a point p ∈ P such that p 	∈ si and p is covered by both
a disk in Sl(si) and a disk in Sr(si). By definition, we have σ1(p) < i < σ2(p).

On the other hand, suppose that there exists a point p ∈ P such that p 	∈ si and σ1(p) ≤ i ≤ σ2(p). Then, since p 	∈ si and
σ1(p) ≤ i, we obtain σ1(p) 	= i and thus σ1(p) < i. As such, p is covered by a disk in Sl(si). By a similar argument, p is also
covered by a disk in Sr(si). By Lemma 1, si is prunable. �

With Observation 3 at hand, the following lemma computes S∗ .

Lemma 6. All prunable disks of S can be found in O (n logn + n logm +m logm logn) time.

Proof. Let T be the standard segment tree [17, Section 10.3] on the indices 1, 2, . . . , m by considering each index i a point
on the x-axis � whose x-coordinate is i. The height of T is O (logm). For each point p ∈ P , let I p denote the interval
[σ1(p), σ2(p)] of �. Following the definition of the standard segment tree [17, Section 10.3], we store I p in O (logm) nodes
of T . For each node v ∈ T , let P v denote the subset of points p of P whose interval I p is stored at v . As such,

∑
v∈T |P v | =

O (n logm).
Consider a disk si ∈ S . T has a leaf corresponding to the index i, called leaf-i. Let πi denote the path of T from the root

to leaf-i. Following the definition of the segment tree, we have the following observation:
⋃

v∈πi
P v = {p | p ∈ P , σ1(p) ≤

i ≤ σ2(p)}. By Observation 3, to determine whether si is prunable, it suffices to determine whether there is a node v ∈ πi
such that P v has a point p 	∈ si . Based on this observation, we perform the following processing on T . For each node v ∈ T ,
we construct a farthest Voronoi diagram for P v , denoted by FDv , and then build a point location data structure on FDv so
that each point location query can be answered in O (logn) time [18,23]. Computing FDv can be done in O (|P v | log |P v |)
time [29] and constructing the point location data structure takes O (|P v |) time [18,23]. Since

∑
v∈T |P v | = O (n logm), the
9

G. Liu and H. Wang Computational Geometry: Theory and Applications 123 (2024) 102122
total time for constructing the farthest Voronoi diagrams for all nodes of T is O (n logm logn) and the total time for building
all point location data structures is O (n logm).

For each disk si ∈ S , for each node v ∈ πi , using a point location query on FDv , we find the farthest point p of P v from
the center of si in O (logn) time. If p 	∈ si , then we assert that si is prunable and halt the algorithm for si ; otherwise, all
points of P v are inside si (and thus no point of P v can cause si to be prunable) and we continue on other nodes of πi .
Since πi has O (logm) nodes and each point location query takes O (logn) time, it takes O (logm logn) time to determine
whether si is prunable. Therefore, the total time for doing this for all disks si ∈ S is O (m logm logn).

As such, we can find all prunable disks in a total of O (m logm logn + n logm logn + n logm) time. Note that the factor
O (n logn logm) is due to the construction of all the farthest Voronoi diagrams FDv for all nodes v ∈ T . We can further
reduce the time to O (n logn + n logm), as follows.

First, FDv is determined only by the points of P v that are vertices of the convex hull Hv of P v [29]. Furthermore, once
Hv is available, FDv can be computed in O (|Hv |) time [2]. On the other hand, Hv can be obtained in O (|P v |) time if the
points of P v are sorted by their x-coordinates. To have sorted lists for P v for all nodes v ∈ T , we do the following. At the
start of the algorithm, we sort all points of P by their x-coordinates in O (n logn) time. Then, for each point p of P following
this sorted order, we find the nodes v of T where the interval I p should be stored and add p to P v , which takes O (logm)

time [17, Section 7.4]. In this way, after all points of P are processed as above, P v for every node v ∈ T is automatically
sorted. As such, the total time for constructing all farthest Voronoi diagrams FDv of all nodes v ∈ T is O (n logn + n logm).
Therefore, the total time of the overall algorithm is O (n logn + n logm +m logm logn). �

The remaining task is to compute a(i) and b(i) for all disks si ∈ S∗ . In what follows, we only discuss how to compute
a(i) since the algorithm for b(i) is analogous. Our algorithm relies on the following observation, whose proof is based on
the fact that none of the disks of S∗ is prunable.

Observation 4. For each disk si ∈ S∗ , a(i) is the largest index among the points p ∈ P with σ2(p) < i.

Proof. First, consider a point p j ∈ P with σ2(p j) < i. Since σ2(p j) < i, we know that p j 	∈ si and p j is covered by a disk in
S[1, i − 1]. By the definition of a(i), we have j ≤ a(i).

On the other hand, let j = a(i). By definition, p j 	∈ si and p j is covered by a disk in S[1, i −1]. By the definition of σ1(p j),
σ1(p j) < i holds. We claim σ2(p j) < i. Indeed, assume to the contrary that σ2(p j) ≥ i. Then, we have σ1(p j) < i ≤ σ2(p j).
Since p j 	∈ si , by Observation 3, si is prunable, which contradicts the fact that none of the disks of S∗ is prunable. As such,
we obtain σ2(p j) < i.

The above discussions combined lead to the observation. �
In light of Observation 4, we have the following lemma.

Lemma 7. a(i) for all disks si ∈ S∗ can be computed in O (n logn +m) time.

Proof. Recall that p1, p2, . . . , pn are points of P sorted in ascending order by x-coordinate. For each point p ∈ P , let j(p)

denote its index, referred to as the x-sorted index. We sort all the points p of P in ascending order by their values σ2(p) as
p1, p2, . . . , pn . We process these points in this order. Each point pk is processed as follows. Our algorithm maintains jk−1,
the largest x-sorted index among all points p1, p2, . . . , pk−1. We first set jk to be the larger one of jk−1 and j(pk). Then,
for each integer i with σ2(pk) < i ≤ σ2(pk+1) (if k = n, then we consider each i with σ2(pk) < i ≤ m), if si ∈ S∗ , then we
set a(i) = jk , whose correctness follows from Observation 4. After all points of P are processed as above, a(i) for all disks
si ∈ S∗ are computed. The total time is O (n logn +m). �

Combining Lemmas 5, 6, and 7, the total runtime of the algorithm is O ((n +m) log(n +m) +m logm logn). This proves
Theorem 1.

An algebraic decision tree algorithm. In the algebraic decision tree model, where the time complexity is measured only
by the number of comparisons, we can solve the problem in O ((n + m) log(n +m)) time, i.e., using O ((n +m) log(n +m))

comparisons. For this, observe that the overall algorithm excluding Lemma 6 runs in O ((n + m) log(n + m)) time. Hence,
it suffices to show that Lemma 6 can be solved using O ((n + m) log(n + m)) comparisons. To this end, notice that the
factor O (m logm logn) in the algorithm of Lemma 6 is due to the point location queries on the farthest Voronoi diagrams
FDv . There are a total of O (m logm) queries. The total combinatorial complexity of the diagrams FDv of all nodes v ∈ T
is O (n logm). To solve these point location queries, we can use a technique recently developed by Chan and Zheng [12].
Specifically, we can simply apply [12, Theorem 7.2] to solve all our point location queries using O ((n + m) log(n + m))

comparisons (indeed, following the notation in [12, Theorem 7.2], we have t = O (m), L = O (n logm), M = O (m logm), and
N = O (n +m) in our problem; according to the theorem, all point location queries can be answered using O (L +M+N logN)

comparisons, which is O ((n +m) log(n +m))).
10

G. Liu and H. Wang Computational Geometry: Theory and Applications 123 (2024) 102122
4. The unit-disk case

In this section, we show that the runtime of the algorithm can be reduced to O ((n + m) log(n + m)) for the unit-disk
case. For this, observe that except for Lemma 6, the algorithm in Section 3 runs in O ((n + m) log(n + m)) time. Hence, it
suffices to show that Lemma 6 can be implemented in O ((n + m) log(n +m)) time for the unit-disk case. To this end, we
have the following lemma.

Lemma 8. For the unit-disk case, all prunable disks of S can be found in O ((n +m) log(n +m)) time.

Proof. We follow the notation in Lemma 6. The algorithmic scheme is similar to Lemma 6. The major change is that, instead
of constructing the farthest Voronoi diagrams for the nodes of T , here we perform different processing by exploring the
property that all disks of S have the same radius.

Consider a disk si ∈ S . To determine whether si is prunable, recall that it suffices to decide for each node v ∈ πi whether
P v has a point outside si . We explore the property that all disks of S have the same radius (a disk of that radius is called
a unit disk). For each point p ∈ P , let Dp denote a unit disk centered at p. Define Dv = {Dp | p ∈ P v}. Let ci denote the
center of si . Observe that P v has a point outside si if and only if ci is outside a disk of Dv . Recall that all points of P are
above the x-axis � while the centers of all disks of S are below �. Let Cv denote the common intersection of all disks of Dv
below �. Observe that ci is outside a disk of Dv if and only if ci is outside Cv .

We perform the following processing on T . For each node v ∈ T , we construct Cv . Since all disks of Dv have the
same radius and their centers are all above �, the boundaries of every two disks intersect at most once in the halfplane
below �. Using this property, Cv can be computed in linear time by adapting Graham’s scan after P v is sorted by x-
coordinate (see [11, Lemma 3] for a similar problem). Computing the sorted lists for P v for all nodes v ∈ T can be done in
O (n logn + n logm) time, as described in the proof of Lemma 6. As such, constructing Cv takes additional O (|P v |) time and
the total time for constructing Cv of all nodes v ∈ T is O (n logm) since

∑
v∈T |P v | = O (n logm).

For each disk si ∈ S , our task is to determine whether ci ∈ Cv for each node v ∈ πi . Note that the boundary of Cv consists
of a line segment on � bounding Cv from above and an x-monotone curve bounding Cv from below. The projections of the
vertices of Cv onto the x-axis � partition � into a set Iv of O (|P v |) intervals. To determine whether ci ∈ Cv , it suffices to find
the interval of I v containing x(ci), the x-coordinate of ci , after which whether ci ∈ Cv can be decided in O (1) time. Finding
the interval of I v containing x(ci) can be done in O (logn) time by binary search. If we do this for all nodes v ∈ πi , the total
time to determine whether si is prunable would be O (logm logn). We can improve the runtime to O (logm + logn) using
fractional cascading [13] in a way similar to the proof of Lemma 5. More specifically, we construct a fractional cascading
data structure on the intervals of Iv of all nodes v ∈ T , which takes O (n logm) time since the total number of such intervals
is linear in

∑
v∈T |P v |, which is O (n logm). With the fractional cascading data structure, we only need to do binary search

on the set of the intervals stored at the root of T to find the interval containing x(ci), which takes O (log(n logm)) time.
After that, following the path πi in a top-down manner, the interval of Iv containing x(ci) for each node v ∈ πi can be
determined in O (1) time [13]. As such, whether the disk si is prunable can be determined in O (logn + logm) time.

In summary, the total time of the algorithm for finding all prunable disks of S is bounded by O ((n +m) log(n +m)). �
Combining Lemmas 5, 7, and 8 leads to the following result for the unit-disk case.

Theorem 2. Given a set P of n points and a set S of m unit disks in the plane such that the centers of the disks are separated from the
points of P by a line, the disk coverage problem for P and S is solvable in O ((n +m) log(n +m)) time.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgement

The authors wish to express their gratitude to two anonymous reviewers whose comments helped to improve the pre-
sentation of this paper.

References

[1] Pankaj K. Agarwal, Jiangwei Pan, Near-linear algorithms for geometric hitting sets and set covers, Discrete Comput. Geom. 63 (2020) 460–482, https://
doi .org /10 .1007 /s00454 -019 -00099 -6.
11

https://doi.org/10.1007/s00454-019-00099-6
https://doi.org/10.1007/s00454-019-00099-6

G. Liu and H. Wang Computational Geometry: Theory and Applications 123 (2024) 102122
[2] Alok Aggarwal, Leonidas J. Guibas, James B. Saxe, Peter W. Shor, A linear-time algorithm for computing the Voronoi diagram of a convex polygon,
Discrete Comput. Geom. 4 (1989) 591–604, https://doi .org /10 .1007 /BF02187749.

[3] Helmut Alt, Esther M. Arkin, Hervé Brönnimann, Jeff Erickson, Sándor P. Fekete, Christian Knauer, Jonathan Lenchner, Joseph S.B. Mitchell, Kim Whit-
tlesey, Minimum-cost coverage of point sets by disks, in: Proceedings of the 22nd Annual Symposium on Computational Geometry (SoCG), 2006,
pp. 449–458.

[4] Christoph Ambühl, Thomas Erlebach, Matús̆ Mihalák, Marc Nunkesser, Constant-factor approximation for minimum-weight (connected) dominating
sets in unit disk graphs, in: Proceedings of the 9th International Conference on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX), and the 10th International Conference on Randomization and Computation (RANDOM), 2006, pp. 3–14.

[5] Vittorio Bilò, Ioannis Caragiannis, Christos Kaklamanis, Panagiotis Kanellopoulos, Geometric clustering to minimize the sum of cluster sizes, in: Pro-
ceedings of the 13th European Symposium on Algorithms (ESA), 2005, pp. 460–471.

[6] Ahmad Biniaz, Prosenjit Bose, Paz Carmi, Anil Maheshwari, J. Ian Munro, Michiel Smid, Faster algorithms for some optimization problems on collinear
points, in: Proceedings of the 34th International Symposium on Computational Geometry (SoCG), 2018, pp. 8:1–8:14.

[7] Norbert Bus, Nabil H. Mustafa, Saurabh Ray, Practical and efficient algorithms for the geometric hitting set problem, Discrete Appl. Math. 240 (2018)
25–32, https://doi .org /10 .1016 /j .dam .2017.12 .018.

[8] Paz Carmi, Matthew J. Katz, Nissan Lev-Tov, Covering points by unit disks of fixed location, in: Proceedings of the International Symposium on Algo-
rithms and Computation (ISAAC), 2007, pp. 644–655.

[9] Timothy M. Chan, Elyot Grant, Exact algorithms and APX-hardness results for geometric packing and covering problems, Comput. Geom. Theory Appl.
47 (2014) 112–124, https://doi .org /10 .1016 /j .comgeo .2012 .04 .001.

[10] Timothy M. Chan, Qizheng He, Faster approximation algorithms for geometric set cover, in: Proceedings of 36th International Symposium on Compu-
tational Geometry (SoCG), 2020, pp. 27:1–27:14.

[11] Timothy M. Chan, Dimitrios Skrepetos, All-pairs shortest paths in unit-disk graphs in slightly subquadratic time, in: Proceedings of the 27th Interna-
tional Symposium on Algorithms and Computation (ISAAC), 2016, pp. 24:1–24:13.

[12] Timothy M. Chan, Da Wei Zheng, Hopcroft’s problem, log-star shaving, 2D fractional cascading, and decision trees, ACM Trans. Algorithms (2023),
https://doi .org /10 .1145 /3591357.

[13] Bernard Chazelle, Leonidas J. Guibas, Fractional cascading: I. A data structuring technique, Algorithmica 1 (1986) 133–162, https://doi .org /10 .1007 /
BF01840440.

[14] Francisco Claude, Gautam K. Das, Reza Dorrigiv, Stephane Durocher, Robert Fraser, Alejandro López-Ortiz, Bradford G. Nickerson, Alejandro Salinger,
An improved line-separable algorithm for discrete unit disk cover, Discrete Math. Algorithms Appl. 2 (2010) 77–88, https://doi .org /10 .1142 /
S1793830910000486.

[15] Gruia Călinescu, Ion I. Măndoiu, Peng-Jun Wan, Alexander Z. Zelikovsky, Selecting forwarding neighbors in wireless ad hoc networks, Mob. Netw. Appl.
9 (2004) 101–111, https://doi .org /10 .1023 /B :MONE .0000013622 .63511.57.

[16] Gautam K. Das, Sandip Das, Subhas C. Nandy, Homogeneous 2-hop broadcast in 2D, Comput. Geom. Theory Appl. 43 (2010) 182–190, https://doi .org /
10 .1016 /j .comgeo .2009 .06 .005.

[17] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry — Algorithms and Applications, 3rd edition, Springer-Verlag, Berlin,
2008.

[18] Herbert Edelsbrunner, Leonidas J. Guibas, J. Stolfi, Optimal point location in a monotone subdivision, SIAM J. Comput. 15 (2) (1986) 317–340, https://
doi .org /10 .1137 /0215023.

[19] Herbert Edelsbrunner, Ernst P. Mücke, Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms, ACM Trans. Graph.
9 (1990) 66–104, https://doi .org /10 .1145 /77635 .77639.

[20] Tomás Feder, Daniel H. Greene, Optimal algorithms for approximate clustering, in: Proceedings of the 20th Annual ACM Symposium on Theory of
Computing (STOC), 1988, pp. 434–444.

[21] Shashidhara K. Ganjugunte, Geometric hitting sets and their variants, PhD thesis, Duke University, 2011, https://dukespace .lib .duke .edu /server /api /core /
bitstreams /0d37dabc -42a5 -4bc8 -b4e9 -e69b263a10ca /content.

[22] Sariel Har-Peled, Mira Lee, Weighted geometric set cover problems revisited, J. Comput. Geom. 3 (2012) 65–85, https://doi .org /10 .20382 /jocg .v3i1a4.
[23] David G. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput. 12 (1) (1983) 28–35, https://doi .org /10 .1137 /0212002.
[24] Lev-Tov Nissan, David Peleg, Polynomial time approximation schemes for base station coverage with minimum total radii, Comput. Netw. 47 (2005)

489–501, https://doi .org /10 .1016 /j .comnet .2004 .08 .012.
[25] Jian Li, Yifei Jin, A PTAS for the weighted unit disk cover problem, in: Proceedings of the 42nd International Colloquium on Automata, Languages and

Programming (ICALP), 2015, pp. 898–909.
[26] Gang Liu, Haitao Wang, On the line-separable unit-disk coverage and related problems, in: Proceedings of the 34th International Symposium on

Algorithms and Computation (ISAAC), 2023, pp. 51:1–51:14.
[27] Nabil H. Mustafa, Saurabh Ray, Improved results on geometric hitting set problems, Discrete Comput. Geom. 44 (2010) 883–895, https://doi .org /10 .

1007 /s00454 -010 -9285 -9.
[28] Logan Pedersen, Haitao Wang, Algorithms for the line-constrained disk coverage and related problems, Comput. Geom. Theory Appl. 105–106 (2022)

101883, https://doi .org /10 .1016 /j .comgeo .2022 .101883, 1–18.
[29] Michael I. Shamos, Dan Hoey, Closest-point problems, in: Proceedings of the 16th Annual Symposium on Foundations of Computer Science (FOCS),

1975, pp. 151–162.
[30] Micha Sharir, Pankaj K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, New York, 1996, p. 372.
12

https://doi.org/10.1007/BF02187749
http://refhub.elsevier.com/S0925-7721(24)00044-0/bib2CDECA10537CB223EF4298E594980B57s1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bib2CDECA10537CB223EF4298E594980B57s1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bib2CDECA10537CB223EF4298E594980B57s1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bibAA08DC295F4F0D75990590ACDA41D227s1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bibAA08DC295F4F0D75990590ACDA41D227s1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bibAA08DC295F4F0D75990590ACDA41D227s1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bib171406F8E669EEA4EE3BB27F9BF2E932s1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bib171406F8E669EEA4EE3BB27F9BF2E932s1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bibADF2BECB9679CD699BB42311E7FFB77Es1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bibADF2BECB9679CD699BB42311E7FFB77Es1
https://doi.org/10.1016/j.dam.2017.12.018
http://refhub.elsevier.com/S0925-7721(24)00044-0/bibF30B7F43F002C00A52865A13C81DE315s1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bibF30B7F43F002C00A52865A13C81DE315s1
https://doi.org/10.1016/j.comgeo.2012.04.001
http://refhub.elsevier.com/S0925-7721(24)00044-0/bibDA7CE0E0DA2134E1939EDF22439D098Es1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bibDA7CE0E0DA2134E1939EDF22439D098Es1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bibDEACB025DCCA5F0740118E234DB4AD25s1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bibDEACB025DCCA5F0740118E234DB4AD25s1
https://doi.org/10.1145/3591357
https://doi.org/10.1007/BF01840440
https://doi.org/10.1007/BF01840440
https://doi.org/10.1142/S1793830910000486
https://doi.org/10.1142/S1793830910000486
https://doi.org/10.1023/B:MONE.0000013622.63511.57
https://doi.org/10.1016/j.comgeo.2009.06.005
https://doi.org/10.1016/j.comgeo.2009.06.005
http://refhub.elsevier.com/S0925-7721(24)00044-0/bib9062C9C9053401C19C42A328A189D733s1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bib9062C9C9053401C19C42A328A189D733s1
https://doi.org/10.1137/0215023
https://doi.org/10.1137/0215023
https://doi.org/10.1145/77635.77639
http://refhub.elsevier.com/S0925-7721(24)00044-0/bibEC7CF9F7EB5288E491497378A890170Ds1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bibEC7CF9F7EB5288E491497378A890170Ds1
https://dukespace.lib.duke.edu/server/api/core/bitstreams/0d37dabc-42a5-4bc8-b4e9-e69b263a10ca/content
https://dukespace.lib.duke.edu/server/api/core/bitstreams/0d37dabc-42a5-4bc8-b4e9-e69b263a10ca/content
https://doi.org/10.20382/jocg.v3i1a4
https://doi.org/10.1137/0212002
https://doi.org/10.1016/j.comnet.2004.08.012
http://refhub.elsevier.com/S0925-7721(24)00044-0/bib8AA11448DB0D6A38C87C93855877B6BAs1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bib8AA11448DB0D6A38C87C93855877B6BAs1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bibE5D03A5184106D600B01D9B3EFE2FB27s1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bibE5D03A5184106D600B01D9B3EFE2FB27s1
https://doi.org/10.1007/s00454-010-9285-9
https://doi.org/10.1007/s00454-010-9285-9
https://doi.org/10.1016/j.comgeo.2022.101883
http://refhub.elsevier.com/S0925-7721(24)00044-0/bib50531959C0EFD16E7F45931D7B41968Ds1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bib50531959C0EFD16E7F45931D7B41968Ds1
http://refhub.elsevier.com/S0925-7721(24)00044-0/bib4D5B3F3E654C763DC1AE1DEF05713C88s1

	On the line-separable unit-disk coverage and related problems
	1 Introduction
	1.1 Our result

	2 Preliminaries
	3 The line-separable single-intersection case
	3.1 Algorithm correctness
	3.2 Algorithm implementation

	4 The unit-disk case
	Declaration of competing interest
	Data availability
	Acknowledgement
	References

