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Abstract 
Morphological profiling is a valuable tool in phenotypic drug discovery. The advent of high-throughput automated imaging has enabled 
the capturing of a wide range of morphological features of cells or organisms in response to perturbations at the single-cell resolution. 
Concurrently, significant advances in machine learning and deep learning, especially in computer vision, have led to substantial 
improvements in analyzing large-scale high-content images at high throughput. These efforts have facilitated understanding of 
compound mechanism of action, drug repurposing, characterization of cell morphodynamics under perturbation, and ultimately 
contributing to the development of novel therapeutics. In this review, we provide a comprehensive overview of the recent advances in the 
field of morphological profiling. We summarize the image profiling analysis workflow, survey a broad spectrum of analysis strategies 
encompassing feature engineering– and deep learning–based approaches, and introduce publicly available benchmark datasets. We
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place a particular emphasis on the application of deep learning in this pipeline, covering cell segmentation, image representation 
learning, and multimodal learning. Additionally, we illuminate the application of morphological profiling in phenotypic drug discovery 
and highlight potential challenges and opportunities in this field.

Keywords: artificial intelligence; deep learning; morphological profiling; drug discovery 

Introduction 
Phenotypic drug discovery (PDD) plays a crucial role in drug 
discovery. In contrast to target-based drug discovery (TDD), where 
compounds are designed to interact with known target molecules, 
PDD takes a target-agnostic approach and focuses on phenotypic 
effects of compound treatment in disease-relevant biological sys-
tems [1, 2] (Fig. 1A and B). This strategy uses reference compounds 
with treatment class annotations to uncover previously unknown 
mechanisms of action (MOAs) of the test compounds. To date, 
PDD has made a significant contribution to the development 
of first-in-class drugs and the discovery of novel therapeutic 
opportunities [1, 2]. For example, PDD is the primary approach in 
natural products discovery and the basis for identification of new 
targets and/or MOAs. Natural products are all bioactive, and the 
most effective way to multiplex and assign function is through 
phenotypic screening, particularly by analyzing related biased 
and unbiased nuances from high-content imaging [3–6]. 

Automated microscopy and image analysis have enabled 
high-throughput image-based assays for PDD [1, 7]. The two 
approaches, namely, high-content screening (HCS) and morpho-
logical profiling, are both based on imaging experiments at a 
large scale, yet distinct in strategy (Fig. 1C and D). In HCS, feature 
measurements are limited to specific phenotypes related to 
perturbations. In contrast, morphological profiling (also known 
as image-based profiling or cytological profiling) is an unbiased 
approach to capture high-dimensional image data consisting 
of hundreds to thousands of cellular features. Conventionally, 
bioimage informatics tools can measure these features that 
span a range of morphological properties to generate phenotypic 
signatures for clustering and predicting perturbation bioactivity 
similarity [7, 8]. To this end, this approach not only provides a 
comprehensive morphological profile in an unbiased manner but 
also allows for detecting subtle or novel phenotypes. 

As a dominant technique in artificial intelligence (AI), deep 
learning uses deep neural networks to learn representations from 
raw data format in a data-driven manner, often without the 
needs of feature engineering [9]. In the context of drug discovery, 
deep learning enables efficient development of novel therapeutics 
through various applications, such as target identification [10, 
11], protein structure prediction [12, 13], drug–target interaction 
prediction [14–16], de novo drug design [17, 18], molecular prop-
erty prediction [19, 20], and biological image analysis for PDD 
[21, 22]. In recent years, computer vision has led to a profound 
transformation of image-based profiling analysis in efficiency 
and performance, thereby expediting drug discovery and reducing 
computational cost [22, 23]. 

In this review, we aim to provide a comprehensive overview of 
the extant computational approaches employed in morphological 
profiling with a particular emphasis on the deep learning applica-
tions. We primarily focus on the analytical pipeline of Cell Painting 
high-content image data given its wide application in academic 
research and pharmaceutical industry. We start with an introduc-
tion of Cell Painting image analysis workflow with conventional 
feature-engineering approach (also known as ‘handcrafted’ 
representation). For the major focus, we provide a thorough 

summary of recently proposed deep learning approaches in 
advancing this analytical pipeline, including microscopic image 
cell segmentation, representation learning from high-content 
fluorescent images, and multimodal learning to integrate 
chemical structure and omics data for MOA prediction. With 
concrete examples in cutting-edge applications, we conclude with 
our perspectives on future directions in advancing morphological 
profiling with deep learning solutions (Fig. 2). 

Deep learning in morphological profiling 
analytical pipeline 
Cell Painting and benchmark datasets 
A state-of-the-art assay for morphological profiling is known as 
Cell Painting [24]. The canonical protocol on adherent monolayer 
cells uses six fluorescent dyes to characterize eight cellular com-
ponents or organelles and images the fixed and stained cells 
in five channels on a high-throughput microscope [25]. Recent 
optimization efforts have further improved the assay’s capability 
in phenotype detection [26]. Whereas canonical Cell Painting 
captures cellular morphology in snapshots, technical advances 
now enable live-cell imaging, such as using reporter cell lines 
that carry organelle or pathway marker with fluorescent tag. This 
allows for capturing morphological profiles in dynamics [27]. 

Over the past decade, morphological profiling efforts from 
academia and pharmaceutical industry have produced several 
publicly available Cell Painting datasets. These include (i) the 
Broad Bioimage Benchmark Collection (BBBC) with compound 
and genetic perturbations [28–30], (ii) The Image Data Resource 
(IDR) with both HCS images and time-lapse images [31], (iii) the 
RxRx datasets released from Recursion with compounds, genetic 
and viral transduction perturbations, and (iv) the CytoImageNet 
dataset curated from 40 openly available and weakly labeled 
microscopy images [32]. Notably, the Joint Undertaking in Morpho-
logical Profiling Cell Painting (JUMP-CP) Consortium has recently 
been established as the largest public reference Cell Painting 
dataset [33], including images from more than 116 000 chemical 
perturbations and over 15 000 genetic perturbations on human 
osteosarcoma cells (U2OS), which were systematically acquired 
from 12 data-generating centers [33]. A subset of the JUMP-CP 
Consortium, cpg0016-jump, has been used in a recent bench-
mark study to evaluate self-supervised learning (SSL) methods 
and feature-based approaches [23]. This dataset includes single-
source (data generated from a single laboratory) training set 
of 391 815 Cell Painting images from 35 892 compound treat-
ments, and multisource (data generated from multiple labora-
tories) training set of 564 272 images from 10 057 compounds. 
The evaluation set includes 33 962 single-source images and 
75 545 multisource images [23]. The curation of this dataset 
not only allows for assessing model performance using biolog-
ical labels but also enables evaluation of batch effect handling 
[23]. An extension to this dataset, labeled CPJUMP1, has been 
curated to include pairs of chemical and genetic perturbations 
that both target the same genes in the settings of U2OS and 
human lung carcinoma epithelial cells (A549) [34]. This dataset
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Figure 1. Early-stage drug discovery approaches. (A) and (B) illustrate two primary approaches in drug discovery: target-based drug discovery (TDD) and  
phenotypic drug discovery (PDD). (A) TDD starts with a known drug target, and a target-based assay is established to evaluate the effect of compound– 
target interaction. (B) In contrast, PDD employs a target-agnostic strategy, screening compounds to determine whether a phenotype of interest is induced. 
Due to its unbiased nature, a target identification step is required. Within the context of PDD, (C) high-content screening (HCS) and (D) morphological 
profiling are two commonly used approaches. The major difference is (C) HCS uses a limited number of perturbation-specific phenotypes as assay 
readout, whereas (D) morphological profiling obtains cellular feature representation with an unbiased approach. 

consists of approximately 3 million Cell Painting images along 
with the feature-based profiles from 75 million single cells are 
well-level aggregated profiles. This unique dataset of paired anno-
tated chemical and genetic perturbations allow for investigating 
gene–compound relationship [ 34]. These public reference datasets 
have been broadly used to train machine learning and deep 
learning models for compound bioactivity prediction and image 
representation learning for feature embedding. Details of these 
datasets are summarized in Table 1. 

Among the above-mentioned datasets, the BBBC021 dataset 
[35] is the most commonly used benchmark to evaluate the 
performance of deep learning methods. This dataset, publicly 
available from the Broad Bioimage Benchmark Collection 
[28], includes Cell Painting images of human MCF-7 breast 
cancer cells treated with 113 compounds at eight concentra-
tions. Most of the representation learning methods (section 
Representation Learning for Morphological Profiling) were com-
pared on a subset of 103 treatments from 38 compounds. These 
compounds have been manually annotated with one of 12 MOAs 
as the ground truth. The effectiveness of different MOA prediction 
methods is assessed using the following evaluation metrics: 

• NSC (Not-Same-Compound matching accuracy): In the NSC 
setting, all profiles of a test compound are deliberately 
excluded during the training phase and the model is tasked 
to predict the excluded profiles’ treatment. After generating 

the representation of the excluded profile, the treatment 
prediction is typically conducted using a 1-Nearest-Neighbor 
(1-NN) classifier, which assigns the test compound to its 
nearest neighbor within the feature space of the training 
compounds. This metric is to evaluate the model’s capacity to 
adequately generalize and correctly infer a new compound’s 
treatment class when its MOA is unknown [36]. 

• NSCB (Not-Same-Compound-and-Batch matching accuracy): 
NSCB serves as a more stringent metric compared to NSC. In 
addition to the constraints in NSC, profiles of the same exper-
imental batch are also excluded during training. This metric 
enables a more robust evaluation of model’s performance 
and generalizability across different experiment conditions 
and batch settings. It can reflect the impact of batch effects 
and other confounding factors [37]. 

• Drop: Drop is calculated by subtracting NSCB from NSC. 
Ideally, performance drop should not be observed. The larger 
this metric value is, the more substantial the batch effect is 
[38]. 

An overview of image-based profiling data 
analysis 
An accurate, efficient, and generalizable imaging data analysis 
workflow is critical for morphological profiling. Established meth-
ods and best practices have been comprehensively documented
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Figure 2. Schematic workflow of morphological profiling. After cells are perturbed and stained, fluorescent images are taken to capture cellular 
morphology. Single cells are detected and segmented. At the single-cell level, morphological features can be achieved with image analysis software 
to extract pre-defined features. Alternatively, feature vectors can be obtained through representation learning with a deep neural network. Features 
from single cells are subsequently aggregated into a treatment-level morphological profile. Certain deep learning models allow end-to-end learning, 
eliminating the need for cell segmentation. The resulting morphological profile is then applied to downstream tasks such as classification for MOA 
prediction and clustering for treatment association inference (left panel). Additionally, other profile modalities, such as chemical structure and 
transcriptomic and metabolomic profiles, can be integrated with the morphological profile to enhance downstream analysis (middle panel). Altogether, 
these efforts enable many novel downstream applications, such as characterizing perturbation impacts in dynamics, constructing gene function network 
to map genotype–phenotype relationship, identifying compound MOAs in 3D organoid model, and guiding de novo hit design (right panel). 

Table 1. Publicly available cellular microscopic image datasets for model training and evaluation 

Data set Description URL Reference 

The Broad Bioimage Benchmark 
Collection (BBBC) 

A collection of image datasets from 
image-based profiling and other 
assays annotated with different 
types of ground truth. 

https://bbbc.broadinstitute.org/ 
image_sets 

Ljosa 2013 [28] 

Recursion datasets (RxRx) Image datasets with different 
perturbation modalities such as 
genetic, small-molecule and viral 
infection perturbations. 

https://www.rxrx.ai/ Sypetkowski 2023 [146] 

Image Data Resource (IDR) A public repository of datasets 
from image-based assays. 

https://idr.openmicroscopy.org/ 
cell/ 

Williams 2017 [31] 

JUMP Cell Painting datasets 
(JUMP-CP) 

A multi-center image dataset of 
U2OS cells under genetic and 
compound perturbations. 

https://registry.opendata.aws/ 
cellpainting-gallery/ 

Chandrasekaran 2023 [33] 

CPJUMP1 An image dataset of matched 
chemical and genetic 
perturbations targeting the same 
genes in U2OS and A549 cells. 

https://broad.io/neurips-cpjump1 Chandrasekaran 2022 [34] 

CytoImageNet A dataset curated from the above 
publicly available microscopic 
images with weak labels for 
bioimage transfer learning. 

https://www.kaggle.com/datasets/ 
stanleyhua/cytoimagenet 

Hua 2021 [32] 

[ 39–43]. However, the past few years have witnessed significant 
strides in the application of deep learning approaches (Fig. 3). 
In this section, we present an overview of the critical stages in 
morphological profiling data analysis, with particular emphasis 
on deep learning advances (Fig. 4). 

Stage 1: Feature representation 
Measuring variations in cell morphology upon perturbation 
relies on generating effective representations for cellular images. 
Conventionally, this task is implemented by feature engineering 
approaches. Bioimaging software like CellProfiler is commonly
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Figure 3. Recent publication trend of morphological profiling with deep 
learning. Pubmed trend demonstrates a growing number of indexed 
publications on morphological profiling with deep learning, including the 
keywords ‘deep learning’ with ‘morphological profiling’ or ‘image-based 
profiling.’ This trend is analyzed from 2014 to 2022. 

used to extract predefined features such as cell shape, size, 
and texture from fluorescent microscopy images [ 44]. In 
addition to CellProfiler, we have also summarized other open-
source image analysis software and tools in Table 2. While this 
approach provides biologically insightful results, it requires image 
preprocessing and manual adjustment of parameters for every 
new experiment setup [39, 41]. Also, single-cell segmentation is 
typically required, which will be described in detail in section 
Deep Learning–Facilitated Cell Segmentation for Image Analysis. 

Alternatively, deep neural networks such as pre-trained 
convolutional neural networks (CNNs) can learn representation 
directly from a full-field microscopy image without the need for 
single-cell segmentation [37, 45]. Further, generative adversarial 
network (GAN)–based models and variational autoencoder (VAE) 
framework have been proposed to improve the interpreta-
tion of cellular structural variations that drive morphological 
differences [46–48] and to predict morphological responses 
to perturbations [49]. These advances from deep learning-
based analysis approaches will be further discussed in section 
Representation Learning for Morphological Profiling. 

Stage 2: Morphological profile generation 
Once features are extracted from single cells or field images, these 
measurements will be aggregated into a single feature vector 
for well-level (also known as treatment-level or population-level) 
representation. The morphological profile generated from this 
stage will enable downstream well-level analysis [39]. 

Stage 3: MOA annotation 
With the aggregated treatment-level morphological profiles, a 
common machine learning task is to predict MOA or toxicity of 
query perturbagens based on the known morphological profiles 
of the reference library [40]. This is most commonly achieved 
by building a feature-based machine learning model such as 

nearest neighbor classifier, random forests, or Bayesian matrix 
factorization [39, 40, 50] on top of the extracted morphologi-
cal profiles. With these supervised machine learning algorithms, 
query perturbagens can be classified into predefined, annotated 
classes [40]. The aggregated morphological profiles can also be 
used to infer treatment-level associations. This task is typically 
accomplished by employing hierarchical unsupervised clustering 
algorithms, predicted on the similarity of morphological profiles 
[40]. A phenotypic similarity matrix of all pair-wise similarities 
between morphological profiles is computed for similarity-based 
clustering [40]. 

Notably, deep learning techniques facilitate an end-to-end 
learning schema, integrating all the aforementioned stages 
into a singular, unified process. Within this framework, the 
phenotypic classification and clustering tasks can be directly 
accomplished using raw high-content images, circumvent-
ing the explicitly image feature representation, morpholog-
ical profile generation, and other intermediate steps. This 
end-to-end learning schema will be elaborated in section 
Representation Learning for Morphological Profiling. 

Deep learning–facilitated cell segmentation for 
image analysis 
Cellular object detection and segmentation is a critical yet chal-
lenging step of microscopic image analysis. Whereas classical seg-
mentation algorithms such as thresholding and watershed have 
been commonly used in bioimage analysis software [51], recent 
advances of deep learning in computer vision have generated 
various image segmentation models with substantially improved 
performance [52]. In the 2018 Data Science Bowl, a global com-
petition focusing on 2D nucleus segmentation from high-content 
images, deep learning approaches such as U-Net, Feature Pyramid 
Network (FPN), and Mask-Regional Convolutional Neural Network 
(Mask-RCNN) dominated the leaderboard, achieving state-of-the-
art performance [51]. We refer the interested readers to the report 
of the 2018 Data Science Bowl results for details in method 
and performance [51]. Each of these approaches demonstrates 
strengths and drawbacks. Initially designed for segmenting elec-
tron microscopy images, the U-Net model uses skip connections to 
append feature maps of the whole input image from the encoder 
to the decoder. This preserves global location information and 
allows for accurate reconstruction by the decoder. It can provide 
accurate segmentation maps with limited training data [53]. Like 
U-Net, FPN also leverages lateral connections. However, instead of 
copying and concatenating feature maps from encoder to decoder, 
1 × 1 convolution is applied to allow for flexible processing [54]. 
In contrast to fully convolutional networks (FCNs) that use the 
full context of the input image, Mask R-CNN works on selected 
Regions of Interest (ROIs) of an input image to obtain predicted 
class, bounding box, and segmentation mask simultaneously. This 
method performs well on instance segmentation tasks to handle 
multiple objects with complex shapes, albeit more training exam-
ples are needed compared to U-Net [55]. 

A common limitation of those approaches is that their perfor-
mances suffer when nuclei are packed densely. To address this 
challenge, STARDIST was developed to predict a flexible shape 
representation—a star-convex polygon instead of an axis-aligned 
bounding box is predicted for each pixel. When benchmarked on 
the 2018 data science bowl dataset, STARDIST outperformed U-
Net or Mask R-CNN based models for intersection over union 
(IoU) threshold τ < 0.75 [56]. This method has also been suc-
cessfully extended for 3D nuclei segmentation (STARDIST-3D) 
[57]. Fully convolutional regression networks (FCRNs) represent
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Figure 4. An overview of key methods and the state-of-the-art approaches in morphological profiling data analysis. Cellular images from morphological 
profiling assays can be analyzed using two approaches: stage-wise feature-based (top panel) and end-to-end deep learning-based (bottom panel). In the 
feature-based approach, image data are analyzed in four sequential stages: Stage 1 involves image preprocessing, single-cell segmentation, and feature 
extraction, Stage 2 aggregates cell-level features into well-level or treatment level profiles, and Stage 3 classifies each profile into the corresponding 
treatment class and clusters each profile based on phenotypic similarity. In contrast, deep learning–based approaches perform analysis in an end-to-end 
fashion with different learning paradigms. We illustrate these state-of-the-art approaches on a timeline to highlight their development. 

another solution to this challenge, regressing a cell spatial density 
map of the image. FCRNs demonstrated superior performance 
at microscopic cell counting when traditional single-cell seg-
mentation fails due to cell clumping or overlap [ 58]. Another 
object shape representation approach is proposed by the Cellpose 
segmentation model. This approach generates topological maps 
through simulated diffusion and uses human-annotated masks 
as ground truth. The horizontal and vertical gradients of the 
topological maps are then predicted to form vector fields. Through 
gradient tracking, pixels that converge to the same center point 
are assigned to the same mask [59]. With this representation 
approach, the Cellpose model outperformed STARDIST, Mask R-
CNN, and U-Net models at all IoU thresholds on the Cell Image 
Library dataset [59]. 

Another limitation of the above-mentioned segmentation 
approaches is that their training process is fully supervised, thus 
requiring considerable amount of expert annotations. To alleviate 
this requirement, Hollandi et al. proposed nucleAlzer, which uses 
image style transfer approaches to generate a set of representative 
image–label pairs. Applying this data augmentation paradigm 
to the Mask R-CNN-based model improved segmentation 
performance on several image datasets [60]. 

In addition to CNN-based models, recently, a novel deep learn-
ing architecture, CellViT, was proposed for nuclei segmentation 
in digitized tissue samples based on Vision Transformer (ViT) 
[61]. In contrast to CNN-based models, ViTs allow input images 
with arbitrary sizes and can capture long-range dependencies 
given the self-attention mechanism [62]. CellViT uses a U-Net-
shaped encoder–decoder network, which leverages pre-trained 
ViTs such as ViT256 [63] and Segment Anything Model [64] (SAM)  
as the encoder network and bridges the encoder and decoder 

components at multiple network depths via skip connections [61]. 
Although it demonstrated SOTA performance on a histological 
image dataset [61], it remains to be investigated whether this 
model can be generalized to the single-cell segmentation task for 
Cell Painting datasets. 

Representation learning for morphological 
profiling 
Feature representation is a critical step in morphological profiling. 
Morphological features can either be extracted through feature-
engineering approach or learned with deep neural network [65]. 
The former approach, however, requires manual efforts in fine-
tuning software parameters per experiment setup and relies on 
expert knowledge to decide what phenotypic features should be 
measured. In contrast, deep neural networks take an unbiased 
approach to learn features directly from raw pixels of images and 
encode meaningful representations [66]. Not only do these end-
to-end trained deep neural networks obviate the need for any 
segmentation steps but also the learned representation enables 
superior performance. Moreover, these networks exhibit improved 
transferability across different perturbation types (chemical ver-
sus genetic) and demonstrate faster pipeline processing speeds 
in classification tasks compared to models trained on engineered 
features [23, 67, 68] (Fig. 5). 

Supervised representation learning 
When extensive annotated training data is available, supervised 
representation learning become particularly effective [69, 70]. 
For example, Kraus et al. trained CNNs combined with multiple 
instances learning on annotated image dataset BBBC021 and 
yielded higher accuracy in treatment classification compared to
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Table 2. A selection of open-sourced image analysis tools 

Tools Website Function 

AGAVE https://www.allencell.org/pathtrace-rendering. 
html 

3D volume image viewer. 

AICSImageIO https://github.com/AllenCellModeling/ 
aicsimageio 

Python module for image reading, writing, and 
metadata conversion. 

Aydin https://github.com/royerlab/aydin Python module for image denoising. 
Bio-Formats https://www.openmicroscopy.org/bio-formats/ Software for reading and writing image data 

and metadata. 
BioImageIO https://bioimage.io/#/ Deep learning model repository for image 

segmentation 
Cellpose https://www.cellpose.org/ Deep learning model for image segmentation. 
CellProfiler https://cellprofiler.org/ Software for automated feature extraction on 

large-scale image dataset. 
CLIJ https://clij.github.io/ GPU-accelerated image processing library for 

Fiji/ImageJ and Icy. 
CytoMAP https://gitlab.com/gernerlab/cytomap Software for spatial analysis of segmented cell. 
Cytomine https://cytomine.com/ Web platform that allows for collaborative 

analysis of large biomedical image collections. 
Fiji/ImageJ https://fiji.sc/ Software for biological image analysis with 

many plugins. 
Icy https://icy.bioimageanalysis.org/ Software for biological image analysis. 
ilastik https://www.ilastik.org/ Interactive tool for image segmentation, 

classification, and analysis. 
MIB http://mib.helsinki.fi/ Software for multi-dimensional image 

processing, segmentation, and visualization. 
Napari https://napari.org/stable/index.html Interactive image viewer for multi-dimensional 

image in Python. 
Orbit https://www.orbit.bio/ Whole slide image analysis software for digital 

pathology. 
QuPath https://qupath.github.io/ Whole-slide image analysis software for digital 

pathology. 
Scikit-image https://scikit-image.org/ Python module for image processing. 
StarDist https://github.com/stardist/stardist Deep learning model for image segmentation 

as a Python module and ImageJ/Fiji plugin. 

the conventional feature-engineering approach [ 28, 36, 69, 71]. 
Similarly, Godinez et al. built a multi-scale convolutional neural 
network (M-CNN) based classifier, which was trained on the same 
annotated images [70]. This model outperformed other CNN mod-
els on classification tasks when benchmarked on several BBBC 
datasets. 

Transfer learning 
However, the availability of relevant annotated image data may 
not always be assured, and the collection of sufficient training 
data can be expensive and time-consuming. To that end, transfer 
learning of pre-trained deep neural networks becomes an alter-
native solution [72]. Pawlowski et al. for the first time proposed 
using ImageNet pretrained CNNs for morphological profiling fea-
ture representation, and this method achieved superior accuracy 
and processing speed compared to the feature engineering–based 
approach [73]. Similarly, Ando et al. proposed Deep Metric Net-
work, a model pre-trained on ∼100 million RGB consumer images, 
to generate embeddings for the BBBC021 image set [37]. Many 
other CNNs pre-trained on ImageNet have also been used to 
generate cell morphology embeddings [74, 75]. 

Weakly supervised representation learning 
In addition to transfer learning, weakly supervised learning (WSL) 
approach has been proposed to train deep neural networks for 
learning representations of Cell Painting images [38, 76, 77]. In 

this learning schema, treatment or compound labels are treated 
as “weak” or “noisy” labels for several reasons: (i) cells may exhibit 
heterogeneous responses even to the same treatments; (ii) some 
treatments are biologically inert; however, in the context of the 
supervised learning setting with treatments as labels, a deep 
neural network is nonetheless compelled to identify differences; 
and (iii) different cell morphology may result from technical 
artifacts. Therefore, it remains uncertain whether treatment 
labels accurately reflect cell morphology. To leverage the weak 
labels, an auxiliary (or pretext) training task is introduced to train 
a network to classify single cell images to their corresponding 
treatment labels (the weak labels). Feature embeddings learned 
from the auxiliary classification task will subsequently be used 
for the major task, which is to infer the high-level associations 
between treatments based on similarity. In the setting of drug 
discovery, this allows for MOA prediction through assigning 
query compounds to a library of annotated reference compounds 
[38, 76–78]. Given that these deep neural networks are exposed 
to the distributions of both true biological phenotypes and 
confounding factors in the pretext training task, disentangling 
phenotypes from confounding factors is crucial to the success 
of this training schema. To achieve this, besides batch correction 
efforts (summarized in section Challenges and Outlook), a few 
other strategies have proven to be helpful, such as RNN-based 
regularization [38], convex combinations of images to generate 
new samples [38], and combining image datasets with strong
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Figure 5. Representation learning strategies for cell morphology. At the pre-training stage, several learning strategies can be applied. (A) Supervised 
representation learning employs a deep neural network trained on microscopic image data with the label (treatment class). (B) Transfer learning utilizes 
a deep neural network initially trained on other types of annotated image data, such as natural images, to learn representations applicable to microscopic 
images. The pretext task is to predict the image class. (C) Weakly supervised representation learning considers the treatment labels as the weak/noisy 
labels. A deep neural network is trained on a pretext task to predict the treatment class of the microscopic images. The learned feature embeddings 
will be used to infer treatment class similarity. (D) Self-supervised representation learning utilizes the data intrinsic information for model pretraining, 
such as microscopic image reconstruction. These pretext tasks enhance the model’s ability to learn effective representations for major tasks. Following 
the pretraining stage, the fine-tuning stage transfers the learned knowledge to specific downstream tasks, such as classifying query perturbations to  
reference perturbations for MOA inference. 

perturbations for training [ 76]. Beyond representation learning 
with broadly used CNNs, WS-DINO from Cross-Zamirski et al. was 
proposed to learn representations using a knowledge distillation 
approach with ViT backbone. In this approach, global and local 
crops from different images under the same treatment are 
generated [77]. The teacher network is exposed solely to global 
crops, whereas the student network sees both, and the objective 
is to minimize the cross-entropy loss between student and 
teacher prediction output. Notably, in contrast to many other 
WSL approaches, WS-DINO does not require single cell cropping 
for pre-processing [77]. 

Unsupervised representation learning 
Finally, unsupervised learning approaches provide another 
avenue for feature representation learning by identifying 
underlying patterns in raw data or clustering similar data into 
groups. Examples of such exploitable unlabeled information 
include whether images belong to the same treatment [79], 
metadata information [80], and pseudo-labels assigned by K-
means clustering on embeddings [81]. Another strategy is to use 
generative models [82] such as GANs [46] or VAE framework 
[47, 48] to learn feature representations. They function by 
learning and generating new data distributions that are similar 
to the training data, thereby learning inherent structures and 

patterns within the dataset. In addition, the self-supervised 
learning (SSL) approach can use a pretext training task, mining 
the intrinsic information present in the data itself, to train a 
CNN capable of learning effective feature representation and 
use it for downstream analysis [83]. For the pretext task, Lu 
et al. proposed “paired cell inpainting,” whereby the model 
needs to identify protein localization from the “source” cell 
and predict the similar localization in the “target” cell [83]. 
The contrastive loss–based approach can also learn robust cell 
representations by training the model to bring positive example 
representations closer in the feature space and push the negative 
example representations further away from the positive ones [84]. 
Perakis et al. demonstrated that representations learned with the 
contrastive learning framework can be used in MOA classification 
task with the impressive performance on par with the transfer 
learning approach [37, 84]. Beyond the CNN-based model, the SSL 
method has also been employed to pre-train the ViT architecture, 
resulting in significant enhancements even in segmentation-free 
morphological profiling [23, 85]. In evaluations using subsets 
of the JUMP-CP Consortium data, the ViT architecture, trained 
by the recently introduced DINO SSL approach, outperformed 
both CellProfiler and transfer learning–based methods in several 
dimensions. Specifically, when trained on multisource data, this 
approach demonstrated the best performance in classification

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

5
/4

/b
b
a
e
2
8
4
/7

6
9
3
9
5
2
 b

y
 g

u
e
s
t o

n
 0

3
 O

c
to

b
e
r 2

0
2
4



Deep learning for phenotypic drug discovery | 9

Table 3. Model performance comparison by MOA classification accuracy on the BBBC021 dataset 

Approach Description NSCa NSCBb Dropc Reference 

Conventional feature 
engineering 

CellProfiler with Factor Analysis 94% 77% 17% Ljosa 2013 [36] 
CellProfiler with illumination 
correction 

90% 85% 5% Singh 2014 [71] 

Supervised learning CNN with Noisy-AND pooling 
function 

96% N/A N/A Kraus 2016 [69] 

Multiscale-CNN 93% N/A N/A Godinez 2017 [70] 
Transfer Learning ImageNet Pretrained Inception-v3 

with illumination correction and 
greyscale transformation 

91% N/A N/A Pawlowski 2016 [73] 

Pretrained Deep Metric Network 
with TVN postprocessing 

96% 95% 1% Ando 2017 [37] 

Weakly supervised 
learning 

Weakly supervised ResNet-18 
with Mixup regularization 

95% 89% 6% Caicedo 2018 [38] 

WS-DINO finetuned on BBBC021 
with compound as weak label 

98% 96% 2% Cross-Zamirski 2022 [77] 

Self-supervised learning CytoGAN (LSGAN) 68% N/A N/A Goldsborough 2017 [46] 
VAE+ 93% 82% 11% Lafarge 2019 [47] 
UMM discovery with NSCB as 
best epoch criterion 

95% 89% 6% Janssens 2021 [81] 

Contrastive learning with 
whitening postprocessing 

96% 95% 1% Perakis 2021 [84] 

aNSC (Not-Same-Compound matching accuracy). bNSCB (Not-Same-Compound-and-Batch matching accuracy). cDrop. 

tasks. The resultant image representations showcased excep-
tional adaptability, transitioning efficaciously from chemical 
to genetic perturbations. Moreover, the pipeline functioned at 
speed 50 times faster than CellProfiler-based feature engineering 
workflow [ 23]. It is noteworthy that, unlike CNNs where local 
features are consolidated into aggregated vectors, ViTs preserve 
a more refined resolution of inputs across all network layers, 
and this preservation facilitates the encoding of features that 
are biologically meaningful at the subcellular level [85]. Notably, 
ChannelViT has been proposed to make a simple modification to 
the ViT architecture by constructing patch tokens independently 
from each input channel and includes a learnable channel 
embedding. These modifications improve model reasoning 
across channels, such that the model can generalize efficiently 
even when limited input fluorescent channels are available. 
When trained with DINO algorithm, ChannelViT consistently 
outperforms standard ViT on input images with varying sets of 
fluorescent channels [86]. Altogether, these findings underscored 
the formidable efficacy and robustness of SSL approaches in 
morphological profiling. 

Most of the representation learning approaches described in 
this section have been benchmarked on the BBBC021 dataset with 
these evaluation metrics. Their performance is summarized in 
Table 3. From this comparison, WS-DINO, the weakly supervised 
method from Cross-Zamirski et al. [77] achieved the best perfor-
mance. The transfer learning method from Ando et al. [37] and  
the self-supervised contrastive learning method from Perakis et al. 
[84] also showcased strong performance in learning meaningful 
phenotypic embeddings. 

For deep learning approaches to achieve decent performance 
in morphological profile analysis, factors such as image dataset 
characteristics, model complexity, and computational resources 
must be carefully considered. Increasing the size and diversity of 
the training set, for example, by including image sets acquired 
from different laboratories, serves as an effective factor in 
enhancing performance, more so than simply increasing the 

model size [23]. In addition, applying appropriate image augmen-
tations significantly benefits the performance of SSL methods 
such as DINO. Particularly, applying color augmentation on each 
fluorescent channel independently, through random brightness 
changes and intensity shifts, has been shown to produce the most 
significant positive impact on model performance [23]. In terms 
of computational time and costs, DINO with Graphics Processing 
Unit (GPU) acceleration can process and analyze data significantly 
faster than feature-based approaches, and despite requiring GPUs, 
it incurs lower infrastructure costs for analyzing per cell plate [23]. 

Integrating morphological data in multimodal 
learning for drug discovery 
With the advances in biotechnology, a wealth of data from vari-
ous modalities can be generated and collected to facilitate drug 
discovery. Cheminformatics, for example, has made substantial 
contribution to drug discovery through analysis and representa-
tion of chemical structures and exploiting the similarity principle 
[87]. Chemical structure data of compounds are always readily 
available, and predicting compound bioactivity based on this 
data modality can be performed virtually. However, elucidating 
the intricate relationship between structure and biofunction is a 
challenging task [87]. On the other hand, ‘Omics’ profiles, such 
as genomics, transcriptomics, proteomics, and metabolomics, can 
characterize treatment outcomes from different aspects. How-
ever, assay cost and scalability emerge as major concerns for 
high-throughput studies [88]. Indeed, every modality of data uti-
lized in the drug discovery presents its unique set of advan-
tages and disadvantages. A detailed comparison is summarized 
in Table 4. Integrating these modalities is promising to maximize 
their potentials and mitigate the limitations, thereby providing 
a comprehensive understanding of treatment effects. Notably, 
recent research has shown that different data modalities, such 
as chemical structure, morphology, and gene expression, exhibit 
complementary strengths in predicting treatment effects [89]. 
Integrating morphological data with other data modalities using
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Table 4. Comparison of transcriptomic and morphological profiling data for drug discovery 

Attribute Morphological profiling Transcriptomic profiling 

Infrastructure requirements High-content imaging system. Some requires 
lab automation workflow. 

Next-generation sequencer. Some requires 
cell-sorting capability. 

Scalability Scalable for Cell Painting assay. Scalable for L1000 assay. 
Cost Low cost for conducting assays but high cost in 

system setup. 
In general, low cost for newer platforms. 

Data interpretability Not interpretable on gene expression level. Interpretable on gene expression level. 
Data processing framework Best practices for conventional 

feature-engineering approach have been made. 
Processes such as batch correction remain to 
be standardized. 

Mostly standardized. 

Reproducibility Can be experimental platform dependent. 
Variations between data producing sites is 
non-trivial. 

Technically reproducible. Biological 
reproducibility usually needs to be confirmed. 

machine learning– or deep learning–based approaches has now 
become an active field of research. 

The integration of structural models with cell morphology 
models has been demonstrated to improve biological assay out-
come prediction accuracy. Seal et al. proposed the similarity-based 
merger model, which combines the scaled predicted probabilities 
from individual models trained on Cell Painting images and chem-
ical structures, and the morphological and structural similarities 
between test and training compounds [90]. Specifically, the pre-
dictions from individual models and similarity values are used to 
fit a logistic regression model to predict the test compound activ-
ity. The authors demonstrated that the similarity-based merger 
model outperforms soft-voting ensemble, hierarchical model, or 
either of the individual models trained on unimodal data [90]. 

In addition, SSL techniques such as contrastive learning 
approaches have also been utilized to align multimodal data 
sources to enrich morphological profiling analysis in drug 
discovery [91–93]. For example, a method known as Contrastive 
Leave One Out boost for Molecule Encoders (CLOOME) has 
been proposed, aiming to learn aligned representations derived 
from the compound’s chemical structure and the corresponding 
cellular images obtained after treatment with the same com-
pound [91]. Its learning framework incorporates a microscopy 
image encoder, a molecule structure encoder, and uses the 
InfoLOOB objective [94] to learn the aligned embedding of 
treatment image and compound structure [91]. Similarly, Zheng 
et al. presented the Molecular graph and hIgh content imaGe 
Alignment (MIGA) framework with an image encoder and a graph 
neural network (GNN)–based structural encoder [93]. To align 
graph embeddings with image embeddings, three contrastive 
objectives are used: graph-image contrastive learning, masked 
graph modeling, and generative graph-image matching. The 
crossmodal representation learned with this framework improves 
performances on several downstream tasks [93]. This approach is 
extended further by Nguyen et al. to develop Molecule-Morphology 
Contrastive Pretraining (MoCoP) [92]. This framework uses a 
morphology encoder, a gated GNN (GGNN)–based molecule 
encoder, and the modified InfoNCE objective [95] to learn 
multimodal representation. The GGNN pretrained with MoCoP 
can be fine-tuned for downstream quantitative structure–activity 
relationship (QSAR) tasks [92]. Furthermore, active learning 
approach has been used to boost the performance of image-based 
and structure-based models and benefit the downstream QSAR 
tasks. The initial image-based and structure-based models assist 

selecting candidate compounds to be validated in toxicity assays. 
Once the wet-lab assays are completed, assay readouts will be 
collected as new annotations to continue refining both models. 
This iterative approach has been applied to detect compounds 
with mitochondrial toxicity [96]. 

In addition to chemical structure data, integrating transcrip-
tomic profile with cell morphology serves as another crossmodal 
combination. A prevalent assay for obtaining gene expression 
profile is the L1000 assay [97]. Both Cell Painting and L1000 
assays are scalable and provide complementary data. Compared 
to the transcriptomic profile from L1000, the morphological 
profile from Cell Painting is more reproducible yet susceptible 
to batch and well position effects. Conversely, L1000 captures 
more diverse features. Collectively, these two profiling modalities 
measure overlapping and assay-specific MOAs [98]. Besides the 
L1000 transcriptomic profile, another gene expression-based 
assay, Functional Signature Ontology (FUSION), can be fused 
with morphological profiling data to assign MOAs to complex 
natural product fractions in pair with metabolomic profiling 
data [99]. Comparative studies have shown that transcriptome-
based and morphology-based models offer comparable or better 
performance in MOA prediction, compared to the chemical 
structure-based model [100]. These findings provide rationale 
and potential advantages of integrating transcriptomic and 
morphological profiling for drug discovery. More discussions 
on the applications and concerns of integrating these two data 
modalities have been recently characterized [101, 102]. Datasets 
with matched transcriptomic and morphological profiling data 
are summarized in Table 5. 

Data fusion methods have been widely used to integrate mul-
timodal data (Fig. 6). In general, these methods can be cate-
gorized as early fusion and late fusion. Early fusion works by 
integrating the separate raw data modalities into a unified rep-
resentation before feeding into the deep learning model for fea-
ture extraction. In contrast, late fusion combines the predictions 
of individual models, each built on a specific data modality. 
Algorithms such as cooperative learning have been proposed 
to enhance the alignment between predictions [103]. To inte-
grate morphological, transcriptomic, and chemical structure pro-
files, Seal et al. compared both early and late fusion methods 
in detecting mitochondrial toxicity. They reported that the late 
fusion model can accurately determine the mitochondrial toxicity 
of compounds that have inconclusive toxicity results reported 
previously [104].

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

5
/4

/b
b
a
e
2
8
4
/7

6
9
3
9
5
2
 b

y
 g

u
e
s
t o

n
 0

3
 O

c
to

b
e
r 2

0
2
4



Deep learning for phenotypic drug discovery | 11

Table 5. Multimodal datasets with matched transcriptomic and morphological profiling data 

Cell type Transcriptomic 
profiling description 

Transcriptomic profile 
URL/Identifier 

Morphological profile 
URL/Identifier 

Reference 

A549 L1000 https://figshare.com/articles/ 
dataset/L1000_data_for_profiling_ 
comparison/13181966/2 

https://idr.github.io/idr0125-way-
cellpainting/ 

Way 2022 [98] 

A549 L1000 https://www.ncbi.nlm.nih.gov/geo/ 
query/acc.cgi?acc=GSE83744 

https://registry.opendata.aws/cell-
painting-image-collection/ 

Haghighi 2022 [102] 

A549 L1000 https://figshare.com/articles/ 
dataset/L1000_data_for_profiling_ 
comparison/13181966 

https://zenodo.org/ 
records/3928744#.YNu3WzZKheV 

Haghighi 2022 [102] 

U2OS L1000 https://www.ncbi.nlm.nih.gov/geo/ 
query/acc.cgi?acc=GSE92742 

https://idr.openmicroscopy.org/ 
webclient/?show=screen-1251 

Haghighi 2022 [102] 

U2OS L1000 https://www.ncbi.nlm.nih.gov/geo/ 
query/acc.cgi?acc=GSE92742 

http://www.cellimagelibrary.org/ 
pages/project_20269 

Haghighi 2022 [102] 

U2OS L1000 https://github.com/carpenterlab/ 
2017_rohban_elife/tree/master/ 
input/TA-OE-L1000-B1 

https://idr.openmicroscopy.org/ 
webclient/?show=screen-1751 

Haghighi 2022 [102] 

Hela FUSION Upon request Upon request Hight 2022 [99] 

To identify perturbation effects in distinct feature space of mor-
phological and transcriptomic data, Smith et al. proposed Pertur-
bational Metric Learning (PeML) for similarity metric learning for 
multimodal data representation [ 105]. This WSL approach aims 
to learn an embedding to maximize the similarity between repli-
cates, while non-replicates stay dissimilar. This learning method-
ology can be applied to both morphological and transcriptomic 
profiles and has demonstrated improved performance in MOA 
prediction [105]. 

Although the integration of morphological and transcriptomic 
(L1000) profiling offer benefits in MOA prediction, this orthogonal 
platform still faces challenges. These include limited resolution 
when identifying bioactive compounds that exhibit widespread 
cellular effects and reduced sensitivity when investigating 
bioactive compounds that do not induce distinct morphological 
changes [99]. To address these limitations, researchers have 
also investigated metabolomics-based approaches combining 
morphological characteristics to uncover changes in intracellular 
metabolism under various conditions [106]. Since metabolites in 
the cell can provide a comprehensive information of the cell state 
and define cellular phenotype in response to perturbations, com-
bining cell morphology and metabolomics analysis has proven 
beneficial. For example, untargeted Mass Spectrometry (MS)– 
based metabolomics can be integrated with morphological profil-
ing into a single platform to facilitate the quick identification and 
functional annotation of natural products in a high-throughput 
setting [99]. High-throughput image-based profiling pipeline 
can also be combined with multiparametric metabolic profiling 
approaches, such as oxygen consumption measurements and 
untargeted MS-based metabolomics to investigate the toxicity 
mechanism of the antiviral drug Tenofovir [107]. Furthermore, this 
combined approach can help optimizing microbial biosynthesis 
strategy, such as improving rapamycin production in Streptomyces 
hygroscopicus [108]. These studies underscore the significant 
advantages of integrating metabolomics and morphological, 
along with other data modalities in accelerating drug discovery 
process. With advances in MS techniques like MALDI-MS 
continuing to enhance throughput in metabolomic profiling 
[109], future studies will increasingly integrate these data with 
morphological profiling. Concurrently, development of these 
integrated platform calls for deep learning methods capable of 

facilitating multimodal learning using both morphological and 
metabolomics profiles. 

In summary, applying deep learning approaches to integrate 
morphological data with other modalities, such as chemical struc-
ture, transcriptomic, and metabolomic data, demonstrates grow-
ing importance in drug discovery efforts. Techniques like con-
trastive learning and various data fusion methods are emerging 
to align multimodal data. The continuous curating of such multi-
modal datasets will further contribute to this burgeoning field. 

Novel applications of morphological 
profiling in drug discovery 
Machine and deep learning approaches have significantly con-
tributed to morphological profiling, enriching various aspects of 
phenotypic drug discovery. Applications such as identifying small-
molecule MOAs, lead optimization, and predicting toxicology have 
been extensively reviewed elsewhere [110–113]. In the following 
sections, we will discuss the recent advances in several novel 
applications. 

Construct genotype–phenotype relationship and 
gene function network 
Mapping genotype to disease-relevant phenotype has been a 
critical question in genomics. To address this challenge, genome-
scale pooled CRISPR screens have been used to provide insights 
into gene functions. However, conventional screening readouts 
are relatively low in dimensionality (such as cell viability, 
proliferation, or expressions of biomarkers), thereby providing 
a constrained view of disease-relevant phenotype [114]. While 
high-content transcriptomic data from scRNA-seq can be 
measured from pooled CRISPR screens, the cost of achieving high-
content readout as such from a genome-wide CRISPR screen can 
be unfeasibly high [114]. To overcome this hurdle, image-based 
profiling can provide high-content morphological readout for 
CRISPR screens at the genome scale [33, 115, 116]. Notably, optical-
pooled CRISPR screens [117] can be combined with image-based 
profiling to create a genome-wide perturbation atlas and to con-
struct a gene function network based on the uncovered genotype– 
phenotype relationships [115, 118, 119]. For example, Ramezani 
et al. developed a Cell Painting–based optical-pooled cell profiling
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Figure 6. Combine morphological data with other data modalities. The image data obtained from morphological profiling assays can be combined with 
other modalities of profiling data to perform downstream tasks jointly. One strategy involves training individual models to extract representations 
from each data modality, such as image data, chemical structural data, and transcriptomic data. These individual representations contribute to a joint 
embedding, which is subsequently utilized for downstream analyses. 

approach (PERISCOPE) to allow pooled CRISPR screens to have 
high-dimensional cellular morphological profiles as endpoint 
readouts. This scalable pipeline has been applied to A549 cells and 
human cervical cancer cells (HeLa) to investigate gene knockout 
responses and identify gene clusters based on morphological 
similarity [ 118]. Sivanandan et al. introduced a similar technique 
termed Cell Painting Pooled Optical Screening in Human 
Cells (CellPaint-POSH). With this approach, a screening with a 
druggable genome library of 1640 genes has been conducted on 
A549 cells. Notably, this work applied the SSL DINO-ViT model 
(section Representation Learning for Morphological Profiling) for  
image representation and demonstrated decent performance in 
recovering the gene function network [119]. Such results further 
attest to the efficacy and robustness of deep learning approaches 
in generating informative image representations, subsequently 
leading to valuable biological insights. 

In the efforts of mapping genotype to phenotype, the 
observation of “proximity bias” has been reported, whereby the 
phenotypes of CRISPR knockouts demonstrate higher similarity 
to biologically unrelated genomically proximal genes on the same 
chromosome arm than the biologically related genes. The cause of 
this artifact arises from widespread chromosome arm truncation 
due to Cas9 nuclease activity and is not observed in shRNA or 
CRISPR interference (CRISPRi) perturbations. Performing arm-
based geometric normalization of features at gene level can 
reduce this bias without compromising the recovery of biological 
relationship [120]. 

Characterize perturbation impacts in dynamics 
An emerging advance of morphological profiling is toward live-
cell phenotyping, which can be performed by fluorescent or 
phase-contrast imaging, and by continuous imaging [27, 121] 
or dynamic imaging [48]. Several advantages accompany this 
approach. First, adding temporal variables to the morphological 
profile improves assay predictive power [27]. For example, in 
a live-cell imaging-based profiling assay, a library of 1008 The 
United States Food and Drug Administration (FDA)-approved 
drugs with manual annotations was profiled against 15 reporter 
cell lines that expressed fluorescent protein–tagged organelle 
or pathway markers. The morphological profile was generated 
from 24-h high-content imaging and can be used to accurately 
infer 41 of 83 testable MOAs [27]. Beyond this, live-cell imaging 
enables the characterization of cell-state transition dynamics, 
a critical feature in developmental biology [48, 121]. Human 
pluripotent stem cells (hPSCs) coexpressing histone H2B and 
cell cycle reporters can be profiled in a multi-day, high-content 
manner at single-cell resolution. With this profile, a deep learning 
model can be trained to provide highly sensitive predictions 
of spatiotemporal single-cell fate dynamics, as early or even 
earlier than cell state–specific reporters [121]. Moreover, live-
cell morphological features of human-induced pluripotent stem 
cells (hiPSCs) can even be used to predict differentiation marker 
gene expression [48]. This approach involves performing phase-
contrast imaging and bulk RNA-sequencing at each consecutive 
passage of hiPSCs. A VAE variant, VQ-VAE [122], learns the
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image feature vector in a self-supervised approach. A number of 
Support Vector Regression (SVR) models, each corresponding to 
a differentiation marker, were trained to predict differentiation 
marker gene expression from the image feature vector. Bulk 
RNA-sequencing readouts were used as labels for this supervised 
learning process. Altogether, this approach builds the relationship 
between transcriptional and live-cell morphological profiles [48]. 

Deep learning models such as DynaMorph [123] and  DEEP-
MAP [121] have been proposed to analyze morphological profiles 
in dynamics. To take DynaMorph for example, VQ-VAE was 
trained to learn a representation of cell shape through a self-
supervised image reconstruction auxiliary task. To ensure that 
cell shape changes smoothly between neighboring frames, a 
temporal matching loss was applied. The representation of cell 
shape regularized by the temporal continuity can distinguish 
morphodynamic states of microglia in response to pro- and anti-
inflammatory stimuli [123]. 

Guide de novo hit design 
Although the typical downstream applications of morphological 
profiling have been focused on clustering or classification tasks 
(section An Overview of Image-Based Profiling Data Analysis), 
Zapata et al. proposed to leverage morphological profiles to 
guide de novo molecular design with GANs [124]. Compared to 
using transcriptional profiling for compound de novo design [125], 
morphological profiling provides higher throughput with less cost. 
More importantly, more than 40% of the generated molecules have 
drug-like physicochemical properties, and more than half are 
expected to be synthesizable. This model can also be generalized 
to morphological profile with genetic perturbations such as gene 
overexpression. These findings indicate that this approach is able 
to effectively translate morphological similarity into chemical 
similarity with high efficiency [124]. 

Facilitate image-based profiling in advanced 
biological models 
Organoids are hetero-cellular biomimetic tissue models that have 
become a powerful experimental tool transforming basic sci-
ence and translational research [126]. While the traditional low-
throughput methods provide valuable biological insights, high-
throughput methods are needed to fully exploit the potential 
of organoids as ex vivo models. Modeling the development of 
disease with organoids that can recapitulate tissue structure, 
pathology, phenotypes, and differentiation has revolutionized the 
study of various human diseases including cancer [126, 127]. In 
a recent study, Silva et al. and Atanasova et al. demonstrated the 
effect of small molecules in mouse pancreatic acinar that causes 
inhibition or reversal of acinar-to-acinar ductal metaplasia (ADM) 
using high-content image-based screening in organoid culture 
[128, 129]. Advances in technology in organoid culture and the 
remarkable self-organizing properties reflecting key structural 
and functional attributes of organs such as brain, kidney, lung, 
gut, or similar even hold promise to predict drug response in a 
personalized fashion. 

While organoids are normally cultured in bulk in an extracel-
lular matrix, these bulk cultures can physically overlap, which 
makes it challenging to track the growth and properties of indi-
vidual organoids in high-throughput assays. Various microwell 
designs have been introduced to overcome specific challenges 
associated with image-based analysis but still struggle with large 
numbers of organoids [130, 131]. Using different organoid culture 
methods, phenotypic assays can be designed using features 
like whole organoid morphology, growth rates, or movement 

with simple brightfield imaging. Many of these methods rely on 
cellular aggregation to generate spheroids rather than growing 
organoids from single cells [132–134]. These can cause limitations 
in understanding the phenotypic heterogeneity, while most 
of the methods do not employ integrated analytical pipelines 
into the overall workflow [135–139] or the ability to selectively 
retrieve organoids for downstream investigations. Overcoming 
some of these issues, Forsyth and a team of researchers [126] 
have built an open-source microwell-based platform for high-
throughput quantification using image-based parameters. The 
method utilizes an organoid-optimized deep-learning model 
that can be integrated with existing culturing protocols and 
micro-well platforms to investigate phenotypic features across 
different tissues. Additionally, patient-derived tumor organoids 
have been developed into powerful organoid-based discovery 
platforms in recently demonstrated using CRISPR-Cas9 screening 
for patient-specific functional genomics [140]. Defined mutations 
are introduced to transform normal organoids to tumorigenic 
growth upon xenotransplantation, combining the exploratory 
power of CRISPR-Cas9 screening with 3D organoids [133, 136, 
141]. These advances demonstrate that organoids are powerful 
experimental models for morphological profiling to study the 
maturation and progression of various diseases. 

Enable natural product–based drug discovery 
Natural products (NPs) and their structural analogues have made 
a major contribution to pharmacotherapy, playing a key role 
in drug discovery [3, 4]. Recent years have witnessed that AI 
approaches have substantially advanced the efficient identifica-
tion of drug candidates from NPs, marking notable progress in 
drug discovery [5]. NP-based drug leads are typically identified 
by phenotypic assays [4]. To that end, an image-based profiling 
platform has been developed to study toxicity, structure–activity 
relationship (SAR), MOA, and potential off-target effects of NPs [6]. 
For example, a high-throughput screening on MIN6 β cells with 
6298 marine NP fractions has been performed to select for hit 
compounds with nontoxic and long-lasting effects in inhibiting 
glucose-stimulated insulin secretion [142]. In combination with 
MS analyses and NMR analyses, aureolic acid CMA2 has been 
identified as the major component of the top hit fraction derived 
from S. anulatus. Treating MIN6 cells with CMA2 leads to decreased 
nuclei counts determine by the 4′-6-Diamidino-2-phenylindole 
(DAPI) staining, attesting to its bioactivity [143]. In another study, 
botanical NP extracts have been screened for blockade of SARS-
CoV-2 infection in human 293TAT cells. A leading hit, the extracts 
of S. tetrandra, is further investigated on its antiviral MOA through 
phenotypic assays based on intracellular phospholipids forma-
tion [144]. In addition, high-dimensional phenotypic readouts also 
assist exploring NP MOA. To understand the MOA of the Polyketide 
Lagriamide B from the Burkholderiales strain, its morphological 
impact on U2OS cells is investigated through the Cell Painting 
assay followed by high-content imaging. At low treatment concen-
tration, Lagriamide B leads to disruption in actin polymerization 
and incomplete cytokinesis, and at high concentration, low cell 
count and decreased cell size are observed. These phenotypic 
effects indicate an MOA of Lagriamide B in actin polymerization 
disruption [145]. 

Specifically, integrating morphological with multi-omics 
profiling helps annotate the bioactive components of NPs, which 
addresses one of the most significant challenges in NP-based drug 
discovery [99]. For example, an integrated framework of morpho-
logical and transcriptomic profiles has been used to annotate 
marine bacteria extracts based on its untargeted metabolomics
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profile [99]. This orthogonal platform demonstrated a new 
paradigm to understand the association between NP components 
and treatment phenotypes and underscored the importance of 
integrating multimodal profiling data for drug discovery (section 
Integrating Morphological Data in Multimodal Learning for Drug 
Discovery). 

Challenges and outlook 
Morphological profiling is poised to have a profound and con-
tinuing impact on phenotypic drug discovery in the next decade 
and beyond. Deep learning approaches will continue to empower 
morphological profiling with enhanced accuracy and efficiency 
[110]. However, several challenges await resolution in order to fully 
leverage cellular images as a reliable and insightful resource, as 
will be discussed in this section. 

Although representation learning (section Representation 
Learning for Morphological Profiling) has become a robust 
approach to learn cellular features with less manual input than 
the conventional feature-engineering approach, it is susceptible 
to confounding factors such as batch effects. Batch effects are 
variations in data caused by the differences in the technical 
execution of each experimental batch. Such confounding factors 
introduce irrelevant sources of variation into data and can poten-
tially mislead biological conclusions [146]. Disentangling these 
confounding factors from phenotypes is a crucial step to recover 
a true biological signal. Significant progress has been made in 
this regard, with methods such as TVN [37], BEN [147], TEAMS 
[148], CDCL [80], and GRU-based regularization [38]. Furthermore, 
batch correction methods for transcriptomic profiles may be 
applicable. A recent study on subsets of JUMP-CP demonstrated 
that Harmony, a non-linear method developed for processing 
scRNA-seq data, consistently outperforms other transcriptomic 
profile batch correction strategies in balancing batch removal 
and biological variation conservation [149]. In addition to the 
aforementioned methods, adding a context token to include 
batch-specific information during image representation learning 
also demonstrated decent performance in out-of-distribution 
generalization and batch variation handling [150]. To evaluate 
and compare batch correction strategies, RxRx1, a Cell Painting 
image dataset of genetic perturbations with 51 experimental 
batches from four cell types, has been systematically designed 
[146]. With the development and sharing of the benchmarked 
dataset, future work will continue to enhance upon existing 
methods. Improved handling of the confounding factors will 
further facilitate data sharing and reproducibility between data 
generation sites, thereby bringing significant benefits to the 
broader scientific community. 

The success of phenotypic drug discovery heavily relies on 
disease relevance of the biological model. Applying relevant 
cell types and perturbations in morphological profiling assay is 
essential, but not sufficient to guarantee translatability [1]. Recent 
efforts have been made to apply increasingly multiplex biological 
model systems for image-based profiling, such as cocultured 2D 
cell lines [151] and 3D organoids [152, 153]. However, on the com-
putational side, most approaches have been built upon Cell Paint-
ing assay images from mono-cultured 2D cells. Therefore, many 
challenges remain in generalizing these approaches to a multiplex 
biological model. For example, how do current cell segmentation 
(section Deep Learning–Facilitated Cell Segmentation for Image 
Analysis) and representation learning methods (section 
Representation Learning for Morphological Profiling) perform  on  
3D images? How is the quantity and quality of 3D image dataset 

that can be utilized for effectively training for fine-tuning 
deep learning models? How generalizable are the representa-
tion learning frameworks (section Representation Learning for 
Morphological Profiling) to cellular images consisting of multiple 
cell types, each demonstrating different morphology? How to inte-
grate morphological data and other modalities of data (section 
Integrating Morphological Data in Multimodal Learning for Drug 
Discovery) from a multiplexed cell system to obtain cell–cell 
interaction information? Overcoming these hurdles will bring 
morphological profiling to the next level of clinical translatability. 

In terms of integrating morphological profile with omics data 
(section Integrating Morphological Data in Multimodal Learning 
for Drug Discovery), compared to bulk transcriptomic read-
outs, single-cell transcriptomics, spatial transcriptomics and 
translatomics offer a wealth of gene expression information at 
individual cellular and subcellular levels [154–157]. Advances 
such as sci-RNA-seq3 have enabled single-cell transcriptional 
profiling in high throughput [158]. Given this technical progress, 
future work may establish an orthogonal profiling platform 
to combine morphological and single-cell profiling, thereby 
linking molecular phenotype to cellular phenotype at single-
cell resolution. In addition, integrating Perturb-seq with image-
based profiling will become a promising future direction to 
characterize the impact of genetic perturbations with single-
cell transcriptomics and morphological readouts [159]. High-
quality datasets of such should be established to encourage the 
development and evaluation of data integration approaches. 

Last but not least, despite the impressive inferential capabil-
ities of deep learning approaches, drawbacks remain that the 
explainability of these ‘black box’ models is unsatisfying [160]. 
In drug discovery especially, model interpretability is important 
to ensure that the biological conclusions are valid. To mitigate 
this, several efforts have been initiated to improve model inter-
pretation in morphological profiling. For example, Chow et al. 
trained VAEs to interpret latent space feature representations in 
Cell Painting assay [161]. In the broader field of computer vision, 
techniques such as class activation mapping [162, 163] have been 
proposed to provide visual explanations for deep neural networks. 
Future work should continue to develop or advance techniques as 
such to morphological profiling to enhance model interpretability 
[162]. 

Concluding remarks 
Morphological profiling represents a powerful, high-throughput, 
data-intensive, and cost-efficient technique for phenotypic drug 
discovery. It offers an unbiased and high-dimensional image read-
out of cellular phenotype in response to various perturbations, 
thereby providing a comprehensive view on compound bioactivity. 
Emerging techniques from computational biology and deep learn-
ing communities have made significant progress in enhancing 
the analytical pipeline from representation to prediction. While 
challenges remain in this fast-evolving field, future work will con-
tinue to coordinate multidisciplinary efforts in leveraging visual 
phenotypes to empower drug discovery. 

Key Points 
• Image-based profiling is a valuable tool in phenotypic 

drug discovery and facilitates understanding cell biology 
in response to different perturbations. 

• Deep learning approaches have contributed signifi-
cantly to morphological profiling data analysis through 
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segmenting cellular images, learning robust image rep-
resentations, and integrating morphological data with 
other data modalities. 

• These advancements enable many novel downstream 
applications, such as constructing gene function net-
work to map genotype–phenotype relationship, char-
acterizing perturbation impacts in dynamics, guiding 
de novo hit design, identifying compound MOAs in 3D 
organoid model, and enabling natural product-based 
drug discovery. 

• Innovative solutions are needed in several challenging 
aspects, such as handling batch effects, analyzing mul-
tiplex biological model, integrating with spatial-omics, 
and improving model interpretability. 
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