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Abstract

Morphological profiling is a valuable tool in phenotypic drug discovery. The advent of high-throughput automated imaging has enabled
the capturing of a wide range of morphological features of cells or organisms in response to perturbations at the single-cell resolution.
Concurrently, significant advances in machine learning and deep learning, especially in computer vision, have led to substantial
improvements in analyzing large-scale high-content images at high throughput. These efforts have facilitated understanding of
compound mechanism of action, drug repurposing, characterization of cell morphodynamics under perturbation, and ultimately
contributing to the development of novel therapeutics. In this review, we provide a comprehensive overview of the recent advances in the
field of morphological profiling. We summarize the image profiling analysis workflow, survey a broad spectrum of analysis strategies
encompassing feature engineering- and deep learning-based approaches, and introduce publicly available benchmark datasets. We
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place a particular emphasis on the application of deep learning in this pipeline, covering cell segmentation, image representation
learning, and multimodal learning. Additionally, we illuminate the application of morphological profiling in phenotypic drug discovery

and highlight potential challenges and opportunities in this field.

Keywords: artificial intelligence; deep learning; morphological profiling; drug discovery

Introduction

Phenotypic drug discovery (PDD) plays a crucial role in drug
discovery. In contrast to target-based drug discovery (TDD), where
compounds are designed to interact with known target molecules,
PDD takes a target-agnostic approach and focuses on phenotypic
effects of compound treatment in disease-relevant biological sys-
tems [1, 2] (Fig. 1A and B). This strategy uses reference compounds
with treatment class annotations to uncover previously unknown
mechanisms of action (MOAs) of the test compounds. To date,
PDD has made a significant contribution to the development
of first-in-class drugs and the discovery of novel therapeutic
opportunities [1, 2]. For example, PDD is the primary approach in
natural products discovery and the basis for identification of new
targets and/or MOAs. Natural products are all bioactive, and the
most effective way to multiplex and assign function is through
phenotypic screening, particularly by analyzing related biased
and unbiased nuances from high-content imaging [3-6].

Automated microscopy and image analysis have enabled
high-throughput image-based assays for PDD [1, 7]. The two
approaches, namely, high-content screening (HCS) and morpho-
logical profiling, are both based on imaging experiments at a
large scale, yet distinct in strategy (Fig. 1C and D). In HCS, feature
measurements are limited to specific phenotypes related to
perturbations. In contrast, morphological profiling (also known
as image-based profiling or cytological profiling) is an unbiased
approach to capture high-dimensional image data consisting
of hundreds to thousands of cellular features. Conventionally,
bioimage informatics tools can measure these features that
span a range of morphological properties to generate phenotypic
signatures for clustering and predicting perturbation bioactivity
similarity [7, 8]. To this end, this approach not only provides a
comprehensive morphological profile in an unbiased manner but
also allows for detecting subtle or novel phenotypes.

As a dominant technique in artificial intelligence (AI), deep
learning uses deep neural networks to learn representations from
raw data format in a data-driven manner, often without the
needs of feature engineering [9]. In the context of drug discovery,
deep learning enables efficient development of novel therapeutics
through various applications, such as target identification [10,
11], protein structure prediction [12, 13], drug-target interaction
prediction [14-16], de novo drug design [17, 18], molecular prop-
erty prediction [19, 20], and biological image analysis for PDD
[21, 22]. In recent years, computer vision has led to a profound
transformation of image-based profiling analysis in efficiency
and performance, thereby expediting drug discovery and reducing
computational cost [22, 23].

In this review, we aim to provide a comprehensive overview of
the extant computational approaches employed in morphological
profiling with a particular emphasis on the deep learning applica-
tions. We primarily focus on the analytical pipeline of Cell Painting
high-content image data given its wide application in academic
research and pharmaceutical industry. We start with an introduc-
tion of Cell Painting image analysis workflow with conventional
feature-engineering approach (also known as ‘handcrafted’
representation). For the major focus, we provide a thorough

summary of recently proposed deep learning approaches in
advancing this analytical pipeline, including microscopic image
cell segmentation, representation learning from high-content
fluorescent images, and multimodal learning to integrate
chemical structure and omics data for MOA prediction. With
concrete examples in cutting-edge applications, we conclude with
our perspectives on future directions in advancing morphological
profiling with deep learning solutions (Fig. 2).

Deep learning in morphological profiling
analytical pipeline
Cell Painting and benchmark datasets
A state-of-the-art assay for morphological profiling is known as
Cell Painting [24]. The canonical protocol on adherent monolayer
cells uses six fluorescent dyes to characterize eight cellular com-
ponents or organelles and images the fixed and stained cells
in five channels on a high-throughput microscope [25]. Recent
optimization efforts have further improved the assay’s capability
in phenotype detection [26]. Whereas canonical Cell Painting
captures cellular morphology in snapshots, technical advances
now enable live-cell imaging, such as using reporter cell lines
that carry organelle or pathway marker with fluorescent tag. This
allows for capturing morphological profiles in dynamics [27].
Over the past decade, morphological profiling efforts from
academia and pharmaceutical industry have produced several
publicly available Cell Painting datasets. These include (i) the
Broad Bioimage Benchmark Collection (BBBC) with compound
and genetic perturbations [28-30], (ii) The Image Data Resource
(IDR) with both HCS images and time-lapse images [31], (iii) the
RxRx datasets released from Recursion with compounds, genetic
and viral transduction perturbations, and (iv) the CytoImageNet
dataset curated from 40 openly available and weakly labeled
microscopy images [32]. Notably, the Joint Undertaking in Morpho-
logical Profiling Cell Painting (JUMP-CP) Consortium has recently
been established as the largest public reference Cell Painting
dataset [33], including images from more than 116 000 chemical
perturbations and over 15 000 genetic perturbations on human
osteosarcoma cells (U20S), which were systematically acquired
from 12 data-generating centers [33]. A subset of the JUMP-CP
Consortium, cpg0016-jump, has been used in a recent bench-
mark study to evaluate self-supervised learning (SSL) methods
and feature-based approaches [23]. This dataset includes single-
source (data generated from a single laboratory) training set
of 391 815 Cell Painting images from 35 892 compound treat-
ments, and multisource (data generated from multiple labora-
tories) training set of 564 272 images from 10 057 compounds.
The evaluation set includes 33 962 single-source images and
75 545 multisource images [23]. The curation of this dataset
not only allows for assessing model performance using biolog-
ical labels but also enables evaluation of batch effect handling
[23]. An extension to this dataset, labeled CPJUMP1, has been
curated to include pairs of chemical and genetic perturbations
that both target the same genes in the settings of U20S and
human lung carcinoma epithelial cells (A549) [34]. This dataset
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Figure 1. Early-stage drug discovery approaches. (A) and (B) illustrate two primary approaches in drug discovery: target-based drug discovery (TDD) and
phenotypic drug discovery (PDD). (A) TDD starts with a known drug target, and a target-based assay is established to evaluate the effect of compound-
targetinteraction. (B) In contrast, PDD employs a target-agnostic strategy, screening compounds to determine whether a phenotype of interest is induced.
Due to its unbiased nature, a target identification step is required. Within the context of PDD, (C) high-content screening (HCS) and (D) morphological
profiling are two commonly used approaches. The major difference is (C) HCS uses a limited number of perturbation-specific phenotypes as assay
readout, whereas (D) morphological profiling obtains cellular feature representation with an unbiased approach.

consists of approximately 3 million Cell Painting images along
with the feature-based profiles from 75 million single cells are
well-level aggregated profiles. This unique dataset of paired anno-
tated chemical and genetic perturbations allow for investigating
gene—-compound relationship [34]. These public reference datasets
have been broadly used to train machine learning and deep
learning models for compound bioactivity prediction and image
representation learning for feature embedding. Details of these
datasets are summarized in Table 1.

Among the above-mentioned datasets, the BBBC021 dataset
[35] is the most commonly used benchmark to evaluate the
performance of deep learning methods. This dataset, publicly
available from the Broad Bioimage Benchmark Collection
[28], includes Cell Painting images of human MCF-7 breast
cancer cells treated with 113 compounds at eight concentra-
tions. Most of the representation learning methods (section
Representation Learning for Morphological Profiling) were com-
pared on a subset of 103 treatments from 38 compounds. These
compounds have been manually annotated with one of 12 MOAs
as the ground truth. The effectiveness of different MOA prediction
methods is assessed using the following evaluation metrics:

e NSC (Not-Same-Compound matching accuracy): In the NSC
setting, all profiles of a test compound are deliberately
excluded during the training phase and the model is tasked
to predict the excluded profiles’ treatment. After generating

the representation of the excluded profile, the treatment
prediction is typically conducted using a 1-Nearest-Neighbor
(1-NN) classifier, which assigns the test compound to its
nearest neighbor within the feature space of the training
compounds. This metric is to evaluate the model’s capacity to
adequately generalize and correctly infer a new compound’s
treatment class when its MOA is unknown [36].

¢ NSCB (Not-Same-Compound-and-Batch matching accuracy):
NSCB serves as a more stringent metric compared to NSC. In
addition to the constraints in NSC, profiles of the same exper-
imental batch are also excluded during training. This metric
enables a more robust evaluation of model’s performance
and generalizability across different experiment conditions
and batch settings. It can reflect the impact of batch effects
and other confounding factors [37].

e Drop: Drop is calculated by subtracting NSCB from NSC.
Ideally, performance drop should not be observed. The larger
this metric value is, the more substantial the batch effect is
[38].

An overview of image-based profiling data
analysis

An accurate, efficient, and generalizable imaging data analysis
workflow is critical for morphological profiling. Established meth-
ods and best practices have been comprehensively documented
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Figure 2. Schematic workflow of morphological profiling. After cells are perturbed and stained, fluorescent images are taken to capture cellular
morphology. Single cells are detected and segmented. At the single-cell level, morphological features can be achieved with image analysis software
to extract pre-defined features. Alternatively, feature vectors can be obtained through representation learning with a deep neural network. Features
from single cells are subsequently aggregated into a treatment-level morphological profile. Certain deep learning models allow end-to-end learning,
eliminating the need for cell segmentation. The resulting morphological profile is then applied to downstream tasks such as classification for MOA
prediction and clustering for treatment association inference (left panel). Additionally, other profile modalities, such as chemical structure and
transcriptomic and metabolomic profiles, can be integrated with the morphological profile to enhance downstream analysis (middle panel). Altogether,
these efforts enable many novel downstream applications, such as characterizing perturbation impacts in dynamics, constructing gene function network
to map genotype-phenotype relationship, identifying compound MOAs in 3D organoid model, and guiding de novo hit design (right panel).

Table 1. Publicly available cellular microscopic image datasets for model training and evaluation

Data set Description URL Reference
The Broad Bioimage Benchmark A collection of image datasets from  https://bbbc.broadinstitute.org/ Ljosa 2013 [28]
Collection (BBBC) image-based profiling and other image_sets
assays annotated with different
types of ground truth.
Recursion datasets (RxRx) Image datasets with different https://www.rxrx.ai/ Sypetkowski 2023 [146]
perturbation modalities such as
genetic, small-molecule and viral
infection perturbations.
Image Data Resource (IDR) A public repository of datasets https://idr.openmicroscopy.org/ Williams 2017 [31]
from image-based assays. cell/
JUMP Cell Painting datasets A multi-center image dataset of https://registry.opendata.aws/ Chandrasekaran 2023 [33]
(JUMP-CP) U20S cells under genetic and cellpainting-gallery/
compound perturbations.
CPJUMP1 An image dataset of matched https://broad.io/neurips-cpjumpl Chandrasekaran 2022 [34]

chemical and genetic
perturbations targeting the same
genes in U20S and A549 cells.
CytolmageNet A dataset curated from the above
publicly available microscopic
images with weak labels for
bioimage transfer learning.

https://www.kaggle.com/datasets/ Hua 2021 [32]
stanleyhua/cytoimagenet

[39-43]. However, the past few years have witnessed significant
strides in the application of deep learning approaches (Fig. 3).
In this section, we present an overview of the critical stages in
morphological profiling data analysis, with particular emphasis
on deep learning advances (Fig. 4).

Stage 1: Feature representation

Measuring variations in cell morphology upon perturbation
relies on generating effective representations for cellular images.
Conventionally, this task is implemented by feature engineering
approaches. Bioimaging software like CellProfiler is commonly
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Figure 3. Recent publication trend of morphological profiling with deep
learning. Pubmed trend demonstrates a growing number of indexed
publications on morphological profiling with deep learning, including the
keywords ‘deep learning’ with ‘morphological profiling’ or ‘image-based
profiling.” This trend is analyzed from 2014 to 2022.

used to extract predefined features such as cell shape, size,
and texture from fluorescent microscopy images [44]. In
addition to CellProfiler, we have also summarized other open-
source image analysis software and tools in Table 2. While this
approach provides biologically insightful results, it requires image
preprocessing and manual adjustment of parameters for every
new experiment setup [39, 41]. Also, single-cell segmentation is
typically required, which will be described in detail in section
Deep Learning-Facilitated Cell Segmentation for Image Analysis.
Alternatively, deep neural networks such as pre-trained
convolutional neural networks (CNNs) can learn representation
directly from a full-field microscopy image without the need for
single-cell segmentation [37, 45]. Further, generative adversarial
network (GAN)-based models and variational autoencoder (VAE)
framework have been proposed to improve the interpreta-
tion of cellular structural variations that drive morphological
differences [46-48] and to predict morphological responses
to perturbations [49]. These advances from deep learning-
based analysis approaches will be further discussed in section
Representation Learning for Morphological Profiling.

Stage 2: Morphological profile generation

Once features are extracted from single cells or field images, these
measurements will be aggregated into a single feature vector
for well-level (also known as treatment-level or population-level)
representation. The morphological profile generated from this
stage will enable downstream well-level analysis [39].

Stage 3: MOA annotation

With the aggregated treatment-level morphological profiles, a
common machine learning task is to predict MOA or toxicity of
query perturbagens based on the known morphological profiles
of the reference library [40]. This is most commonly achieved
by building a feature-based machine learning model such as

Deep learning for phenotypic drug discovery | 5

nearest neighbor classifier, random forests, or Bayesian matrix
factorization [39, 40, 50] on top of the extracted morphologi-
cal profiles. With these supervised machine learning algorithms,
query perturbagens can be classified into predefined, annotated
classes [40]. The aggregated morphological profiles can also be
used to infer treatment-level associations. This task is typically
accomplished by employing hierarchical unsupervised clustering
algorithms, predicted on the similarity of morphological profiles
[40]. A phenotypic similarity matrix of all pair-wise similarities
between morphological profiles is computed for similarity-based
clustering [40].

Notably, deep learning techniques facilitate an end-to-end
learning schema, integrating all the aforementioned stages
into a singular, unified process. Within this framework, the
phenotypic classification and clustering tasks can be directly
accomplished using raw high-content images, circumvent-
ing the explicitly image feature representation, morpholog-
ical profile generation, and other intermediate steps. This
end-to-end learning schema will be elaborated in section
Representation Learning for Morphological Profiling.

Deep learning—facilitated cell segmentation for
image analysis

Cellular object detection and segmentation is a critical yet chal-
lenging step of microscopicimage analysis. Whereas classical seg-
mentation algorithms such as thresholding and watershed have
been commonly used in bioimage analysis software [51], recent
advances of deep learning in computer vision have generated
various image segmentation models with substantially improved
performance [52]. In the 2018 Data Science Bowl, a global com-
petition focusing on 2D nucleus segmentation from high-content
images, deep learning approaches such as U-Net, Feature Pyramid
Network (FPN), and Mask-Regional Convolutional Neural Network
(Mask-RCNN) dominated the leaderboard, achieving state-of-the-
art performance [51]. We refer the interested readers to the report
of the 2018 Data Science Bowl results for details in method
and performance [51]. Each of these approaches demonstrates
strengths and drawbacks. Initially designed for segmenting elec-
tron microscopy images, the U-Net model uses skip connections to
append feature maps of the whole input image from the encoder
to the decoder. This preserves global location information and
allows for accurate reconstruction by the decoder. It can provide
accurate segmentation maps with limited training data [53]. Like
U-Net, FPN also leverages lateral connections. However, instead of
copying and concatenating feature maps from encoder to decoder,
1 x 1 convolution is applied to allow for flexible processing [54].
In contrast to fully convolutional networks (FCNs) that use the
full context of the input image, Mask R-CNN works on selected
Regions of Interest (ROIs) of an input image to obtain predicted
class, bounding box, and segmentation mask simultaneously. This
method performs well on instance segmentation tasks to handle
multiple objects with complex shapes, albeit more training exam-
ples are needed compared to U-Net [55].

A common limitation of those approaches is that their perfor-
mances suffer when nuclei are packed densely. To address this
challenge, STARDIST was developed to predict a flexible shape
representation—a star-convex polygon instead of an axis-aligned
bounding box is predicted for each pixel. When benchmarked on
the 2018 data science bowl dataset, STARDIST outperformed U-
Net or Mask R-CNN based models for intersection over union
(IoU) threshold r < 0.75 [56]. This method has also been suc-
cessfully extended for 3D nuclei segmentation (STARDIST-3D)
[57]. Fully convolutional regression networks (FCRNSs) represent
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Figure 4. An overview of key methods and the state-of-the-art approaches in morphological profiling data analysis. Cellular images from morphological
profiling assays can be analyzed using two approaches: stage-wise feature-based (top panel) and end-to-end deep learning-based (bottom panel). In the
feature-based approach, image data are analyzed in four sequential stages: Stage 1 involves image preprocessing, single-cell segmentation, and feature
extraction, Stage 2 aggregates cell-level features into well-level or treatment level profiles, and Stage 3 classifies each profile into the corresponding
treatment class and clusters each profile based on phenotypic similarity. In contrast, deep learning-based approaches perform analysis in an end-to-end
fashion with different learning paradigms. We illustrate these state-of-the-art approaches on a timeline to highlight their development.

another solution to this challenge, regressing a cell spatial density
map of the image. FCRNs demonstrated superior performance
at microscopic cell counting when traditional single-cell seg-
mentation fails due to cell clumping or overlap [58]. Another
object shape representation approach is proposed by the Cellpose
segmentation model. This approach generates topological maps
through simulated diffusion and uses human-annotated masks
as ground truth. The horizontal and vertical gradients of the
topological maps are then predicted to form vector fields. Through
gradient tracking, pixels that converge to the same center point
are assigned to the same mask [59]. With this representation
approach, the Cellpose model outperformed STARDIST, Mask R-
CNN, and U-Net models at all IoU thresholds on the Cell Image
Library dataset [59].

Another limitation of the above-mentioned segmentation
approaches is that their training process is fully supervised, thus
requiring considerable amount of expert annotations. To alleviate
this requirement, Hollandi et al. proposed nucleAlzer, which uses
image style transfer approaches to generate a set of representative
image-label pairs. Applying this data augmentation paradigm
to the Mask R-CNN-based model improved segmentation
performance on several image datasets [60].

In addition to CNN-based models, recently, a novel deep learn-
ing architecture, CellViT, was proposed for nuclei segmentation
in digitized tissue samples based on Vision Transformer (ViT)
[61]. In contrast to CNN-based models, ViTs allow input images
with arbitrary sizes and can capture long-range dependencies
given the self-attention mechanism [62]. CellViT uses a U-Net-
shaped encoder-decoder network, which leverages pre-trained
ViTs such as ViTyse [63] and Segment Anything Model [64] (SAM)
as the encoder network and bridges the encoder and decoder

components at multiple network depths via skip connections [61].
Although it demonstrated SOTA performance on a histological
image dataset [61], it remains to be investigated whether this
model can be generalized to the single-cell segmentation task for
Cell Painting datasets.

Representation learning for morphological
profiling

Feature representationis a critical step in morphological profiling.
Morphological features can either be extracted through feature-
engineering approach or learned with deep neural network [65].
The former approach, however, requires manual efforts in fine-
tuning software parameters per experiment setup and relies on
expert knowledge to decide what phenotypic features should be
measured. In contrast, deep neural networks take an unbiased
approach to learn features directly from raw pixels of images and
encode meaningful representations [66]. Not only do these end-
to-end trained deep neural networks obviate the need for any
segmentation steps but also the learned representation enables
superior performance. Moreover, these networks exhibit improved
transferability across different perturbation types (chemical ver-
sus genetic) and demonstrate faster pipeline processing speeds
in classification tasks compared to models trained on engineered
features [23, 67, 68] (Fig. 5).

Supervised representation learning

When extensive annotated training data is available, supervised
representation learning become particularly effective [69, 70].
For example, Kraus et al. trained CNNs combined with multiple
instances learning on annotated image dataset BBBC021 and
yielded higher accuracy in treatment classification compared to
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Table 2. A selection of open-sourced image analysis tools

Tools Website Function

AGAVE https://www.allencell.org/pathtrace-rendering. 3D volume image viewer.
html

AICSImagelO https://github.com/AllenCellModeling/ Python module for image reading, writing, and
aicsimageio metadata conversion.

Aydin https://github.com/royerlab/aydin Python module for image denoising.

Bio-Formats

https://www.openmicroscopy.org/bio-formats/

BiolmagelO https://bioimage.io/#/

Cellpose https://www.cellpose.org/
CellProfiler https://cellprofiler.org/

CLY https://clij.github.io/

CytoMAP https://gitlab.com/gernerlab/cytomap
Cytomine https://cytomine.com/

Fiji/ImageJ https://fiji.sc/

Icy https://icy.bioimageanalysis.org/
ilastik https://www.ilastik.org/

MIB http://mib.helsinki.fi/

Napari https://napari.org/stable/index.html
Orbit https://www.orbit.bio/

QuPath https://qupath.github.io/

Scikit-image
StarDist

https://scikit-image.org/
https://github.com/stardist/stardist

Software for reading and writing image data
and metadata.

Deep learning model repository for image
segmentation

Deep learning model for image segmentation.
Software for automated feature extraction on
large-scale image dataset.

GPU-accelerated image processing library for
Fiji/ImageJ and Icy.

Software for spatial analysis of segmented cell.
Web platform that allows for collaborative
analysis of large biomedical image collections.
Software for biological image analysis with
many plugins.

Software for biological image analysis.
Interactive tool for image segmentation,
classification, and analysis.

Software for multi-dimensional image
processing, segmentation, and visualization.
Interactive image viewer for multi-dimensional
image in Python.

Whole slide image analysis software for digital
pathology.

Whole-slide image analysis software for digital
pathology.

Python module for image processing.

Deep learning model for image segmentation

as a Python module and Image]J/Fiji plugin.

the conventional feature-engineering approach [28, 36, 69, 71].
Similarly, Godinez et al. built a multi-scale convolutional neural
network (M-CNN) based classifier, which was trained on the same
annotated images [70]. This model outperformed other CNN mod-
els on classification tasks when benchmarked on several BBBC
datasets.

Transfer learning

However, the availability of relevant annotated image data may
not always be assured, and the collection of sufficient training
data can be expensive and time-consuming. To that end, transfer
learning of pre-trained deep neural networks becomes an alter-
native solution [72]. Pawlowski et al. for the first time proposed
using ImageNet pretrained CNNs for morphological profiling fea-
ture representation, and this method achieved superior accuracy
and processing speed compared to the feature engineering-based
approach [73]. Similarly, Ando et al. proposed Deep Metric Net-
work, a model pre-trained on ~100 million RGB consumer images,
to generate embeddings for the BBBC021 image set [37]. Many
other CNNs pre-trained on ImageNet have also been used to
generate cell morphology embeddings [74, 75].

Weakly supervised representation learning

In addition to transfer learning, weakly supervised learning (WSL)
approach has been proposed to train deep neural networks for
learning representations of Cell Painting images [38, 76, 77]. In

this learning schema, treatment or compound labels are treated
as “weak” or “noisy” labels for several reasons: (i) cells may exhibit
heterogeneous responses even to the same treatments; (ii) some
treatments are biologically inert; however, in the context of the
supervised learning setting with treatments as labels, a deep
neural network is nonetheless compelled to identify differences;
and (iii) different cell morphology may result from technical
artifacts. Therefore, it remains uncertain whether treatment
labels accurately reflect cell morphology. To leverage the weak
labels, an auxiliary (or pretext) training task is introduced to train
a network to classify single cell images to their corresponding
treatment labels (the weak labels). Feature embeddings learned
from the auxiliary classification task will subsequently be used
for the major task, which is to infer the high-level associations
between treatments based on similarity. In the setting of drug
discovery, this allows for MOA prediction through assigning
query compounds to a library of annotated reference compounds
[38, 76-78]. Given that these deep neural networks are exposed
to the distributions of both true biological phenotypes and
confounding factors in the pretext training task, disentangling
phenotypes from confounding factors is crucial to the success
of this training schema. To achieve this, besides batch correction
efforts (summarized in section Challenges and Outlook), a few
other strategies have proven to be helpful, such as RNN-based
regularization [38], convex combinations of images to generate
new samples [38], and combining image datasets with strong
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Figure 5. Representation learning strategies for cell morphology. At the pre-training stage, several learning strategies can be applied. (A) Supervised
representation learning employs a deep neural network trained on microscopic image data with the label (treatment class). (B) Transfer learning utilizes
a deep neural network initially trained on other types of annotated image data, such as natural images, to learn representations applicable to microscopic
images. The pretext task is to predict the image class. (C) Weakly supervised representation learning considers the treatment labels as the weak/noisy
labels. A deep neural network is trained on a pretext task to predict the treatment class of the microscopic images. The learned feature embeddings
will be used to infer treatment class similarity. (D) Self-supervised representation learning utilizes the data intrinsic information for model pretraining,
such as microscopic image reconstruction. These pretext tasks enhance the model’s ability to learn effective representations for major tasks. Following
the pretraining stage, the fine-tuning stage transfers the learned knowledge to specific downstream tasks, such as classifying query perturbations to

reference perturbations for MOA inference.

perturbations for training [76]. Beyond representation learning
with broadly used CNNs, WS-DINO from Cross-Zamirski et al. was
proposed to learn representations using a knowledge distillation
approach with ViT backbone. In this approach, global and local
crops from different images under the same treatment are
generated [77]. The teacher network is exposed solely to global
crops, whereas the student network sees both, and the objective
is to minimize the cross-entropy loss between student and
teacher prediction output. Notably, in contrast to many other
WSL approaches, WS-DINO does not require single cell cropping
for pre-processing [77].

Unsupervised representation learning

Finally, unsupervised learning approaches provide another
avenue for feature representation learning by identifying
underlying patterns in raw data or clustering similar data into
groups. Examples of such exploitable unlabeled information
include whether images belong to the same treatment [79],
metadata information [80], and pseudo-labels assigned by K-
means clustering on embeddings [81]. Another strategy is to use
generative models [82] such as GANs [46] or VAE framework
[47, 48] to learn feature representations. They function by
learning and generating new data distributions that are similar
to the training data, thereby learning inherent structures and

patterns within the dataset. In addition, the self-supervised
learning (SSL) approach can use a pretext training task, mining
the intrinsic information present in the data itself, to train a
CNN capable of learning effective feature representation and
use it for downstream analysis [83]. For the pretext task, Lu
et al. proposed “paired cell inpainting,” whereby the model
needs to identify protein localization from the “source” cell
and predict the similar localization in the “target” cell [83].
The contrastive loss-based approach can also learn robust cell
representations by training the model to bring positive example
representations closer in the feature space and push the negative
example representations further away from the positive ones [84].
Perakis et al. demonstrated that representations learned with the
contrastive learning framework can be used in MOA classification
task with the impressive performance on par with the transfer
learning approach [37, 84]. Beyond the CNN-based model, the SSL
method has also been employed to pre-train the ViT architecture,
resulting in significant enhancements even in segmentation-free
morphological profiling [23, 85]. In evaluations using subsets
of the JUMP-CP Consortium data, the VAiT architecture, trained
by the recently introduced DINO SSL approach, outperformed
both CellProfiler and transfer learning-based methods in several
dimensions. Specifically, when trained on multisource data, this
approach demonstrated the best performance in classification
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Table 3. Model performance comparison by MOA classification accuracy on the BBBC021 dataset

Approach Description NSsc? NSCBP Drop® Reference
Conventional feature CellProfiler with Factor Analysis ~ 94% 77% 17% Ljosa 2013 [36]
engineering CellProfiler with illumination 90% 85% 5% Singh 2014 [71]
correction
Supervised learning CNN with Noisy-AND pooling 96% N/A N/A Kraus 2016 [69]
function
Multiscale-CNN 93% N/A N/A Godinez 2017 [70]
Transfer Learning ImageNet Pretrained Inception-v3 91% N/A N/A Pawlowski 2016 [73]
with illumination correction and
greyscale transformation
Pretrained Deep Metric Network — 96% 95% 1% Ando 2017 [37]
with TVN postprocessing
Weakly supervised Weakly supervised ResNet-18 95% 89% 6% Caicedo 2018 [38]
learning with Mixup regularization
WS-DINO finetuned on BBBC021  98% 96% 2% Cross-Zamirski 2022 [77]
with compound as weak label
Self-supervised learning CytoGAN (LSGAN) 68% N/A N/A Goldsborough 2017 [46]
VAE+ 93% 82% 11% Lafarge 2019 [47]
UMM discovery with NSCB as 95% 89% 6% Janssens 2021 [81]
best epoch criterion
Contrastive learning with 96% 95% 1% Perakis 2021 [84]

whitening postprocessing

2NSC (Not-Same-Compound matching accuracy). PNSCB (Not-Same-Compound-and-Batch matching accuracy). “Drop.

tasks. The resultant image representations showcased excep-
tional adaptability, transitioning efficaciously from chemical
to genetic perturbations. Moreover, the pipeline functioned at
speed 50 times faster than CellProfiler-based feature engineering
workflow [23]. It is noteworthy that, unlike CNNs where local
features are consolidated into aggregated vectors, ViTs preserve
a more refined resolution of inputs across all network layers,
and this preservation facilitates the encoding of features that
are biologically meaningful at the subcellular level [85]. Notably,
ChannelViT has been proposed to make a simple modification to
the ViT architecture by constructing patch tokens independently
from each input channel and includes a learnable channel
embedding. These modifications improve model reasoning
across channels, such that the model can generalize efficiently
even when limited input fluorescent channels are available.
When trained with DINO algorithm, ChannelViT consistently
outperforms standard ViT on input images with varying sets of
fluorescent channels [86]. Altogether, these findings underscored
the formidable efficacy and robustness of SSL approaches in
morphological profiling.

Most of the representation learning approaches described in
this section have been benchmarked on the BBBC021 dataset with
these evaluation metrics. Their performance is summarized in
Table 3. From this comparison, WS-DINO, the weakly supervised
method from Cross-Zamirski et al. [77] achieved the best perfor-
mance. The transfer learning method from Ando et al. [37] and
the self-supervised contrastive learning method from Perakis et al.
[84] also showcased strong performance in learning meaningful
phenotypic embeddings.

For deep learning approaches to achieve decent performance
in morphological profile analysis, factors such as image dataset
characteristics, model complexity, and computational resources
must be carefully considered. Increasing the size and diversity of
the training set, for example, by including image sets acquired
from different laboratories, serves as an effective factor in
enhancing performance, more so than simply increasing the

model size [23]. In addition, applying appropriate image augmen-
tations significantly benefits the performance of SSL methods
such as DINO. Particularly, applying color augmentation on each
fluorescent channel independently, through random brightness
changes and intensity shifts, has been shown to produce the most
significant positive impact on model performance [23]. In terms
of computational time and costs, DINO with Graphics Processing
Unit (GPU) acceleration can process and analyze data significantly
faster than feature-based approaches, and despite requiring GPUs,
itincurs lower infrastructure costs for analyzing per cell plate [23].

Integrating morphological data in multimodal
learning for drug discovery

With the advances in biotechnology, a wealth of data from vari-
ous modalities can be generated and collected to facilitate drug
discovery. Cheminformatics, for example, has made substantial
contribution to drug discovery through analysis and representa-
tion of chemical structures and exploiting the similarity principle
[87]. Chemical structure data of compounds are always readily
available, and predicting compound bioactivity based on this
data modality can be performed virtually. However, elucidating
the intricate relationship between structure and biofunction is a
challenging task [87]. On the other hand, ‘Omics’ profiles, such
as genomics, transcriptomics, proteomics, and metabolomics, can
characterize treatment outcomes from different aspects. How-
ever, assay cost and scalability emerge as major concerns for
high-throughput studies [88]. Indeed, every modality of data uti-
lized in the drug discovery presents its unique set of advan-
tages and disadvantages. A detailed comparison is summarized
in Table 4. Integrating these modalities is promising to maximize
their potentials and mitigate the limitations, thereby providing
a comprehensive understanding of treatment effects. Notably,
recent research has shown that different data modalities, such
as chemical structure, morphology, and gene expression, exhibit
complementary strengths in predicting treatment effects [89].
Integrating morphological data with other data modalities using
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Table 4. Comparison of transcriptomic and morphological profiling data for drug discovery

Attribute

Morphological profiling

Transcriptomic profiling

Infrastructure requirements
Scalability
system setup.

Data interpretability
Data processing framework

High-content imaging system. Some requires
lab automation workflow.

Scalable for Cell Painting assay.

Cost Low cost for conducting assays but high cost in

Not interpretable on gene expression level.
Best practices for conventional

Next-generation sequencer. Some requires
cell-sorting capability.

Scalable for L1000 assay.

In general, low cost for newer platforms.

Interpretable on gene expression level.
Mostly standardized.

feature-engineering approach have been made.
Processes such as batch correction remain to

be standardized.
Reproducibility

non-trivial.

Can be experimental platform dependent.
Variations between data producing sites is

Technically reproducible. Biological
reproducibility usually needs to be confirmed.

machine learning- or deep learning-based approaches has now
become an active field of research.

The integration of structural models with cell morphology
models has been demonstrated to improve biological assay out-
come prediction accuracy. Seal et al. proposed the similarity-based
merger model, which combines the scaled predicted probabilities
from individual models trained on Cell Painting images and chem-
ical structures, and the morphological and structural similarities
between test and training compounds [90]. Specifically, the pre-
dictions from individual models and similarity values are used to
fit a logistic regression model to predict the test compound activ-
ity. The authors demonstrated that the similarity-based merger
model outperforms soft-voting ensemble, hierarchical model, or
either of the individual models trained on unimodal data [90].

In addition, SSL techniques such as contrastive learning
approaches have also been utilized to align multimodal data
sources to enrich morphological profiling analysis in drug
discovery [91-93]. For example, a method known as Contrastive
Leave One Out boost for Molecule Encoders (CLOOME) has
been proposed, aiming to learn aligned representations derived
from the compound’s chemical structure and the corresponding
cellular images obtained after treatment with the same com-
pound [91]. Its learning framework incorporates a microscopy
image encoder, a molecule structure encoder, and uses the
InfoLOOB objective [94] to learn the aligned embedding of
treatment image and compound structure [91]. Similarly, Zheng
et al. presented the Molecular graph and high content imaGe
Alignment (MIGA) framework with an image encoder and a graph
neural network (GNN)-based structural encoder [93]. To align
graph embeddings with image embeddings, three contrastive
objectives are used: graph-image contrastive learning, masked
graph modeling, and generative graph-image matching. The
crossmodal representation learned with this framework improves
performances on several downstream tasks [93]. This approach is
extended further by Nguyen et al. to develop Molecule-Morphology
Contrastive Pretraining (MoCoP) [92]. This framework uses a
morphology encoder, a gated GNN (GGNN)-based molecule
encoder, and the modified InfoNCE objective [95] to learn
multimodal representation. The GGNN pretrained with MoCoP
can be fine-tuned for downstream quantitative structure-activity
relationship (QSAR) tasks [92]. Furthermore, active learning
approach has been used to boost the performance of image-based
and structure-based models and benefit the downstream QSAR
tasks. The initial image-based and structure-based models assist

selecting candidate compounds to be validated in toxicity assays.
Once the wet-lab assays are completed, assay readouts will be
collected as new annotations to continue refining both models.
This iterative approach has been applied to detect compounds
with mitochondrial toxicity [96].

In addition to chemical structure data, integrating transcrip-
tomic profile with cell morphology serves as another crossmodal
combination. A prevalent assay for obtaining gene expression
profile is the L1000 assay [97]. Both Cell Painting and L1000
assays are scalable and provide complementary data. Compared
to the transcriptomic profile from L1000, the morphological
profile from Cell Painting is more reproducible yet susceptible
to batch and well position effects. Conversely, L1000 captures
more diverse features. Collectively, these two profiling modalities
measure overlapping and assay-specific MOAs [98]. Besides the
L1000 transcriptomic profile, another gene expression-based
assay, Functional Signature Ontology (FUSION), can be fused
with morphological profiling data to assign MOAs to complex
natural product fractions in pair with metabolomic profiling
data [99]. Comparative studies have shown that transcriptome-
based and morphology-based models offer comparable or better
performance in MOA prediction, compared to the chemical
structure-based model [100]. These findings provide rationale
and potential advantages of integrating transcriptomic and
morphological profiling for drug discovery. More discussions
on the applications and concerns of integrating these two data
modalities have been recently characterized [101, 102]. Datasets
with matched transcriptomic and morphological profiling data
are summarized in Table 5.

Data fusion methods have been widely used to integrate mul-
timodal data (Fig. 6). In general, these methods can be cate-
gorized as early fusion and late fusion. Early fusion works by
integrating the separate raw data modalities into a unified rep-
resentation before feeding into the deep learning model for fea-
ture extraction. In contrast, late fusion combines the predictions
of individual models, each built on a specific data modality.
Algorithms such as cooperative learning have been proposed
to enhance the alignment between predictions [103]. To inte-
grate morphological, transcriptomic, and chemical structure pro-
files, Seal et al. compared both early and late fusion methods
in detecting mitochondrial toxicity. They reported that the late
fusion model can accurately determine the mitochondrial toxicity
of compounds that have inconclusive toxicity results reported
previously [104].
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Table 5. Multimodal datasets with matched transcriptomic and morphological profiling data

Cell type Transcriptomic Transcriptomic profile Morphological profile Reference
profiling description URL/Identifier URL/Identifier

A549 L1000 https://figshare.com/articles/ https://idr.github.io/idr0125-way- Way 2022 [98]
dataset/L1000_data_for_profiling cellpainting/
comparison/13181966/2

A549 L1000 https://www.ncbi.nlm.nih.gov/geo/ https://registry.opendata.aws/cell- Haghighi 2022 [102]
query/acc.cgi’acc=GSE83744 painting-image- collection/

A549 L1000 https://figshare.com/articles/ https://zenodo.org/ Haghighi 2022 [102]
dataset/L1000_data_for_profiling records/3928744#.YNu3WzZKheV
comparison/13181966

U20S L1000 https://www.ncbi.nlm.nih.gov/geo/ https://idr.openmicroscopy.org/ Haghighi 2022 [102]
query/acc.cgi?acc=GSE92742 webclient/?show=screen-1251

U20S L1000 https://www.ncbi.nlm.nih.gov/geo/ http://www.cellimagelibrary.org/ Haghighi 2022 [102]
query/acc.cgi?acc=GSE92742 pages/project_20269

U20S 11000 https://github.com/carpenterlab/ https://idr.openmicroscopy.org/ Haghighi 2022 [102]
2017_rohban_elife/tree/master/ webclient/?show=screen-1751
input/TA-OE-L1000-B1

Hela FUSION Upon request Upon request Hight 2022 [99]

To identify perturbation effects in distinct feature space of mor-
phological and transcriptomic data, Smith et al. proposed Pertur-
bational Metric Learning (PeML) for similarity metric learning for
multimodal data representation [105]. This WSL approach aims
to learn an embedding to maximize the similarity between repli-
cates, while non-replicates stay dissimilar. This learning method-
ology can be applied to both morphological and transcriptomic
profiles and has demonstrated improved performance in MOA
prediction [105].

Although the integration of morphological and transcriptomic
(L1000) profiling offer benefits in MOA prediction, this orthogonal
platform still faces challenges. These include limited resolution
when identifying bioactive compounds that exhibit widespread
cellular effects and reduced sensitivity when investigating
bioactive compounds that do not induce distinct morphological
changes [99]. To address these limitations, researchers have
also investigated metabolomics-based approaches combining
morphological characteristics to uncover changes in intracellular
metabolism under various conditions [106]. Since metabolites in
the cell can provide a comprehensive information of the cell state
and define cellular phenotype in response to perturbations, com-
bining cell morphology and metabolomics analysis has proven
beneficial. For example, untargeted Mass Spectrometry (MS)-
based metabolomics can be integrated with morphological profil-
ing into a single platform to facilitate the quick identification and
functional annotation of natural products in a high-throughput
setting [99]. High-throughput image-based profiling pipeline
can also be combined with multiparametric metabolic profiling
approaches, such as oxygen consumption measurements and
untargeted MS-based metabolomics to investigate the toxicity
mechanism of the antiviral drug Tenofovir [107]. Furthermore, this
combined approach can help optimizing microbial biosynthesis
strategy, such as improving rapamycin production in Streptomyces
hygroscopicus [108]. These studies underscore the significant
advantages of integrating metabolomics and morphological,
along with other data modalities in accelerating drug discovery
process. With advances in MS techniques like MALDI-MS
continuing to enhance throughput in metabolomic profiling
[109], future studies will increasingly integrate these data with
morphological profiling. Concurrently, development of these
integrated platform calls for deep learning methods capable of

facilitating multimodal learning using both morphological and
metabolomics profiles.

In summary, applying deep learning approaches to integrate
morphological data with other modalities, such as chemical struc-
ture, transcriptomic, and metabolomic data, demonstrates grow-
ing importance in drug discovery efforts. Techniques like con-
trastive learning and various data fusion methods are emerging
to align multimodal data. The continuous curating of such multi-
modal datasets will further contribute to this burgeoning field.

Novel applications of morphological
profiling in drug discovery

Machine and deep learning approaches have significantly con-
tributed to morphological profiling, enriching various aspects of
phenotypic drug discovery. Applications such as identifying small-
molecule MOAs, lead optimization, and predicting toxicology have
been extensively reviewed elsewhere [110-113]. In the following
sections, we will discuss the recent advances in several novel
applications.

Construct genotype-phenotype relationship and
gene function network

Mapping genotype to disease-relevant phenotype has been a
critical question in genomics. To address this challenge, genome-
scale pooled CRISPR screens have been used to provide insights
into gene functions. However, conventional screening readouts
are relatively low in dimensionality (such as cell viability,
proliferation, or expressions of biomarkers), thereby providing
a constrained view of disease-relevant phenotype [114]. While
high-content transcriptomic data from scRNA-seq can be
measured from pooled CRISPR screens, the cost of achieving high-
content readout as such from a genome-wide CRISPR screen can
be unfeasibly high [114]. To overcome this hurdle, image-based
profiling can provide high-content morphological readout for
CRISPR screens at the genome scale [33, 115, 116]. Notably, optical-
pooled CRISPR screens [117] can be combined with image-based
profiling to create a genome-wide perturbation atlas and to con-
struct a gene function network based on the uncovered genotype-
phenotype relationships [115, 118, 119]. For example, Ramezani
et al. developed a Cell Painting-based optical-pooled cell profiling
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Figure 6. Combine morphological data with other data modalities. The image data obtained from morphological profiling assays can be combined with
other modalities of profiling data to perform downstream tasks jointly. One strategy involves training individual models to extract representations
from each data modality, such as image data, chemical structural data, and transcriptomic data. These individual representations contribute to a joint

embedding, which is subsequently utilized for downstream analyses.

approach (PERISCOPE) to allow pooled CRISPR screens to have
high-dimensional cellular morphological profiles as endpoint
readouts. This scalable pipeline has been applied to A549 cells and
human cervical cancer cells (HeLa) to investigate gene knockout
responses and identify gene clusters based on morphological
similarity [118]. Sivanandan et al. introduced a similar technique
termed Cell Painting Pooled Optical Screening in Human
Cells (CellPaint-POSH). With this approach, a screening with a
druggable genome library of 1640 genes has been conducted on
AS549 cells. Notably, this work applied the SSL DINO-ViT model
(section Representation Learning for Morphological Profiling) for
image representation and demonstrated decent performance in
recovering the gene function network [119]. Such results further
attest to the efficacy and robustness of deep learning approaches
in generating informative image representations, subsequently
leading to valuable biological insights.

In the efforts of mapping genotype to phenotype, the
observation of “proximity bias” has been reported, whereby the
phenotypes of CRISPR knockouts demonstrate higher similarity
to biologically unrelated genomically proximal genes on the same
chromosome arm than the biologically related genes. The cause of
this artifact arises from widespread chromosome arm truncation
due to Cas9 nuclease activity and is not observed in shRNA or
CRISPR interference (CRISPRi) perturbations. Performing arm-
based geometric normalization of features at gene level can
reduce this bias without compromising the recovery of biological
relationship [120].

Characterize perturbation impacts in dynamics

An emerging advance of morphological profiling is toward live-
cell phenotyping, which can be performed by fluorescent or
phase-contrast imaging, and by continuous imaging [27, 121]
or dynamic imaging [48]. Several advantages accompany this
approach. First, adding temporal variables to the morphological
profile improves assay predictive power [27]. For example, in
a live-cell imaging-based profiling assay, a library of 1008 The
United States Food and Drug Administration (FDA)-approved
drugs with manual annotations was profiled against 15 reporter
cell lines that expressed fluorescent protein-tagged organelle
or pathway markers. The morphological profile was generated
from 24-h high-content imaging and can be used to accurately
infer 41 of 83 testable MOAs [27]. Beyond this, live-cell imaging
enables the characterization of cell-state transition dynamics,
a critical feature in developmental biology [48, 121]. Human
pluripotent stem cells (hPSCs) coexpressing histone H2B and
cell cycle reporters can be profiled in a multi-day, high-content
manner at single-cell resolution. With this profile, a deep learning
model can be trained to provide highly sensitive predictions
of spatiotemporal single-cell fate dynamics, as early or even
earlier than cell state-specific reporters [121]. Moreover, live-
cell morphological features of human-induced pluripotent stem
cells (hiPSCs) can even be used to predict differentiation marker
gene expression [48]. This approach involves performing phase-
contrast imaging and bulk RNA-sequencing at each consecutive
passage of hiPSCs. A VAE variant, VQ-VAE [122], learns the
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image feature vector in a self-supervised approach. A number of
Support Vector Regression (SVR) models, each corresponding to
a differentiation marker, were trained to predict differentiation
marker gene expression from the image feature vector. Bulk
RNA-sequencing readouts were used as labels for this supervised
learning process. Altogether, this approach builds the relationship
between transcriptional and live-cell morphological profiles [48].

Deep learning models such as DynaMorph [123] and DEEP-
MAP [121] have been proposed to analyze morphological profiles
in dynamics. To take DynaMorph for example, VQ-VAE was
trained to learn a representation of cell shape through a self-
supervised image reconstruction auxiliary task. To ensure that
cell shape changes smoothly between neighboring frames, a
temporal matching loss was applied. The representation of cell
shape regularized by the temporal continuity can distinguish
morphodynamic states of microglia in response to pro- and anti-
inflammatory stimuli [123].

Guide de novo hit design

Although the typical downstream applications of morphological
profiling have been focused on clustering or classification tasks
(section  An Overview of Image-Based Profiling Data Analysis),
Zapata et al. proposed to leverage morphological profiles to
guide de novo molecular design with GANs [124]. Compared to
using transcriptional profiling for compound de novo design [125],
morphological profiling provides higher throughput with less cost.
More importantly, more than 40% of the generated molecules have
drug-like physicochemical properties, and more than half are
expected to be synthesizable. This model can also be generalized
to morphological profile with genetic perturbations such as gene
overexpression. These findings indicate that this approach is able
to effectively translate morphological similarity into chemical
similarity with high efficiency [124].

Facilitate image-based profiling in advanced
biological models

Organoids are hetero-cellular biomimetic tissue models that have
become a powerful experimental tool transforming basic sci-
ence and translational research [126]. While the traditional low-
throughput methods provide valuable biological insights, high-
throughput methods are needed to fully exploit the potential
of organoids as ex vivo models. Modeling the development of
disease with organoids that can recapitulate tissue structure,
pathology, phenotypes, and differentiation has revolutionized the
study of various human diseases including cancer [126, 127]. In
a recent study, Silva et al. and Atanasova et al. demonstrated the
effect of small molecules in mouse pancreatic acinar that causes
inhibition or reversal of acinar-to-acinar ductal metaplasia (ADM)
using high-content image-based screening in organoid culture
[128, 129]. Advances in technology in organoid culture and the
remarkable self-organizing properties reflecting key structural
and functional attributes of organs such as brain, kidney, lung,
gut, or similar even hold promise to predict drug response in a
personalized fashion.

While organoids are normally cultured in bulk in an extracel-
lular matrix, these bulk cultures can physically overlap, which
makes it challenging to track the growth and properties of indi-
vidual organoids in high-throughput assays. Various microwell
designs have been introduced to overcome specific challenges
associated with image-based analysis but still struggle with large
numbers of organoids [130, 131]. Using different organoid culture
methods, phenotypic assays can be designed using features
like whole organoid morphology, growth rates, or movement
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with simple brightfield imaging. Many of these methods rely on
cellular aggregation to generate spheroids rather than growing
organoids from single cells [132-134]. These can cause limitations
in understanding the phenotypic heterogeneity, while most
of the methods do not employ integrated analytical pipelines
into the overall workflow [135-139] or the ability to selectively
retrieve organoids for downstream investigations. Overcoming
some of these issues, Forsyth and a team of researchers [126]
have built an open-source microwell-based platform for high-
throughput quantification using image-based parameters. The
method utilizes an organoid-optimized deep-learning model
that can be integrated with existing culturing protocols and
micro-well platforms to investigate phenotypic features across
different tissues. Additionally, patient-derived tumor organoids
have been developed into powerful organoid-based discovery
platforms in recently demonstrated using CRISPR-Cas9 screening
for patient-specific functional genomics [140]. Defined mutations
are introduced to transform normal organoids to tumorigenic
growth upon xenotransplantation, combining the exploratory
power of CRISPR-Cas9 screening with 3D organoids [133, 136,
141]. These advances demonstrate that organoids are powerful
experimental models for morphological profiling to study the
maturation and progression of various diseases.

Enable natural product-based drug discovery

Natural products (NPs) and their structural analogues have made
a major contribution to pharmacotherapy, playing a key role
in drug discovery [3, 4]. Recent years have witnessed that Al
approaches have substantially advanced the efficient identifica-
tion of drug candidates from NPs, marking notable progress in
drug discovery [5]. NP-based drug leads are typically identified
by phenotypic assays [4]. To that end, an image-based profiling
platform has been developed to study toxicity, structure-activity
relationship (SAR), MOA, and potential off-target effects of NPs [6].
For example, a high-throughput screening on MIN6 g cells with
6298 marine NP fractions has been performed to select for hit
compounds with nontoxic and long-lasting effects in inhibiting
glucose-stimulated insulin secretion [142]. In combination with
MS analyses and NMR analyses, aureolic acid CMA2 has been
identified as the major component of the top hit fraction derived
from S. anulatus. Treating MING6 cells with CMAZ2 leads to decreased
nuclei counts determine by the 4’-6-Diamidino-2-phenylindole
(DAPI) staining, attesting to its bioactivity [143]. In another study,
botanical NP extracts have been screened for blockade of SARS-
CoV-2 infection in human 293TAT cells. A leading hit, the extracts
of S. tetrandra, is further investigated on its antiviral MOA through
phenotypic assays based on intracellular phospholipids forma-
tion [144]. In addition, high-dimensional phenotypic readouts also
assist exploring NP MOA. To understand the MOA of the Polyketide
Lagriamide B from the Burkholderiales strain, its morphological
impact on U20S cells is investigated through the Cell Painting
assay followed by high-contentimaging. Atlow treatment concen-
tration, Lagriamide B leads to disruption in actin polymerization
and incomplete cytokinesis, and at high concentration, low cell
count and decreased cell size are observed. These phenotypic
effects indicate an MOA of Lagriamide B in actin polymerization
disruption [145].

Specifically, integrating morphological with multi-omics
profiling helps annotate the bioactive components of NPs, which
addresses one of the most significant challenges in NP-based drug
discovery [99]. For example, an integrated framework of morpho-
logical and transcriptomic profiles has been used to annotate
marine bacteria extracts based on its untargeted metabolomics
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profile [99]. This orthogonal platform demonstrated a new
paradigm to understand the association between NP components
and treatment phenotypes and underscored the importance of
integrating multimodal profiling data for drug discovery (section
Integrating Morphological Data in Multimodal Learning for Drug
Discovery).

Challenges and outlook

Morphological profiling is poised to have a profound and con-
tinuing impact on phenotypic drug discovery in the next decade
and beyond. Deep learning approaches will continue to empower
morphological profiling with enhanced accuracy and efficiency
[110]. However, several challenges await resolution in order to fully
leverage cellular images as a reliable and insightful resource, as
will be discussed in this section.

Although representation learning (section Representation
Learning for Morphological Profiling) has become a robust
approach to learn cellular features with less manual input than
the conventional feature-engineering approach, it is susceptible
to confounding factors such as batch effects. Batch effects are
variations in data caused by the differences in the technical
execution of each experimental batch. Such confounding factors
introduce irrelevant sources of variation into data and can poten-
tially mislead biological conclusions [146]. Disentangling these
confounding factors from phenotypes is a crucial step to recover
a true biological signal. Significant progress has been made in
this regard, with methods such as TVN [37], BEN [147], TEAMS
[148], CDCL [80], and GRU-based regularization [38]. Furthermore,
batch correction methods for transcriptomic profiles may be
applicable. A recent study on subsets of JUMP-CP demonstrated
that Harmony, a non-linear method developed for processing
scRNA-seq data, consistently outperforms other transcriptomic
profile batch correction strategies in balancing batch removal
and biological variation conservation [149]. In addition to the
aforementioned methods, adding a context token to include
batch-specific information during image representation learning
also demonstrated decent performance in out-of-distribution
generalization and batch variation handling [150]. To evaluate
and compare batch correction strategies, RxRx1, a Cell Painting
image dataset of genetic perturbations with 51 experimental
batches from four cell types, has been systematically designed
[146]. With the development and sharing of the benchmarked
dataset, future work will continue to enhance upon existing
methods. Improved handling of the confounding factors will
further facilitate data sharing and reproducibility between data
generation sites, thereby bringing significant benefits to the
broader scientific community.

The success of phenotypic drug discovery heavily relies on
disease relevance of the biological model. Applying relevant
cell types and perturbations in morphological profiling assay is
essential, but not sufficient to guarantee translatability [1]. Recent
efforts have been made to apply increasingly multiplex biological
model systems for image-based profiling, such as cocultured 2D
cell lines [151] and 3D organoids [152, 153]. However, on the com-
putational side, most approaches have been built upon Cell Paint-
ing assay images from mono-cultured 2D cells. Therefore, many
challenges remain in generalizing these approaches to a multiplex
biological model. For example, how do current cell segmentation
(section Deep Learning-Facilitated Cell Segmentation for Image
Analysis) and representation learning methods (section
Representation Learning for Morphological Profiling) perform on
3D images? How is the quantity and quality of 3D image dataset

that can be utilized for effectively training for fine-tuning
deep learning models? How generalizable are the representa-
tion learning frameworks (section Representation Learning for
Morphological Profiling) to cellular images consisting of multiple
cell types, each demonstrating different morphology? How to inte-
grate morphological data and other modalities of data (section
Integrating Morphological Data in Multimodal Learning for Drug
Discovery) from a multiplexed cell system to obtain cell-cell
interaction information? Overcoming these hurdles will bring
morphological profiling to the next level of clinical translatability.

In terms of integrating morphological profile with omics data
(section Integrating Morphological Data in Multimodal Learning
for Drug Discovery), compared to bulk transcriptomic read-
outs, single-cell transcriptomics, spatial transcriptomics and
translatomics offer a wealth of gene expression information at
individual cellular and subcellular levels [154-157]. Advances
such as sci-RNA-seq3 have enabled single-cell transcriptional
profiling in high throughput [158]. Given this technical progress,
future work may establish an orthogonal profiling platform
to combine morphological and single-cell profiling, thereby
linking molecular phenotype to cellular phenotype at single-
cell resolution. In addition, integrating Perturb-seq with image-
based profiling will become a promising future direction to
characterize the impact of genetic perturbations with single-
cell transcriptomics and morphological readouts [159]. High-
quality datasets of such should be established to encourage the
development and evaluation of data integration approaches.

Last but not least, despite the impressive inferential capabil-
ities of deep learning approaches, drawbacks remain that the
explainability of these ‘black box’ models is unsatisfying [160].
In drug discovery especially, model interpretability is important
to ensure that the biological conclusions are valid. To mitigate
this, several efforts have been initiated to improve model inter-
pretation in morphological profiling. For example, Chow et al.
trained VAEs to interpret latent space feature representations in
Cell Painting assay [161]. In the broader field of computer vision,
techniques such as class activation mapping [162, 163] have been
proposed to provide visual explanations for deep neural networks.
Future work should continue to develop or advance techniques as
such to morphological profiling to enhance model interpretability
[162).

Concluding remarks

Morphological profiling represents a powerful, high-throughput,
data-intensive, and cost-efficient technique for phenotypic drug
discovery. It offers an unbiased and high-dimensional image read-
out of cellular phenotype in response to various perturbations,
thereby providing a comprehensive view on compound bioactivity.
Emerging techniques from computational biology and deep learn-
ing communities have made significant progress in enhancing
the analytical pipeline from representation to prediction. While
challenges remain in this fast-evolving field, future work will con-
tinue to coordinate multidisciplinary efforts in leveraging visual
phenotypes to empower drug discovery.

Key Points
¢ Image-based profiling is a valuable tool in phenotypic
drug discovery and facilitates understanding cell biology
in response to different perturbations.
e Deep learning approaches have contributed signifi-
cantly to morphological profiling data analysis through
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segmenting cellular images, learning robust image rep-
resentations, and integrating morphological data with
other data modalities.

e These advancements enable many novel downstream
applications, such as constructing gene function net-
work to map genotype-phenotype relationship, char-
acterizing perturbation impacts in dynamics, guiding
de novo hit design, identifying compound MOAs in 3D
organoid model, and enabling natural product-based
drug discovery.

e Innovative solutions are needed in several challenging
aspects, such as handling batch effects, analyzing mul-
tiplex biological model, integrating with spatial-omics,
and improving model interpretability.
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