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Abstract
Impact of ice coverage is significant in controlling the depth-averaged velocity profile and 
influencing morphological processes in alluvial channels. However, this impact is largely 
unknown under field conditions. In this work, a numerical method is introduced to com-
pute the depth-averaged velocity profile in irregular cross-sections of ice-covered flows, 
based on the Shiono-Knight approach. The momentum equation is modified to account for 
the presence of secondary flows and the ice coverage. The equations are discretized and 
solved with velocity boundary conditions at the bank and at one vertical. Our approach 
only requires the cross-section geometry and a single velocity measurement near the high-
velocity region, offering a significant advantage in inaccessible locations by avoiding the 
need to measure the velocity profile in the entire cross-section. The proposed model is then 
validated using depth-averaged velocity profile and secondary flow patterns from labora-
tory observations, analytical solution, and Large-Eddy Simulation. Finally, the method 
is applied to infer depth-averaged velocity profiles in the Red River of the North, United 
States, to test its performance in meandering sections. The proposed method demonstrates 
its robustness in reconstructing flow profiles in ice-covered conditions with a minimal 
amount of available data, which is crucial for assessing erosion risks and managing spring 
floods in cold regions.

Article Highlights

•	 A novel method to compute depth-averaged profile in ice-cover flows.
•	 The friction factor plays the most important role in the profile.
•	 The double-stacked vortices might exist and impact the profile’s shape.
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1  Introduction

In regions with freezing temperatures, ice cover is periodically observed in natural and 
artificial channels [20, 53, 55]. However, the effects of the frozen surface on flow dynam-
ics remain poorly understood [11, 48, 50], particularly in alluvial streams [12]. Previous 
studies [30, 32] suggest that the frozen surface acts as an additional boundary roughness 
and leads to an increase in flow complexity by facilitating the interaction between the flow 
and the channel’s bed. The resulting dynamics lead to changes in the three-dimensional 
flow structures, which might have important consequences in alluvial processes [54]. The 
duration of coverage of river ice has recently been reported to decrease in the Northern 
Hemisphere [57] due to the impacts of climate change. Hence, studying flow dynamics 
in ice-covered channels will address the gap in knowledge of river flows in cold regions, 
which have been mostly studied under open-surface conditions.

On the contrary to the open-surface condition, the vertical velocity profile follows a 
two-layer structure (two-layer hypothesis) [13, 27] in ice-covered flows: (1) the upper ice 
layer, and (2) the lower bed layer [53, 59]. These layers are separated by the zero shear 
stress plane [27, 34]. In practice, the maximum velocity plane was also shown to be close 
to the separation plane [13, 25, 48] and thus it could also be used to monitor the separation 
of these layers as well. The location of the maximum velocity plane is sensitive to the ice 
and bed roughness and it generally tends to approach the smoother boundary [47]. A cor-
rect distribution of resistance accurately divides the water column into layers as Einstein’s 
treatment method [9] suggests, moreover, the average velocity of all sections is assumed 
to be equal to the depth-averaged velocity of the water column. Hence, a comprehensive 
roughness analysis is a key factor in computing velocity profiles [26, 59].

Estimating the depth-averaged velocity in ice-covered flows is crucial for many hydrau-
lic applications [44, 48, 58]. Depth-averaged velocity is influenced by various factors [45], 
including ice cover properties, channel geometry, and flow discharge. Laboratory experi-
ments [16, 48, 51, 53] are generally used to estimate the impacts of these factors on the 
depth-averaged velocity profiles. While these laboratory efforts provide the basic knowl-
edge of hydraulic engineering applications [59], depth-averaged profiles at field scales have 
not been examined in detail [22, 23, 30, 32]. The analytical framework to study depth-
averaged profile and its dependence on the secondary flow patterns are discussed below.

1.1 � Shiono‑Knight model for ice‑covered flows

One of the most popular methods for computing the depth-averaged velocity is the Shiono-
Knight model (SKM) [42], which was developed based on the two-dimensional Reynolds 
Averaged Navier-Stokes (RANS) equations [37] for a straight channel with fully-developed 
turbulent flows. The SKM was later improved by Shiono and Knight [43] with the integra-
tion of secondary currents coefficient (K) and adapted for curved channels [46].

The RANS equations can be combined and reduced to [43]:

where � is the water density; U, V, and W are the time-averaged velocity components in x 
(streamwise), y (lateral/transverse), and z (vertical) directions, respectively; �yx and �zx are 
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the Reynolds shear stresses with respect to the horizontal and vertical planes, respectively. 
The above momentum equation can be solved analytically for the depth-averaged profile 

Ud(y) =
1

H ∫
H

0

U(y)dz if the shape of the cross-section is precisely known.

In ice-covered channels, Wang et al [53] suggests that Eq. 1 can be integrated along the 
depth (H) as:

It is required that the resistance of the ice layer is reflected by the parameter �d , which is 
the total dimensionless wetted perimeter of the river bed ( �b ) and the ice cover ( �i ) per unit 
width ( �d = �b + �i ); �yx and �d are the depth-averaged transverse and bed Reynolds shear 
stresses; g is the gravitational acceleration. S0 is the channel bed slope. The term �d is used 
to calculate comprehensive hydraulic radius ( Rd = Ad∕�d ) for ice-covered conditions. It 
has a critical role in the estimation of combined friction factor ( fd ) of channel bed and ice 
cover.

Application of eddy viscosity assumption generally leads this term to be expressed as 
follows:

where �yx is the depth-averaged eddy viscosity. Invoking the definition of the bed shear 
stress and the eddy viscosity assumption, we have:

Cf  and fd are the drag coefficient and the comprehensive Darcy-Weisbach friction factor, 
respectively. �d is the dimensionless eddy viscosity; u⋆ is the shear velocity; �d is the com-
prehensive shear stress. The impact of the secondary flow was introduced to this relation-
ship [10, 53] as the secondary flow coefficient (K) [10]: (UV)d = KU2

d
 . Hence, the depth-

averaged form of the governing equation can be derived as follows:

This equation can be solved analytically to estimate Ud in special cases as discussed below.

1.2 � Analytical solution for Shiono‑Knight equations

For symmetrically trapezoidal channels (see Fig. 1b), Wang et al [53] proposes that Eq. 5 
can be solved analytically by dividing the cross-section into three distinct zones with 
known side slopes (1 : s): (1) flood plain ( s = ∞ ); (2) the side slope ( s = 1 ); and (3) the 
main channel ( s = ∞ ). It is required that wall boundary conditions are applied on both 
sides of the channel ( y = 0 and y = B = 1 m ) as U(y = 0) = 0 and U(y = B = 1m) = 0 . As 
the channel geometry is symmetrical with the total width of B, the mid-boundary condition 
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is needed ( y = B

2
 ) where the maximum velocity Umax occurs. Using these boundary 

conditions, Eq. 5 can be solved for one-half of the channel’s cross-section.
Ud is computed for the main channel and the flood plain (constant flow depth- s = ∞ ) 

using:

where r1 , r2 , and � are the coefficients; and C1 and C2 are the case-specific unknown con-
stants. The values of C1 and C2 are not known in advance and must be calculated by fitting 
to the observational data. Other coefficients can be calculated as:

For s = 1 (side slopes), the analytical solution for Ud is given as:
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Fig. 1   Dimensions of the laboratory flume in Wang et  al [53]. a The side view of the flume shows the 
location of the measured plane. The domain length L = 15m ; b the cross-sectional sketch shows the 
locations of the measured data in the main channel (MC) and the floodplain (FP) verticals. The channel 
center is represented with a black dash line at y = 0.5 m . Here, b and H are the semi-width of the cross-
section and the flow depth, respectively
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where C3 and C4 are the unknown constants that depend on the case setup; � presents the 
local flow depth on the side slope length of the trapezoid ( � = H − (y −

B

2
− b)∕s ). Here, b 

is the semi-width of the main channel (see Fig. 1). The coefficients ( �1 , �2 , and A ) of this 
equation are calculated as:

The parameters L , M, and N are calculated as: L =
�d

2 s2

(
fd

8
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 , 

N =
K

s
−

fd

8
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As shown above, the analytical solution is only available if the side slope s is a constant 
value [59]. Therefore, it is not possible to apply this analytical method to compute Ud with 
arbitrary cross-sections.

1.3 � The need to compute Ud
 for alluvial channels

The need to estimate Ud in field conditions has led to the use of one-dimensional [29, 
40] or two-dimensional [31, 41] models to capture large-scale hydrodynamic patterns in 
rivers. These models [4, 21, 29] are computationally expedient and can incorporate large-
scale hydro-climatic condition easily [38]. However, they cannot provide details on the 
turbulent characteristics [31] in a cross-section. Recent advancements in Computational 
Fluid Dynamics (CFD) have enabled three-dimensional modeling of river flows [28, 52]. 
These CFD models use advanced turbulence models such as large-eddy simulation (LES) 
and Reynolds-averaged Navier–Stokes (RANS) equations [19]. To date, LES was mostly 
performed under open-surface condition [28].

Natural rivers and streams feature irregular cross-sectional shapes [7], which prohibit 
the use of analytical solution such as Eq.  6 and 8 for ice-covered flows. It is necessary 
to develop and validate a general method for computing depth-averaged flows in arbitrary 
cross-section. This study aims to develop such a general method using numerical approxi-
mation. The main objectives are:

•	 Develop a procedure to compute depth-averaged profile Ud (a numerical solution to 
Eq. 1) in compound channels with arbitrary geometries.

•	 Validate the proposed numerical procedure with laboratory, analytical solution, and 
field data.

•	 Identify the key factors regulating the profile, especially the impact of secondary flows
•	 Investigate the sensitivity of the Ud solution to the governing parameters ( fd , �d , and K).

First, a numerical procedure to determine Ud is developed for compound channels using the 
SKM-based method of [53]. Second, Large Eddy Simulation (LES) is also performed and 
compared with experimental data in a straight channel in the experiment of Wang et al [53] 
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to provide a complete three-dimensional flow field to serve as the validation data. Third, 
the proposed numerical procedure is validated using the available data of experiments of 
Wang et al [53] and the obtained LES results. Finally, the validated procedure is used to 
investigate the range of the governing parameters ( fd , �d , and K) in a river reach of the Red 
River of the North, United States to examine its applicability for field conditions.

2 � Methodology

2.1 � Laboratory data

The experimental setup for ice-covered flows is performed by Wang et al [53]. The experi-
ment is performed on a L0 = 12 m long (x -streamwise), B = 1 m (y - lateral), and the total 
depth H = 0.3 m (z - depth) in a straight/trapezoidal flume (Fig.  1a) with fully-covered 
condition (see Fig. 1b).

A whole foam piece is used to mimic the full coverage of the ice layer. The channel bed 
slope was S0 = 0.01% and the side slope (s: 1) of the trapezoid was s = 1 . The flow depth is 
0.3 m and 0.2 m on the main channel and the flood plain, respectively. The flow discharge 
is Q = 0.0510 m3∕s . The monitoring cross-section is chosen at a distance of 8 m from the 
inlet as shown in Fig.  1a. As the channel is symmetrical, flow measurements (Acoustic 
Doppler Velocimetry) are only obtained starting from the channel center and towards the 
right wall along the cross-stream direction ( y ≥ 0.5m).

In the experiments of Wang et al [53], the roughness length of the surface cover (foam 
- ksi ) and channel bed (organic glass - ksb ) are not reported. As these roughness values are 
important for velocity profiles, the logarithmic fitting [35] is used to determine their values 
as follows:

where U(z) is the local streamwise velocity at depth z ( 0 < z < H ); � is the Von Karman 
constant ( 0.39 < 𝜅 < 0.41 ) [3, 33, 35, 36]; ks is the roughness length of the surface; u⋆ is 
the shear velocity of the surface (either the bed ( u⋆

b
 ) or the ice ( u⋆

i
)); and � and m are the 

intercept point and the slope of the best-fit regression line, respectively.
Since the vertical velocity profiles are measured on the flood plain (FP) and the main 

channel (MC) separately by Wang et al [53], the roughness lengths ( ksi and ksb ) can be esti-
mated by fitting Eq. 10 to find the appropriate values of m, and � . As seen in Table 1, the 
fitting method yields relatively similar values for the bed ksb ( ≈ 0.00535 m ). However, dif-
ferent values ksi are found in the FP and MC regions ksi = 0.00026 − 0.00091 m . It is thus 
necessary to investigate the impact of ksi on the flow profile. The values of the roughness 
length are used as inputs for the Large Eddy Simulations as described below.
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2.2 � Large Eddy Simulation (LES) of flows in the trapezoidal channel

A series of LES is carried out to determine the three-dimensional flow structure in the 
trapezoidal channel (Fig. 1). The open-source code Virtual Flow Simulator (VFS) is used to 
simulate the turbulent flows to replicate the experimental configuration of Wang et al [53]. 
The VFS code has been validated with laboratory experiments under both fixed bed and live 
bed cases [17, 18]. The numerical code has exhibited its efficiency and accuracy in capturing 
flow dynamics in open-surface conditions Khosronejad et  al [17], Kang et  al [15], Kang 
and Sotiropoulos [14]. In this context, we only provide a concise overview of the adopted 
numerical techniques.

The filtered incompressible Navier–Stokes equations are solved using a fractional step 
method in a structured grid domain. The momentum equation is tackled using an implicit 
approach with a matrix-free Newton-Krylov solver [5]. The Poisson equation is solved using 
FGMRES with multi-grid preconditioner with Petsc numerical library [14, 15, 28]. The chan-
nel surface is represented as an immersed surface inside the computational domain [14]. The 
wall boundary condition is then reconstructed at the immersed nodes using the roughness 
length ks . For the details of the numerical methods, the reader is encouraged to review our 
previous works [14, 18, 28].

To examine the impacts of the roughness length ks on the flow profiles, numerical simu-
lations are performed using different roughness lengths. Initially, the bed (glass) rough-
ness and the foam (ice) roughness are set to be ksb = 0.00535 m and ksi = 0.00059 m , 
respectively. These values are chosen as the averaged roughness of glass (bed) and 
foam (ice) in Table 1. Subsequently, the values of ksi and ksb are systematically varied as 
ksb = 0.00535 m − 0.00600 m and ksi = 0.00059 m − 0.00800 m . The computational grid 
is a structured grid, which is from 1.3M (Grid-1) to 10.0M (Grid-3) as shown in Table 2. 
The grid spacing ( Δ ) is chosen to be fine enough so that the assumption on the logarith-
mic law of the wall is valid at the immersed node ( Δ+ =

Δu⋆

𝜈
≤ 1000 ). Here � is the fluid 

viscosity. The combination of the computational grid, ksi , and ksb gives rise to a total of 5 
simulation cases as shown in Table 3.

While the flow rate is set exactly as in the experimental value of Q = 0.0510 m3∕s , the 
flow profile is not reported [53]. Therefore, a uniform flow is assumed at the inlet (see 
Fig. 1) with the bulk velocity U = 0.204 m∕s . At the outlet, a fully developed flow condi-
tion is assumed. The flow-through time is defined as T0 =

L

U
 . Due to the uncertainty in the 

inlet flow profile, the length of the simulation domain L = 15m is made slightly longer in 
comparison to the actual channel length L0 to accommodate the growth of the boundary 
layer along the computational domain. In all cases, the simulation is first run for a period of 
20T0 to initiate the turbulent flow along the domain length (L). The time-averaged flow 
field is then acquired by accumulating the results starting from t = 20T0 to t = 40T0 . The 
turbulent statistics are computed from the accumulated data.

2.3 � Field measurement

Field surveys during the winter season of 2021 are conducted in a bend of the Red River 
of the North near Lindenwood Park, Fargo, North Dakota, United States (see Fig. 2). The 
channel bed of the Red River is mostly identified as clay and silt [56].

The Acoustic Doppler Current Profiler (ADCP), Sontek M9, is used to monitor velocity 
components at each vertical under the SmartPulse mode of 1 MHz as seen in Fig. 2a. The 
reliability of the data sets is confirmed by monitoring the beam separation (signal-to-noise 
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Fig. 2   Acoustic Doppler Current Profiler measurement and the locations of the cross-sections in the study 
area. A The measurement instruments; B Opening ice holes in the cross-sections; C The locations of the 
cross-sections Ia , Ib , Ic , and Id , in the river reach of the Red River of the North ( North Dakota, United 
States). The Digital Terrain Model is generated from the LiDAR data (North Dakota Water Commission - 
https://​lidar.​dwr.​nd.​gov/ and the surveyed bathymetry data

https://lidar.dwr.nd.gov/
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ratio - SNR) of all measurements during and after the acquisitions. To place the sensor 
below the ice cover, a gas auger is used to open ice holes large enough to lower the M9 into 
the flows as depicted in Fig. 2b. In each cross-section, the distance from the left bank (the 
reference point) � is noted for each ice hole (vertical). The measurement period in each 
ice hole was limited to 120 s due to the impact of low air temperature on our equipment. 
The details of the number of ice holes in each cross-section are summarized in Table  4 
and Fig.  2c. Five separate cross-sections are surveyed: Ia (Feb/19/21), Ib (Feb/20/21), Ic 
(Feb/21/2021), Id (Feb/21/2021), and Ie (Feb/21/2021). Among these cross-sections, Ia 
through Id are separated by 6 m spacing between each other. The cross-section Ie is located 
right after the bend apex, approximately 310 m away from Ia.

The cross-sections and the ice hole locations are shown in Fig. 3. The wet area of the cross-
sections and the wetted perimeter are approximated as A ≈ 120 m2 and P ≈ 95m , respec-
tively. The details of the field campaigns and the data processing can be found in our previous 
work [23, 24].

(a) (b)

(c) (d)

Fig. 3   The measured flow depth (H) in each ice hole and the reconstructed shapes of the cross-sections 
using the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) function for a Ia , b Ib , c Ic , and d Id . 
The details of the measurements are shown in Table 4
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3 � SKM‑based numerical solution for depth‑averaged profile 
in an arbitrary cross‑section

3.1 � Numerical procedure

In this section, a novel algorithm is proposed to solve the momentum equation of the SKM in 
arbitrary cross-sections. Specifically, the numerical approximation of Eq. 5 can be explained 
as follows.

For the tidiness of operations, a notation arrangement is made at this point as V = U2

d
 . Fol-

lowing the distribution of derivatives and applying the product rule, the momentum equa-
tion becomes:

Afterward, three-point central differencing ( 2nd order accurate) is applied for all derivatives 
assuming a constant spacing between two successive ice holes i − 1 , i, and i + 1 (spacing 
Δy).

Here, terms are grouped for the values of V at three successive ice holes ( i − 1 , i, and i + 1 ) 
as follows:

We now need to solve the system of equations i = 1…N (N is the number of ice holes) to 
find Vi as:
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An in-house Matlab script is developed to invert this linear system of equations to find 
the depth-averaged velocity at each ice hole ith ( Ui

d
=
√
Vi ). Note that the coefficients Ai , 

Bi , Ci , and Di can be determined before ice measurements if the local bathymetry, the ice 
coverage, and the bed roughness are known. However, it is required to supply the boundary 
conditions (e.g. known values of Ud at certain locations) to solve Eq. 16 numerically.

3.2 � Application considerations

As the natural cross-sections are not symmetrical as in the experimental settings by Wang 
et  al [53], it is not possible to consider only one-half of the channel. In this case, it is 
required to reconsider the mid-boundary location that divides the cross-section into two 
separate parts with the number of ice holes as N1 and N2 so that Eq. 16 can be solved cor-
respondingly for each part. In other words, one value of Umid−boundary

d
 must be known at one 

ice hole around the middle part of the channel ( i = mid − boundary ), which is classified as 
the mid-boundary condition. There is also a need to prescribe the values of Ud = 0 at the 
left bank ( i = 0 ) and the right bank ( i = N ). Note that there is no certain requirement on 
the location of such an ice hole mid − boundary because Eq. 16 only requires that Ud must 
be known for the beginning and end points of the part. The steps for our numerical proce-
dure are as follows:

•	 Step 1: Measure the depth-averaged velocity and depth at each ice hole from the ADCP 
data.

•	 Step 2: Build the shape of the cross-section. To be as practical as possible, we assume 
that the cross-section is not surveyed in advance and is only known via measurements 
at the limited number of ice holes. To reconstruct the shape of the cross-section from 
the depth measurements at each ice hole. The entire shape of each cross-section is 
reconstructed using the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) 
method from the flow depth in each ice hole.

•	 Step 3: Select a number of verticals for computations (N). Theoretically, the larger the 
number of N, the obtained numerical values Ui

d
 will be more accurate.

•	 Step 4: Decide the mid − boundary condition Umid−boundary

d
 by selecting the ice hole 

mid − boundary . The left (outer bank) and right (inner bank) parts are completely sepa-
rated by the mid − boundary ice hole.

•	 Step 5: Solve Eq. 16 separately for the left and right parts by splitting the number of ice 
holes into N = NL + NR − 1 . Here NL and NR are the number of verticals in the left and 
right parts, respectively. Please note that Eq. 16 solves both sides independently. There-
fore, the choice of NL and NR can be varied.

(16)Ai × Vi−1 + Bi × Vi + Ci × Vi+1 = Di
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•	 Step 6: Compare the obtained values of Ui
d
 with the measured data from ADCP.

4 � Result

4.1 � Three‑dimensional flow structures in the trapezoidal channel

The flow dynamics in the trapezoidal channel are reconstructed from the Large Eddy 
Simulation results as shown in Fig. 4. The changes in the depth-averaged flow profile are 
monitored along the computational domain in the cross-sections 1, 2, 3, and 4. As there 
are uncertainties in the value of roughness ( ksi and ksb ) and the inlet flow condition, it is 
necessary to identify the impacts of these uncertainties to the LES results by comparing the 
computational results with the experimental data.

The impact of roughness on the vertical profile of streamwise component (U(z)) is 
investigated by comparing the simulation results of Cases 1, 2, and 3 (Table 3) using the 
same computational Grid-1. As shown in Fig. 5, the main channel and floodplain verticals 

Fig. 4   A planform (left) and cross-sectional view (right) of the Large Eddy Simulation setup. Cross-
sections 1, 2, 3, and 4 are separated with an equal spacing of 3.75 m. The cross-section 4 corresponds to the 
outlet plane
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are 0.3 m and 0.2 m deep (see also Fig. 1), respectively. Although the values of ksi and ksb 
are varied significantly, the vertical profiles in the main channel and the floodplain remain 
nearly identical. Thus, the LES results show that the roughness lengths of the ice and the 
bed does not impact the U(z) significantly in this experimental setup.

The sensitivity of the LES results with the computational grid is shown by comparing 
results of Case 1 (1.3M) and Case 4 (5.0M) in Table 3. The comparison in Fig. 5 shows that 
increasing the number of grid points does affect significantly the profile in the main channel 
but not the floodplain one. To further examine the combined impact of the computational 
grid and the roughness, the vertical profiles of Case 1, 4, and 5 are compared. Note that the 
ice roughness in Case 5 is set to be 0.0059 m, which is one order of magnitude larger than 
the one of Case 1. It is evident that the results of the finest grid (Grid-3) in Case 5 reflects a 

(a) (b)

Fig. 5   The observed and computed (LES) vertical velocity profiles for a the main channel vertical (MC, 
y = 0.59 m ), and (b) for the floodplain vertical (FP, y = 0.91 m ) at cross-section 4. The exact locations of 
these verticals are shown in Fig. 1. The grid computational setups are shown in Tables 2 and 3

Table 1   The fitted values of ks 
for foam (ice) and glass (bed) 
in the main channel (MC) and 
floodplain (FP) verticals using 
the experimental data of Wang 
et al [53]

Material Roughness 
length, ks 
(m)

Foam (from MC) 0.00091
Foam (from FP) 0.00026
Glass (from MC) 0.00490
Glass (from FP) 0.00570

Table 2   Computational grids for the trapezoidal channel of [53]. The value of Δ+
max

 is estimated using 

(Δ+)max =
max(Δx,Δy,Δz)u⋆

�
 . The shear velocity is u⋆ ≈ 0.0054 m∕s , which is estimated from the measured 

profile of Wang et al [53]

Grid name Size Δx(m) Δy(m) Δz(m) (Δ+)max

Grid-1 251 × 101 × 51 0.0598 0.0099 0.0059 322
Grid-2 1001 × 101 × 51 0.0150 0.0099 0.0059 81
Grid-3 1001 × 101 × 101 0.0150 0.0099 0.0030 81
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Fig. 6   Grid refinement study for the distribution of depth-averaged velocity ( Ud ) in Large Eddy Simulation 
(LES) with different grid levels (Grid-1, Grid-2, Grid-3 - see Table 2) for case 1, 4, and 5 (see Table 3), 
respectively at cross-section 4 (see Fig. 4). The computed profiles are also compared with the experimental 
observation [53], which is available only on the right side of the trapezoidal channel. The origin ( y = 0.5 m ) 
is at the center of the channel

(a) (b)

Fig. 7   The cross-stream velocity profile (V(z)) along the depth from Large Eddy Simulation under different 
grid levels Grid-1 (1.3M), Grid-2 (5M), and Grid-3 (10M) in cases 1, 4, and 5 (Table 2) at cross-section 4. 
The verticals are at a y = 0.59 m in the main channel, and b y = 0.91 m on the floodplain (see Fig. 1)

Table 3   Computational setup 
for simulation cases in the 
trapezoidal channel in Fig. 1. 
The combination of the 
computational grids (Table 2), 
ice roughness ( ksi ), and bed 
roughness ( ksb ) give rise to 5 
simulation cases

Case Grid ksi (m) ksb (m)

1 Grid-1 0.00059 0.00535
2 Grid-1 0.00091 0.00535
3 Grid-1 0.00800 0.00600
4 Grid-2 0.00059 0.00535
5 Grid-3 0.00590 0.00535
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deviation from the Case 1 and 4 data near the bed in the main channel. In brief, the vertical 
profile in the main channel requires the use of sufficiently fine mesh.

The depth-averaged profiles are compared across different grid levels from Grid-1 (1M), 
to Grid-2 (5M) and Grid-3 (10M) in Case 1, 4, and 5 as shown in Table 3. The computed 
velocity profiles at the cross-section 4 are then compared with the experimental observa-
tion of Wang et al [53] (see Fig. 6). The results show that the computational results gener-
ally agree with the experimental observation regardless of the uncertainties in ksb and ksi . 
As the computational grid is refined, the depth-averaged profile follows closely the experi-
mental data, especially the transition from the main channel toward the side slope. The 
slight decrease over the side slope is captured accurately by all the grid configurations. 
The result of Grid-3 agrees excellently with the experimental data, especially in the tran-
sition over the floodplain and the vicinity of the side wall ( y = B = 1 m ). Therefore, our 
grid refinement indicates that the LES is able to reproduce the depth-averaged profiles in 
the experiment of Wang et al [53]. Since Case 4 has the averaged values of roughness in 
Table 1, its simulation result is used to report the flow dynamics in the subsequent sections.

The dependence of the lateral velocity (V(z)) on the computational grid is investigated 
in Fig. 7 in two locations: (a) near the channel’s center, and (b) on the flood plain for Case 
1, 4, and 5. The results show that the value of V(z) varies largely depending on the location 
of the vertical. In Fig. 7a, V(z) is near zero and does not follow a particular pattern near 
the channel center. However, the distribution of V(z) is completely different in the flood-
plain vertical with three separate regions as shown in Fig. 7b. In the mid-depth region, it 
is skewed toward the channel wall ( V > 0 ) whereas it is negative ( V < 0 ) near both the ice 
cover and the channel bed. In this region, the numerical value of V(z) reaches ≈ 2% of the 
U . To investigate the dependence of V(z) on the computational grids, all profiles of V(z) are 
shown simultaneously on three grid configurations (Grid-1, Grid-2, and Grid-3). The com-
putational results yield similar distributions of V(z) in both verticals. In brief, the obtained 
distribution of V(z) is consistent across grid resolutions. Due to the roughness values, only 
the computational data from Grid-2 (case 4 in Table 3) are used to report the results in the 
following discussions.

The secondary flow pattern in the channel is reconstructed from the LES results as 
displayed in Fig. 8. The secondary flow patterns of Case 4 (Table 3) are shown in Fig. 8a. 
Remarkably, the two-layer structure appears on the floodplain near both banks, which is 
consistent with the double-stacked theory. On both floodplains, two streamwise circulations 
are found on top of each other over the flow depth of 0.2 m. These two circulations have 
opposite rotational directions: (1) clockwise in the ice layer circulation, and (2) counter-
clockwise in the bed layer circulation. The circulations near the ice layer rotate towards 

Table 4   The summary of the 
hydrological data at the USGS 
Fargo (09020104) station and 
the number of ice holes in each 
cross-section

Case Q ( m3∕s) Elevation (m) Total 
verticals (ice 
holes)

I
a

12.5 265.92 6
I
b

12.8 265.92 7
I
c

13.8 265.93 7
I
d

13.8 265.93 8
I
e

13.8 265.93 7
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Table 5   Fitted parameters of the analytical method (Eq. 6 and 8) for each section in the trapezoidal channel 
(Fig. 1). Note that values of K, fd , and �d are taken from Wang et al [53]. Abbreviations: Main Channel 
(MC), Side Slopes (SS), Floodplain (FP)

Section fd �d K (%) C
1

C
2

C
3

C
4

MC 0.0280 0.067 1 −3 × 10−5 9.9 × 10−3 – –
SS 0.0307 0.098 0.1 - - −0.143 1.5 × 10−4

FP 0.0321 0.097 −3.5 2.5 × 10−7 0.016 – –

(a)

(b)

(c)

Fig. 8   Reconstruction of secondary flow patterns from Large Eddy Simulation (Case 4) at the outlet. a The 
secondary flow patterns and circulations are generated using streamlines. The cross-stream (V) and vertical 
(W) velocity components are used to generate the streamlines and contours. b Cross-sectional distribution 
of the turbulence statistics for u′v′ , and c u′w′ . The area of high turbulent stresses corresponds well to the 
dynamics of the secondary flows
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the channel center. The presence of these circulations shows the impact of rigid walls near 
the top (ice) and bottom (channel bed) boundaries. Interestingly, there is only one large 
circulation on the side slope ( 0.7 m ≤ y ≤ 0.8 m ) due to a strong downward movement of 
the secondary flows near the channel bed. The maximum secondary flow is located near 
the channel bed (both the side slope and the floodplain). Considering the bulk velocity 
( U = 0.204 m∕s ), the maximum secondary flow velocity reaches to ≈ 5% of U . In 
conclusion, our LES results indicate a significantly strong secondary flow, which forms the 
double-stacked circulations on floodplains.

The distribution of turbulence statistics over one cross-section is presented in Fig. 8b, c. 
The turbulent stresses ( �xy = −�u�v� and �zx = −�u�w� ) are highly correlated to the second-
ary flow dynamics on the floodplain and the side slopes as seen Fig. 8b, c. The interaction 
between the banks (vertical walls) and the flow is shown as the elevated magnitude of u′v′ 
as depicted in Fig. 8b. Both components u′w′ and u′w′ reach their highest magnitudes on 
the side slope as it is the location of the strongest upward movement in the secondary flows 
as illustrated in Fig. 8b, c. In short, the patterns of secondary flows correlate strongly with 
turbulent stresses.

4.2 � Validation of SKM‑based solution

The analytical solution (Eq.  6 and 8) is reconstructed by fitting with the measured data 
using the reported values of fd , �d , and K in Wang et al [53] (see Table 5). Note that the 
values of C1 , C2 , C3 , and C4 (Eq. 6 and 8) are not reported by Wang et al [53]. Therefore, 
a fitting procedure was carried out to determine the values of ( C1,C2 - Eq. 6) and ( C3,C4 
- Eq. 8) in both the main channel/floodplain and the side slopes, respectively as seen in 

Fig. 9   Validation of numerical reconstruction (Eq.  16) for the depth-averaged velocity ( Ud(y) ) using 
N = 101 . The numerical approximation is compared with the experimental observation of Wang et al [53], 
and the analytical solution (Eq. 6 and 8). The experimental data is only available on one-half (the right side) 
of the trapezoidal channel ( y ≥ 0.5 m)
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Table 5. The obtained fitted parameters are used to generate the complete depth-averaged 
profile in the entire cross-section.

The comparison between the analytical solution and the measured data [53] is shown 
in Fig. 9. The measured Ud profile at the channel center maintains a relatively large value 
in the main channel ( 0.5 m ≤ y ≤ 0.7 m ) and only decreases as the side slope starts 
( y ≥ 0.7 m ). As the side slope of the trapezoid begins ( y = 0.7 m ), the measured value of 
Ud decreases until the slope ends ( y = 0.8 m ). Ud slightly increases at the transition from 
the slope to the floodplain at y = 0.8 m . It becomes constant again in the floodplain. Ud 
continues to decrease sharply as near the vertical walls ( y = 1 m and Ud = 0 ). The analyti-
cal solution fails to capture the flat profile in the main channel region as well as the slight 
increase at y = 0.3 m as seen in Fig. 9. Note that the analytical solution is specifically avail-
able for a region with a constant slope, using either Eq. 6 ( s = ∞ ) or Eq. 8 ( s = 1 ), the ana-
lytical profile cannot be applied for a region with non-constant slope.

The value of Ud using our numerical procedure (blue solid line - Eq. 16) is now vali-
dated with the measured data and the analytical solution as shown in Fig. 9. In this case, 
the mid − boundary location is chosen as the channel’s center exactly as required by the 
numerical procedure in section  2. Although the channel geometry varies largely from 
s = ∞ in the main channel and floodplain, to s = 1 on the side slope, our numerical approx-
imation is able to compute Ud with any value of s, eliminating the need for switching the 
form of solution. Our results in Fig. 9 show that the numerical approximation of Ud agrees 
well with the measured data based only on the reported values of the governing param-
eters: �d , fd , and K. In conclusion, our numerical solution agrees well with both the meas-
ured data and the analytical solution without the need to introduce additional parameters in 
the trapezoidal channel.

4.3 � Application for field data

4.3.1 � Range of parameters

Three parameters (K, fd , and �d ) are required for the SKM-based approximation, such 
parameters must be evaluated before applying Eq.  16 for field conditions. Although the 
study of Wang et al [53] provided reference values in laboratory environment, the ranges 
of these parameters field conditions have not been reported for ice-covered flows before. 
Thus, a systematic investigation of these ranges is needed as explained below.

The magnitude of K is varied in the range of 0.001 to 0.1 as suggested by previous 
works for both experimental data [53] and field condition [10]. Note that the value of K is 
typically 0.005 ≤ K ≤ 0.05 in meandering rivers [8, 10].

The friction factor ( fd ) can be estimated as Wang et al [53]:

where R is the hydraulic radius of the bed and ice layer ( R = A∕P ); nb and ni are Manning’s 
coefficients for the bed and ice, respectively; and � = �i∕�b.

The range of Manning’s coefficients for both the river bed ( nb ) and the ice cover ( ni ) are 
also investigated. For silt and clay in the river bed of the Red River, nb is chosen to vary 
from nb = 0.014 to 0.046 [2]. For ice roughness, ni = 0.030 varies from ni = 0.01 to 0.03 
[39]. Following Eq. 17, the resulted value of fd varies from 0.011 to 0.11.

(17)fd =
8g

�b + �i

[
n
3∕2

b
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The value of �d has been reported to vary from �MC = 0.067 to �FP = 40 in the exper-
iment of Shiono and Knight [43]. In the current work, �d is varied within the range of 
�d = 0.035 − 0.1 as reported in Pu [37].

4.3.2 � Validation with field data

The parameters (K, fd , and � ) are found for each cross-section Ia , Ib , Ic , Id , and Ie separately 
by fitting the SKM-based solution (Eq. 16) with the field data (see section 2.3) using the 
ranges in section 4.3.1. From now on, the lateral (cross-stream) direction is denoted as � 
instead of y to differentiate the field data (meandering river) from the laboratory experi-
ment (straight channel).

As discussed in section  2, Eq.  16 requires the splitting of the cross-section into two 
parts: (1) the left part (outer bank); and (2) the right part (inner bank). During the fitting, 
the values of K and � are selected for each cross-section while fd is calibrated for the left 
and right parts independently to find f l

d
 (left) and f r

d
 (right).

For meandering rivers, it is not obvious how to split the cross-section appropriately 
because the thalweg ( Hmax ) and the locations of the maximum velocity ( Umax

d
 ) do not 

coincide typically. To address this splitting issue, the separation line mid − boundary is 
selected in two approaches: In Approach 1, the mid − boundary is at the ice hole with 
maximum velocity ( Umax

d
 ). In Approach 2, the mid − boundary is at the thalweg location 

( Hmax ). While it is feasible to determine in advance the location of the thalweg (under 

(a) (b)

(c) (d)

Fig. 10   The distribution of depth-averaged velocity ( Ud ) at cross-section a Ia , b Ib , c Ic , and d Id . The 
numerical approximations (Eq. 16) are used to reconstruct Ud using two different approaches: (1) Approach 
1 (maximum velocity location - blue dashed lines), and (2) Approach 2 (thalweg location - black dashed 
lines). The maximum velocity location coincides with the thalweg location in cross-section Id . Therefore, a 
single Ud profile is shown for Id
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ice-free condition, for example), it is not practical to determine the maximum velocity 
location before the actual ice measurement. Comparing Figs.  3 and 10, it is shown that 
the locations of Umax

d
 in cross-sections Ia , Ib , and Ic were slightly different ( ≈ 5m ) from the 

locations of Hmax (thalweg). At Id , the locations of Umax
d

 and Hmax coincide. Therefore, the 
comparison between computed values of Ud from Approach 1 and Approach 2, and the 
measured depth-averaged velocity using ADCP will provide an uncertainty quantification 
on the estimated Ud.

The fitted parameters for all cross-sections using Approach 1 and Approach 2 are shown 
in Tables  6 and 7, respectively. Comparing the results from Approach 1 and Approach 
2 in Fig.  10, it is evident that the fitted profiles Ud do not depend on the choice of the 
mid − boundary point significantly. Comparing the obtained values of K, �d, f rd , f

l
d
 , it is 

clear that the differences are minimal between the two approaches. In short, the choice of 
the mid − boundary has a minimal impact on the fitted parameters as well as the obtained 
profile Ud.

4.3.3 � Sensitivity analysis

To examine the dependence of Ud on the governing parameters (K, �d, fd) , a sensitivity 
analysis is carried out for the cross-section Id . Since the locations of Umax and Hmax coin-
cide at Id , there is only one choice for the mid − boundary location. Therefore, the com-
puted profile at Id depends only on the values of (K, �d, fd) , which are perturbed around 
f l
d
= 0.06, f r

d
= 0.095, �d = 0.09,K = 0.02 as shown in Tables 6 and 7. During the pertur-

bation, only one parameter (either K, �d , f ld , or f r
d
 ) is changed whereas the others are kept 

unchanged as shown in Fig. 11. First, our results show that the profile Ud is most sensitive 
to the choice of the friction factor fd as illustrated in Fig.  11a. This result justifies our 
rationale to separate the choice for f l

d
 and f r

d
 independently for the left and right parts of 

each cross-section. This separation in all cross-sections show that the friction factor of the 

Table 6   Fitting parameters 
to estimate Ud profile using 
Approach 1 (the mid − boundary 
location at Umax)

Section Mid-boundary 
Vertical

f l
d

f r
d

�d K

I
a

4 0.090 0.16 0.090 0.016
I
b

3 0.045 0.080 0.090 0.025
I
c

3 0.055 0.095 0.090 0.020
I
d

4 0.06 0.095 0.090 0.020
I
e

3 0.065 0.180 0.050 0.017

Table 7   Fitting parameters 
to estimate Ud profile using 
Approach 2 (the mid − boundary 
location is at Hmax)

Section Mid-boundary 
vertical

f l
d

f r
d

�d K

I
a

3 0.095 0.120 0.09 0.016
I
b

4 0.045 0.090 0.090 0.015
I
c

4 0.055 0.110 0.090 0.020
I
d

4 0.06 0.095 0.090 0.02
I
e

5 0.065 0.300 0.050 0.010
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inner bank is greater than the outer-bank one. Second, the impact of the dimensionless 
eddy-viscosity ( �d ) is found to be relatively insignificant as seen in Fig. 11b. Although the 
value of �d is perturbed to very low and high values ( �d = 0.001 to �d = 1 ), the profile of 
Ud does not change considerably. Third, the sensitivity of the secondary flow coefficient 

Fig. 11   The sensitivity of Ud(y) 
on the variability of governing 
parameters: a the friction factors 
( f l

d
 and f r

d
 ); b the dimensionless 

eddy-viscosity ( �d ); and c the 
secondary flow coefficient (K)

(a)

(b)

(c)
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(K) is tested as well. Our results show that K has a relatively low impact on the depth-
averaged velocity profile as seen in Fig. 11c. On the other hand, K has a significant role in 
determining the maximum velocity location. A low value of K coefficient tends to elevate 
Umax

d
 towards the outer bank. In conclusion, the friction factor plays the most important role 

in estimating the accurate range of Ud profile, while the secondary flow coefficient signifi-
cantly impacts the maximum velocity position.

5 � Discussion

5.1 � Numerical procedure to compute Ud

In this study, a novel method for computing depth-averaged profile ( Ud ) in ice-covered 
streams is proposed using the Shiono-Knight method (SKM). The proposed method is vali-
dated with the laboratory data of Wang et al [53] and our results from Large Eddy Simula-
tion as shown in Fig. 9. The method is then applied for field data [22] in a bend of the Red 
River of the North (United States) as depicted in Fig. 10. The results show that the pro-
posed method is able to replicate the experimental and simulation data well. The proposed 
method alleviates the constraints of the analytical solutions [53], which are only available 
for simple cross-sections. Therefore, our method applies to alluvial channels with arbitrary 
cross-sections.

Our proposed method (Eq. 16) requires only the knowledge of (i) the Darcy-Weisbach 
friction factor ( fd ); (ii) the dimensionless eddy viscosity ( �d ); and (iii) the secondary flow 
factor K. As shown in section 4.3.1, it is possible to estimate the range of values of fd , �d , 
and K using physical arguments. This is in contrast to the need to calibrate C1,C2,C3 and 
C4 in the analytical solution (Eq. 6 and Eq. 8) for a specific case in which it is unclear how 
to determine these values using physical measurements. In short, the proposed method is 
fully physically-based and the fitted values of fd , �d , and K can be used to interpret the 
hydraulic characteristics of the channel.

Our method requires the separation of one cross-section into the left and right parts and 
the value of Ud at the separation line (mid-boundary location). As Eq.  16 only requires 
boundary conditions at the beginning and end verticals, it does not dictate how to choose 
the mid-boundary location. While the choice of the mid-boundary location is obviously 
at the channel’s center for symmetrical channels (see Fig. 1), it is not entirely clear how 
to apply the procedure for irregular cross-sections because the thalweg ( Hmax ) and the 
location of Umax

d
 are not necessarily at the same place. The location of Umax tends to shift 

towards the outer bank [1] in meandering channels. Our analysis in Fig. 10 indicates that 
the choice of the mid-boundary location does not significantly affect the reconstructed Ud 
profile in the straight part of the river reach. This is important because the cross-section 
shape H(y) can be measured independently from the flow measurement during the open-
surface condition. Therefore, the profile of Ud under ice-covered conditions can be recov-
ered using our method with a single point of measurement at the thalweg location. This 
advantage will enable the fast calculation of Ud(y) if the values of fd , �d , and K are esti-
mated from physical arguments [49].

Our analysis in Fig. 11 shows that fd has the most significant impact on the Ud(y) profile. 
As the cross-section is split into two parts, the friction factors of the left and right sections 
of each cross-section ( f l

d
 and f r

d
 ) are found to be slightly different from each other as shown 

in Tables 6 and 7 for cross-section Ia to Id . The results show that the friction factor near 
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the inner bank (right) is always greater than the friction factor near the outer bank (left): 
f r
d
> f l

d
 . These values of fd agree well with the expected range in section 4.3.1. This is an 

unexpected finding since the measured values of Ud do not indicate a large skewness of the 
profile toward the outer bank. However, our method is able to reflect this trend.

5.2 � The double‑stacked vortices

Laboratory conditions [51] indicate that the vertical profiles can possess two points of 
inflections [50] in ice-covered flows. Field measurement of Demers et al [6] confirms that 
this feature indeed exists in a natural bend. Urroz and Ettema [51] suggests that the flow 
structures consist of two counter-rotating circulations in the same vertical. Field data of 
Lotsari et al [30] suggests that the presence of the double-stacked vortices is sensitive to 
the water depth. Our simulation results for the trapezoidal channel in Fig. 8 indicate that 
the double-stacked vortices can exist in the shallow area (floodplain). This result agrees 
well with the secondary flow patterns reported by Wang et al [53]. Moreover, our results 
indicate that the peak secondary flow is approximately 5% of the bulk velocity U , which is 
consistent with the observed ranges of the coefficient K in Table 5. In addition, the second-
ary flow pattern suggests that the turbulent stresses are strongly correlated with the forma-
tion of the double-stack vortices in Fig. 8b, c. This is remarkable because it highlights that 
it is possible for the presence of high turbulent stresses near channel banks due to the inter-
action of these vortices with the channel’s bed.

5.3 � Limitation

As Eq. 16 is derived for a straight channel (see Eq. 1), it is important to test its applica-
bility for cross-sections at meandering bends. While cross-section Ia , Ib , Ic , and Id are at 
the straight section of the river reach, the cross-section Ie is at the bend apex as shown 
in Fig.  2. Note that the cross-section shape of Ie is rather symmetrical (the thalweg at 
� ≈ 20m ) as shown in Fig. 12a. The locations of Umax and Hmax are separated at a distance 
of more than 5 m. Two approaches of fitting (Approach 1 and 2) provide significantly dif-
ferent profiles as seen in Fig. 12b. Moreover, both approaches cannot capture correctly the 
location of Umax

d
 . In addition, the fitted values of f r

d
 in Tables 6 and 7 are much higher than 

(a) (b)

Fig. 12   a Cross-section Ie at the bend apex (see Fig.  2); and b Ud profiles based on Approach 1 and 
Approach 2
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the expected value of 0.1. These results indicate that our method is mostly applicable to 
straight reaches. When it is applied for curved bends, its result might yield an unphysical 
shape of Ud.

6 � Conclusion

A new method for computing depth-averaged profiles in ice-covered flows is proposed. The 
method is then validated with laboratory, numerical simulation, and field data. Our results 
showed that the method is applicable to natural channels with irregular cross-sections. The 
following conclusions are made: 

1.	 The proposed method (Eq. 16) is applicable for ice-covered flows with arbitrary cross-
sections. However, it is mostly suited for straight river reaches. When it is applied to 
river bends, it might result in inaccurate profiles.

2.	 Once the cross-section (H(y)) is known in advance, our method can provide the depth-
averaged profile ( Ud(y) ) with data from a single ice hole at the thalweg location.

3.	 Our Large Eddy Simulation results show that the double-stacked vortices might exist in 
ice-covered streams near both banks if the local flow depth is low. The presence of the 
double-stacked vortices might impact the turbulent stresses.

4.	 Our results show that the key parameters governing the Ud profile are (K, fd , �d ). The 
value of fd is the most important factor to determine the shape of the profile. It is pos-
sible to extract the value of fd from field measurements, which can provide important 
information on the resistance of ice cover.
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