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Abstract

We consider a federated learning (FL) system consisting of
multiple clients and a server, where the clients aim to collabo-
ratively learn a common decision model from their distributed
data. Unlike the conventional FL framework that assumes the
client’s data is static, we consider scenarios where the clients’
data distributions may be reshaped by the deployed decision
model. In this work, we leverage the idea of distribution shift
mappings in performative prediction to formalize this model-
dependent data distribution shift and propose a performative
FL framework. We first introduce necessary and sufficient
conditions for the existence of a unique performative stable
solution and characterize its distance to the performative op-
timal solution. Then we propose the performative FedAvg
algorithm and show that it converges to the performative stable
solution at a rate of O(1/7") under both full and partial partic-
ipation schemes. In particular, we use novel proof techniques
and show how the clients’ heterogeneity influences the con-
vergence. Numerical results validate our analysis and provide
valuable insights into real-world applications.

1 Introduction

Traditional learning problems often assume static data dis-
tributions, which holds true for applications like face recog-
nition. However, in many other domains, this assumption is
invalid. In some cases, there is a natural evolution or shift in
the data distribution, requiring periodic acquisition of new
data and re-training of the algorithm. Additionally, distribu-
tion shifts can occur as a result of user responses to algorith-
mic decisions or attempts to manipulate the system. These
changes directly impact the features and labels used by the
algorithm for decision-making. Such shifts are considered
model-dependent. A typical example is banks’ loan issuance
decisions. The deployed decision model at this bank will
influence the data distribution of all its corresponding appli-
cants. For example, if increasing the number of credit cards
significantly decreases the default rate prediction, then the
applicants will try to get more credit cards to get the loan.
Adapting algorithms to these evolving distributions is cru-
cial for maintaining effective learning performance. The
model-dependent distribution shifts, where the deployed
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model itself can trigger changes in the data distribution and
influence the objective, is said to be performative. Perform-
ing prediction in the presence of such distribution shift is
called performative prediction (PP) (Perdomo et al. 2020).
The strategic learning problem (Hardt et al. 2016; Dong
et al. 2018; Milli et al. 2019; Hu, Immorlica, and Vaughan
2019; Braverman and Garg 2020; Chen, Wang, and Liu 2020;
Miller, Milli, and Hardt 2020; Shavit, Edelman, and Axelrod
2020; Haghtalab et al. 2020; Kleinberg and Raghavan 2020;
Zrnic et al. 2021) is a typical scenario of PP. In these prob-
lems, the users can “game the algorithm” through honest or
dishonest means to attempt to improve critical features so
as to obtain a favorable decision by the algorithm (e.g., in
loan approvals or job applications). Such user actions directly
lead to the distributional change in features and label that the
algorithm relies on for decision making.

Performative prediction has been primarily studied in a
centralized setting, with fruitful literature including the con-
vergence analysis (Mendler-Diinner et al. 2020; Drusvyatskiy
and Xiao 2020; Brown, Hod, and Kalemaj 2020; Li and Wai
2022; Wood, Bianchin, and Dall’ Anese 2022) and algorithm
development (Izzo, Ying, and Zou 2021; Izzo, Zou, and Ying
2022; Miller, Perdomo, and Zrnic 2021; Ray et al. 2022).

In modern large-scale machine learning, distributed learn-
ing offers greater privacy protection and better avoids the
computational resource bottlenecks compared to centralized
learning, and federated learning (FL) is a very popular exam-
ple. Suppose multiple banks use FL to jointly train a model
to predict applicants’ default rate. The aggregated model on
the central server is influenced by the strategic manipulation
of each bank’s applicants, and this model will be later de-
ployed to every bank, which influences that bank’s applicants’
strategic manipulation in the next round. Here the issue of
distribution shift is further compounded due to data hetero-
geneity in a distributed setting. Specifically, the distributed
data sources can be heterogeneous in nature, and their re-
spective distribution shifts can also be different. Prior works
in FL systems that address data distribution shifts, such as
(Guo, Lin, and Tang 2021; Casado et al. 2022; Rizk, Vlaski,
and Sayed 2020; Hosseinalipour et al. 2022; Zhu et al. 2021;
Eichner et al. 2019; Ding et al. 2020), typically do not con-
sider shifts in local distributions at the client end induced
by the model. In this work, we propose the performative FL
framework to study and handle such data shifts in FL.
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Extending the current results in PP to the decentralized
FL has a number of challenges. To highlight a few: 1) Data
heterogeneity: As already one of the major difficulties in
FL, tackling data heterogeneity faces additional challenges
when considering the disparity of client distribution shift.
2) Central = Local: During training, clients receive the
aggregated model at certain steps and train from it. While
fitting better as an entity, such aggregation may fail to fit well
on each client, which may lead to more severe shifting issues.
3) Heterogeneity in shift: some clients may be more sensitive
to the deployed decisions and have more drastic data shifts
than other clients, e.g., due to different manipulation costs in
strategic learning.

Recently, Raab and Liu (2021); Li, Yau, and Wai (2022);
Narang et al. (2022) generalizes the PP beyond the central-
ized setting, and formalize the multi-agent/player PP problem
to address the data and shifts heterogeneity challenges men-
tioned above. In Li, Yau, and Wai (2022), agents try to learn
a common decision rule but have heterogeneous distribution
shifts (responses) to the model, and study the convergence
of decentralized algorithms to the PS solution. Narang et al.
(2022) propose a decentralized multi-player PP framework
where the players react to competing institutions’ actions.
Raab and Liu (2021) proposes a replicator dynamics model
with label shift and Yin et al. (2023) proposes an reinforce-
ment learning method that works on this dynamic. The multi-
agent PP framework provides inspiration for our formulation
of the performative FL framework.

However, these works are missing two key properties to
fit for FL, multi-step aggregations and partial participation,
which makes the FL system practical and efficient.

In this paper, we formally introduce the performative Fe-
dAvg algorithm, or P-FedAvg, and establish its convergence.
P-FedAvg can be viewed as a substantial algorithmic ex-
tension to multi-agent PP algorithms since it supports unbal-
anced data, much less frequent synchronizations (multi-step
aggregation), and partial device participation. Our main find-
ings are as follows.

* We prove the uniqueness of the performative stable (PS)
solution in the performative FL problem, and show that it
is a provable approximation to the performative optimal
(PO) solution under mild conditions. Both the PS and PO
solutions will be formally defined in Section 2.1.

* We show in Section 3.3 that the P~FedAvg algorithm con-
verges to the PS solution and has a O(1/T") convergence
rate with both the full and partial participation schemes
under mild assumptions similar to those in prior works.

In doing so we also introduce some novel proof techniques:
we prove convergence of P-FedAvg without a bounded
gradient assumption, and instead use a relaxed assumption
that characterizes the clients’ heterogeneity. The new proof
techniques illustrate how the heterogeneity influences the
convergence and they also work on conventional FL prob-
lems with static data distributions.

To our best knowledge, we are the first to define and study
the performative predictions in computer vision tasks and
show interesting empirical convergence results.

Our work is closely related to the works in FL (Li et al.
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2020a; Karimireddy et al. 2020; Wang et al. 2020; Haddad-
pour et al. 2021; Zhu, Hong, and Zhou 2021; Li and Wang
2019; Lin et al. 2020; Guo, Lin, and Tang 2021; Casado et al.
2022; Rizk, Vlaski, and Sayed 2020; Hosseinalipour et al.
2022; Zhu et al. 2021; Eichner et al. 2019; Ding et al. 2020),
strategic learning, PP, and multi-agent PP, where we highlight
the key properties of our work and demonstrate its differences
with previous works in Table 1. And we refer the reader to
the definition of each property in Section 2. Specifically, com-
pared to the multi-agent PP, the performative FL framework
utilize the multi-step aggregation and partial participation
schemes to significantly improve the system’s efficiency. The
technical challenges are explained in Appendix B. Please
also see more on related works in Appendix A.

2 Problem Formulation

In this section, we formulate the performative FL problem,
define the learning objective, and introduce our performative
FL algorithm to optimize the objective function.

To help with the understanding of performative FL, we first
recall the performative prediction problem (Perdomo et al.
2020). Consider a typical loss minimization problem where
the data distribution experiences a shift induced by the model
parameter, expressed as a mapping D(8). Such a distribution
shift is model-dependent, and is called Performative Shift.
The objective function is thus given by

f(8) :=Ez.pe)l0;2)],

where ¢ denotes the loss function. Then the performative opti-
mal (PO) solution is 877 := arg ming f(0). (Perdomo et al.
2020) also introduces a decoupled objective function, also
called the performatively stable (PS) model, which separates
decision parameters (6) from deployed parameters (0):

1(6:0) =E,_p[0(6: 7))

Minimizing this objective achieves minimal risk for the distri-
bution induced by the deployed parameters, eliminating the
need for retraining, which makes it more practical. The PS so-
lution is defined as 67 := arg ming f (0; or S). (Perdomo
et al. 2020) showed that 67 #* 67° in general. Naturally,
Perdomo et al. (2020) also showed algorithms that ignore
Performative Shifts will not find the PS or PO solution in
general. We next consider a distributed setting and introduce
performative FL.

2.1 System Settings and Objectives

Consider a system with N clients and a server, where the
clients have feature distributions as D; (@), supported on
Z CRM and 8 € R™ denotes the decision (model) param-
eters deployed on the ¢-th client. We consider the case where
clients can have heterogeneous distributions D, (6) # D; (),
and each client represents a p; > 0 fraction of the total data
population, Zf\il p; = 1. We would like to emphasize that
in contrast to static federated learning, the dynamic setting
not only encompasses data heterogeneity, which refers to
the varying initial distribution of data among clients, but also
shift heterogeneity, wherein the shift mapping D;(0) differs
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Related Works Performative Data Heterogene- Multi-step Aggrega- Partial Participa-
Shifts (Sec ity (Sec 2.1) tion (Sec 2.4) tion (Sec 2.4)
2)

Strategic Learning & PP v

Federated Learning v v v

Multi-agent PP (Li, Yau, and Wai v v

2022)

Our Work v v v v

Table 1: A Summary of Key Properties of Our Works and Related Fields.

across clients. Additionally, when D;(6) = D; are fixed, the
problem returns to conventional FL.

The system aims to minimize the weighted average loss
across all agents, which is given by the performative optimal
objective as follows

This objective can typically model the strategic learn-
ing problem with different sub-populations in the system,
where each client corresponds to a sub-population. Each sub-
population may differ in some attributes so that they respond
to the decision parameters differently, e.g., due to different
action costs (Milli et al. 2019; Hu, Immorlica, and Vaughan
2019; Braverman and Garg 2020; Zhang et al. 2022; Jin
et al. 2022). The decision maker uses a common decision
rule for the entire population and aims to minimize the ex-
pected loss, and p; represents the population fraction of each
sub-population. Correspondingly, the decoupled/performa-
tive stable objective is

i(0:0) :=E, _p 5[06; 2], f(60) :=

where the first argument denotes the client’s decision param-
eter, and the second argument is the deployed parameters,
which determine the distribution of the samples together with
D;(-). The PS solution is

‘= arg mingegm vazl PiEz,~p,0)[€(0; Z;)].

E,

N
075 = arg meinzpiEZi~Di(9PS)[£(0; Z;)]

=1
= argmin f(6; 67%).

@)

This is a fixed point equation with 075 as a fixed point.

2.2 Key Assumptions
We make similar but weaker assumptions compared to (Li,
Yau, and Wai 2022; Perdomo et al. 2020).
Assumption 2.1 (Strong Convexity). Given any 0 c R™,
f(-,0) is p-strongly convex in 0, i.e., f(6';0) > £(6;0) +
(Vf(6:0),0"—0) + 56" —0]3,0',0 € R*.

In Assumption 2.1, we do not require strong convexity for
every f; but only the f.

S pifi(6:0),
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Assumption 2.2 (Smoothness). The loss function £(8; z) is
L-smooth, i.e., |V{(0;z) — VL(O';2")||2 < L(||0 — 0'|]2 +
12 = 2'[l2).

Assumptlon 2.3 (Distribution Mapping Sens1t1v1ty) For any
i =1,...,n, Elel > 0 such that Wy (D;(0),D (0’)) <
€10 — o ||27 v0',0 € R™, where W;(D,D’)) is the 1-
Wasserstein distance under Lo norm between D, D’.

Assumption 2.2 and 2.3 together induce the smoothness of
fi(-,+), which is a result of Lemma 2.1 in (Drusvyatskiy and
Xiao 2022) and will be used in the later proofs.

Lemma 2.4 (Continuity of V f;). Under Assumption 2.2
and 2.3, for any 6y,0,,0,0 € R™, (600;0) —
Vfi(01;0)]2 < L[|6o — 01]|2 + Lei[|6 — 6.

We introduce the following assumptions specifically made
in decentralized PP (Li, Yau, and Wai 2022).
Assumption 2.5 (Stochastic Gradient Variance Bound). For
anyi=1,..., N and 8 € R™, there exists o > 0 such that
Ez.~p,0)|IVE(6; Z:) =V £i(6;0) |3 < o*(1+]6-677|3).
Assumptlon 2.6 (Local Gradient Bound). For any
) ,N and 86 € R™, 3¢ > 0 such that
IVf(6; 9) V5,(0: )5 < (1 +1l6 — 07°3).

Here we elaborate on Assumption 2.6, and explain our con-

tribution for using it over another commonly used assumption
in FL (Li et al. 2020b), which is

Ez.~p.0)lIVE(6; Z)|3] < G*.
First, we can show (3) is a
than Assumption 2.6. To see this: when (3) holds,
let 2 4G2, then HVf(B;B) —~Vi(0;0)]5 <
2(|Vf(6;0)II5 +2/[V fi(6;6) y|2 <4G? =2
We further give a concrete example where (3) does not
hold but Assumption 2.6 holds.
Example 2.7. Suppose we have a two-client Gaussian mean
estimation problem ((0, Z) = (0 — Z)* where 0, Z € R,
Di(6) = N(40.0%), Do(0) = N(~36,0%), and p,
p2 = 5. Then Bz, o, (o) [ VL(9; Z1)3] = Ez,~p, (0 [(0 —
21)2] = 0'2 + (EleDl(g)[G — Zl])2 i92 + 0'2 and
Ez,~p,0)[|VE(0; Z5)|13] = 262 + o2 which all go to in-
finity when 0 goes to infinity. Thus (3) does not hold. On
the other hand, V f1(0;60) 10, Vf2(0;0) = 26, and

3

stronger condition
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Vf(0;0) = 20, 675 = 0, then by taking < = %, we can
verify Assumption 2.6 holds.

Secondly, (3) also implies Assumption 2.5: when (3) holds,
letting 02 = G? leads to E[||VI(0; Z;) — V fi(0,0)|3] <
E[||[VI(6; Z:)|3] < G? = o?. On the other hand, Assump-
tion 2.6 does not imply Assumption 2.5. Moreover, Assump-
tion 2.6 better characterizes the system heterogeneity, as we
show how the heterogeneity impacts convergence (more de-
tails are in Theorem 3.1, 3.2, and 3.3).

2.3 Properties of the PS Solution

Define the average sensitivity as € := Ef\il pi€i, and the
mapping ®(0) := arg ming cgm f(6’,0). Then we can es-
tablish the existence and uniqueness of the PS solution.

Proposition 2.8 (Uniqueness of 07%). Under Assumptions

2.1, 2.2 and 2.3, if € < p/L, then ®(-) is a contraction
mapping with the unique fixed point °° = <I>(0PS); if
€ > /L, then there is an instance where any sequence
generated by ®(-) will diverge.

Proposition 2.8 establishes a sufficient and necessary con-
dition for the existence of 87 S, similar to (Li, Yau, and Wai
2022). This condition only depends on the average sensitivity
€, which implies that we may still have a unique performa-
tive stable solution 87 for the whole system even if certain
clients do not. The following proposition further validates
the quality of 8 “ in terms of its distance to 7°.

Proposition 2.9 (Distance ||07° — 67|, Bound). Under
Assumption 2.1 and 2.3, suppose that the loss £(0; Z) is L -
Lipschitz in Z, then for every performative stable solution
075 and every performative optimal solution 07°, we have
1075~ 07, < (2L.2) /.

Please find all proofs in the Appendix.

2.4 The P-FedAvg Algorithm

In P-FedAvg, the clients communicate with the server ev-
ery E local updates (Multi-step Aggregation for £ > 1).
Denote 7, := {nE|n =1,2,...} as the set of aggregation
steps. Next, we formalize the full and partial participation
schemes of the proposed P-FedAvg.

Full client participation. All clients communicate with
the server at every aggregation step and update the local
models 87" based on the following: let Z! ™! ~ D;(6"),

wit = 0! —n, V(0 21,

N t+1
0§+1 _ i
; =

2 j—1 PjW;

i+l

K2
Partial client participation. A more realistic setting that
does not require the response of all clients’ output at every
aggregation step. In this case, the central server only collects
the outputs of the first K < N responded clients at the
aggregation step. Denote the first X' < N responded clients
in ¢-th step as a size-K set S; := {i1,...,ix} € [N]. Let

ift+1e€lgp
0.W.
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ZH ~ Di(6Y), then
witt = 0] — 0, VU(6]; ZT);

samples St 1, and '
e ; ift+1elp
6! = average {wt+1 }k-est“
'u]t.+1 O0.W.

3
We further consider two schemes of partial participation:

1. (Scheme I) The server establishes S;y1 by i.i.d. with
replacement sampling an index k € {1,---, N} with
probabilities py,--- ,py for K times. Hence S;yq is a
multiset that allows an element to occur more than once.

Then the server averages the parameters by 6/ =
% D ke Sisa wzﬂ. This sampling scheme is first pro-

posed in (Sahu et al. 2018) but the theoretical analysis
was first done in (Li et al. 2020b).

. (Scheme II) The server samples S;41 uniformly with-
out replacement. Hence each element in S;11 only oc-
curs once. Then the server averages the parameters by
02“ = Zk‘,e«gfﬂ»l Dk %wzﬂ. Note that we cannot ensure

> ke pr% = 1unless p, = +, Vk (Li et al. 2020b).

Partial participation enhances real-world applicability. For
instance, consider multiple banks collaborating to develop
a loan approval model. Each bank communicates and syncs
data only when a sufficient amount of new local data is gath-
ered. The frequency of communication may vary significantly
among banks due to local loan demand. Consequently, agents
are expected to participate only partially over time.

Communication cost. The P-FedAvg requires two
rounds of communications, aggregation, and broadcast for
every F iterations. So at time step 7', the system completes
2|T/E| communications. We follow the setting in (Li et al.
2020b) where the server aggregates based on the chosen
scheme and broadcasts the aggregated parameters to all
clients. Our use of multi-step aggregation reduces communi-
cation costs compared to Multi-agent PP, especially in scenar-
ios with high communication costs. In the same time period,
P-FedAvg runs fewer communication steps but much more
computation steps compared with Multi-agent PP, and poten-
tially enables much faster convergence.

Next, we’ll prove that P-FedAvg has O(1/T) conver-
gence rate under the above assumption. As a supplement,
we prove in Appendix F that P-FedAvg also has O(1/T)
convergence rate if we replace Assumption 2.6 with (3).

3 Convergence Analysis

We show that the P-FedAvg converges to the unique 6"
at a rate of O(1/T") under the assumptions made in Section
2, which holds for all above-introduced schemes. The key ob-
servation is that for sufficiently small and decaying learning
rates, the effect of F steps is similar to a one-step update with
a larger learning rate in the static case, as stated in (Li et al.
2020a) without the performative setting. Therefore, given
appropriate sampling and updating schemes that satisfy the
above assumptions, the global update behaves similarly to
the repeated performative SGD in (Perdomo et al. 2020). We
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also show that partial device participation makes the averaged

parameter sequence {gt} have the same mean as but a larger
variance than the full participation, where the variance can
be controlled with carefully chosen learning rates. It’s worth
noting that the heterogeneity of clients plays a key role in the
convergence analysis, which we elaborate on below.
Quantifying the heterogeneity. The client heterogeneity

can be quantified by the consensus error Zfil ;0! — 0 12,
which is dynamic due to the nature of performative prediction.
It depends on both the shift mappings D; and the decision
parameters. After every broadcast, the heterogeneity leads
to heterogeneous distribution shifts, causing heterogeneous
local updates, resulting in the consensus error. The ¢ value in
Assumption 2.6 is also a good indicator for heterogeneity.

Next, we will first present the convergence analysis of
the full participation scheme and later extend the analysis
to partial participation schemes. Due to the complexity of
analysis in the performative setting, we define the constants
in Table 2 for ease of analysis and clarity of presentation.

3.1 Convergence of Full Participation

Theorem 3.1 (Full Participation). Consider P-FedAvg with
full participation and diminishing step size 1 = ﬁ
oo (4E2 + 2E)03}. Under As-

sumptionZ] 22,23, 2.5, 26 we have E[[8" — 6753 <
VBB - 0753},

where v = max{

72

7+t’ YVt where v = max{

The key to the proof is that the expected distance EH@t —
675|2 and the expected consensus error Zf\; R0 —

"1 P52 and
expected consensus error 3 | p;E[|61 ! — 8|2 in the

previous step. While we can establish a descent lemma for
expected distance including the expected consensus error, it
is impossible to establish one for expected consensus error,
which makes it impossible to establish a joint descent lemma
for expected distance and expected consensus error as in
(Li, Yau, and Wai 2022). Fortunately, consensus error will
become zero at every aggregation step, which enables us
to control expected consensus error at every step within a
constant with a novel double-iteration technique under small
enough step sizes, and establish a standard descent lemma in
SGD analysis for expected distance.

'||2 all depend on expected distance E|[@

3.2 Convergence of Partial Participation

As mentioned in Section 2, the partial participation scheme is
more realistic in FL (Li et al. 2020b) and is of more interest
since it reduces the stragglers’ effect.

We first present the convergence result of Scheme 1.

Theorem 3.2 (Partial Participation, Scheme I). Consider
P-FedAvg with partial participation (Scheme 1) and

a diminishing step size 1 FiG=E where v =
max { ﬂ%o B2 =V(4E? +10E + 6)03} Under Assump-
tion 2.1, 2.2, 2.3, 2.5, 2.6, we have ]E[Het — 0753 <

4B:1

YVt where v = max{ =t ,’Y]EHO OPSH%}-

’Y‘H ’
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Then we present the convergence result of Scheme II. As

discussed in Section 2, we need probabilities p; = ﬁ, Vi to
ensure ) ;s g =1
Theorem 3.3 (Partial Participation, Scheme II). Con-

sider P-FedAvg with partial participation (Scheme

II) and a diminishing step size ) where v =

2 2 -

max { o \/ 4E? + 10F + 6)Cr} Under Assump

tion 2.1, 2.2, 2.3, 2.5, 2.6, we have E[||8' — 075|2] <
S5 Vit where v = max{‘ig?,'yEHB BPSH%}.

Besides the technical difficulty as that of Theorem 3.1, we

also need to bound the variance of @' at the aggregation step.
Fortunately, it can be bounded by the consensus error. Similar
to the proof of Theorem 3.1, we can establish a standard
descent lemma in SGD analys1s for the expected distance.
Scheme II requires p; = N , V¢, which violates the unbal-
anced nature of FL. One solution in (Li et al. 2020b) is scaling
the local objectives to g;(0; ) = p; N f;(0; 6), and then the
global objective is a simple average of the scaled local ob-
jectives f(6;0) = SN pifi(0;:8) = LN 4,(6:0).
We need to be careful with the assumptions in Section 2
since scaling the objective will change those properties. The
convergence theorems still hold if we replace L, u, o, ¢ with
L' = qmawLa ,U/ = dmintt, 0 = y/dmaz0, ¢ = vV mazSs

where ¢nqe := N - max; p;, ¢min := N - min; p;.

3.3 Discussions on the P-FedAvg Design

For conciseness, We focus on the aggregation step denoted
as T € Ig, then L % denotes the corresponding number of
communication rounds.

Choice of E. We are interested in the total time we need
to achieve an e accuracy, and how this total time changes
with E. We use our results in Theorem 3.1, 3.2, and 3.3, and
denote Tt := % —  as the number of computation steps that
is sufficient to guarantee an e-accuracy. Suppose the expected
time for each communication step is C' times the expected
time of each computation step, then the total time required
for e-accuracy is linear in T, + C T‘ . Below we separately

analyze the influence of F on L and T., and then discuss
how to choose the optimal E for different C' values.

Let By := B in Theorem 3.1 for full participation and
~; (@ = 0,1, 2) denotes the v in Theorem 3.1, 3.2, and 3.3
respectively. Then in Theorem 3.1, 3.2, and 3.3, T, is domi-
nated by O (4B;/ji> + vE[|[6" —07||2]) where i = 0,1, 2.
From the definition, B; is almost a constant w.r.t. £ and ~;
is of O(E?log E). This means that when E grows, the to-
tal update steps to reach e-accuracy, T will grow, while the
number of aggregation steps needed, L= 7= will first grow and
then decrease.

Now we consider T, +C'- ‘ , the total time needed to reach
e-accuracy. From the above analy51s, we know it is of order
O(E?1og E)+C-O(Elog E)+C-O(log E/E). When com-
munication is fast, i.e., C is small, O(E?log E) is the domi-
nating term, and we can focus more on the number of com-
putation iterations 7T¢, and smaller F values are preferable.
However, when C'is large, C-O(Elog E)+C-O(log E/E)
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System independent constants

System dependent constants

e= Yripie
€maz ‘= IAX; €
= p—(1+9)eL
1= (L(1 4 €maz)?) /(26€)
Co = 4[02 + L2(1 + emm)z}
e = 6[20% + 3L*(1 + €max)?]
coi= 1602+ 1262 + (802 + 12¢2) /E||@° — 67512
5= (4802 +36¢2)E[8° — 075 |2+ (2402 +36¢2)

6= (2E%2+3E+1)log(E +1)

Mo = ﬂ/ 202 + (0163 + 02/6)0466)

’f]o = ,L~L/ 20’2 + (0163 + 02/6)64(2E2 — E) IOg E)
B:= 20%+ (4dc1fig + 4cof3)es(2E% — E) log E
Bl = 20’2 + (401770 + 402773 + 1/K)C5CG
By = 202 + (40177]0 + 402778 + %)0566

Table 2: Constants for Convergence Analysis

becomes the dominating term, and we should focus more on
the number of communication rounds % and some middle
FE values are preferable.

Choice of K. Again T is dominated by O(4B;/i* +

ViE[H@O —o7% 13]) where i = 1, 2. By the formulation of B;
(¢ = 1, 2), we know T, monotonically decreases with K, but
the total communication time increases with K due to more
severe stragglers’ effect. In general, we show in Theorem 3.2
and 3.3, the convergence rate has a weak dependence on K,
which is also empirically observed in Figure 6(a). Therefore,
we can set % to an appropriate small value to reduce the
straggler’s effect while keeping the convergence rate.

We note that our discussions on the choice of sampling
schemes and the learning rate decay are similar to Li et al.
(2020b), and please refer to Appendix G for more details.

4 Numerical Experiments

Our experiment is under a decentralized setting and we can
use static data FL and multi-agent PP algorithms as baselines.
For clarity of presentation, we only show one static data FL.
algorithm, FedAvg, since all static data FL algorithms will
converge to a static solution with a constant bias to the PS
solution due to performative shift. When we choose E =
1 and full participation, P-FedAvg is equivalent to multi-
agent PP Li, Yau, and Wai (2022) with a fully connected
communication graph. The comparison of P-FedAvg with
multi-agent PP is mainly around the convergence time. This
is comparison not straightforward (Section 3.3) since we
need extra settings to model the communication graph, the
communication time, and the straggler’s effect. Our code is
publicly accessible'. Please see Appendix H for more details.

4.1 Performative Gaussian Mean Estimation

We perform P-FedAvg to estimate the mean of heteroge-
neous Gaussian distribution under performative effects and
examine the impact of the hyperparameters, the sampling
schemes, and client heterogeneity. This experiment is also
used in PP (Perdomo et al. 2020) and multi-agent PP (Li,
Yau, and Wai 2022) literature to clearly illustrate the impact
of different system design parameters on the convergence.
We consider N = 25 clients, with the ¢-th client minimizing

"https://github.com/tsy 19/PerformativeFed Avg
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the loss function £(0; Z;) := (0 — Z)?/2, 0, Z € R on data
Z; ~ D;i(0) := N(m; + €;0,0?%). For this loss function,
we have u = 1, L = 1. For € € [0, 1), the PS solution is
pPs — Sy pimi,

1—¢€ ’

Denote the weighted average of m; as m

while 875 does not exist when € > 1.

N
Zizl pimy
and the variance as Var(m) = Efil pi(m; —m)?. In this
experiment, we set € = 0.9, m = 10.

Figure 1 (a) shows P-FedAvg converges to the PS solu-
tion in all three communication settings: full participation,
Scheme I and Scheme II. Interestingly, Scheme II converges
the fastest in this experiment. Despite the full participation
scheme having the lowest upper bound on the number of itera-
tions sufficient to convergence, our experimental results show
that the actual convergence behaviors of all three schemes
are very similar and weakly depend on K, especially when
p; = % The static FedAvg converges to the static solution,
which has a constant bias to the PS solution, was shown in
the centralized setting Perdomo et al. (2020).

Impact of E. We conduct an experiment to compare the
performance of P-FedAvg with different £ values, in sys-
tems with high and low communication costs respectively.
We let C' = 20 (resp. C' = 5) in the high (resp. low) cost
system, and let ' = N to solely show the influence of E in
Figure 2. More figures can be found in Appendix H.

-
2

—— static

full participation
—— scheme |, k=20
—— scheme Il, k=20

.4
U
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"
<
g

2

i
15}
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Distance to the stable point

Distance to the stable

1 3
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Iterations

(a) Distance to the PS solution

4 5 6

2 3 4
Local Iterations

(b) Impact of K

Figure 1: (a) Distance to the PS solution vs. the number of
iterations for full and partial participation. (b) Impact of K,
comparison with the multi-agent PP (K = 25), N = 25.

Impact of K and sampling schemes. Figure 1(b) show
the impact of K on the convergence time. We fix ¥ = 1, thus
K = 25 represent Multi-agent PP. As discussed in Section
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Figure 2: (a)(b) compares the impact of E with multi-agent PP in high (C' = 20) and low (C' = 5) communication cost
systems. The efficiency of P-FedAvg surpasses multi-agent PP due to multi-step aggregation, with the advantage growing as
communication cost increases. (c)(d) show losses and distances to the PS solution for full participation, Scheme I, and Scheme II,
initialized with the empirical risk minimization solution. Mean and 1 std error bars are based on 5 individual runs.

3.3, a moderate number of K can control the balance between
gradient variance and the straggler’s effect. The details of
how we model the straggler’s effect can be found in Appendix
H. Figure 1(a) also compares different schemes. If the clients’
data are uniformly sampled (p; = %), scheme II achieves a
better convergence rate, which conforms to our theoretical
result because B; > Bs. We also show the impact of Data
heterogeneity and shifting heterogeneity in Appendix H.

4.2 Credit Score Strategic Classification

Demonstrating the efficacy of P-FedAvg on the Kaggle
dataset? as per Perdomo et al. (2020). The dataset involves
a bank predicting the creditworthiness of loan applicants,
where features pertain to individual information, and the tar-
get is binary (1 for loan default, 0 otherwise). Following
the performative shift framework of Perdomo et al. (2020),
applicants can manipulate certain features related to credit
lines and loans. Manipulation strength, denoted by ¢;, is in-
dependently and uniformly sampled from [0.9, 1.1] for 10
clients, each receiving a 10% subset of the training data. Em-
ploying partial participation with K = 5, we train a logistic
regression binary classifier using P-FedAvg, involving 5
gradient descent steps per round on a minibatch of size 4.
Further details are discussed in Appendix H.4. Figure 2 (c)(d)
shows the loss function and the distance to the PS solution as
the number of deployment rounds increases. Similar to the
numerical simulation, the actual convergence behaviors of all
three schemes are very similar.

4.3 Performative Image Classification

We show empirically that P-FedAvg also has good per-
formance on FMNIST (Deng 2012) and Cifar-10. Consider
K classes of images and NV clients, where each client has
an arbitrary number of images from each class. At each
time step ¢, we assume each client aims to achieve a good
yet balanced classification outcome. Client ¢ aims to mini-
mize the objective ming maxy, E% (05”). The clients will
attempt to optimize this objective by selecting sampling
weights from each class at the next step, following the rule:
wg,t,:,rl) x exp(f - Ez(t,)c), where $ > 0 is the chosen tempera-
ture. A higher value of /3 leads to more aggressive changes in

“www.kaggle.com/competitions/GiveMeSomeCredit/data

sample weights, we let 8 = 0.5. For heterogeneous performa-
tiveness, we employ distinct image sets across various clients,
causing them to experience varying class losses and result-
ing in heterogeneous sample weight updates. We normalize

()
. . (t+1) _ exp(Ba;},

the sample weights according to w; = S eop(pall)’

where a can be either loss or accuracy, then track the total

variation (TV) distances of consecutive aggregation steps and

shows dTV(wZ(-t),'wZ(-t*E)) =3 %\w% — wl(t,;E)L Vt €
Tg. Figure 3 shows that the average TV distance between
consecutive aggregation steps is diminishing, showing that
P-FedAvg converges to a PS solution. Please refer to Ap-

pendix H for results on Cifar-10.

Total variation

0 100 200 _ 300 400 500
Aggregation Steps

Figure 3: Convergence of the P-FedAvg on performative
FMNIST classification.

5 Conclusions

In this work, we formulated the performative FL prob-
lem where data shifts of heterogeneous clients are model-
dependent. We showed that a unique PS solution exists, and
formalized the P-FedAvg algorithm where both the full par-
ticipation and the partial participation schemes have O(1/T)
convergence rate to the PS solution. We discussed the impact
of key variables on the convergence, especially the aggrega-
tion interval size and the number of sampled devices in partial
participation. Our numerical results validate our theory and
provide valuable insights into the real-world applications of
performative FL. To our best knowledge, we are the first to
define performative shifts in computer vision tasks and show
that P-FedAvg has good empirical convergence result.
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