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Abstract

Motivation: Emerging omics technologies have introduced a two-way grouping structure in multiple testing, as seen in single-cell omics data,
where the features can be grouped by either genes or cell types. Traditional multiple testing methods have limited ability to exploit such two-way

grouping structure, leading to potential power loss.

Results: \We propose a new 2D Group Benjamini-Hochberg (2dGBH) procedure to harness the two-way grouping structure in omics data,
extending the traditional one-way adaptive GBH procedure. Using both simulated and real datasets, we show that 2dGBH effectively controls
the false discovery rate across biologically relevant settings, and it is more powerful than the BH or g-value procedure and more robust than the

one-way adaptive GBH procedure.

Availability and implementation: 2dGBH is available as an R package at: https://github.com/chloelulu/tdGBH. The analysis code and data are

available at: https://github.com/chloelulu/tdGBH-paper.

1 Introduction

In clinical omics data analysis, one frequent statistical task is
to identify the omics features associated with a disease out-
come (Mallick ez al. 2021). The identified omics features can
provide mechanistic insights into the underlying biological and
disease processes, and be potentially used as biomarkers for
disease prevention, diagnosis, and treatment. Such omics-wide
association testing involves large-scale multiple testing and
multiple testing procedures such as false discovery rate (FDR)
control (Benjamini and Hochberg 1995) or family-wise error
rate (FWER) control (Holm 1979) are routinely applied to
control for false positives. With the development of new omics
technologies, omics studies have become increasingly deeper
and broader, producing a new two-way grouping structure for
multiple testing. For example, in single-cell omics studies, indi-
vidual cells are clustered into cell subsets (Kiselev et al. 2019),
and omics-wide testing is performed for each cell subset. Thus,
the individual P-values can be grouped by either cell subsets or
genes, creating a two-way grouping structure. Similarly, in
multi-omics studies of the human microbiome, one routine
task is to perform pairwise association testing between micro-
bial features and metabolomic features (Noecker et al. 2016,
Kim et al. 2020). These association P-values can be grouped
by either microbial features or metabolomic features, leading
to another two-way grouping structure (i.e. each microbial

[metabolomic] group consists of association P-values from the
given microbial [metabolomic] feature to all metabolomic [mi-
crobial] features). In the single-cell example, the differential
signals can be mainly distributed in specific cell subsets or spe-
cific genes or both. Similarly, in the multi-omics example, the
differential signals can mostly be attributed to specific micro-
bial features or specific metabolomic features or both. Such
nonuniform distribution patterns can be potentially leveraged
to improve the power of signal detection.

Although the two-way grouping structure has richer
structure information, in practice, ordinary multiple testing
procedures are applied without taking into full account of the
two-way grouping structure. When controlling the FDR, i.e.
the expected proportion of false rejections among all rejec-
tions, is desired, both global FDR control and stratified FDR
control procedures have been applied. In global FDR control,
all the P-values are pooled, and one-time FDR control is per-
formed. The Benjamini-Hochberg (BH) (Benjamini and
Hochberg 1995) procedure and Storey’s g-value procedure
(ST) (Storey 2002) are two most commonly used FDR control
methods. The BH procedure is a step-up procedure, which
orders the P-values from small to large and rejects the largest
number of k hypotheses such that the kth P-value
Py < k/m x o, where m is the total number of tests and o is
the target FDR level. Storey’s g-value approach further
considers the proportion of null hypotheses 7, and finds the
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largest k such that the Py < k/mmy x a. When the signal
density is high, the ST procedure is more powerful than the
BH procedure. Stratified FDR control, on the other hand,
conducts FDR control separately for each stratum (e.g. each
cell type or gene) rather than pooling all the P-values for
global FDR control (Sun et al. 2006). This approach allows
for a more nuanced correction, as it takes into account the dif-
ferent signal densities within each stratum. Both stratified
Benjamini-Hochberg (stratBH) procedure, and stratified
Storey’s g-value (stratST) procedure have been performed for
stratified FDR control.

Besides the stratified FDR control procedures, other dedi-
cated group-adaptive FDR control procedures have been de-
veloped to increase the power of multiple testing when
group structure exists (Hu er al. 2010, Sankaran and
Holmes 2014, Scott et al. 2015, Liu et al. 2016, Huang et al.
2020, Ignatiadis ef al. 2016, Boca and Leek 2018, Lei and
Fithian 2018, Nandi et al. 2021, Sarkar and Nandi 2021,
Zhang and Chen 2022). The adaptive group Benjamini-
Hochberg procedure (AdaptiveGBH) (Hu et al. 2010) is one
of the most used procedures for this purpose. AdaptiveGBH
implements an adaptive rule to reject the null hypotheses
based on the signal density estimate of the group. For fea-
tures from groups with higher signal density, a larger P-
value cutoff is imposed to make reject decision. Although
the number of false discoveries for those signal-rich groups
will be increased by relaxing the rejection criterion, it can be
compensated by tightening the rejection criterion for groups
with lower signal density. The overall result is an increased
detection power while maintaining the FDR level. The pro-
cedure is equivalent to performing Benjamini-Hochberg
FDR correction at level gni, within each group, where q is
the target FDR level and = is the proportion of null hypoth-
eses within the group i. To estimate the null proportion 7,
several methods exist including the Least Slope method
(Benjamini and Hochberg 2000), the Two Step Test method
(Benjamini et al. 2006), or Storey tail proportion of P-values
method (Storey et al. 2004). We refer the readers to a recent
review on this subject (Kang 2020).

Although stratBH, stratST and AdaptiveGBH can be ap-
plied to the two-way grouping structure, they are only capa-
ble of using one-way grouping structure. In practice, the
user has to decide which grouping structure to use in these
procedures. However, the distribution of the signals is usu-
ally unknown before the analysis. Signals can be enriched in
either direction. Cherry-picking the grouping structure to
be used can lead to increased type I error, especially when
the signal is sparse. Furthermore, it is unclear whether
stratBH and statST can truly control the global FDR in all
settings since controlling FDR within each group does not
necessarily infer the global FDR control when the detection
power is low.

In this study, we propose a 2D Group Benjamini-Hochberg
(2dGBH) procedure, an FDR control procedure designed to
exploit the two-way grouping structure in omics data.
2dGBH is an extension of the AdaptiveGBH procedure for
one-way grouping structure. By extensive evaluation on both
simulated and experimental datasets, we show that 2dGBH
can effectively control the FDR and adaptive to the underly-
ing signal enrichment pattern. It is overall more robust than
AdaptiveGBH and is more powerful than the traditional BH
and ST procedure.

Yang et al.

2 Materials and methods
2.1 2dGBH procedure

The 2dGBH procedure is designed to be adaptive to the
underlying signal structure and aims to be robust and
powerful when the signals are enriched in either or both direc-
tions. Suppose we have the P-values P; (i=1,...,n;
j=1, ---, m), where n is the number of features in the first
dimension and  is the number of features in the second
dimension. With some abuse of terminology, we use the
term “outcome” to indicate features in the second dimension.
The 2dGBH method consists of the following steps
(Supplementary Fig. S1):

1) Estimate the overall proportion of null hypotheses (7¢)
using one of the estimators: Least Slope method
(Benjamini and Hochberg 2000) (/sl), Two Step Test
method (Benjamini et al. 2006) (¢st), or Storey tail pro-
portion of P-values method (Storey et al. 2004) (storey).
storey is the default method in 2dGBH.

2) Calculate the group-specific proportions of null hypothe-
ses for outcomes (7“181, i=1,...,n and features (7%’(;2,]' =
1,...,m) using Isl, tst, or storey method as in the
AdaptiveGBH (Hu et al. 2010). storey is the default
method in 2dGBH. . .

3) Apply a shrinkage factor (S) to both 7 ! and # * to re-
duce the estimation variability due to a small number of
P-values in the group and increase the robustness (better
type I error control) of the method. The final estimate is
the weighted average of the global and group-specific es-
timate of the null hypothesis proportions, with the
weight determined by the shrinkage factor:

asl = (1-8) x @' + 8 x o,

a2 =(1-8) x @+ x 7.
The default shrinkage factor is 0.1, which increases the ro-
bustness of method without significantly affecting its power.
4) Weight P-values based on the informativeness of the re-
spective groups. We propose to use the weight
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(a%o),.aﬁo , and the group size of 7'581 ar}d .n{)‘l (m and n, re-
spectively). The greater the standard deviation and the larger
the group size, the higher the weight the corresponding
grouping direction receives. Such weighting scheme is based

he idea that 6., & he informati f
on the idea that 6, ', 6’ measure the informativeness o
the respective direction of grouping and the group size is in-
versely related to the uncertainty of ngl and n’o"z estimates. If
the proportions of nulls are similar across the groups (small
standard deviation), the signals are more evenly distributed
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in these groups and less weights will be given for that group-
ing direction. When R = 0 or 1, the weight is only contrib-
uted by one direction of grouping. This can happen when
the direction of grouping is not very informative (e.g. ftgls
are similar across features) or the group size is too small
(e.g. small number of outcomes).
5) Calculate the weighted P-values P} =P;/W; x
(1 — 7)), where the updated overall proportion of null
hypotheses 7§y =L #{.

0
6) Apply the classic BH method to the weighted P-values.

2.2 Simulation setup

We perform comprehensive simulations to study the perfor-
mance of the proposed method under different signal enrich-
ment patterns (as described in Fig. 1). We simulate 7 features
(e.g. genes) and m outcomes (e.g. cell types) with an overall
signal density (proportion of nonnulls) of 0. Denote the
proportions of signal-associated outcomes and features as p’
and p/.

We start with simulating z-scores z;;, which we convert into
P-values Pj; before applying the proposed method. We first in-
vestigate the case where zj;s are independent and later we will
study the correlated cases. We first generate i.id. z; ~
N, 1),i=1,...,n,j=1, ..., m, where N(0, 1)is the
distribution of the z-score under the null. Next, based on the
overall signal density 60, we simulate iid. z ~
N(u, 6%), k=1, ..., mn0, where N(u, o) is the distribu-
tion under the alternative and pu, ¢> control the signal
strength and variability. Once we obtain zs, we create differ-
ent signal enrichment patterns by replacing a subset of zjs
with zs (Fig. 1). Specifically, we investigate three scenarios:

1) Signals are enriched in a subset of features
(0 < p'< 1, p/ = 1), where we randomly distribute zs
in randomly selected 7p’ features.

2) Signals are enriched in a subset of out-
comes (p' =1, 0 < p/ < 1), where we randomly dis-
tribute 2;s in randomly selected mp’ outcomes.

3) Signals are enriched in a subset of outcomes and features
0<p <1,0<p <1), where we randomly

distribute zjs in randomly selected 7p’ outcomes and p/
features.

Finally, zjs are converted into P-values Pjs using the one-
sided formula 1 — ®(z;), where ®(.) is the cumulative distri-
bution function of the standard normal. We also study the
case, where z;is are correlated. We specifically investigate the
block and AR(1) correlation structures. In both cases, we first
simulate i.i.d. €,51 ~ MVN(0,x1, Xnxn) for each outcome,
where MVN is a multivariate normal distribution. For block
correlation structure, we let X; =1, X; = 0.7 if 7,/ from the
same block, and Z; = 0 otherwise. For AR(1) correlation
structure, we let X; = 0.7/, Next, we add the effect 14
(wj =2, and 0 for alternative and null hypothesis, respec-
tively) similarly as in the independent case. For both the inde-
pendent and correlated cases, the following parameter
settings are investigated:

1) The impact of signal density when signals are associated
with a subset of outcomes (#z = 1000, m = 20, p' =1,
p/ =02, 0€(0.01, 0.02, 0.05, 0.1)).

2) The impact of signal density when signals are associated
with a subset of features (7 = 1000, m = 20, p' = 0.2,
p' =1, 6€(0.01, 0.02, 0.05, 0.1)).

3) The impact of signal density when signals are associated
with a subset of features and outcomes (z = 1000, m =

20, p' = 0.2, pi = 0.2, 0 € (0.005, 0.01, 0.02, 0.04)).

In addition, we study the performance under a larger num-
ber of outcomes (m = 500), a relevant setting for association
between two high-dimensional omics data types.

2.3 Competing methods

We compare our method to classic FDR control methods, in-
cluding the Benjamini-Hochberg (BH) Procedure and Storey’s
g-value (ST), and FDR control methods that utilize group
structure information, including the Adaptive Group
Benjamini-Hochberg Procedure (AdaptiveGBH), stratified
Benjamini-Hochberg Procedure (stratBH), stratified Storey’s
g-value (stratST). These group-adaptive methods can only ac-
commodate 1D grouping structure. We include methods using
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Figure 1. The three signal enrichment patterns investigated in this study. Rows and columns represent features and outcomes. Star(*) indicates the
signals (nonnull hypothesis). (a) Signal enriched by feature (n =20, m= 10, 0 =0.2, p' =1, p/ =0.5). (b) Signal enriched by outcome (n=20, m=10,
0=0.2, p=0.5, p =1).(c) Signal enriched by both feature and outcome (n=20, m=10, 0 =0.1, p' =0.5, p/ =0.5).
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either grouping direction (stratBH_o, stratST o, and
AdaptiveGBH_o for outcome-wise grouping [“_o” represents
“outcome”], and stratBH_g, stratST_g, and AdaptiveGBH_g
for feature-wise grouping [“_g” represents “genes/features”]).
For the evaluation, we utilized the following software pack-
ages with default parameter setting: p.adjust function (in R
package stats v4.1.2), qvalue function (in R package qvalue
v2.26.0). For AdaptiveGBH, we used Adaptive.GBH function
with method = ‘storey” [R package structSSI v1.2.0
(Sankaran and Holmes 2014)].

2.4 Performance evaluation

The performance evaluation is based on the FDR control and
true positive rate (TPR) with a target FDR level of 5%. The
results are averaged over 1000 simulation runs for the global
null setting and 100 simulation runs for other settings.

2.5 Experimental datasets

We use three experimental datasets to evaluate the perfor-
mance of 2dGBH. These datasets consist of two microbiome
datasets and one single-cell RNA-Seq dataset. The first data-
set, “Combo” (Wu et al. 2011, Hoffmann et al. 2013), is a
microbiome dataset studying the relationship between nutri-
ent intake and bacterial genus abundance. Any genus with a
prevalence <10% in the samples was removed from analysis,
resulting in 37 genera and 214 nutrients for 98 samples, and
7918 tests in total. The second dataset, “Adenoma” (Kim
et al. 2020), is a microbiome data studying the association be-
tween bacterial genus abundance and metabolic sub-pathway
abundance. Genera with <10% prevalence in the samples
were excluded. The final analysis includes 77 genera and 92
metabolic pathways for 241 samples, and 7084 tests in total.
The third dataset, “Autism” (Velmeshev et al. 2019), is a sin-
gle cell RNA Seq (scRNA-Seq) dataset used to find the differ-
ential genes between autism subjects and controls across 17
cell types. For each cell type, gene expression was summed
across cells per gene per sample, resulting in pseudo-bulk gene
expression data for each cell type. Genes expressed in <95%
of the cells for each cell type were excluded in the analysis,
yielding 3541-16371 (median 7905/mean 9303) genes in the
studied cell types, and 158157 tests in total. For both micro-
biome datasets, we used ZicoSeq (Yang and Chen 2022) to
perform association testing. For the scRNA-Seq dataset, we
applied GMPR normalization (Chen et al. 2018) and per-
formed a Wilcox rank sum test [as suggested by (Li et al.
2022)] to detect differential genes for each cell types. The
P-values obtained are used as the input to 2dGBH and the
competing methods.

3 Results

3.1 Simulation studies

3.1.1 Performance under the global null setting

We first study the performance of the methods under the
global null setting, where there are no true signals, and all hy-
potheses are from the null. Different correlation structures
[Independent, Block and AR(1)] are investigated. A robust
method should control the FDR closer to the target level. In
the global null setting, FDR is equivalent to the probability of
making any positive findings by definition. Thus, a robust
method is expected to have approximately 5% chance of find-
ing any significant associations if 5% target FDR level is used.
In Fig. 2, we show that both 2dGBH and the traditional FDR

Yang et al.

control methods (BH and ST) control the FDR near the target
level across settings. In contrast, stratBH and stratST have
substantial FDR inflation. When the number of outcomes is
large, the chance of false positive findings is close to 100%,
meaning that these stratified methods will always retrieve
some significant associations even if the dataset has no signal.
Thus, applying stratified FDR control should be cautious
when the number of strata is large. On the other hand, both
versions of AdaptiveGBH display comparable FDR levels as
2dGBH.

3.1.2 Performance under the independent setting when there
are association signals

We next evaluate the performance of 2dGBH and their com-
petitors under independent setting with signals present and
enriched in various patterns. The number of outcomes simu-
lated (m = 20) reflects the typical number of cell types in
single-cell RNA-Seq (scRNA-Seq) data types. Since the perfor-
mance of stratBH_g and stratST_g far worse than strateBH_o
and stratST_o, we did not include them in comparison. When
signals are enriched by outcome (Fig. 3a), 2dGBH, as well as
AdaptiveGBH_o, BH, and ST, effectively control the FDR
around 5%. The stratBH_o and stratST_o methods both
show inflated FDR levels. The inflation increases with de-
creasing signal density. Thus, application of stratified BH and
ST is not advised when the signal content is low.
AdaptiveGBH_g displays slightly higher FDR inflation than
2dGBH, probably due to a large number of groups used. In
terms of power for those FDR-controlled methods, 2dGBH
demonstrates significantly higher power than BH and ST, and
is slightly less powerful than AdaptiveGBH_o. The difference
from AdaptiveGBH_o decreases with the increasing signal
density. The power of AdaptiveGBH_g is similar to BH/ST
since the group structure is not informative. Note that when
the signal density is high, stratified ST has the highest power
with well controlled FDR.

When signals are enriched by feature (Fig. 3b), the FDR
control performance is similar to the case with enrichment by
outcome (Fig. 3a). AdaptiveGBH_g has the highest power,
though slight FDR inflation is noted. AdaptiveGBH_o is sub-
stantially less powerful than 2dGBH due to the use of unin-
formative group structure. When signals are enriched by both
feature and outcome, 2dGBH, AdaptiveGBH_o, BH, and ST
again control the FDR around the target level (Fig. 3c), while
AdaptiveGBH_g, stratBH_o and stratST_o show more FDR
inflation than 2dGBH. 2dGBH is more powerful than BH,
ST, and AdaptiveGBH_g, but is less powerful than
AdaptiveGBH_o. Stratified ST is the most powerful with con-
trolled FDR when the signal density is high (4%).

Next, we simulate 500 outcomes, mirroring the application
of pairwise association testing between two high-dimensional
datasets, such as the association between microbial taxa
abundance and metabolomic abundance. Although some
slight differences have been noted (e.g. AdaptiveGBH_g has
less inflation), the overall trend remains the same
(Supplementary Fig. S2).

Taken together, although 2dGBH is not the most powerful
in each setting, its performance is the most robust and the
power is always higher than BH/ST. In comparison,
AdaptiveGBH_g and AdaptiveGBH_o could be significantly
less powerful when the group structure is not informative.
Stratified BH/ST work only when the signal density is not
very low. In practice, we do not have prior knowledge about
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Figure 2. Performance of 2dGBH and its competing methods under the global null setting. Performance is assessed by the observed false discovery rate
(FDR) level, calculated as the percentage of the 1000 simulation runs making any discoveries. 5% target FDR level is used. The two dashed lines
represent 5% and 10% FDR level, respectively. BH: Benjamini-Hochberg Procedure, ST: Storey’s g-value procedure, AdaptiveGBH: Adaptive Group BH
Procedure, stratBH: stratified BH Procedure, stratST: Stratified ST procedure. The suffix “_o" represents outcome-wise grouping, and “_g" represents

gene/feature-wise grouping.

the signal enrichment pattern, application of 2dGBH thus is a
reasonable choice.

3.1.3 Performance under the correlated settings when there
are association signals

In practice, P-values can be correlated due to shared influen-
ces or inherent dependencies in the data. For instance, block
correlations could arise from common factors affecting a set
of variables, while AR(1) correlations could manifest in spa-
tial and temporal sampling where outcomes depend on pre-
ceding results. Recognizing these correlations is essential for
robust data analysis. To further study the robustness of
2dGBH to different correlation structures, we examine its per-
formance under two correlation structures: block correlation
(Supplementary Figs S3 and S4) and AR(1) correlation
(Supplementary Figs S5 and S6). In general, 2dGBH’s perfor-
mance is as robust as in the independent structure, maintain-
ing FDR control around the target level across all settings,
regardless of signal enrichment pattern, and its power is com-
parable to or surpassing that of competing methods. In con-
trast, other group-adaptive methods are less robust. For
example, stratBH and stratST have severe FDR inflation in
low-signal setting. AdaptiveGBH_g has noticeable FDR infla-
tion when the number of outcomes is small (m = 20).

3.1.4 Comparison to more alternatives

We perform additional numerical experiments, comparing
different ways to combine the marginal weights, and compar-
ing to more existing methods. The settings are mainly the
same as those used in the main comparison (20 outcomes,
1000 features, independent setting).

We first examine the effects of the shrinkage factor on the
model performance. As shown in Supplementary Fig. S7, al-
though an increase of the shrinkage factor value improves the
FDR control when the number of outcomes is small, it
reduces the statistical power significantly when the signal den-
sity is high. We thus use 0.1 as the default shrinkage factor
value, achieving more robustness without affecting the power
much.

We also compare 2dGBH to two simpler options to com-
bine the marginal weights: the geometric mean (2dGBH-geo)
and arithmetic mean (2dGBH-ari) (Supplementary Fig. S8).
Both approaches assign equal weights to the two dimensions.

Results indicate that our current weighting method outper-
forms these naive ones, especially when the signal density is
high. Interestingly, when the signals are clustered by both out-
comes and features, 2dGBH is still more powerful than
2dGBH-geo and 2dGBH-ari. Thus, differential weighting
based on the informativeness of the respective dimension and
the dimension sizes can improve the statistical power.

One reviewer brought to our attention a previously devel-
oped two-way GBH method by Nandi et al. (2021). In their
implementation, two versions were provided: one that places
equal emphasis on row and column weights (NSC_1) and the
other that accounts for the difference in numbers of rows and
columns (NSC_2), both of which do not consider the informa-
tiveness of the respective dimension. Results suggest that
2dGBH is significantly more powerful than NCS_1 and
NSC_2 in most settings (Supplementary Fig. S9). The tight
FDR control of NCS_1 and NSC_2 is at a great expense of
power.

Finally, we compare 2dGBH to regression-based covariate-
adaptive FDR control methods, including science-wise false
discovery rate (swfdr) (Boca and Leek 2018), FDRreg method
with empirical (FDRregE) and theoretical (FDRregT) null hy-
pothesis (Scott et al. 2015), and covariate adaptive multiple
testing procedure (CAMT) (Zhang and Chen 2022). For those
methods, we use two categorical covariates to represent the
outcome and feature groups and let the prior null probability
depend on these two covariates. For swifdr, we used
Im_qvalue function (in R package swfdr v1.20.0). For
FDRreg, we applied FDRreg function with nulltype =
“theoretical” and nulltype = “emprical” along with other de-
fault settings (in R package v0.2-1). For CAMT, we
employed camt.fdr function with alg.type = “EM” and con-
trol.method = “knockoff+” (in R package CAMT v1.1).
Results show that regression-based methods fail to maintain
the FDR at the expected level (Supplementary Fig. S10). The
inability of these regression-based methods to control FDR is
attributed to potential overfitting when they involve a large
number of parameters and there are not sufficient data to esti-
mate the parameters reliably. For the example with 20 out-
comes (regardless of the number of features), only 20 data
points are available to estimate the parameter for each fea-
ture, which is not enough for these regression methods to
work.
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Figure 3. Performance of 2dGBH and its competing methods under the independent setting with 20 outcomes. 5% target FDR is used. (a) Signals are
only associated with a subset of outcomes (n = 1000, m =20, p' =0.2, p/ =1, 0 € (0.01, 0.02, 0.05, 0.1)). (b) Signals are only associated with a
subset of features (n = 1000, m = 20,p' = 1, p/ = 0.2, 6 € (0.01, 0.02, 0.05, 0.1)). (c) Signals are associated with a subset of features and outcomes
(n=1000, m=20, p'=0.2, p) =0.2, 0 € (0.005, 0.01, 0.02, 0.04)). Performance is assessed by the observed false discovery rate (FDR) level and
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gvalue procedure, AdaptiveGBH: Adaptive Group BH Procedure, stratBH: stratified BH Procedure, stratST: Stratified ST procedure. The suffix “_o

"

represents outcome-wise grouping, and “_g" represents gene/feature-wise grouping.

3.2 Application to real datasets

To demonstrate the practical application of the 2dGBH
method, we next apply 2dGBH and its competing methods to
three publicly available datasets. Since the ground truth is un-
known for the three real datasets, we aim to assess whether
the discovery pattern on the real datasets reflects what we
have observed in the simulation study.

We first evaluate the FDR control under the global null by
shuffling the sample labels (100 times) to disrupt the differen-
tial signals. For the “Combo” dataset, we permute subjects’

nutrient intake values; for the “Adenoma” dataset, we per-
mute each subject’s metabolic pathway abundance; and for
the “Autism” dataset, we shuffle group labels (autism versus
control). We then perform association testing and use the raw
P-values as the input to 2dGBH and its competing methods.
Any significant associations after FDR adjustment are consid-
ered false positives. Using 5% target FDR level, we expect to
see an average of 5% of permuted datasets with positive find-
ings. As anticipated, 2dGBH control FDR close to the target
level while stratified BH/ST has severe FDR inflation across
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datasets, AdaptiveGBH_o and AdaptiveGBH_g have severe
FDR inflation for “Combo” (m =37) and “Autism”
(m = 17 420) dataset, respectively (Fig. 4a and b). The results
are consistent with the simulation findings.

Next, we compare the numbers of identified associations at
different FDR levels for 2dGBH and its competing methods
(Fig. 4c), and study their overlaps based on the original real
datasets (Fig. 4d). Consistent with the simulation study, BH
and ST tend to find the smallest number of findings, while
stratBH and stratST show the highest power (Fig. 4c). For the
“Combo” dataset, although 2dGBH could not find any differ-
ential taxa at 5%-10% FDR, it has the highest power at the
FDR level of 15% or 20% among the methods that control
FDR (Fig. 4c). It also has considerable overlaps in findings
with other methods (Fig. 4d). For the “Adenoma” dataset, ex-
cept for AdaptiveGBH_o, stratBH and stratST, no method
discovers any differential taxa at 5%. When we increase the
target FDR to 10% or higher, 2dGBH generally shows the
highest power among those the permuted datasets.

In summary, the detection patterns on the real datasets are
generally consistent with the simulation findings. 2dGBH is
robust and powerful for real data applications.

4 Conclusion

In this study, we present a new approach, 2dGBH, to conduct
FDR control when the data exhibits two-way grouping struc-
ture. Our comprehensive evaluation across simulated settings
and real datasets demonstrates the robustness and power of
the 2dGBH. In simulation studies, under both global null, in-
dependent and correlated structures, 2dGBH consistently con-
trolled the false discovery rate (FDR) at or around the target
level, exhibiting superior performance in comparison to com-
peting methods. Particularly in scenarios of substantial out-
come numbers and low signal content, other methods, such as
stratified BH/ST, exhibited FDR inflation, risking higher
false-positive findings. When applied to real datasets, the per-
formance patterns mirrored our simulation results: 2dGBH
exhibited robust FDR control and demonstrated decent
power in identifying associations, especially when compared
to the traditional methods such as BH and ST. Notably, even
though 2dGBH might not always be the most powerful
method in all settings, it effectively balances the trade-off be-
tween FDR control and power, making it a feasible option for
datasets where signal enrichment patterns are unclear.

Supplementary data

Supplementary data are available at Bioinformatics online.
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