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Abstract. It is well-known that the McCormick relaxation for the bilinear constraint zÿ xy 
gives the convex hull over the box domains for x and y. In network applications where the 
domain of bilinear variables is described by a network polytope, the McCormick relaxa-
tion, also referred to as linearization, fails to provide the convex hull and often leads to 
poor dual bounds. We study the convex hull of the set containing bilinear constraints zi, j ÿ
xiyj where xi represents the arc-flow variable in a network polytope, and yj is in a simplex. 
For the case where the simplex contains a single y variable, we introduce a systematic pro-
cedure to obtain the convex hull of the above set in the original space of variables, and 
show that all facet-defining inequalities of the convex hull can be obtained explicitly 
through identifying a special tree structure in the underlying network. For the generaliza-
tion where the simplex contains multiple y variables, we design a constructive procedure 
to obtain an important class of facet-defining inequalities for the convex hull of the under-
lying bilinear set that is characterized by a special forest structure in the underlying 
network. Computational experiments conducted on different applications show the effec-
tiveness of the proposed methods in improving the dual bounds obtained from alternative 
techniques.
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2338641]. 

Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2023.0001. 
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1. Introduction
Bilinear constraints in conjunction with network models appear in various mixed-integer and nonlinear programming 
(MINLP) applications, including the decision diagrams (Davarnia and Van Hoeve [11], Davarnia [10], Salemi and 
Davarnia [27], Salemi and Davarnia [28]), the fixed-charge network flow problems (Rebennack et al. [26]), network 
models with complementarity constraints, such as transportation problems with conflicts (Ficker et al. [18]) and the 
red-blue transportation problems (Vancroonenburg et al. [34]). A common occurrence of bilinear terms in network 
models pertains to bilevel network problems after being reformulated as a single-level program through either using a 
dual formulation of the inner problem or incorporating optimality conditions inside the outer problem (Ben-Ayed and 
Blair [4], Chiou [8]). These reformulation approaches are widely used in the network interdiction problems, where 
newly added bilinear terms are relaxed using a linearization technique based on the McCormick bounds (McCormick 
[24]) over a box domain; see Smith and Lim [32] for an exposition. While these relaxations provide the convex hull of 
the bilinear constraint over a box domain (Al-Khayyal and Falk [1]), they often lead to weak relaxations when the vari-
ables domain becomes more complicated as in general polyhedra (Gupte et al. [19], Davarnia [9]). It has been shown 
(Boland et al. [5], Luedtke et al. [23]) that when the number of bilinear terms in the underlying function increases, while 
the variables are still in a box domain, the McCormick bounds can be very poor compared with the ones obtained 
from the convex and concave envelopes of the function. It is shown in Bonami et al. [6] that while McCormick relaxa-
tion performs poorly for box-constrained quadratic problems, a stronger relaxation can be achieved by adding 
Chvátal-Gomory valid inequalities.

There are various studies in the literature that develop convexification methods for multilinear functions as a gener-
alization of bilinear forms, but the side constraints for the involved variables are often limited to variable bounds; see 
Del Pia and Khajavirad [14], Del Pia and Khajavirad [15], and Khajavirad [21] for an exposition to different classes of 
valid inequalities for multilinear sets. In Del Pia and Di Gregorio [13] and Del Pia and Walter [16], the authors study 
the Chvátal rank of different classes of cutting planes, including those associated with β-cycles of the underlying 
hypergraph, in the multilinear polytope that arises in binary polynomial problems, while Buchheim et al. [7] provides 
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a characterization of the multilinear polytope in terms of the acyclicity of its corresponding hypergraph, which guaran-
tees integrality of optimal solutions obtained by the standard linearization procedure. The authors in Gupte et al. [20] 
derive extended formulations for the convex hull of the graph of a bilinear function on the n-dimensional unit cube 
through identifying the facets of the Boolean Quadratic Polytope. In Fampa and Lee [17], an efficient method to con-
vexify bilinear functions through McCormick relaxations is proposed which takes advantage of the structural convex-
ity in a symmetric quadratic form. Further, Muller et al. [25] introduces a new class of valid inequalities, tailored for 
the spatial branch-and-bound framework, based on projection techniques that improve the quality of McCormick 
inequalities. Other works in the literature consider a polyhedral, often triangular, subdivision of the domain to derive 
strong valid inequalities for a bilinear set; see Tawarmalani et al. [33], Sherali and Alameddine [30], and Locatelli and 
Schoen [22] for examples of such approaches. Further, Davarnia et al. [12] proposes an aggregation procedure, referred 
to as extended cancel-and-relax (EC&R), to simultaneously convexify the graph of bilinear functions over a general poly-
tope structure. In this paper, we make use of the EC&R procedure to derive convexification results for a bilinear set 
where the side constraints on variables are described by a network flow model as defined next.

For N :ÿ {1, : : : , n}, M :ÿ {1, : : : , m}, K :ÿ {1, : : : ,κ}, and T :ÿ {1, : : : ,τ}, we consider

S ÿ {(x;y;z) * Ξ × ∆m × Rκ |y¦Akx ÿ zk, ∀k * K}, 

where Ξ ÿ {x * Rn |Ex g f , 0 f x f u} is a primal network polytope described by the flow-balance and arc capacity 
constraints, and ∆m ÿ {y * Rm

+ |1
¦y f 1} is a simplex. When variables y are binary, ∆m represents a special ordered set of 

type I (SOS1); see Beale and Forrest [3] for an exposition. Such simplex structures appear in various applications and 
can be obtained by reformulating the underlying polytopes through extreme point decomposition; see Davarnia et al. 
[12] for a detailed account. In the above definition, E * Rτ×n, f * Rτ, u * Rn, and Ak * Rm×n is a matrix with all elements 
equal to zero except one that is equal to one, that is, if Ak

ji ÿ 1 for some (i, j) * N × M, the bilinear constraint with index 
k represents yjxi ÿ zk.

The contributions of this paper are as follows. We propose a systematic procedure to convexify S and derive explicit 
inequalities in its description. The resulting cutting planes are directly obtained in the original space of variables. We 
show that facet-defining inequalities in the convex hull description can be explicitly derived by identifying special tree 
and forest structures in the underlying network, leading to an interpretable and efficient cut-generating oracle. The 
inequalities obtained from our proposed algorithms can be added to the typical McCormick relaxations to strengthen 
the formulation and improve the bounds.

Since we use the specialized aggregation technique introduced in Davarnia et al. [12] in our derivation process, we 
next explain the novelties of this work compared with Davarnia et al. [12]. In particular Davarnia et al. [12], applies the 
proposed aggregation technique to a special case of S where Ξ�is a dual network polytope described by the dual of the 
network flow formulation, inspired by the network interdiction applications, with the goal of obtaining explicit forms 
for the facet-defining inequalities that would be practical to generate. These explicit convexification results are obtained 
only for the case with mÿ1 and kÿ1. In this paper, we extend and generalize these results from two directions. (i) We 
obtain the convexification results for set S where Ξ�is a primal network polytope, which appears in a broader applica-
tion domain beyond the network interdiction problem, such as those discussed above. Due to the structural difference 
between the primal and dual network polytopes, the framework developed in Davarnia et al. [12] is not applicable to 
the network problems studied in this paper, advocating the need for a novel framework specifically designed for this 
new set. Consequently, the form of facet-defining inequalities for the network polytope obtained in this paper is funda-
mentally different from those derived in Davarnia et al. [12]. (ii) We obtain explicit convexification results for cases 
with general m and k. This generalization makes the problem structure, and hence the analysis, much more compli-
cated due to losing the totally unimodularity property that exists when m ÿ k ÿ 1; see Section 3 for a detailed discus-
sion. From a practical point of view, as shown in Section 4, the cutting planes obtained through our newly designed 
algorithms for the general cases with m>1 and k>1 can significantly improve the bounds obtained by adding cutting 
planes for the cases with m ÿ k ÿ 1 as well as the bounds obtained by alternative methods such as reformulation- 
linearization technique (RLT), highlighting the practical advantage and importance of the extended convexification 
results developed in this paper.

The remainder of the paper is organized as follows. We give a brief background on the EC&R procedure as a basis 
of our analysis in Section 2. In Section 3, we obtain convexification results for bilinear terms defined over a network 
polytope. Preliminary computational experiments are presented in Section 4 to show the effectiveness of the devel-
oped cut-generating frameworks. We give concluding remarks in Section 5.
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1.2. Notation
Bold letters represent vectors. We refer to the jth row (resp. jth column) of a matrix A * Rm×n by Aj: (resp. by A

:j). For a 
given set S ¦ Rn, we denote by conv(S) its convex hull. We use symbol 6 to show both cases with+and –. For exam-
ple, when we use l6 in an expression, it means that expression holds for both cases l+ and l–.

2. Extended Cancel-and-Relax
In this section, we present the EC&R procedure adapted for S. The following theorem is at the core of this procedure, 
as shown in theorem 2.7 of Davarnia et al. [12].

Theorem 1. A convex hull description of S can be obtained by the linear constraints in Ξ�and ∆m together will all class-l6 

EC&R inequalities for all l * K.

A class-l6 EC&R inequality is obtained through a weighted aggregation of the constraints in the description of S. 
The procedure to generate this inequality is as follows. 

1. We select l * K to be the index of a bilinear constraint used in the aggregation, which we refer to as the base 
equality. We also select a sign indicator+orÿ to indicate whether a weight 1 or ÿ1 is used for the base equality dur-
ing aggregation.

2. Defining T as the index set of the nonbound constraints in Ξ, we select I 1, : : : , Im and Ī as subsets of T whose 
intersection is empty. Then, for each j * M and for each t * I j (resp. t * Ī ), we multiply the constraint Et:x g ft by 
γ

j
tyj where γ

j
t g 0 (resp. by θt(1ÿ

P

i*Myi) where θt g 0).
3. We select J and J̄ as disjoint subsets of N. Then, for each index i * J , we multiply xi g 0 by λi(1ÿ

P

j*Myj)

where λi g 0, and for each i * J̄ , we multiply ui ÿ xi g 0 by µi(1ÿ
P

j*Myj) where µi g 0.
The above sets are compactly represented as [I 1, : : : ,Im, Ī |J , J̄ ], which is called an EC&R assignment. Each EC&R 

assignment is identified by its class-l6 where l is the index of the base equality and 6 is its sign indicator. We next 
aggregate all aforementioned weighted constraints. During the aggregation, we require that weights γ, θ, λ�and µ be 
chosen in such a way that: 

(C1) at least 
P

j*M |I j | + | Ī | + |J | + |J̄ | bilinear terms are canceled (i.e., their coefficient becomes zero), and

(C2) if *j*MI j * Ī * J * J̄ ≠ ', for each constraint used in the aggregation (including the base equality), at least 
one bilinear term among all those created after multiplying that constraint with its corresponding weight is 
canceled.

The desired EC&R inequality is then obtained by relaxing (i.e., replacing) the remaining bilinear terms of the form 
xiyj in the aggregated inequality using either uiyj ÿ xiyj g 0 or ÿxiyj + zk g 0 for some k * K such that Ak

ji ÿ 1. Similarly, 
the bilinear terms of the form ÿxiyj is relaxed using either xiyj g 0 or xiyj ÿ zk g 0 for some k * K such that Ak

ji ÿ 1. The 
resulting linear inequality is referred to as a class-l6 EC&R inequality.

A summary of the derivation steps for the EC&R procedure is given in the electronic companion; see Davarnia et al. 
[12] for a detailed exposition. Here, we only present an end result that will be used in the subsequent sections.

For each l * K, define Kl ÿ K \ {l}, and let pl ÿ (b+;bÿ; {g j}j*M;u; {h j}j*M; {r j}j*M;l;m) be the vector of aggregation 
weights used in the EC&R procedure. In particular, the index l is determined in Step 1 of the EC&R procedure by pick-
ing a base equality l with either+1 or ÿ1 weights. The components gj (resp. u) capture the weights for yj (resp. 
1ÿ

P

j*Myj) when multiplied with the nonbound constraints in Ξ�as demonstrated in Step 2 of the EC&R procedure. 
Similarly, l and m record the weights for 1ÿ

P

j*Myj when multiplied with the bound constraints in Ξ�in Step 3 of the 
EC&R procedure. Finally, the relaxation step in the EC&R procedure determines the components b6 as the weights 
of the bilinear constraints in Kl, as well as the components h j and r j as the weights for yj when multiplied with the 
bound constraints in Ξ�to cancel the remaining bilinear terms. Then, it is shown in theorem 2.7 of Davarnia et al. [12] 
that criteria (C1) and (C2) of the EC&R procedure provide necessary conditions for the weight vector pl to be an 
extreme point of

C
l ÿ

(

pl * R2(κÿ1)+(m+1)(τ+2n)
+

ÿ

ÿ

ÿ

ÿ

ÿ

X

k*Kl

Ak
ji(β

+
k ÿ βÿk ) +

X

t*T

Eti(γ
j
t ÿθt)

+ η
j
i ÿ ρ

j
i ÿλi +µi ÿ 6 Al

ji, ∀(i, j) * N × M

)

: (1) 

This set plays a central role in our analysis because the collection of the EC&R inequalities corresponding to the 
extreme points of Cl, for all l * K, contains all nontrivial facet-defining inequalities in conv(S), where a nontrivial 
inequality is one that cannot be implied by the linear constraints in the description of Ξ�and ∆m.
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3. Network Polytopes
In this section, we study the set S where Ξ�represents a network polytope. In particular, the constraint set Ex g f is 
composed of the flow-balance constraints after being separated into two inequalities of opposite signs, that is, E is an 
augmented node-arc incidence matrix where each row is duplicated with a negative sign, and f represents the 
extended supply/demand vector. In this description, u denotes the arc-capacity vector.

3.1. The Case with m 5 1
In this section, we consider the case where mÿ 1, whose corresponding bilinear set is denoted by S1. This special case 
is important as it provides a natural setting to improve the McCormick results as the most common relaxation for bilin-
ear programs, which considers mÿ1, even when there are multiple y variables that interact with each other through 
side constraints. In fact, the McCormick relaxation of bilinear terms with mÿ1 is a building block of the factorable 
decomposition technique at the core of MINLP solvers (McCormick et al. [24]). Therefore, the convexification results 
for the case where each y variable is treated separately (i.e., mÿ1) is critical in determining the quality of the relaxation 
bound obtained for the entire model. For this reason, improving the McCormick relaxation, even for the simplest 
case with mÿ1, could lead to substantial bound improvement as corroborated by the computational results in the 
Section 4.

In this special case, we can simplify notation by matching the indices of z and x variables such that y1xk ÿ zk for all 
k * K ÿ N. We next show that, to generate an EC&R inequality for S1, it is sufficient to use aggregation weight 1 for all 
constraints used in the aggregation.

Proposition 1. Let p̄l be an extreme point of the projection cone Cl, for some l * K, corresponding to a nontrivial facet- 
defining inequality of conv(S1). Then, it can be scaled in such a way that all of its components are 0 or 1.

Proof. When mÿ 1, we can write Cl in (1) as

C
l ÿ

(

pl * R2(κÿ1)+2(τ+2n)
+

X

t*T

Eti(γ
1
t ÿθt) +µi ÿλi + η

1
i ÿ ρ

1
i +
X

k*Kl

Ak
1i(β

+
k ÿ βÿk ) ÿ 6 Al

1i, ∀i * N

)

:

ÿ

ÿ

ÿ

ÿ

ÿ

We can rearrange the columns of the coefficient matrix of the system defining Cl to obtain

[E¦ | ÿE¦ |I | ÿ I |I | ÿ I | Ī | ÿ Ī]: (2) 

In the above matrix, the rows correspond to bilinear terms y1xi for i * N. The first and second column blocks cor-
respond to the weights of the nonbound constraints in Ξ�multiplied by y1 and 1ÿ y1, which are denoted by γ1

t 

and θt, respectively, for all t * T. The third and fourth column blocks correspond to the weights of the lower and 
upper bound constraints on variables in Ξ�multiplied by 1ÿ y1, which are captured by µi and λi, respectively, for 
all i * N. Similarly, the fifth and sixth column blocks correspond to the weights of the lower and upper bound 
constraints on variables in Ξ�multiplied by y1, which are recorded by η1

i and ρ1
i , respectively, for all i * N. In these 

columns, I represents the identity matrix of appropriate size. Lastly, the seventh and eighth column blocks corre-
spond to the weights of the bilinear constraints in S1, which are represented by β+k and βÿk , respectively, for all 
k * Kl. In particular, the element at column k * Kl and row i * N of Ī is equal to 1 if iÿ k, and it is equal to zero 
otherwise. Based on these column values, it can be easily verified that (2) is totally unimodular (TU). In Cl, the 
right-hand-side vector is 6 el * Rm+n, where el is the unit vector whose components are all zero except for that 
corresponding to row l representing y1xl, which is equal to 1. Because p̄l is an extreme point of Cl, it is associated 
with a basic feasible solution for its system of equations. Let B be the corresponding basis for (2). It follows from 
Cramer’s rule that all elements of Bÿ1 belong to {0, ÿ1, 1} since (2) is TU. Therefore, the components of 6 Bÿ1el 

belong to {0, ÿ1, 1}. We conclude that the components of basic feasible solutions to Cl are equal to 0 or 1 due to 
nonnegativity of all variables in its description. w

Remark 1. When mÿ 1, multiplying the bound constraints with 1ÿ y1 in Step 3 of the EC&R procedure produces 
two of the standard McCormick bounds. As a result, we can skip Step 3 in the EC&R procedure and merge it 
into the relaxation step, in which the other two McCormick bounds and the bilinear constraints are used for 
relaxing the remaining bilinear terms. In specific, any remaining bilinear term in the aggregated inequality can 
be relaxed into either of the two McCormick lower bounds or the two McCormick upper bounds or the 6 z vari-
able corresponding to that term depending on its sign. In this case, the characterization of EC&R assignment can 
be reduced further to [I1, Ī ].
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Remark 2. As described in Remark 1, each remaining bilinear term in the aggregated inequality of the EC&R 
procedure can be relaxed into three different linear terms. While this can lead to an exponential growth in the 
number of resulting linear EC&R inequalities for each EC&R assignment, we can use an efficient separation pro-
cedure to find the most violated inequality among the resulting EC&R inequalities as follows. Assume that we 
aim to separate a given solution (x̄; ȳ1; z̄) from conv(S1) through the EC&R inequalities obtained from the aggre-
gated inequality g(x;y1;z) g 0 associated with the EC&R assignment [I 1, Ī ]. For each bilinear term y1xi, we 
choose the relaxation option that provides the minimum value among uiȳ1 obtained from using y1(ui ÿ xi) g 0, x̄i 

obtained from using (1ÿ y1)xi g 0, and z̄i obtained from using ÿy1xi + zi g 0. Similarly, for each bilinear term 
ÿy1xi, we choose the relaxation option that provides the minimum value among 0 obtained from using y1xi g

0, ui ÿ x̄i ÿ uiȳ1 obtained from using (1ÿ y1)(ui ÿ xi) g 0, and ÿz̄i obtained from using y1xi ÿ zi g 0. This approach 
provides the most violated EC&R inequality in the time linear in the number of remaining bilinear terms in the 
aggregated inequality.

Considering the relation between the extreme points of the projection cone Cl for l * K and the aggregation 
weights in the EC&R procedure, Proposition 1 and Remark 1 imply that generating class-l6 EC&R inequalities 
reduces to identifying the assignment [I 1, Ī ] as the aggregation weights are readily determined. In particular, 
the constraints in I 1 are multiplied with y1, and those in Ī are multiplied with 1ÿ y1. We next show that, for set 
S

1, identifying all the EC&R assignments that satisfy the EC&R conditions (C1) and (C2) can be achieved by con-
sidering a special graphical structure in the underlying network.

Given a network G ÿ (V, A) with a node set V and arc set A, assume that the index k of variables zk in the 
description of S1 refers to the arc whose flow variable xk appears in that bilinear constraint, that is, y1xk ÿ zk for 
k * A ÿ N ÿ K. We define t(k) and h(k) to be the tail and head nodes of arc k * A, respectively. Further, for any 
node i * V, we define δ+(i) and δÿ(i) to be the set of outgoing and incoming arcs at that node, respectively. We 
refer to the flow-balance inequality 

P

k*δ+(i)xk ÿ
P

k*δÿ(i)xk g fi (resp. ÿ
P

k*δ+(i)xk +
P

k*δÿ(i)xk gÿfi) corresponding 
to node i as the positive (resp. negative) flow-balance inequality, and refer to its index in the description of Ξ�by i+

(resp. i–) to be recorded in the EC&R assignment. For example, an EC&R assignment [{i+}, {jÿ}] implies that, in 
the aggregation, the positive flow-balance inequality corresponding to the node i * V is multiplied with y1, and 
the negative flow-balance inequality corresponding to the node j * V is multiplied with 1ÿ y1. In the sequel, we 
denote the undirected variant of a subnetwork P of G by P̄, and conversely, we denote the directed variant of an 
undirected subnetwork P̄ of Ḡ by P according to the arc directions in G.

Proposition 2. Consider set S1 with Ξ�that represents the network polytope corresponding to the network G ÿ (V, A). Let 
[I 1, Ī ] be an EC&R assignment for class-l6 , for some l * A, that leads to a nontrivial facet-defining inequality of 
conv(S1). Define Ĩ ÿ {i * V | i6 * I1 * Ī } to be the subset of nodes whose flow-balance inequalities are used in the aggrega-
tion. Then, there exists a tree T̄ of Ḡ composed of the nodes in Ĩ such that arc l is incident to exactly one node of T̄.

Proof. First, we observe that for each node i * V, both of its positive and negative flow-balance inequalities can-
not be selected for the aggregation, since otherwise, the columns representing the positive and negative inequal-
ities in the basis of the coefficient matrix (2) associated with the extreme point of Cl would be linearly dependent, 
which would be a contradiction to the fact that the selected EC&R assignment leads to a facet-defining inequality 
of conv(S1); see the proof of Proposition 1 for details. As a result, considering that I 1 + Ī ÿ ' by the EC&R 
requirement, at most one of the following possibilities can occur in the EC&R assignment: i+ * I 1, i+ * Ī , iÿ * I1, 
and iÿ * Ī . Therefore, each node in Ĩ corresponds to a unique flow-balance constraint in the EC&R assignment. 
Next, we show that arc l is incident to exactly one node of Ĩ . It follows from condition (C2) of the EC&R proce-
dure that the bilinear term y1xl for arc l in the base equality must be canceled during the aggregation. The con-
straints of Ξ�that can produce the bilinear term y1xl during the aggregation are the flow-balance constraint 
corresponding to the tail node t(l) of arc l, and the flow-balance constraint corresponding to the head node h(l) of 
arc l. Since the aggregation weight for all the constraints in the EC&R assignment are 1 according to Proposition 
1, and considering that each flow-balance constraint can appear once in the aggregation as noted above, the only 
possibility to cancel the term y1xl is to pick exactly one of the above constraints in the EC&R assignment. As a 
result, exactly one of the head and the tail nodes of arc l must be in Ĩ . Next, we show that there exists a tree T̄ of 
Ḡ whose node set is Ĩ . Assume by contradiction that there is no such tree composed of the nodes in Ĩ . Therefore, 
Ĩ can be partitioned into two subsets Ĩ 1 and Ĩ 2, where the nodes in Ĩ 1 are not adjacent to any nodes in Ĩ 2. It is 
clear that arc l cannot be incident to the nodes in both Ĩ 1 and Ĩ 2, since otherwise Ĩ 1 and Ĩ 2 would have adjacent 
nodes. Assume without the loss of generality that arc l is incident to a node in Ĩ 1. Since the given EC&R assign-
ment leads to a facet-defining inequality after applying the relaxation step, its aggregation weights correspond to 
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an extreme point of Cl as descried in the proof of Proposition 1. The resulting system of equations for the associ-
ated basic feasible solution can be written as

6 Ē1 6 I1 6 Ī1 0 0 0 C1

0 0 0 6 Ē2 6 I2 6 Ī2 C2

0 0 0 0 0 0 C3

2

6

6

4

3

7

7

5

1

1

0

2

6

6

4

3

7

7

5

ÿ

6 el

0

0

2

6

6

4

3

7

7

5

, (3) 

where the columns and rows of the basis matrix have been suitably reordered. In (3), the first (resp. second) row block 
corresponds to bilinear terms y1xi for arcs i * A that are incident to the nodes in Ĩ 1 (resp. Ĩ 2), and the last row 
block corresponds to all the other bilinear terms that do not appear during aggregation. The first (resp. fourth) column 
block denotes the transpose of the node-arc incidence matrix for nodes in Ĩ 1 (resp. Ĩ 2). The second (resp. fifth) 
column block contains positive or negative multiples of columns of the identity matrix representing the weights used 
in the relaxation step of the EC&R procedure corresponding to the McCormick bounds. The third (resp. sixth) column 
block represents positive or negative multiples of the bilinear constraints in the description of S1 used in the relaxation 
step corresponding to the arcs appearing in the first (resp. second) row blocks. All these columns have weights equal 
to 1 according to Proposition 1 as denoted in the first two row blocks of the solution vector multiplied with this matrix. 
The last column in the basis corresponds to the constraints that have weights 0 in the basic feasible solution and 
are added to complete the basis. Lastly, el is a unit vector whose elements are all zeros except that corresponding to 
y1xl, which is equal to 1. It follows that the linear combination of the columns in the column blocks 4, 5, and 6 of the 
basis matrix with weights 1 yields the zero vector. This shows that these columns are linearly dependent, a 
contradiction. w

Proposition 2 implies that each nontrivial EC&R inequality can be obtained as an aggregation of constraints corre-
sponding to a special tree structures. The next theorem provides the converse result that aggregating constraints asso-
ciated with each special tree structure can produce EC&R inequalities.

Theorem 2. Consider set S1 with Ξ�that represents the network polytope corresponding to the network G ÿ (V, A). Let T̄ 
be a tree in Ḡ with the node set Ĩ ¦ V, and let l * A be an arc that is incident to exactly one node of T̄. Then, for any parti-
tion Ĩ 1 and Ĩ 2 of Ĩ (i.e., Ĩ 1 + Ĩ 2 ÿ ' and Ĩ 1 * Ĩ 2 ÿ Ĩ ), we have that 

(i) if h(l) * Ĩ , then [{i+}i*Ĩ 1
, {iÿ}i*Ĩ 2

] is an EC&R assignment for class-l+,
(ii) if h(l) * Ĩ , then [{iÿ}i*Ĩ 1

, {i+}i*Ĩ 2
] is an EC&R assignment for class-l–,

(iii) if t(l) * Ĩ , then [{iÿ}i*Ĩ 1
, {i+}i*Ĩ 2

] is an EC&R assignment for class-l+,
(iv) if t(l) * Ĩ , then [{i+}i*Ĩ 1

, {iÿ}i*Ĩ 2
] is an EC&R assignment for class-l–.

Proof. We show the result for part (i), as the proof for parts (ii)–(iv) follows from similar arguments. It suffices to 
show that the aggregation procedure performed on the constraints in the proposed assignment satisfies the 
EC&R conditions (C1) and (C2). For condition (C1), we need to show that at least | Ĩ 1 | + | Ĩ 2 | bilinear terms are 
canceled during aggregation. Let R be the set of arcs in T, which is the directed variant of T̄ obtained by replacing 
each edge with its corresponding arc in G. It is clear from the definition that l ∉ R. As a result, for each r * R, the 
only constraints in the aggregation that contain xr are the flow-balance constraints corresponding to the head 
node h(r) and tail node t(r) of r since both of these nodes are included in Ĩ as r is an arc in T. There are four cases 
for the partitions of Ĩ that these head and tail nodes can belong to. For the first case, assume that h(r) * Ĩ 1 and 
t(r) * Ĩ 1. It follows from the EC&R assignment in case (i) that the positive flow-balance constraints h(r)+ and t(r)+

are used in the aggregation with weights y1. In particular, we have y1(
P

k*δ+(h(r))xk ÿ
P

k*δÿ(h(r))\{r}xk ÿ xr g f(h(r)))
added with y1(

P

k*δ+(t(r))\{r}xk ÿ
P

k*δÿ(t(r))xk + xr g f(t(r))), which results in the cancellation of y1xr. For the second 

case, assume that h(r) * Ĩ 1 and t(r) * Ĩ 2. It follows from the EC&R assignment that the positive flow-balance con-

straints h(r)+ and the negative flow-balance constraint t(r)+ are used in the aggregation with weights y1 and 
(1ÿ y1), respectively. In particular, we have y1(

P

k*δ+(h(r))xk ÿ
P

k*δÿ(h(r))\{r}xk ÿ xr g f(h(r))) added with (1ÿ y1)

(ÿ
P

k*δ+(t(r))\{r}xk +
P

k*δÿ(t(r))xk ÿ xr gÿf(t(r))), which results in the cancellation of y1xr. For the remaining two 

cases, we can use similar arguments by changing the inequality signs to show that the term y1xr will be canceled 
during aggregation. As a result, we obtain at least |R | cancellations during the aggregation corresponding to the 

arcs of T. Since T̄ is a tree, we have that |R | ÿ | Ĩ 1 | + | Ĩ 2 | ÿ 1. Finally, for arc l, it follows from the assumption of 

case (i) in the problem statement that h(l) * Ĩ and t(l) ∉ Ĩ . If h(l) * Ĩ 1, then according to the EC&R procedure for 
class-l+, we aggregate y1xl ÿ zl ÿ 0 with y1(

P

k*δ+(h(l))xk ÿ
P

k*δÿ(h(l))\{r}xk ÿ xl g f(h(l))), which results in the cancella-

tion of y1xl. If h(l) * Ĩ 2, we aggregate y1xl ÿ zl ÿ 0 with (1ÿ y1)(ÿ
P

k*δ+(h(l))xk +
P

k*δÿ(h(l))\{r}xk + xl gÿf(h(l))), which 
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results in the cancellation of y1xl. As a result, in total we have at least |R | + 1 ÿ | Ĩ 1 | + | Ĩ 2 | cancellations during 
the aggregation of the constraints in the EC&R assignment, showing the satisfaction of condition (C1) of the 
EC&R procedure. For condition (C2) of the EC&R procedure, we need to show that for each constraint used in 
the aggregation, including the base equality, at least one bilinear term among those created after multiplication 
of that constraint with its corresponding weight is canceled. There are two types of constraints to consider. The 

first type is the flow-balance constraints in Ĩ 1 and Ĩ 2, which correspond to the nodes of T̄. It follows from the 

previous discussion that for each node i * Ĩ 1 * Ĩ 2, the bilinear term y1xr, where r is an arc in T that is incident to 
i, that is, h(r)ÿ i or t(r)ÿ i, is canceled during aggregation. This proves that at least one bilinear term is canceled in 
the inequality obtained after multiplying the corresponding flow-balance constraint at node i with y1 or 1ÿ y1. 
The second type of constraints used in the aggregation is the base equality l. The proof follows from an argument 
similar to that given above where we showed that the bilinear term y1xl that appears in the base constraint y1xl ÿ

zl ÿ 0 is canceled. We conclude that condition (C2) of the EC&R procedure is satisfied for all constraints used in 
the aggregation. w

In view of Theorem 2, note that for the simplest choice of the tree T̄, that is, an empty set, the resulting EC&R 
inequalities recover the classical McCormick bounds. Therefore, considering any nonempty tree structure can poten-
tially improve the McCormick results by adding new valid inequalities for the bilinear set.

Proposition 2 and Theorem 2 suggest that the EC&R assignments have a simple graphical interpretation for S1, 
which can be used to generate all nontrivial EC&R inequalities to describe conv(S1) without the need to search for all 
possible constraints and their aggregation weights that satisfy the EC&R conditions as is common for general bilinear 
sets. This attribute can significantly mitigate cut-generation efforts when used systematically to produce cutting plane. 
Such a systematic procedure can be designed by identifying tress of a given network and then following the result of 
Theorem 2 to obtain the corresponding EC&R assignments. We illustrate this procedure in the following example.

Example 1. Consider set S1 where Ξ�represents the network model corresponding to a spiked cycle graph G ÿ
(V, A) shown in Figure 1. We refer to each arc in this network as a pair (i, j) of its tail node i and its head node j, 
and denote its corresponding flow variable as xi, j. Assume that we are interested in finding EC&R assignments 
for class-(1, 5)+. According to Theorem 2, we need to identify the trees that contain exactly one of the tail and 
head nodes of arc (1, 5). For instance, we may select the tree T̄ composed of the nodes Ĩ ÿ {8, 4, 1, 2, 6} that 
contain the tail node of arc (1, 5). Consider the partitions Ĩ 1 ÿ {8, 2} and Ĩ 2 ÿ {4, 1, 6}. Following case (iii) in Theorem 2, 
we can obtain the EC&R assignment [{8ÿ, 2ÿ}, {4+, 1+, 6+}] for class-(1, 5)+. As a result, we multiply the negative 
flow-balance constraints at nodes 8 and 2 with y1, and we multiply the positive flow-balance constraints at 
nodes 4, 1, and 6 with 1ÿ y1, and aggregate them with the base bilinear equality corresponding to arc (1, 5) with 

Figure 1. Graph G of Example 1. 
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weight 1 to obtain the aggregated inequality

ÿz1, 5 ÿ y1x2, 3 ÿ y1x4, 3 + (f8 + f2 + f1 + f4 + f6)y1

+x1, 5 ÿ x2, 1 + x4, 3 ÿ x8, 4 + x6, 2 ÿ f1 ÿ f4 ÿ f6 g 0 

where fi denotes the supply/demand value at node i. Following Remark 1, we may relax each remaining bilinear term 
ÿy1x2, 3 and ÿy1x4, 3 into three possible linear expressions, leading to 9 total EC&R inequalities. If implemented inside 
of a separation oracle, we can use Remark 2 to find the most violated inequality among these 9 efficiently. w

3.1.1. Generalization of the Coefficient Matrix for Bilinear Constraints. Consider a generalization of S1 where the 
bilinear constraints may contain multiple bilinear terms:

S̃
1
ÿ {(x;y;z) * Ξ × ∆1 × Rκ |y1Ã

k
x ÿ zk, ∀k * K}, 

where Ã
k 

is a matrix of appropriate size with potentially multiple nonzero elements. For instance, S̃
1 

may include the 
constraint 2y1xi ÿ 5y1xj ÿ zk for some i, j * N. In this case, the coefficient matrix (2) of Cl will be modified as follows 
after rearranging columns and rows.

[E¦ | ÿE¦ |I | ÿ I |I | ÿ I | ˜̃A | ÿ
˜̃A]: (4) 

In the above matrix, the row and column blocks are defined similarly to those of (2) with a difference that the seventh 
and eighth column blocks correspond to the weights of the bilinear constraints y1Ã

k
x ÿ zk, which are represented by 

β+k and βÿk in the dual weight vector, respectively, for all k * Kl. In particular, the element at column k * Kl and row i *
N of ˜̃A is equal to Ã

k

1i. It is clear from the structure of (4) that this matrix may lose the TU property when Ã
k 

contains 
multiple nonzero elements for some k * Kl. In fact, this property may not hold even if Ã

k

1i * {0, 1, ÿ 1} for all k * Kl and 
i * N. As a result, there is no guarantee that the aggregation weights for all the EC&R inequalities corresponding to 
nontrivial facets of conv(S̃

1
) will be 1. While an explicit derivation of the convex hull description through identifying 

special network structures, such as those presented for S1, may not be attainable for this problem in its original space 
of variables, we can use the following ancillary result to apply Theorem 2 and obtain a convex hull description for S̃

1 

in a higher-dimensional space.

Proposition 3. Consider sets

S
1 ÿ {(x; y;w) * Ξ × ∆1 × Rn |y1xi ÿ wi, ∀i * N}, 

and

D ÿ {(x; y;w; z) * Ξ × ∆1 × Rn × Rκ |Ãk
w ÿ zk, ∀k * K}, 

Then,

conv((S1 × Rκ) + D) ÿ (conv(S1) × Rκ) + D: (5) 

Proof. We prove the result by showing both directions of inclusion for the equality. The direct inclusion follows 
from the fact that the convex hull of intersection of two sets is a subset of the intersection of the convex hulls of 
those sets. For the reverse inclusion, we need to show that conv((S1 × Rκ) + D) § (conv(S1) × Rκ) + D. Consider a 
point φ̄ ÿ (x̄; ȳ; w̄; z̄) * (conv(S1) × Rκ) + D. We show that φ̄ * conv((S1 × Rκ) + D). It follows from the assump-
tion that z̄k ÿ Ã

k
w̄ for all k * K. Further, there must exist a finite collection of points φ̂

j
ÿ (x̂j; ŷj

; ŵj) * S
1 for j * J 

such that x̄ ÿ
P

j*Jωjx̂
j, ȳ ÿ

P

j*Jωjŷ
j, and w̄ ÿ

P

j*Jωjŵ
j for some nonnegative weights ωj such that 

P

j*Jωj ÿ 1. 

Consider the set of points φ̇
j
ÿ (ẋ_j; ẏj; ẇj; żj) for j * J such that ẋj ÿ x̂j, ẏj ÿ ŷj, ẇj ÿ ŵj, and ż

j
k ÿ Ã

k
ẇj for all k * K. 

It is clear that φ̇
j
* (S1 × Rκ) + D for all j * J by definition of the components of these points. It follows 

that φ̄ ÿ
P

j*Jωjφ̇
j
, since x̄ ÿ

P

j*Jωjẋ
j, ȳ ÿ

P

j*Jωjẏ
j, and w̄ ÿ

P

j*Jωjẇ
j by definition, and since z̄k ÿ Ã

k
w̄ ÿ

Ã
k
(
P

j*Jωjŵ
j) ÿ

P

j*JωjÃ
k
ŵj ÿ

P

j*JωjÃ
k
ẇj ÿ

P

j*Jωjż
j
k for all k * K. This proves that φ̄ * conv((S1 × Rκ) + D). w

The result of Proposition 3 shows that we can obtain a convex hull description for S̃
1 

in a higher dimension, which 
is expressed on the left-hand-side of (5), by finding the convex hull of S1 through application of Theorem 2 and then 
intersecting it with the linear constraints in D as indicated on the right-hand-side of (5).
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3.2. The Case with m> 1
In this section, we consider the general case where m> 1 in S. The coefficient matrix of Cl in (1) can be written as fol-
lows after a suitable rearrangement of columns and rows.

E¦ 0 : : : 0 ÿE¦ I ÿI I ÿI 0 0 : : : 0 0 Ī1
ÿĪ1 0 0 : : : 0 0

0 E¦
: : : 0 ÿE¦ I ÿI 0 0 I ÿI : : : 0 0 0 0 Ī2

ÿĪ2
: : : 0 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 : : : E¦
ÿE¦ I ÿI 0 0 0 0 : : : I ÿI 0 0 0 0 : : : Īm

ÿĪm

2

6

6

6

6

4

3

7

7

7

7

5

: (6) 

In the above matrix, each row block j * M represents the bilinear terms yjxi for all i * N. The first m column blocks cor-
respond to the weights of the flow-balance constraints in Ξ�multiplied by yj for j * M, which are denoted by γ

j
t for all 

t * T in the dual vector. The next column block represents the weights of the flow-balance constraints in Ξ�multiplied 
by 1ÿ

P

j*Myj, which are denoted by θt for all t * T in the dual vector. The next two column blocks indicate the lower 
and upper bound constraints on variables in Ξ�multiplied by 1ÿ

P

j*Myj, which are recorded by λi and µi, respec-
tively, for all i * N. The next 2m columns blocks correspond to the weights of the lower and upper bound constraints 
on variables in Ξ�multiplied by yj for j * M, which are recorded by η

j
i and ρ

j
i, respectively, for all i * N. The last 2m col-

umn blocks correspond to the weights of the positive and negative bilinear constraints in S, which are represented by 
β+k and βÿk for all k * Kl. For instance, for constraint yjxi ÿ zk g 0 with (i, j) * N × M and k * Kl, the elements of column k 
in Ī j are all zero except the one in the row corresponding to the bilinear term yjxi which is equal to one.

It is clear from the structure of (6) that this matrix does not have the TU property, implying that a result similar to 
that of Proposition 1 does not necessarily hold. Therefore, there is no guarantee that the aggregation weights for all the 
EC&R assignments obtained from the extreme points of Cl are 1. In fact, Example 2 shows that there exists EC&R 
assignments with aggregation weights that map to extreme points of Cl with components that are not all 0 or 1.

Example 2. Consider set S where Ξ�describes the network polytope corresponding to network G ÿ (V, A)
in Figure 1, and ∆ ÿ {(y1, y2) * R2

+ |y1 + y2 f 1}. Select class-l+ corresponding to the base equality y1x8, 4 ÿ zl ÿ 0. 
Let [I 1,I2, Ī |J , J̄ ] be an assignment for class-l+ where I1 ÿ {4+, 3+}, I2 ÿ {2ÿ}, Ī ÿ {1+}, J ÿ {(4, 1)}, and J̄ ÿ

{(2, 3)}. Next, we show that the above assignment is an EC&R assignment for class-l+ when considering the dual 
weight 1 for all constraints except the bound constraint in J which has a dual weight of 2 in the aggregation. 
Specifically, we aggregate the base constraint y1x8, 4 ÿ zl g 0 with weight 1, the positive flow-balance constraints 
at node 4 that is x4, 1 + x4, 3 ÿ x8, 4 g f4 with weight y1, the positive flow-balance constraints at node 3 that is x3, 7 ÿ

x4, 3 ÿ x2, 3 g f3 with weight y1, the negative flow-balance constraints at node 2 that is x6, 2 ÿ x2, 1 ÿ x2, 3 gÿf2 

Zx6, 2 ÿ x2, 1 ÿ x2, 3 gÿf2 with weight y2, the positive flow-balance constraints at node 1 that is x1, 5 ÿ x4, 1 ÿ x2, 1 g f1 

with weight 1ÿ y1 ÿ y2, the lower bound constraint for arc (4, 1) that is x4, 1 g 0 with weight 2(1ÿ y1 ÿ y2), and 
the upper bound constraint for arc (2, 3) that is u2, 3 ÿ x2, 3 g 0 with weight 1ÿ y1 ÿ y2. During this aggregation, 
six bilinear terms will be canceled, satisfying condition (C1) of the EC&R procedure. Further, at least one bilinear 
term for each constraint involved in the aggregation is canceled, satisfying condition (C2) of the EC&R proce-
dure. Therefore, the above assignment is a valid EC&R assignment for class-l+. Next, we argue that the dual 
weight vector for this assignment corresponds to an extreme point of Cl in (1). For S in this example, the coeffi-
cient matrix of Cl, as depicted in (6), has 16 rows corresponding to bilinear terms yjxi for all jÿ1, 2 and i * A. It is 
easy to verify that the columns corresponding to the six constraints in the above EC&R assignment are linearly 
independent. As a result, we can form a basis by adding to the above six columns 10 more linearly independent col-
umns corresponding to the constraints used in the relaxation step for the bilinear terms remaining in the aggregated 
inequality together with the columns that complete the basis. The resulting basis corresponds to a basic feasible 
solution where all variables (interpreted as the dual weights for constraints involved in the EC&R procedure) are 0 
or 1, except the one associated with the column representing the lower bound constraint for arc (4, 1) which has a 
dual weight equal to 2. Therefore, there exists extreme points of Cl with components that are not all 0 or 1. w

In light of the above observation, even though identifying the aggregation weights for the EC&R procedure for S is 
not as straightforward compared with that of S1, we next show that a generalization of the previously discussed tree 
structures can still be detected for a given EC&R assignment. First, we give a few definitions that will be used to derive 
these results.

Definition 1. Consider set S where Ξ�describes the network polytope corresponding to network G ÿ (V, A). We 
define a parallel network Gj ÿ (Vj, Aj) for j * M to be a replica of G that represents the multiplication of flow vari-
ables x with yj during the aggregation procedure. For instance, the selected nodes in the parallel network j repre-
sent the multiplication of their corresponding flow-balance constraints with variable yj.
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In view of Definition 1, to simplify presentation, we use the same node and arc notation across all parallel net-
works. In particular, given the network G ÿ (V, A), we refer to the replica of node v * V (resp. arc a * A) in the 
parallel network Gj by v (resp. a) for all j * M. Following this rule, given a subnetwork Ġ of the parallel network 
Gj for some j * M, we say that a node v * V (resp. arc a * A) is adjacent to (resp. incident to) a node of Gj, if the 
replica of v in the parallel network Gj is adjacent to (resp. incident to) a node of Gj.

Definition 2. Consider set S where Ξ�describes the network polytope corresponding to network G ÿ (V, A). Con-
sider a collection of networks Ġ

k
ÿ (V̇

k
, Ȧ

k
), for k ÿ 1, : : : , r, where each Ġ

k 
is a subnetwork of a parallel networks 

Gj for some j * M. We say that this collection is vertically connected through the connection nodes Cv ¦ V and connec-
tion arcs Ca ¦ A if there exists an ordering s1, s2, : : : , sr of indices 1, : : : , r such that for each i ÿ 1, : : : , rÿ 1, there 
exists either (i) an arc a * Ca such that a is incident to a node of Ġ

si+1 
and it is incident to a node of some subnet-

works among Ġ
s1

, : : : , Ġ
si

, or (ii) a set of nodes v1, : : : , vp * Cv, each adjacent to the previous one in the original net-
work G, such that v1 is adjacent to a node of Ġ

si+1 
and vp is adjacent to a node of some subnetworks among 

Ġ
s1

, : : : , Ġ
si

. In this definition, if node v1 is in Ġ
si+1

, it counts as an adjacent node to the connection node v1.
The next example illustrates the concepts introduced in Definitions 1 and 2.

Example 3. Consider set S where Ξ�describes the network polytope corresponding to network G ÿ (V, A) in 
Figure 1, and ∆ ÿ {(y1, y2) * R2

+ |y1 + y2 f 1}. According to Definition 1, since mÿ2, we create two parallel networks 

Gj ÿ (Vj, Aj) for jÿ1, 2. Consider subnetworks Ġ
1
ÿ (V̇

1
, Ȧ

1
) and Ġ

2
ÿ (V̇

2
, Ȧ

2
) of the parallel network G1 ÿ (V1, A1), 

and the subnetwork Ġ
3
ÿ (V̇

3
, Ȧ

3
) of the parallel network G2 ÿ (V2, A2), where V̇

1
ÿ {1, 5}, Ȧ

1
ÿ

{(1, 5)}, V̇
2
ÿ {7}, Ȧ

2
ÿ ', V̇

3
ÿ {2, 6}, Ȧ

3
ÿ {(6, 2)}. Further, define Cv ÿ {3} and Ca ÿ {(2, 1)}. According to Definition 

2, the subnetworks Ġ
k
, for kÿ1, 2, 3, are vertically connected through the connection nodes Cv and connection arcs Ca 

due to the following observations. Consider the ordering s1 ÿ 1, s2 ÿ 3, and s3 ÿ 2 of the indices 1, 2, 3 of the subnet-

works. It follows that Ġ
s2 

is vertically connected to Ġ
s1 

through arc (2, 1) * Ca as it satisfies the condition (i) of Defini-

tion 2 because it is incident to node 1 of Ġ
s1 

and node 2 of Ġ
s2

. Similarly, Ġ
s3 

is vertically connected to Ġ
s2 

through 

node 3 * Cv as it satisfies the condition (ii) of Definition 2 because it is adjacent to node 2 of Ġ
s2 

and node 7 of Ġ
s3

. w

Now, we are ready to show the relationship between an EC&R assignment and a special graphical structure in the 
underlying network.

Proposition 4. Consider set S with Ξ�that represents the network polytope corresponding to the network G ÿ (V, A). Let 
[I 1, : : : ,Im, Ī |J , J̄ ] be an EC&R assignment that leads to a nontrivial facet-defining inequality of conv(S). Assume that 
*j*MI j ≠ '. For each j * M, define Ĩ

j
ÿ {i * V | i6 * I j}, Ĩ ÿ {i * V | i6 * Ī }, and J̃ ÿ {i * A | i * J * J̄ }. Then, there 

exist forests F̄j in the parallel network Gj for j * M, each composed of trees T̄
j
k for k * Γj, where Γj is an index set, such that 

(i) the forest F̄j is composed of the nodes in Ĩ
j 
for all j * M,

(ii) the collection of the trees T̄
j
k for all k * Γj and all j * M are vertically connected through connection nodes Ĩ and connec-

tion arcs J̃ ,
(iii) the collection of all nodes in F̄j for all j * M together with the connection nodes Ĩ form a tree in G, which has at least 

one incident node to each connection arc in J̃ .

Proof. We show the result by proving conditions (i)–(iii). First, we may assume that the given EC&R assignment 
corresponds to class-l6 for some l * K. Since [I1, : : : ,Im, Ī |J , J̄ ] leads to a nontrivial facet-defining inequality of 
conv(S), its corresponding dual weights in the aggregation should represent an extreme point of Cl defined in 
(1). This extreme point is associated with a basis in the coefficient matrix (6). In this basis, the subset of the col-
umn block that contains E¦ in the row block j represents the flow-balance constraints (multiplied with yj) for the 
nodes i * Ĩ

j
, which can be viewed as the selected nodes in the parallel network Gj for j * M. Further, the rows in 

the row block j represent the flow variables (multiplied with yj) for each arc in G, which can be viewed as an arc 
in the parallel network Gj. We may reorder the columns and rows of this basis corresponding to each parallel 
network Gj to obtain a diagonal formation composed of diagonal blocks E¦

j, k for k in an index set Γj. It follows from 
this structure that the nodes corresponding to the columns of E¦

j, k in the parallel network Gj are connected via arcs 
of Gj represented by the matrix rows. Therefore, these nodes can form a tree T̄

j
k for k * Γj, the collection of which 

represents a forest F̄j for all j * M, satisfying condition (i) of the proposition statement.
For condition (ii), considering the aforementioned diagonal block structure and representing the subset of col-

umn blocks of (6) containing Ī j and I in the basis by one block with 6 sign (as only one of them can be selected in 
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the basis), we can write the resulting system of equations for the associated basic feasible solution as follows

E¦
1, 1 0 0

0 ⋱ 0

0 0 E¦
1, |Γ1 |

0 : : : 0 ÿE¦
6 I 6 I 0 : : : 0 0 6 Ī1 0 : : : 0 0 C1

0

E¦
2, 1 0 0

0 ⋱ 0

0 0 E¦
2, |Γ2 |

: : : 0 ÿE¦
6 I 0 6 I : : : 0 0 0 6 Ī2

: : : 0 0 C2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 : : :

E¦
m, 1 0 0

0 ⋱ 0

0 0 E¦
m, |Γm |

ÿE¦
6 I 0 0 : : : 6 I 0 0 0 : : : 6 Īm 0 Cm

0 0 : : : 0 ÿE¦
6 I 0 0 : : : 0 6 I 0 0 : : : 0 6 Ī1, : : : , m Cm+1

0 0 : : : 0 0 0 0 0 : : : 0 0 0 0 : : : 0 0 Cm+2

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

(7) 

where the last column in the basis corresponds to the constraints that have weights 0 in the basic feasible solution and 
are added to complete the basis, and where the last row represents all bilinear terms that do not appear in any con-
straints during aggregation. Further, the row block next to the last row corresponds to the bilinear terms that appear 
during aggregation but not in any of the selected flow-balance constraints; the matrix 6 Ī1, : : : , m denotes the bilinear 
constraints in S that contain these bilinear terms and could be used during the relaxation step. In the above basis, the 
column block that contains ÿE¦ represents the flow-balance constraints (multiplied with 1ÿ

P

j*Myj) corresponding 
to the nodes in Ĩ . Similarly, the column block that contains 6 I in all rows represents the bound constraints on the 
flow variables (multiplied with 1ÿ

P

j*Myj) corresponding to the arcs in J̃ . We refer to the column group composed 
of the columns of E¦

j, k for any j * M and k * Γj as the column group representing the nodes of the tree T̄
j
k. It is clear 

from the diagonal structure of the submatrix containing E¦
j, k that the column groups representing the nodes of T̄

j
k are 

all arc disjoint, that is, there are no two columns from different groups that have a nonzero element in the same row. 
We claim that there exists an ordering (s1, r1), (s2, r2), : : : , (sh, rh) of the pairs (j, k) for all j * M and k * Γj such that for 
each column group representing the nodes of T̄si

ri
, for all i ÿ 2, : : : , h, there exists either (i) a column from the column 

blocks corresponding to J̃ that has a nonzero element in a row corresponding to a row of E¦
si, ri 

and a nonzero element 
in a row corresponding to a row of E¦

st, rt 
for some t * {1, : : : , iÿ 1}, or (ii) a sequence of columns in the column block 

corresponding to Ĩ , each sharing a nonzero element in a common row with the previous one, such that the first col-
umn has a nonzero element in a row corresponding to a row of E¦

si , ri 
and the last column has a nonzero element in a 

row corresponding to a row of E¦
st, rt 

for some t * {1, : : : , iÿ 1}. Assume by contradiction that no such ordering exists. 
Therefore, we can partition the rows in the first m+1 row blocks of (7) in such a way that no two rows in all columns 
composed of the columns in E¦

j, k for all j * M and k * Γj and those corresponding to the columns of Ĩ and J̃ have all 
their nonzero elements in the rows of one of these partitions. In this case, considering that the column blocks composed 
of 6 I and those composed of 6 Ī j have exactly one nonzero element in the basis, we can compactly rewrite the system 
of equations for the basic feasible solution as follows:

6 Ē1 6 I1 6 Ī1 0 0 0 C̄1

0 0 0 6 Ē2 6 I2 6 Ī2 C̄2

0 0 0 0 0 0 Cm+2

2

6

4

3

7

5

+

+

0

2

6

4

3

7

5
ÿ

6 el

0

0

2

6

4

3

7

5
, (8) 

where the first and second row blocks respectively correspond to the first and second partitions discussed above. In 
(8), el is a unit vector whose elements are all zero except that corresponding to the row representing yj2xi2 for some i2, j2

that satisfy Al
j2i2 ÿ 1, which is equal to 1. We may assume without the loss of generality that the row containing this 

nonzero element in el belongs to the first row block. All these columns except the ones in the last column block have 
positive weights because the associated constraints are assumed to be used in the aggregation. These weights are 
denoted by + in the first two row blocks of the vector multiplied with this matrix. It follows that the linear combination 
of the columns in the second column block of the basis matrix with positive weights yields the zero vector. This shows 
that the columns are linearly dependent, a contradiction. Now, consider the ordering (s1, r1), (s2, r2), : : : , (sh, rh)

described above. It follows that for each i ÿ 2, : : : , h, there exists either (i) a column from the column block 
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corresponding to J̃ that has a nonzero element in a row corresponding to a row of E¦
si, ri 

and a nonzero element in a 
row corresponding to a row of E¦

st, rt 
for some t * {1, : : : , iÿ 1}, or (ii) a sequence of columns in the column block corre-

sponding to Ĩ , each sharing a nonzero element in a common row with the previous one, such that the first column has 
a nonzero element in a row corresponding to a row of E¦

si, ri 
and the last column has a nonzero element in a row corre-

sponding to a row of E¦
st, rt 

for some t * {1, : : : , iÿ 1}. First, consider the case (i) in the above either-or argument holds 
for a column k * J̃ . This column has nonzero elements in the rows representing arc k in all subnetworks Gj for j * M. 
Matrix E¦

si, ri 
has a nonzero element in row k if the tree T̄si

ri 
has an incident node to arc k. we conclude that T̄si

ri 
and T̄st

rt 

have at least one node incident to k, satisfying criterion (i) in Definition 2. Second, consider the case (ii) in the above 
either-or argument holds for a sequence k1, : : : , kp of the nodes corresponding to Ĩ where p f | Ĩ | . Any such column, 
say k1, has nonzero elements in the rows representing the arcs that are incident to node k1 in all parallel networks Gj 

for j * M. Therefore, since each column contains a nonzero element in a common row with the previous one, the nodes 
corresponding to these columns must be adjacent to one another in G. Further, since the column corresponding to k1 

has a nonzero element in a row corresponding to a row of E¦
si, ri

, we conclude that k1 is adjacent to a node in T̄si
ri

, which 
means that either k1 belongs to this tree, or it is adjacent to a node of this tree. A similar argument can be made about 
node kp and the tree T̄st

rt
. This satisfies criterion (ii) of Definition 2. This proves condition (ii) of the proposition state-

ment due to Definition 2.
For condition (iii), we show there exists a sequence v1, : : : , vq of all the nodes in *j*MĨ

j
* Ĩ , where q ÿ

|*j*MĨ
j
* Ĩ | and v1 * *j*MĨ

j
, such that every node vi is adjacent to at least one node in v1, : : : , viÿ1 for every 

i ÿ 2, : : : , q. We may assume that v1 is incident to arc i2 defined previously that is associated with the base equality 
l. For other cases, where i2 is not incident to any nodes in *j*MĨ

j
, the argument will be similar with an adjustment 

of the partitions described below. It follows from the previously proven conditions (i) and (ii) of the problem 
statement, as well as Definition 2 that there exists a sequence v̄1, : : : , v̄p of all the nodes in *j*MĨ

j
* Î for some 

Î ¦ Ĩ such that v̄i is adjacent to at least one node in v̄1, : : : , v̄iÿ1 for every i ÿ 2, : : : , p. We claim that there exists a 
sequence v̂1, : : : , v̂qÿp of all the nodes in Ĩ \ Î such that v̂i is adjacent to at least one node in v̄1, : : : , v̄p, v̂1, : : : , v̂iÿ1 

for every i ÿ 1, : : : , qÿ p. Assume by contradiction that no such sequence exists. Then, we can use an argument 
similar to that of case (ii) above to partition the rows of (7) in such a way that all columns corresponding to the 
nodes in v̄1, : : : , v̄p, v̂1, : : : , v̂t have all their nonzero elements in the first partition, and the columns corresponding 
to all the remaining nodes v̂t+1, : : : , v̂qÿp have all their nonzero elements in the second partition. Then, a similar 
argument to that following (8) will show that the columns in the second group are linearly dependent, a contra-
diction. The case for the second part of the statement regarding the connection arcs in J̃ can be shown 
similarly. w

Although Proposition 4 shows that an EC&R assignment corresponds to a forest structure in the parallel networks 
created from the underlying network in S, the converse result—similar to the one presented for set S1—does not hold 
here. More specifically, a forest structure that satisfies the conditions of Proposition 4 does not necessarily lead to a 
valid EC&R assignment, and even when it does, the calculation of the aggregation weights to satisfy the EC&R condi-
tions is not as straightforward; see Example 4 below.

Example 4. Consider set S where Ξ�describes the network polytope corresponding to network G ÿ (V, A) in 
Figure 1, and ∆ ÿ {(y1, y2) * R2

+ |y1 + y2 f 1}. Select class-l+ corresponding to the base equality y1x1, 5 ÿ zl ÿ 0. In 
the parallel network G1, we select the forest F̄1 composed of the tree T̄1

1 with the node set Ĩ
1
ÿ {1, 2}. In the paral-

lel network G2, we select the forest F̄2 composed of the tree T̄2
1 with the node set Ĩ

2
ÿ {2, 6}. We select the connec-

tion node set Ĩ ÿ {6}, and the connection arc set J̃ ÿ '. It is easy to verify that these sets satisfy the conditions 
(i)–(iii) of Propositions 4. However, we cannot find an aggregation weight for the flow-balance constraints corre-
sponding to the nodes in the above sets that yields a cancellation of at least 5 bilinear terms. As a result, there is 
no EC&R assignment that matches the considered forest structure. w

A common way to circumvent the above-mentioned difficulty in obtaining valid EC&R assignments and their 
aggregation weights is to aim at a special class of EC&R assignments with more specific attributes that can be used to 
strengthen the connection between an EC&R assignment and its corresponding network structure. An important 
example of such class is the class of EC&R assignments that are obtained through pairwise cancellation. In this proce-
dure, each cancellation of bilinear terms is obtained by aggregating two constraints. This definition includes the bilin-
ear terms that are canceled during the relaxation step, that is, the constraint used to relax the remaining bilinear terms 
counts as one of the two constraints in the preceding statement. Following this procedure, the aggregation weight for 
each constraint can be determined successively as the constraint is added to the assignment to ensure the satisfaction 
of the EC&R conditions. The next result shows that the aggregation weights for all constraints used in the EC&R 
assignments obtained through pairwise cancellation are 1.
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Proposition 5. Consider set S where Ξ�describes the network polytope corresponding to network G ÿ (V, A). Let 
[I 1, : : : ,Im, Ī |J , J̄ ] be an EC&R assignment for class-l6 for some l * K corresponding to pairwise cancellation. Then, the 
aggregation weights for all constraints used in this assignment are 1.

Proof. Let p̄l be the solution vector for the system of Equation (1) of Cl corresponding to the aggregation weights 
of the given EC&R assignment. We may rewrite this system of equations as follows by rearranging its rows and 
columns.

P1 0 C1

P2 6 I C2

0 0 C3

2

6

4

3

7

5

p̄l
1

p̄l
2

0

2

6

4

3

7

5
ÿ

6 el

0

0

2

6

4

3

7

5
, (9) 

In the coefficient matrix of (9), the first row block represents the bilinear terms that are canceled during aggrega-
tion. The second row block corresponds to the remaining bilinear terms in the aggregated inequality that are 
relaxed in the last step of the EC&R procedure. The last row block represents all the bilinear terms that are not 
involved in the aggregation procedure. Further, in this matrix, the first column block corresponds to the con-
straints used in the aggregation, whose aggregation weights in the solution vector p̄l are denoted by p̄l

1. The sec-
ond column block corresponds to the variable bound constraints in Ξ�as well as the bilinear constraints in S used 
in the EC&R procedure to relax the remaining bilinear terms in the aggregated inequality, whose weights in the 
solution vector p̄l are denoted by p̄l

2. The last column block represents all other constraints that are not used dur-
ing the EC&R procedure and their weights in the solution vector p̄l are zero. Finally, el on the right-hand-side of 
this system is a unit vector whose elements are all zeros except that corresponding to the row representing yj2xi2

for some i2, j2 that satisfy Al
j2i2 ÿ 1, which is equal to 1. It is clear that this row belongs to the first row block since 

according to the EC&R condition (C2), the bilinear term in the base equality l must be canceled during the aggre-
gation procedure when the assignments are not empty. It follows from the Equation (9) that P1p̄l

1 ÿ 6 el. Next, 
we analyze the structure of P1. Note that all elements of P1 belong to {0, ÿ1, 1} because it is a submatrix of (6) 
that represents the coefficients of the constraints in S. Considering that the columns of P1 represent the con-
straints used in the aggregation except the base equality (as that constraint has been moved to the right-hand- 
side to form Cl), and that the rows of P1 correspond to the canceled bilinear terms during aggregation, according 
to condition (C1) of EC&R, we conclude that the number of rows of P1 is no smaller that the number of columns 
of P1. Further, it follows from condition (C2) of EC&R that each constraint used in the aggregation (after being 
multiplied with its corresponding weight) will have at least one bilinear term canceled, which implies that each 
column of P1 has at least one nonzero element. The assumption of pairwise cancellation for the given EC&R 
assignment implies that each canceled bilinear term corresponding to the rows of P1 are obtained through aggre-
gation of exactly two constraints. As a result, each row of P1 must contain exactly two nonzero elements, except 
for the row corresponding to the bilinear term yj2xi2 that appears in the base equality yj2xi2 ÿ zl ÿ 0 which must 
have only one nonzero element because the weight of the base equality has been fixed at 61 and its column has 
been moved to the right-hand-side of the equation captured by 6 el; see the derivation of (1). Therefore, we may 
rearrange the rows and columns of the matrices in this equation to obtain the form:

6 1 0 ⋯ 0

{0, 6 1} 6 1 ⋯ 0

⋮ ⋮ ⋱ ⋮

{0, 6 1} {0, 6 1} ⋯ 6 1

{0, 6 1} {0, 6 1} ⋯ {0, 6 1}

⋮ ⋮ ⋱ ⋮

{0, 6 1} {0, 6 1} ⋯ {0, 6 1}

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

¯̄p l
1 ÿ 6 e1, (10) 

where ¯̄p l
1 is composed of the elements of p̄l

1 that are rearranged to match the rearrangement of columns of P1 in the 
above form, and where the first row corresponds to the bilinear term yj2xi2 so that the right-hand-side vector becomes 
6 e1. It follows from the above discussion about the structure of P1 and Equation (10) that all components of ¯̄p l

1 must 
be equal to 1 as they need to be nonnegative. Finally, for the equations in the second row block of (9), we have that 
P2p̄l

1 6 Ip̄l
2 ÿ 0. It follows from the pairwise cancellation assumption that each row of P2 contains exactly one nonzero 

element as it corresponds to a remaining bilinear term in the aggregation inequality. Since all of the elements in P2 

belong to {0, ÿ1, 1}, and all the components in p̄l
1 are equal to 1, it must hold that p̄l

2 ÿ 1. w

Khademnia and Davarnia: Convexification of Bilinear Terms over Network Polytopes 
Mathematics of Operations Research, Articles in Advance, pp. 1–23, © 2024 INFORMS 13 

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

6
9
.5

.1
4
1
.1

2
9
] 

o
n
 0

3
 O

ct
o
b
er

 2
0
2
4
, 
at

 0
0
:0

6
 .
 F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



Remark 3. Consider the special case with mÿ 1. As described in the proof of Proposition 2, for any i * N \ {l}
(resp. for iÿ l), there are two (resp. three) possible scenarios for constraints that could be used in the aggregation 
to cancel a bilinear term y1xi. Since the aggregation weights for all constraints are 1 in this case (see Proposition 
1), we conclude that each cancellation is obtained through aggregation of exactly two constraints. Further, any 
remaining bilinear term in the aggregated inequality corresponds to an arc that is incident to exactly one node of 
the tree associated with the EC&R assignment (see Proposition 2), which implies that each such bilinear term 
appears in exactly one constraint during aggregation. As a result, all EC&R inequalities for the case with mÿ1 
can be obtained through pairwise cancellation.

Although the EC&R inequalities obtained through pairwise cancellation do not necessarily produce a full con-
vex hull description for S, the result of Proposition 5 provides three important advantages: (i) it generalizes the 
convexification results for the case with mÿ1 as described in Remark 3; (ii) it can produce inequalities stronger 
than those obtained by applying Theorem 2 to relaxations of S that contain one y variable at a time, because it 
considers all the y variables in their original simplex set ∆m; and (iii) it enables us to derive explicit EC&R 
inequalities cognizant of the underlying network structure without the need to search for the aggregation 
weights that satisfy the EC&R conditions, as will be shown in the sequel. These advantages are corroborated by 
the computational experiments presented in Section 4. The next proposition shows that the pairwise cancellation 
property provides more information about the forest structure presented in Proposition 4.

Proposition 6. Consider the setting of Proposition 4, and assume that the EC&R assignment [I 1, : : : ,Im, Ī |J , J̄ ] has the 
pairwise cancellation property. Further, let this assignment correspond to a class-l6 for some l * K such that Al

j2i2 ÿ 1 for 
some (i2, j2) * N × M. Then, in addition to the outcome of Proposition 4, we have that 

(i) arc i2 is either in J̃ or incident to exactly one node in Ĩ * Ĩ
j2
, but not both,

(ii) each arc in J̃ is incident to at most one node in Ĩ * Ĩ
j 
for each j * M,

(iii) each node in Ĩ + Ĩ
j
, for j * M \ {j2} (resp. j ÿ j2), is adjacent to no other nodes in that set and no arcs in J̃ (resp. 

J̃ * {i2}).

Proof. For case (i), it follows from condition (C2) of the EC&R procedure that the bilinear term yj2xi2 in the base 
equality must be canceled during aggregation. Further, according to the pairwise cancellation property, there 
must be exactly one constraint in the aggregation in addition to the base equality that would contain yj2xi2 after 
multiplication with the corresponding dual weight. There are two possible scenarios. The first possibility is that 
the bound constraints for xi2 are used in the aggregation, which implies that arc i2 is a connection arc and belongs 
to J̃ . The second possibility is that the flow-balance constraint at either node t(i2) or h(i2), but not both, is used in 
the aggregation, which implies that i2 is incident to exactly one node in Ĩ * Ĩ

j2
.

For case (ii), consider an arc i * J̃ . Therefore, either of the bound constraints xi g 0 or ui ÿ xi g 0 is used in the 
aggregation with weight 1ÿ

P

j*Myj. It follows from the pairwise cancellation property that, for each j * M, there 
can be at most one additional constraint in the aggregation that contains a term yjxi. The only possibility for such 
a constraint is the flow-balance constraint at either node t(i2) or h(i2), but not both. We conclude that i is incident 
to at most one node in Ĩ * Ĩ

j 
for each j * M.

For case (iii), consider a node i * Ĩ + Ĩ
j 

for some j * M \ {j2}. Therefore, the aggregation contains the (positive 
or negative) flow-balance constraint at node i multiplied with 1ÿ

P

j*Myj due to i * Ĩ , together with the (positive 
or negative) flow-balance constraint at node i multiplied with yj due to i * Ĩ

j
. Therefore, the bilinear terms yjxk 

for all k * δ+(i) * δÿ(i) already appear in two constraints, which implies that they cannot appear in any other con-
straints during aggregation. As a result, the bound constraints for each variable xk corresponding to arc k cannot 
be included in J̃ . Similarly, the flow-balance constraint at node h(k) for any k * δ+(i) and at node t(k) for any k *
δÿ(i) cannot be included in the aggregation, which implies that i cannot be adjacent to any other nodes in Ĩ + Ĩ

j
. 

The proof for the case where j ÿ j2 follows from a similar argument. w

As noted earlier, an important consequence of the pairwise cancellation property is providing the ability to 
derive the converse statement to those of Propositions 4 and 6, which identifies EC&R assignments based on a spe-
cial forest structure in the underlying network. The procedure to obtain such an EC&R assignment is given in The-
orem 3, which makes use of Algorithm 1 to determine the aggregation weights for deriving the corresponding 
EC&R inequalities.

Theorem 3. Consider set S with Ξ�that represents the network polytope corresponding to the network G ÿ (V, A). Let F̄j, 
for each j * M, be a forest in the parallel network Gj, composed of trees T̄

j
k for k * Γj, where Γj is an index set, that satisfies 

the conditions (i)–(iii) of Propositions 4 and 6 with the corresponding node sets Ĩ
j
, the connection node set Ĩ , the connection 

arc set J̃ , and the class l. Then, the assignment [I 1, : : : ,Im, Ī |J , J̄ ] obtained from Algorithm 1 is an EC&R assignment 
for class-l6 .
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Proof. First, we argue that conditions (i)–(iii) of Proposition 4 imply that each member of the sets Ĩ , J̃ , and Ĩ
j 

for j * M receives a label assignment through the steps of Algorithm 1, that is, the member is added to set D 
defined in that algorithm. It follows from condition (i) of Proposition 4 that once a member of the node subset in 
Ĩ

j
, for each j * M, that represents a tree T̄

j
k with k * Γj is added to D, all the remaining nodes in T̄

j
k are eventually 

added to D because of the loop in lines 11–13 in the algorithm, as all nodes of the tree are connected. Condition 
(ii) of Proposition 4 implies that all trees T̄

j
k for k * Γj and j * M are connected through an appropriate sequence of 

the tree nodes, the connection nodes in Ĩ , and the connection arcs in J̃ . Consequently, the loops in lines 10–44 of 
the algorithm ensure that each member of these sets is visited following that sequence and becomes added to D. 
Further, condition (iii) of Proposition 4 suggests that each member in the sets Ĩ and J̃ is connected to the sub-
graph composed of the set of all tree nodes in Ĩ

j 
and their associated connection nodes and connection arcs. As a 

result, there exists a sequence of adjacent nodes and arcs that lead to each member of Ĩ and J̃ , thereby getting 
added to D.

Second, we show that each bilinear term created during the aggregation can appear in at most two constraints. 
There are four cases. In case 1, consider the bilinear term yj2xi2 that appears in the base equality l. Condition (i) of 
Proposition 6 implies that this bilinear term can appear in exactly one other constraint, which could be either the 
bound constraint on variable xi2 (which would be included in J̃ ) or the flow-balance constraint at one of the inci-
dent nodes to i2 (which would be included in Ĩ

j2
* Ĩ ). In case 2, consider a bilinear term yjxi, for some j * M, that 

appears in the bound constraint on variable xi for any arc i * J̃ . Condition (ii) of Proposition 6 implies that this 
bilinear term can appear in at most one other constraint, which could be the flow-balance constraint at one of the 
incident nodes to i (which would be included in Ĩ

j
* Ĩ ). In case 3, consider a bilinear term yjxi, for some j * M, 

that appears in the flow-balance constraint at an incident node of arc i after being multiplied with both yj (i.e., the 
node being in Ĩ

j
) and 1ÿ

P

j*Myj (i.e., the node being in Ĩ ). Condition (iii) of Proposition 6 implies that this bilin-
ear term cannot appear in any other constraints during aggregation. In case 4, consider a bilinear term yjxi, for 
some j * M, that appears in the flow-balance constraint at an incident node of arc i that is not in Ĩ

j
+ Ĩ . It follows 

from condition (iii) of Proposition 4 that this bilinear term can appear in at most one other constraint because of 
the tree structure of all the nodes in *j*MĨ

j
* Ĩ .

Third, we discuss that, for any k * D that has been newly added to this set, its label value has been determined 
through lines 10–44 of Algorithm 1 in such a way that, for a member i * *j*MĨ

j
* Ĩ * J̃ that has been previously 

added to D and is adjacent/incident to i, the bilinear term that commonly appears in the weighted constraints 
corresponding to both i and k is canceled. For instance, consider the case where i * Ĩ (line 22 of the algorithm) 
and k * Ĩ

j 
for some j * M is an adjacent node to i (line 26 of the algorithm). Assume that l(i) ÿ +, and that arc a *

A is such that t(a)ÿ i and h(a)ÿk. It follows from line 27 of the algorithm that l(k) ÿÿ. Considering the assign-
ment rule in lines 48 and 52 of the algorithm, we should aggregate the constraint 

P

r*δ+(i)\{p}xr ÿ
P

r*δÿ(i)xr + xp g

fi with weight 1ÿ
P

j*Myj, together with the constraint ÿ
P

r*δ+(k)xr +
P

r*δÿ(k)\{p}xr + xp gÿfk with weight yj, which 
results in the cancellation of the bilinear term yjxp. A similar argument can be made for any other possible case in 
Algorithm 1.

Combining all the results shown in the previous parts, that is, (I) each member of the sets Ĩ , J̃ , and Ĩ
j 

for j *
M receives a label assignment and is added to D; (II) each bilinear term created during the aggregation can 
appear in at most two constraints; and (III) for any k * D, its label value is determined in such a way that the bilin-
ear term that is common between the weighted constraints corresponding to i and a previously added member k 
in D is canceled, we conclude that at least | Ĩ | + |J̃ | +

P

j*M | Ĩ
j
| bilinear terms will be canceled during aggrega-

tion in the desired assignment [I 1, : : : ,Im, Ī |J , J̄ ]. This satisfies the EC&R conditions (C1). Finally, the above 
argument also implies that each flow-balance constraint at the nodes in *j*MĨ

j
* Ĩ , and each variable bound con-

straint for the arcs in Ĩ will have at least one of their bilinear terms (after being multiplied with appropriate 
weights) canceled because each such node or arc will eventually be added to D when it receives a label for the 
desired cancellation. This satisfies the EC&R condition (C2). We conclude that [I1, : : : ,Im, Ī |J , J̄ ] is an EC&R 
assignment. w

Algorithm 1 (Derive an EC&R Assignment Associated with a Forest Structure)
Require: network G ÿ (V, A), forest node sets Ĩ

j 
for j * M, connection node set Ĩ , connection arc set J̃ , class l 

with (i2, j2) * N × M such that Al
j2i2 ÿ 1, and a class sign indicator 6, that satisfy the conditions of Theorem 3

Ensure: the EC&R assignment [I 1, : : : ,Im, Ī |J , J̄ ] for class-l6 

1: assign an empty label denoted by l(i) to each node i * Ĩ*j*MĨ
j 
and each arc i * J̃ * {l}, and define set D ÿ '

2: set l(i2) ÿ the class sign indicator, and let k * Ĩ
j2
* Ĩ either be an incident node to i2 or be the arc i2 * J̃

3: if (k ÿ h(i2) * Ĩ
j2
) or (k ÿ t(i2) * Ĩ ) or (k ÿ i2 * J̃ ) then

4: set l(k) ÿ l(i2), and add k to D
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5: else if (k ÿ t(i2) * Ĩ
j2
) or (k ÿ h(i2) * Ĩ ) then

6: set l(k) ÿ ¬l(i2), and add k to D (¬ represents the negation symbol)
7: end if
8: while D ≠ ' do
9: select i * D

10: if i * Ĩ
j 
for some j * M then

11: for each unlabeled node k * Ĩ
j 
and k̄ * Ĩ that is adjacent to i do

12: set l(k) ÿ l(i), set l(k̄) ÿ ¬l(i), and add k and k̄ to D
13: end for
14: for each unlabeled arc k * J̃ that is incident to i do
15: if i ÿ t(k) then
16: set l(k) ÿ l(i), and add k to D
17: else
18: set l(k) ÿ ¬l(i), and add k to D
19: end if
20: end for
21: end if
22: if i * Ĩ then
23: for each unlabeled node k * Ĩ

j 
for j * M such that kÿ i do

24: set l(k) ÿ l(i), and add k to D
25: end for
26: for each unlabeled node k * Ĩ

j 
for j * M, and k̄ * Ĩ that is adjacent to i do

27: set l(k) ÿ ¬l(i), set l(k̄) ÿ l(i), and add k and k̄ to D
28: end for
29: for each unlabeled arc k * J̃ that is incident to i do
30: if i ÿ t(k) then
31: set l(k) ÿ ¬l(i), and add k to D
32: else
33: set l(k) ÿ l(i), and add k to D
34: end if
35: end for
36: end if
37: if i * J̃ then
38: for each unlabeled node k ÿ t(i) * Ĩ

j 
and k̄ ÿ h(i) * Ĩ

j 
for j * M do

39: set l(k) ÿ l(i), set l(k̄) ÿ ¬l(i), and add k and k̄ to D
40: end for
41: for each unlabeled node k ÿ t(i) * Ĩ and k̄ ÿ h(i) * Ĩ do
42: set l(k) ÿ ¬l(i), set l(k̄) ÿ l(i), and add k and k̄ to D
43: end for
44: end if
45: Remove i from D
46: end while
47: for each i * Ĩ

j 
for each j * M do

48: add il(i) to I j

49: end for
50: for each i * Ĩ do
51: add il(i) to Ī
52: end for
53: for each i * J̃ do
54: if il(i) ÿ + then
55: add i to J
56: else
57: add i to J̄
58: end if
59: end for
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In view of Theorem 3, once we identify a forest structure with the desired conditions, we can use the steps in Algo-
rithm 1 to determine the weight of each constraint in the corresponding EC&R assignment by following a path that 
starts from the arc associated with the base equality and reaches the node or arc associated with that constraint. We 
illustrate this approach in the following example.

Example 5. Consider set S with mÿ2 and Ξ�that represents the primal network model corresponding to the 
graph G ÿ (V, A) shown in Figure 1. Similarly to Example 1, we refer to each arc in this network as a pair (i, j) of 
its tail node i and its head node j, and denote its corresponding flow variable as xi, j. Assume that we are inter-
ested in finding EC&R assignments for class-l+ where the base equality l contains the bilinear term y1x1, 5, that is, 
i2 ÿ (1, 5) and j2 ÿ 1. According to Theorem 2, we need to identify a forest structure that satisfies the conditions 
(i)–(iii) of Propositions 4 and 6. In the parallel network G1, we select the forest F̄1 composed of the tree T̄1

1 with 
the node set {1, 2, 6} and the tree T̄1

2 with the node set {8}. In the parallel network G2, we select the forest F̄2 com-
posed of the tree T̄2

1 with the node set {1, 4}. Therefore, we can form the set Ĩ
1
ÿ {1, 2, 6, 8} and Ĩ

2
ÿ {1, 4}. We 

select the connection node set Ĩ ÿ {3}, and the connection arc set J̃ ÿ {(8, 4)}. It is easy to verify that these sets 
satisfy the conditions (i)–(iii) of Propositions 4 and 6. Next, we determine the label of each node and arc in the 
above sets through applying Algorithm 1. According to line 2 of this algorithm, we set l(1, 5) ÿ + in parallel net-
work G1, and select k ÿ t(1, 5) ÿ 1 * Ĩ

1
. It follows from line 5 of the algorithm that l(1) ÿÿ and k is added to D. 

Following lines 10–13, we obtain for Ĩ
1 

that l(2) ÿ l(6) ÿÿ, and for Ĩ that l(3) ÿ +. Then, from lines 26–28 of 
Algorithm 1, we deduce for Ĩ

2 
that l(4) ÿÿ, and from lines 11–13 for Ĩ

2
, we obtain that l(1) ÿÿ. Lines 32–34 

imply that l(8, 4) ÿÿ for J̃ . Lastly, we conclude from lines 38–40 that l(8) ÿÿ for Ĩ
1
. As a result, following lines 

47–59 of the algorithm, we obtain the EC&R assignment [{1ÿ, 2ÿ, 6ÿ, 8ÿ}, {1ÿ, 4ÿ}, {3+} |', {(8, 4)}] for class-l+. 
Based on this assignment, we multiply the negative flow-balance constraints at nodes 1, 2, 6, 8 with y1, we multi-
ply the negative flow-balance constraints at nodes 1, 4 with y2, we multiply the positive flow-balance constraint 
at node 3 with 1ÿ y1 ÿ y2, and we multiply the upper bound constraint on variable x8, 4 with 1ÿ y1 ÿ y2, and 
aggregate them with the base bilinear equality corresponding to arc (1, 5) with weight 1 to obtain the aggregated 
inequality

ÿz1, 5 ÿ y1x4, 5 ÿ y1x3, 7 + y1x4, 3 ÿ y2x1, 5 + y2x4, 5 + y2x2, 3 ÿ y2x3, 7

+(f1 + f2 + f3 + f6 + f8 ÿ u8, 4)y1 + (f1 + f3 + f4 ÿ u8, 4)y2

+x3, 7 ÿ x2, 3 ÿ x4, 3 ÿ x8, 4 ÿ f3 + u8, 4 g 0, 

where fi denotes the supply/demand value at node i, and ui, j denotes the upper bound for variable xi, j. Following the 
relaxation step in the EC&R procedure, we may relax each of the seven remaining bilinear terms into two possible lin-
ear expressions, leading to 128 total EC&R inequalities. If implemented inside of a separation oracle, we can use 
Remark 2 to find the most violated inequality among these 128 inequalities efficiently in linear time. w

We conclude this section with a remark on the practical implementation of the proposed EC&R inequalities. While 
there is an efficient separation algorithm to find a separating EC&R inequality among those created from a given 
EC&R assignment as noted in Remark 2, the choice of the class of an EC&R assignment and its possible forest structure 
in the underlying network can lead to a large pool of candidates to consider during a branch-and-cut approach. Note 
that each EC&R inequality is obtained through an aggregation of the constraints of S with proper weights. In particu-
lar, given an EC&R assignment [I 1, : : : ,Im, Ī |J , J̄ ] for class-l6 , we aggregate the base inequality of the form 
fl(x, y, z) g 0 with constraints of the general form h(y)g(x) g 0, where h(y) represents the aggregation weight that could 
be yj or 1ÿ

P

j*Myj, and where g(x) g 0 denotes a linear network flow constraint that could be the flow-balance or vari-
able bound constraints. In most branch-and-cut approaches, the starting relaxation of the problem contains all linear 
side constraints on x and y. It follows that an optimal solution (x̄; ȳ; z̄) of such relaxation that is to be separated satisfies 
h(ȳ)g(x̄) g 0 for all valid choices of function h(y) and constraint g(x) g 0. Therefore, for the resulting aggregated 
inequality to be violated at a point (x̄; ȳ; z̄), we must have the base inequality violated at that point, that is, 
fl(x̄, ȳ, z̄) < 0. This observation can be used to select the class and sign of the EC&R assignment to be generated during 
a separation process. To this end, we may sort the residual values defined by Ψk ÿ | ȳjx̄i ÿ z̄k | for all (i, j, k) such that 
Ak

ji ÿ 1, and choose class k as that associated with largest Ψk with the class sign+ if ȳjx̄i ÿ z̄k < 0, and class signÿother-
wise. This perspective can shed light on explaining the observation that the EC&R inequalities obtained from fewer 
aggregations tend to be more effective in practice as noted in Davarnia et al. [12] and also observed in our experiments 
in Section 4. Specifically, the addition of constraints h(y)g(x) g 0 in the aggregation can increase the left-hand-side 
value in the aggregated inequality when h(ȳ)g(x̄) > 0, which could reduce the odds of obtaining a violated aggregated 
inequality.
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Another observation that can be helpful for choosing the forest structures is considering the relaxation step in the 
EC&R procedure. As described therein, each remaining bilinear term yjxi can be relaxed using either the bound con-
straints or the bilinear constraints. The former case is equivalent to aggregating the inequality with a constraint of the 
form h(y)g(x) g 0 where h(y) ÿ yj and g(x) * {xi g 0, ui ÿ xi g 0}, for which the previous argument holds about achiev-
ing a violation. For the latter case, on the other hand, we aggregate the inequality with a bilinear constraint of the form 
6 (yjxi ÿ zk) g 0 for (i, j, k) such that Ak

j, i ÿ 1, which can potentially lead to a violation depending on the value of 
Ψk ÿ | ȳjx̄i ÿ z̄k | . As a result, we might choose forest structures that contain the nodes incident to arcs i * A corre-
sponding to the most violated values in | ȳjx̄i ÿ z̄k | . In our computational experiments presented in Section 4, we use 
the above-mentioned approaches in our separation oracle to select the class of EC&R assignments and their forest 
structures, which show promising results.

4. Computational Experiments
In this section, we present preliminary computational results to evaluate the impact of the cutting planes generated 
through the results of Section 3 on improving the relaxation gap for two network flow applications that contain bilin-
ear constraints. For these experiments, the codes are written in Python 3.8.8. and the optimization problems are solved 
using Gurobi 9.5.2 at its default settings.

4.1. Fixed-Charge Network Flow Problem
We study the bilinear formulation for the fixed-charge network flow problem proposed in Rebennack et al. [26]. 
Consider a directed bipartite network structure where the nodes in the first partition are supply nodes with supply si 

for i * S, and the nodes in the second partition are demand nodes with demand dj for j * D. For each arc (i, j), let xij 

represent its flow and uij denote its capacity. We assume that the cost of sending one unit flow through arc (i, j) is 0 
when xijÿ0, and it is ci, j + tijxij when 0 < xij f uij for some constant cij>0 and slope tij>0. In Rebennack et al. [26], a 
piecewise concave underestimator of this cost function is considered, which calculates the cost as cij +

tij

[ij
xij when 0 f

xij f [ij for some 0 f [ij f uij, and ci, j + tijxij when [ij f xij f uij. Through introducing a binary variable yij * {0, 1}
that indicates the line segment in the piecewise function above, Rebennack et al. [26] proposes the following bilinear 
formulation for the corresponding fixed-charge problem.

min
X

i*S

X

j*D

cij +
tij

[ij

ÿ ÿ

xij + tijyij ÿ
tij

[ij
zij

ÿ ÿ

(11) 

X

j*D

xij f si, ∀i * S (12) 

X

i*S

xij g dj, ∀j * D (13) 

xijyij ÿ zij, ∀i * S, j * D (14) 
X

i*S

X

j*D

yij f b (15) 

0 f xij f uij, ∀i * S, j * D (16) 

yij * {0, 1}, ∀i * S, j * D (17) 

where the objective function computes the total cost of transportation. Constraints (12) and (13) represent the flow- 
balance equations for the supply and demand nodes, respectively. Constraint (14) defines the bilinear terms in the 
objective function. Further, Constraint (15) imposes a budget requirement on the y variables. The base relaxation for 
this problem, which we refer to as the McCormick relaxation, is obtained by replacing Constraints (14) with their McCor-
mick relaxations and relaxing y variables to be continuous. For each variable yij, the structure of the corresponding 
relaxation (12), (13), (14), (16) conforms to that of S with mÿ1. Therefore, our goal is to assess the effectiveness of the 
EC&R inequalities associated with the tree structures in the above network using the results of Section 3.1.

For our computational experiments, we generate 10 random instances for each size category based on the following 
data specifications. We consider four different size categories by choosing the number of nodes in the complete bipar-
tite network from {50, 100} and by selecting the fraction value 

[ij

uij 
for arcs (i, j) that have fixed-charge structure (which 

determines the position of the break point in the piecewise linear cost function) from {0:2, 05}. The number of y vari-
ables is equal to 20% of the total number of arcs, where each such variable is associated with a randomly selected arc. 
Supply and demand parameters are chosen from a discrete uniform distribution between (20, 50). The arc capacity is 
produced from a discrete uniform distribution between (1, 50), and the budget b is set at 20% of the total number of y 
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variables. The slope t for each cost function is randomly generated from a discrete uniform distribution between (50, 
100). If an arc (i, j) follows the fixed-charge structure, the value of cij is selected from a uniform distribution between (1, 
5). Otherwise, this value is generated from a uniform distribution between (10, 20).

Table 1 shows the results of adding the EC&R cutting planes for the single-variable relaxations of (12)–(17) as 
described above. The first column contains the network size (the number of nodes), the second column shows the frac-
tion 

[ij

uij 
of arcs (i, j) that have fixed-charge structure (which determines the position of the break point in the piecewise 

linear cost function), and the third column indicates the instance number. The fourth column shows the optimal value 
of the McCormick relaxation of (11)–(17). The fifth and sixth columns, respectively, represent the optimal value and 
the solution time (in seconds) of (11)–(17) obtained by the Gurobi solver at its default setting. If an optimal solution is 
not found within the time limit of 1,000seconds, the best solution found at termination is reported, which is indicated 
by “g1,000” in the “Time” column. The percentage of the gap improvement obtained by the Gurobi solver at the root 
node (compared with the McCormick relaxation), before the start of branch-and-bound, is given in the seventh col-
umn. The next two columns under “Full EC&R” contain the result of adding all violated EC&R inequalities obtained 

Table 1. Evaluating EC&R cutting planes for the fixed-charge network flow problem.

Node # Frac. # LP

Solver Tree EC&R RLT

Opt. Time Root Full Time Sep. Time Full Time

50 0.2 1 4,437.82 5,322.36 735.83 0.58 0.72 94.42 0.66 2.19 0.72 859.62
2 3,815.63 4,617.38 128.63 0.69 0.82 90.74 0.8 2.58 0.83 1,878.66
3 4,769.89 5,654.0 92.98 0.57 0.77 91.15 0.72 2.44 0.77 824.01
4 5,361.71 5,935.23 378.29 0.44 0.69 93.58 0.69 2.54 0.69 1,913.67
5 4,424.93 5,446.63 g1,000 0.65 0.76 104.65 0.73 2.66 0.77 2,714.41
6 4,508.74 5,302.18 322.14 0.62 0.83 103.06 0.82 3.11 0.83 1,186.32
7 4,693.38 5,590.65 g1,000 0.56 0.73 72.07 0.7 1.97 0.74 2,452.11
8 4,441.68 5,145.72 283.13 0.58 0.74 94.69 0.7 2.45 0.75 1,009.55
9 4,233.48 5,233.15 22.76 0.84 0.93 90.82 0.88 1.81 0.93 1,116.21

10 4,897.29 5,636.04 710.44 0.64 0.77 97.04 0.76 2.58 0.77 838.35
avg 467.42 0.62 0.78 93.22 0.75 2.44 0.78 1,479.29
50 0.5 1 4,735.93 5,347.03 254.85 0.55 0.77 90.53 0.75 2.1 0.78 197.58

2 4,274.4 4,856.78 10.23 0.61 0.87 72.98 0.83 2.24 0.89 293.13
3 5,026.89 5,610.48 7.87 0.75 0.86 71.24 0.84 1.93 0.88 199.79
4 4,630.15 5,246.89 98.49 0.65 0.85 67.95 0.82 2.45 0.86 198.27
5 4,036.38 4,669.68 106.82 0.71 0.85 91.06 0.81 1.9 0.87 236.8
6 4,474.54 5,151.84 198.48 0.59 0.81 87.82 0.75 1.72 0.83 211.01
7 5,176.22 5,646.79 80.32 0.63 0.82 67.16 0.8 2.41 0.83 316.09
8 5,084.2 5,721.84 g1,000 0.54 0.79 67.33 0.77 2.53 0.8 254.97
9 4,523.52 5,088.3 105.66 0.63 0.79 87.54 0.77 2.64 0.8 241.79

10 4,735.93 5,347.03 254.85 0.55 0.77 90.53 0.75 2.1 0.78 197.58
avg 186.7 0.63 0.83 79.6 0.8 2.26 0.84 238.89
100 0.2 1 7,088.91 9,213.18 g1,000 0.36 0.51 1,162.19 0.46 8.4 — g5,000

2 7,146.18 8,960.31 g1,000 0.48 0.63 1,142.41 0.57 8.74 — g5,000
3 7,248.75 9,040.84 g1,000 0.34 0.47 882.9 0.42 9.28 — g5,000
4 7,692.17 9,836.81 g1,000 0.3 0.43 902.66 0.39 8.51 — g5,000
5 6,802.61 8,709.36 g1,000 0.4 0.55 1,144.94 0.48 8.57 — g5,000
6 6,950.35 8,862.86 g1,000 0.47 0.61 1,272.74 0.57 8.58 — g5,000
7 7,052.04 8,963.63 g1,000 0.43 0.59 1,151.14 0.52 8.37 — g5,000
8 7,018.5 8,894.89 g1,000 0.49 0.62 1,169.81 0.57 10.64 — g5,000
9 6,732.16 8,723.6 g1,000 0.41 0.53 1,132.3 0.48 8.49 — g5,000

10 7,088.91 9,213.18 g1,000 0.36 0.51 1,162.19 0.46 8.4 — g5,000
avg g1,000 0.41 0.55 1,111.73 0.49 8.87 g5,000
100 0.5 1 7,277.28 8,572.76 g1,000 0.6 0.78 1,537.78 0.7 8.52 — g5,000

2 6,991.21 8,398.58 g1,000 0.63 0.75 1,388.98 0.68 8.1 — g5,000
3 7,486.13 8,604.12 g1,000 0.52 0.72 1,331.14 0.63 7.76 — g5,000
4 6,768.0 8,145.13 g1,000 0.52 0.7 1,370.79 0.61 7.93 — g5,000
5 7,018.42 8,413.21 g1,000 0.58 0.73 1,439.65 0.67 8.33 — g5,000
6 7,139.52 8,558.94 g1,000 0.51 0.67 1,470.46 0.6 7.89 — g5,000
7 7,362.48 8,822.47 g1,000 0.51 0.65 1,519.48 0.58 8.3 — g5,000
8 7,232.95 8,613.9 g1,000 0.6 0.76 1,493.97 0.72 10.38 — g5,000
9 6,881.73 8,112.89 g1,000 0.59 0.77 1,510.83 0.72 10.47 — g5,000

10 7,277.28 8,572.76 g1,000 0.6 0.78 1,537.78 0.7 8.52 — g5,000
avg g1,000 0.57 0.73 1,445.3 0.66 8.89 g5,000
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from tree structures according to Theorem 2 with up to two cancellations (i.e., three aggregations). These cuts are 
added in loops after the LP relaxation is solved to separate the current optimal solution until the improvement in the 
optimal value is less than 1%. To find the most violated EC&R inequalities produced from an EC&R assignment, we 
use the technique in Remark 2. The column “Gap” contains the gap improvement obtained by adding these EC&R 
inequalities compared with the optimal value of the McCormick relaxation reported in column 6. The next column 
shows the total solution time to add these inequalities. The column “Gap” under “Separation EC&R” includes the 
result of adding the above EC&R inequalities through a separation oracle according to that discussed in Section 3. In 
particular, for a current optimal solution (x̄; ȳ; z̄), we consider the EC&R assignment class and sign associated with the 
35 largest values for Ψij ÿ | x̄ijȳij ÿ z̄ij | for all (i, j). We add the resulting EC&R inequalities in loops as discussed above. 
The next column shows the solution time when using this separation method. The last two columns under “RLT” con-
tain the results of using the reformulation-linearization technique (RLT) of level 1 (Sherali and Adams [29], Sherali et al. 
[31]). Specifically, the column “Full RLT” shows the gap closure achieved by augmenting the McCormick relaxation 
with the linearized constraints as a result of multiplying each constraint of the formulation with yij and (1ÿ yij) for all 
i * S and j * D. The next two columns show the gap improvement obtained by this method compared with the McCor-
mick relaxation, and the solution time for this approach. The symbol “-” indicates that the model has not been solved 
to optimality within the time limit of 5,000seconds. The last row for each problem size reports the average values over 
the 10 random instances.

The results in Table 1 indicate the effectiveness of the EC&R approach in five areas. First, the gap improvement values 
show the effectiveness of the proposed EC&R inequalities based on the tree structures in improving the gap closure and 
strengthening the classical McCormick relaxation. Second, the gap improvement obtained through addition of the EC&R 
inequalities exceeds that obtained by the Gurobi solver at the root node. Third, these results also imply that the EC&R 
approach is more effective in improving the dual bounds compared with the RLT application; the EC&R cuts provide 
similar gap improvement values in a much smaller time. Fourth, they support the general observation for aggregation- 
based methods, such as the EC&R, that the inequalities obtained from fewer aggregations (up to three in these experi-
ments) tend to be the most impactful, as they account for a considerable portion of the total gap closure for most instances. 
This is evident from comparing the improvement achieved by the EC&R cuts with that of the RLT, which provides an 
upper bound for the possible gap improvement that can be obtained from single-variable disjunctive programming (Balas 
[2]) relaxations of the problem. Fifth, these experiments demonstrate the effectiveness of the proposed separation method, 
which achieves similar gap improvement values in much smaller time compared with the case without separation. These 
observations show promise for an efficient implementation of the EC&R technique to solve practical problems.

4.2. Transportation Problem with Conflicts
In this section, we study a generalization of the Red-Blue Transportation Problem—which is a class of the Transporta-
tion Problem with Conflicts—presented in Vancroonenburg et al. [34]. In particular, we consider a balanced set of sup-
ply and demand nodes that are arranged in a bipartite network structure, where there is a route (arc) between each 
supply node to each demand node. Each supply node i * S has a supply si, and each demand node j * D has a demand 
dj. For each arc (i, j), we refer to the flow sent through that arc as xij and to the capacity of that arc as uij. The default cost 
of transportation using arc (i, j) is cij. In addition to the regular transportation means, there are multiple transportation 
services that could be used to facilitate the transfer of goods via different routes. Binary variable yk represents whether 
service k * K is used. The relative incentive/cost of using service k * K for each arc (i, j) is denoted by rk

ij. In the Red- 
Blue Transportation Problem, due to certain logistic conflicts, some pairs of services could not be used simultaneously, 
that is, ykyl ÿ 0 for each pair of services k and l that are in the conflict set C. This problem can be formulated as

min
X

i*S

X

j*D

cijxij +
X

k*K

rk
ijz

k
ij

 !

(18) 

X

j*D

xij f si, ∀i * S (19) 

X

i*S

xij g dj, ∀j * D (20) 

xijyk ÿ zk
ij, ∀i * S, j * D, k * K (21) 

yk + yl f 1, ∀(k, l) * C (22) 

0 f xij f uij, ∀i * S, j * D (23) 

yk * {0, 1}, ∀k * K (24) 
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where the objective function calculates the total cost of transportation. Constraints (19) and (20) represent the flow- 
balance equations for the supply and demand nodes, respectively. Constraint (21) defines the bilinear terms in the 
objective function that capture the incentive collected through using different transportation services. The conflicts 
between the pair of transportation services in C are imposed by Constraint (22). The base relaxation for this problem, 
which we refer to as the McCormick relaxation, is obtained by replacing Constraints (21) with their McCormick relaxa-
tions and relaxing y variables to be continuous.

For our experiments, we generate random generated instances with the following specifications. We consider four 
size categories by choosing the number of nodes in the complete bipartite network from {50, 100}, and selecting the 
number of transportation services from {20, 30}. Supply and demand parameters are generated from a discrete uni-
form distribution between (100, 200), and the arc capacities are generated from a discrete uniform distribution between 
(1, 25). The number of conflicts is set at 10% of all possible pairwise conflicts between the transportation services. The 
cost cij for each arc (i, j) is chosen randomly from a uniform distribution between (20, 40) multiplied by the number of 

Table 2. Evaluating EC&R cutting planes for the transportation problem with conflicts.

Node # |K | # LP

Solver EC&R RLT

Opt. Time Root
Tree 
Full

Tree 
Time

Forest 
Full

Forest 
Time Sep. Time Full Time

50 20 1 1,816,461.35 1,845,306.7 58.71 0.14 0.24 106.05 0.54 424.88 0.5 42.55 0.63 41.39
2 1,911,383.7 1,932,617.96 61.13 0.13 0.3 92.53 0.6 407.09 0.56 48.2 0.68 44.42
3 1,791,541.33 1,815,825.43 66.51 0.03 0.27 107.84 0.56 449.59 0.53 50.07 0.62 37.26
4 1,916,558.28 1,938,151.82 53.96 0.12 0.25 102.08 0.53 605.55 0.5 46.53 0.7 37.42
5 1,883,973.93 1,907,566.87 102.68 0.13 0.25 105.91 0.54 443.17 0.52 43.61 0.65 36.89
6 1,754,821.67 1,779,059.14 45.84 0.06 0.29 104.15 0.6 555.97 0.56 43.03 0.67 39.77
7 1,859,891.92 1,882,935.97 61.43 0.07 0.33 90.97 0.62 609.47 0.58 44.93 0.7 37.78
8 1,878,222.67 1,907,158.85 71.31 0.04 0.24 102.66 0.54 423.88 0.51 44.37 0.56 32.62
9 1,888,464.09 1,917,359.49 104.42 0.13 0.27 110.78 0.54 633.7 0.51 49.51 0.63 34.44
10 1,828,942.4 1,853,959.15 81.38 0.13 0.31 104.1 0.56 427.72 0.52 47.27 0.67 34.09

avg 70.74 0.1 0.28 102.71 0.56 498.1 0.53 46.01 0.65 37.61
50 30 1 2,735,130.47 2,769,326.44 416.31 0.18 0.29 173.18 0.57 1,382.33 0.56 87.34 0.69 107.66

2 2,758,928.32 2,797,673.91 219.19 0.19 0.24 139.81 0.55 854.01 0.52 76.51 0.67 98.79
3 2,790,718.79 2,830,074.49 152.08 0.16 0.22 141.19 0.56 1,179.99 0.52 76.41 0.65 98.27
4 2,948,401.96 2,977,573.06 75.43 0.22 0.37 148.31 0.69 1,215.35 0.66 75.41 0.85 117.27
5 2,848,728.26 2,884,380.56 189.93 0.16 0.27 153.52 0.58 1,010.3 0.55 74.65 0.7 93.62
6 2,913,904.34 2,960,520.37 510.74 0.24 0.2 177.89 0.53 1,067.57 0.51 92.51 0.63 98.26
7 2,600,592.36 2,643,997.19 367.13 0.16 0.26 184.94 0.57 1,055.12 0.55 83.96 0.63 113.51
8 2,798,975.64 2,841,262.04 324.84 0.2 0.25 176.37 0.53 1,467.63 0.49 84.44 0.7 105.82
9 2,909,192.25 2,948,513.71 219.4 0.2 0.28 187.26 0.59 950.87 0.56 93.77 0.72 106.4
10 2,611,547.24 2,656,632.4 936.96 0.16 0.23 150.52 0.54 878.4 0.52 82.67 0.62 91.72

avg 341.2 0.19 0.26 163.3 0.57 1,106.15 0.54 82.77 0.69 103.13
100 20 1 3,160,875.04 3,261,525.49 2,901.52 0.11 0.14 983.68 0.44 3,932.78 0.42 409.97 0.41 1,296.16

2 3,322,767.42 3,418,349.48 1,388.27 0.11 0.15 986.57 0.46 3,821.98 0.44 328.39 0.44 1,935.97
3 3,264,069.46 3,356,160.8 1,194.99 0.13 0.16 1,032.29 0.49 3,932.34 0.46 359.18 0.46 1,344.05
4 3,301,911.59 3,398,167.09 1,182.85 0.11 0.13 910.19 0.47 3,275.66 0.45 314.41 0.41 2,110.84
5 3,334,562.36 3,435,820.55 2,770.33 0.11 0.14 974.61 0.44 3,806.47 0.42 318.75 0.41 2,052.78
6 3,316,661.88 3,414,631.77 2,088.83 0.09 0.16 960.33 0.46 3,912.27 0.44 324.51 0.41 2,661.02
7 3,341,341.4 3,438,435.11 1,519.65 0.03 0.16 1,019.78 0.5 3,956.82 0.48 347.23 0.37 1,227.38
8 3,252,602.14 3,351,139.62 2,477.65 0.12 0.14 788.56 0.46 3,174.85 0.43 313.43 0.42 1,082.16
9 3,273,121.61 3,369,045.93 1,647.25 0.12 0.14 745.21 0.44 3,025.82 0.42 287.02 0.43 1,201.9
10 3,231,657.29 3,339,983.21 2,644.37 0.03 0.13 791.88 0.4 3,242.4 0.38 333.17 0.33 993.24

avg 1,981.57 0.1 0.15 919.31 0.45 3,608.14 0.44 333.6 0.41 1,590.55
100 30 1 4,834,376.78 4,968,183.0 g5,000 0.19 0.17 1,866.58 0.55 10,207.78 0.54 1,179.07 0.51 2,243.39

2 4,803,153.48 4,955,801.77 g5,000 0.19 0.12 1,642.88 0.51 11,944.64 0.49 994.29 0.46 2,236.58
3 4,995,871.11 5,147,567.66 g5,000 0.13 0.14 1,838.84 0.5 11,362.07 0.5 1,091.86 0.43 2,322.86
4 4,961,244.87 5,143,262.24 g5,000 0.17 0.12 1,976.34 0.46 12,195.03 0.44 1,308.95 0.42 2,062.33
5 4,863,008.91 5,024,866.15 g5,000 0.17 0.13 1,833.8 0.49 11,701.45 0.48 984.07 0.45 2,238.44
6 4,902,278.58 5,060,625.13 g5,000 0.17 0.13 1,498.19 0.49 8,708.22 0.49 1,099.36 0.45 1,983.21
7 4,866,695.51 5,017,000.38 g5,000 0.2 0.14 1,517.02 0.52 8,596.32 0.51 1,331.52 0.49 1,886.76
8 5,023,334.69 5,184,894.21 g5,000 0.22 0.13 1,437.16 0.51 9,807.23 0.5 1,086.44 0.48 1,701.46
9 5,043,560.92 5,198,406.71 g5,000 0.15 0.14 1,420.03 0.49 8,983.96 0.48 1,382.81 0.45 1,784.4
10 4,969,879.76 5,117,213.58 g5,000 0.18 0.14 1,379.89 0.5 8,421.21 0.49 1,189.98 0.47 1,911.2

avg g5,000 0.18 0.14 1,641.07 0.5 10,192.79 0.49 1,164.84 0.46 2,037.06
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transportation services for each problem set, and the relative incentive/cost rk
ij of using service k is randomly chosen 

from a uniform distribution between (ÿ10, 10).
Table 2 shows the results of adding the EC&R cutting planes to the McCormick relaxation described above. The first 

column contains the network size (the number of nodes), the second column represents the number of available trans-
portation services (i.e., the number of y variables), and the third column indicates the instance number. The values in 
the next four columns are defined similarly to those of Table 1. The time limit to solve the MIP reformulation of the 
problem by Gurobi is set to 5,000 seconds. If the problem is not solved to optimality within the time limit, its best solu-
tion found at termination is reported, which is indicated by “g5,000” in the “Time” column. The columns under 
“EC&R” contain the gap improvement results obtained by adding different types of EC&R inequalities to the McCor-
mick relaxation. In particular, “Tree Full” represents the gap improvement obtained by adding EC&R inequalities 
with up to three aggregations (two cancellations) generated from the one-variable relaxations of (19)–(24) where only 
one y variable is considered. For this approach, we use the EC&R results of Theorem 2 to identify the tree structures 
for each one-variable relaxation and add the resulting cutting planes for each relaxation separately through loops as 
previously described in Section 4.1. The next column contains the time to implement these tree inequalities. The col-
umn “Forest EC&R” includes the gap improvement obtained by adding EC&R inequalities with up to three aggrega-
tions obtained for S where two y variables in a conflict are considered in their original simplex. To add EC&R cutting 
planes, we consider the forest structures according to Theorem 3. The next column shows the time it takes to use this 
approach. The next two columns “Sep.” and “Time” indicate the gap closure and the solution time to implement these 
EC&R cutting planes using the separation oracle introduced in Section 3.2, respectively. The values in the columns 
with the header “RLT” are defined similarly to those of Table 1.

It is evident from the results of Table 2 that the EC&R cuts obtained from the forest structures that simultaneously 
consider multiple y variables significantly outperform those obtained from the tree structures that consider y variables 
individually, showing the effectiveness of the introduced class of EC&R inequalities with the pairwise cancellation 
property. Further, these results show the remarkable impact of using a separation oracle to produce the EC&R inequal-
ities on reducing the solution time, especially for larger size problems where the gap improvement by the EC&R 
inequalities based on forest structures outperform the RLT approach in both the gap improvement and solution time.

5. Conclusion
We study a bipartite bilinear set, where the variables in one partition belong to a network flow model, and the vari-
ables in the other partition belong to a simplex. We design a convexification technique based on the aggregation of 
side constraints with appropriate weights, which produces an important class of facet-defining inequalities for the con-
vex hull of the bilinear set, describing the convex hull for the special case where the simplex contains a single variable. 
We show that each such inequality can be obtained by considering the constraints corresponding to the nodes of the 
underlying network that form a special tree or forest structure. This property leads to an explicit derivation of strong 
inequalities through identifying special graphical structures in the network model. These inequalities can be added to 
the classical McCormick relaxation to strengthen the relaxation and improve the dual bounds, as corroborated in the 
preliminary computational experiments conducted on network problems in different application areas.
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