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1. Introduction

Bilinear constraints in conjunction with network models appear in various mixed-integer and nonlinear programming
(MINLP) applications, including the decision diagrams (Davarnia and Van Hoeve [11], Davarnia [10], Salemi and
Davarnia [27], Salemi and Davarnia [28]), the fixed-charge network flow problems (Rebennack et al. [26]), network
models with complementarity constraints, such as transportation problems with conflicts (Ficker et al. [18]) and the
red-blue transportation problems (Vancroonenburg et al. [34]). A common occurrence of bilinear terms in network
models pertains to bilevel network problems after being reformulated as a single-level program through either using a
dual formulation of the inner problem or incorporating optimality conditions inside the outer problem (Ben-Ayed and
Blair [4], Chiou [8]). These reformulation approaches are widely used in the network interdiction problems, where
newly added bilinear terms are relaxed using a linearization technique based on the McCormick bounds (McCormick
[24]) over a box domain; see Smith and Lim [32] for an exposition. While these relaxations provide the convex hull of
the bilinear constraint over a box domain (Al-Khayyal and Falk [1]), they often lead to weak relaxations when the vari-
ables domain becomes more complicated as in general polyhedra (Gupte et al. [19], Davarnia [9]). It has been shown
(Boland et al. [5], Luedtke et al. [23]) that when the number of bilinear terms in the underlying function increases, while
the variables are still in a box domain, the McCormick bounds can be very poor compared with the ones obtained
from the convex and concave envelopes of the function. It is shown in Bonami et al. [6] that while McCormick relaxa-
tion performs poorly for box-constrained quadratic problems, a stronger relaxation can be achieved by adding
Chvatal-Gomory valid inequalities.

There are various studies in the literature that develop convexification methods for multilinear functions as a gener-
alization of bilinear forms, but the side constraints for the involved variables are often limited to variable bounds; see
Del Pia and Khajavirad [14], Del Pia and Khajavirad [15], and Khajavirad [21] for an exposition to different classes of
valid inequalities for multilinear sets. In Del Pia and Di Gregorio [13] and Del Pia and Walter [16], the authors study
the Chvatal rank of different classes of cutting planes, including those associated with p-cycles of the underlying
hypergraph, in the multilinear polytope that arises in binary polynomial problems, while Buchheim et al. [7] provides
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a characterization of the multilinear polytope in terms of the acyclicity of its corresponding hypergraph, which guaran-
tees integrality of optimal solutions obtained by the standard linearization procedure. The authors in Gupte et al. [20]
derive extended formulations for the convex hull of the graph of a bilinear function on the n-dimensional unit cube
through identifying the facets of the Boolean Quadratic Polytope. In Fampa and Lee [17], an efficient method to con-
vexify bilinear functions through McCormick relaxations is proposed which takes advantage of the structural convex-
ity in a symmetric quadratic form. Further, Muller et al. [25] introduces a new class of valid inequalities, tailored for
the spatial branch-and-bound framework, based on projection techniques that improve the quality of McCormick
inequalities. Other works in the literature consider a polyhedral, often triangular, subdivision of the domain to derive
strong valid inequalities for a bilinear set; see Tawarmalani et al. [33], Sherali and Alameddine [30], and Locatelli and
Schoen [22] for examples of such approaches. Further, Davarnia et al. [12] proposes an aggregation procedure, referred
to as extended cancel-and-relax (EC&R), to simultaneously convexify the graph of bilinear functions over a general poly-
tope structure. In this paper, we make use of the EC&R procedure to derive convexification results for a bilinear set
where the side constraints on variables are described by a network flow model as defined next.
ForN:={1,...,n}, M:={1,...,m}, K:={1,...,x},and T :={1, ..., t}, we consider

S={(xy;2) €ExX A, XR |y A'x =z, VkeK},

where Z={xeR"|Ex>f, 0 < x < u} is a primal network polytope described by the flow-balance and arc capacity
constraints, and A, = {y € R}'|17y < 1} is a simplex. When variables y are binary, A,, represents a special ordered set of
type 1 (SOS1); see Beale and Forrest [3] for an exposition. Such simplex structures appear in various applications and
can be obtained by reformulating the underlying polytopes through extreme point decomposition; see Davarnia et al.
[12] for a detailed account. In the above definition, E € R™", f e RY, u € R", and AF € R"™" js a matrix with all elements
equal to zero except one that is equal to one, that is, if A}‘i =1 for some (7,/) € N x M, the bilinear constraint with index
k represents y;x; = z.

The contributions of this paper are as follows. We propose a systematic procedure to convexify S and derive explicit
inequalities in its description. The resulting cutting planes are directly obtained in the original space of variables. We
show that facet-defining inequalities in the convex hull description can be explicitly derived by identifying special tree
and forest structures in the underlying network, leading to an interpretable and efficient cut-generating oracle. The
inequalities obtained from our proposed algorithms can be added to the typical McCormick relaxations to strengthen
the formulation and improve the bounds.

Since we use the specialized aggregation technique introduced in Davarnia et al. [12] in our derivation process, we
next explain the novelties of this work compared with Davarnia et al. [12]. In particular Davarnia et al. [12], applies the
proposed aggregation technique to a special case of S where E is a dual network polytope described by the dual of the
network flow formulation, inspired by the network interdiction applications, with the goal of obtaining explicit forms
for the facet-defining inequalities that would be practical to generate. These explicit convexification results are obtained
only for the case with m =1 and k=1. In this paper, we extend and generalize these results from two directions. (i) We
obtain the convexification results for set S where E is a primal network polytope, which appears in a broader applica-
tion domain beyond the network interdiction problem, such as those discussed above. Due to the structural difference
between the primal and dual network polytopes, the framework developed in Davarnia et al. [12] is not applicable to
the network problems studied in this paper, advocating the need for a novel framework specifically designed for this
new set. Consequently, the form of facet-defining inequalities for the network polytope obtained in this paper is funda-
mentally different from those derived in Davarnia et al. [12]. (ii) We obtain explicit convexification results for cases
with general m and k. This generalization makes the problem structure, and hence the analysis, much more compli-
cated due to losing the totally unimodularity property that exists when m =k = 1; see Section 3 for a detailed discus-
sion. From a practical point of view, as shown in Section 4, the cutting planes obtained through our newly designed
algorithms for the general cases with m>1 and k> 1 can significantly improve the bounds obtained by adding cutting
planes for the cases with m =k =1 as well as the bounds obtained by alternative methods such as reformulation-
linearization technique (RLT), highlighting the practical advantage and importance of the extended convexification
results developed in this paper.

The remainder of the paper is organized as follows. We give a brief background on the EC&R procedure as a basis
of our analysis in Section 2. In Section 3, we obtain convexification results for bilinear terms defined over a network
polytope. Preliminary computational experiments are presented in Section 4 to show the effectiveness of the devel-
oped cut-generating frameworks. We give concluding remarks in Section 5.
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1.2. Notation

Bold letters represent vectors. We refer to the jth row (resp. jth column) of a matrix A € R™" by A; (resp. by A ). For a
given set S C R", we denote by conv(S) its convex hull. We use symbol *+ to show both cases with +and —. For exam-
ple, when we use [ in an expression, it means that expression holds for both cases I" and I

2. Extended Cancel-and-Relax
In this section, we present the EC&R procedure adapted for S. The following theorem is at the core of this procedure,
as shown in theorem 2.7 of Davarnia et al. [12].

Theorem 1. A convex hull description of S can be obtained by the linear constraints in & and A,, together will all class-1*
EC&R inequalities for all I € K.

A class-I= EC&R inequality is obtained through a weighted aggregation of the constraints in the description of S.
The procedure to generate this inequality is as follows.

1. We select [ € K to be the index of a bilinear constraint used in the aggregation, which we refer to as the base
equality. We also select a sign indicator + or — to indicate whether a weight 1 or —1 is used for the base equality dur-
ing aggregation.

2. Defining T as the index set of the nonbound constraints in £, we select 7y, ..., Z,, and 7 as subsets of T whose
intersection is empty. Then, for each j € M and for each t € Z; (resp. t € I), we multiply the constraint E; x > f; by
viy; where y} > 0 (resp. by 0,(1 — Y_,.,,y) where 6; > 0).

3. We select 7 and J as disjoint subsets of N. Then, for each index i € 7, we multiply x; > 0 by Ai(1—>_;cpsv))
where A; > 0, and for each i € 7, we multiply u; — x; > 0 by (1 — > c)sy;) where p1; > 0.

The above sets are compactly represented as [Z1,...,Z,,Z |7, J], Wthh is called an EC&R assignment. Each EC&R
assignment is identified by its class-l = where [ is the index of the base equality and * is its sign indicator. We next
aggregate all aforementioned weighted constraints. During the aggregation, we require that weights y, 0, A and u be
chosen in such a way that:

(C1) at least ZjeMlI il + |Z| +|J| + |7 | bilinear terms are canceled (i.e., their coefficient becomes zero), and

(C2)if UemyZ; UZ U J U J # 0, for each constraint used in the aggregation (including the base equality), at least
one bilinear term among all those created after multiplying that constraint with its corresponding weight is
canceled.

The desired EC&R inequality is then obtained by relaxing (i.e., replacing) the remaining bilinear terms of the form
x;y; in the aggregated inequality using either u;y; — x;y; > 0 or —x;y; + zx > 0 for some k € K such that Ak 1. Similarly,
the bilinear terms of the form —x;y; is relaxed using either x;y; > 0 or x;; — zx > 0 for some k € K such that Ak =1.The
resulting linear inequality is referred to as a class-I = EC&R inequality.

A summary of the derivation steps for the EC&R procedure is given in the electronic companion; see Davarnia et al.
[12] for a detailed exposition. Here, we only present an end result that will be used in the subsequent sections.

For each [ € K, define K; = K\ {I}, and let @ = (B*; B~; {¥/}jem; 0; {0/} ;em; {p/}jem; A; m) be the vector of aggregation
weights used in the EC&R procedure. In particular, the index [ is determined in Step 1 of the EC&R procedure by pick-
ing a base equality | with either+1 or —1 weights. The components y/ (resp. 0) capture the weights for y; (resp.
1= > emy)) when multiplied with the nonbound constraints in  as demonstrated in Step 2 of the EC&R procedure.
Similarly, A and p record the weights for 1 — Z]E Ayj when multiplied with the bound constraints in E in Step 3 of the
EC&R procedure. Finally, the relaxation step in the EC&R procedure determines the components B~ as the weights
of the bilinear constraints in K, as well as the components 1/ and p’ as the weights for y; when multiplied with the
bound constraints in E to cancel the remaining bilinear terms. Then, it is shown in theorem 2.7 of Davarnia et al. [12]
that criteria (C1) and (C2) of the EC&R procedure provide necessary conditions for the weight vector @ to be an
extreme point of

ZA;;(ﬁl:r —B)+ Z Eti(V{ —04)

[ / 2(k—1 1)(t+2
C { cR (k=1)+(m+1)(t+2n)
keK; tel

+nl—pl = Ai+p =+ Al ‘v’(i,j)eNxM}. )
This set plays a central role in our analysis because the collection of the EC&R inequalities corresponding to the
extreme points of !, for all 1 € K, contains all nontrivial facet-defining inequalities in conv(S), where a nontrivial
inequality is one that cannot be implied by the linear constraints in the description of Z and A,,,.
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3. Network Polytopes

In this section, we study the set S where E represents a network polytope. In particular, the constraint set Ex > f is
composed of the flow-balance constraints after being separated into two inequalities of opposite signs, that is, E is an
augmented node-arc incidence matrix where each row is duplicated with a negative sign, and f represents the
extended supply/demand vector. In this description, # denotes the arc-capacity vector.

3.1. The Case with m=1
In this section, we consider the case where m = 1, whose corresponding bilinear set is denoted by S”. This special case
is important as it provides a natural setting to improve the McCormick results as the most common relaxation for bilin-
ear programs, which considers 7 =1, even when there are multiple y variables that interact with each other through
side constraints. In fact, the McCormick relaxation of bilinear terms with m =1 is a building block of the factorable
decomposition technique at the core of MINLP solvers (McCormick et al. [24]). Therefore, the convexification results
for the case where each y variable is treated separately (i.e., m=1) is critical in determining the quality of the relaxation
bound obtained for the entire model. For this reason, improving the McCormick relaxation, even for the simplest
case with m=1, could lead to substantial bound improvement as corroborated by the computational results in the
Section 4.

In this special case, we can simplify notation by matching the indices of z and x variables such that y;.xx = z; for all
k € K = N. We next show that, to generate an EC&R inequality for S', it is sufficient to use aggregation weight 1 for all
constraints used in the aggregation.

Proposition 1. Let #' be an extreme point of the projection cone C', for some | € K, corresponding to a nontrivial facet-
defining inequality of conv(S"). Then, it can be scaled in such a way that all of its components are 0 or 1.

Proof. When m =1, we can write C' in (1) as

1 2(k—1)+2(7+2
C:{HER_'_(K )+2(t+2n)

S B =00+ gy~ A+l - pl+ S Ak — ) = = AL, VieN}-

teT kekK;
We can rearrange the columns of the coefficient matrix of the system defining C' to obtain
[ET = ET|I| = I|I| = I|T| = I. 2)

In the above matrix, the rows correspond to bilinear terms yx; for i € N. The first and second column blocks cor-
respond to the weights of the nonbound constraints in £ multiplied by y; and 1 — y;, which are denoted by y}
and 0, respectively, for all t € T. The third and fourth column blocks correspond to the weights of the lower and
upper bound constraints on variables in & multiplied by 1 — v, which are captured by y; and A;, respectively, for
all i € N. Similarly, the fifth and sixth column blocks correspond to the weights of the lower and upper bound
constraints on variables in & multiplied by 1, which are recorded by 1} and p}, respectively, for all i € N. In these
columns, I represents the identity matrix of appropriate size. Lastly, the seventh and eighth column blocks corre-
spond to the weights of the bilinear constraints in S', which are represented by f; and f_, respectively, for all
k € K;. In particular, the element at column k € K; and row i € N of [ is equal to 1 if i=k, and it is equal to zero
otherwise. Based on these column values, it can be easily verified that (2) is totally unimodular (TU). In ', the
right-hand-side vector is = e’ € R"™*", where ¢’ is the unit vector whose components are all zero except for that
corresponding to row [ representing y;x;, which is equal to 1. Because 7' is an extreme point of C', it is associated
with a basic feasible solution for its system of equations. Let B be the corresponding basis for (2). It follows from
Cramer’s rule that all elements of B~! belong to {0, —1,1} since (2) is TU. Therefore, the components of + B~le!
belong to {0, —1,1}. We conclude that the components of basic feasible solutions to C! are equal to 0 or 1 due to
nonnegativity of all variables in its description. O

Remark 1. When m =1, multiplying the bound constraints with 1 — 1, in Step 3 of the EC&R procedure produces
two of the standard McCormick bounds. As a result, we can skip Step 3 in the EC&R procedure and merge it
into the relaxation step, in which the other two McCormick bounds and the bilinear constraints are used for
relaxing the remaining bilinear terms. In specific, any remaining bilinear term in the aggregated inequality can
be relaxed into either of the two McCormick lower bounds or the two McCormick upper bounds or the * z vari-
able corresponding to that term depending on its sign. In this case, the characterization of EC&R assignment can
be reduced further to [Z1,7].
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Remark 2. As described in Remark 1, each remaining bilinear term in the aggregated inequality of the EC&R
procedure can be relaxed into three different linear terms. While this can lead to an exponential growth in the
number of resulting linear EC&R inequalities for each EC&R assignment, we can use an efficient separation pro-
cedure to find the most violated inequality among the resulting EC&R inequalities as follows. Assume that we
aim to separate a given solution (¥;¥,;Z) from conv(S') through the EC&R inequalities obtained from the aggre-
gated inequality g(x;y1;z) >0 associated with the EC&R assignment [Z,Z]. For each bilinear term y;x;, we
choose the relaxation option that provides the minimum value among u;i/, obtained from using vy (u; — x;) > 0, X;
obtained from using (1 —y1)x; >0, and z; obtained from using —yix; +z; > 0. Similarly, for each bilinear term
—y1x;, we choose the relaxation option that provides the minimum value among 0 obtained from using y;x; >
0, u; — ¥; — u;ij, obtained from using (1 — y1)(u; — x;) > 0, and —Z; obtained from using y1x; — z; > 0. This approach
provides the most violated EC&R inequality in the time linear in the number of remaining bilinear terms in the
aggregated inequality.

Considering the relation between the extreme points of the projection cone C' for I € K and the aggregation
weights in the EC&R procedure, Proposition 1 and Remark 1 imply that generating class-/~ EC&R inequalities
reduces to identifying the assignment [Z1,7] as the aggregation weights are readily determined. In particular,
the constraints in Z; are multiplied with y;, and those in Z are multiplied with 1 — ;. We next show that, for set
St identifying all the EC&R assignments that satisfy the EC&R conditions (C1) and (C2) can be achieved by con-
sidering a special graphical structure in the underlying network.

Given a network G = (V,A) with a node set V and arc set A, assume that the index k of variables z; in the
description of S! refers to the arc whose flow variable x; appears in that bilinear constraint, that is, y1x; = z; for
ke A =N =K. We define t(k) and h(k) to be the tail and head nodes of arc k € A, respectively. Further, for any
node i € V, we define 67 (i) and 6 (i) to be the set of outgoing and incoming arcs at that node, respectively. We
refer to the flow-balance inequality D s )Xk — D_kes )Xk = fi (T€SP. =D pest Xk + D es Xk = —fi) correspondmg
to node i as the positive (resp. negative) flow-balance inequality, and refer to its index in the description of Z by i*
(resp. i” to be recorded in the EC&R assignment. For example, an EC&R assignment [{i*},{j~}] implies that, in
the aggregation, the positive flow-balance inequality corresponding to the node i € V is multiplied with y;, and
the negative flow-balance inequality corresponding to the node j € V is multiplied with 1 —y;. In the sequel, we
denote the undirected variant of a subnetwork P of G by P, and conversely, we denote the directed variant of an
undirected subnetwork P of G by P according to the arc directions in G.

Proposition 2. Consider set S' with E that represents the network polytope corresponding to the network G = (V, A). Let
[Z1,Z] be an EC&R asszgnment for class-1=, for some 1€ A, that leads to a nontrivial facet-defining inequality of
conv(S"). Define I = {i € V|i* €I UL} to be the subset of nodes whose flow-balance inequalities are used in the aggrega-
tion. Then, there exists a tree T of G composed of the nodes in Z such that arc 1 is incident to exactly one node of T.

Proof. First, we observe that for each node i € V, both of its positive and negative flow-balance inequalities can-
not be selected for the aggregation, since otherwise, the columns representing the lpositive and negative inequal-
ities in the basis of the coefficient matrix (2) associated with the extreme point of C' would be linearly dependent,
which would be a contradiction to the fact that the selected EC&R assignment leads to a facet-defining inequality
of conv(S'); see the proof of Proposition 1 for details. As a result, considering that Z; N Z = 0 by the EC&R
requirement, at most one of the following possibilities can occur in the EC&R assignment: i* € 71, i* € I,i"€l,
and i~ € Z. Therefore, each node in Z corresponds to a unique flow-balance constraint in the EC&R assignment.
Next, we show that arc [ is incident to exactly one node of Z. It follows from condition (C2) of the EC&R proce-
dure that the bilinear term y;x; for arc [ in the base equality must be canceled during the aggregation. The con-
straints of E that can produce the bilinear term y;x; during the aggregation are the flow-balance constraint
corresponding to the tail node #(I) of arc /, and the flow-balance constraint corresponding to the head node h(I) of
arc [. Since the aggregation weight for all the constraints in the EC&R assignment are 1 according to Proposition
1, and considering that each flow-balance constraint can appear once in the aggregation as noted above, the only
possibility to cancel the term y1x; is to pick exactly one of the above constraints in the EC&R assignment. As a
result, exactly one of the head and the tail nodes of arc I must be in Z. Next, we show that there exists a tree T of
G whose node set is Z. Assume by contradiction that there is no such tree composed of the nodes in 7. Therefore,
7 can be partitioned into two subsets 7, and Z,, where the nodes in Z; are not ad]acent to any nodes in T, Itis
clear that arc I cannot be incident to the nodes in both Z; and 7, since otherwise Z; and Z, would have adjacent
nodes. Assume without the loss of generality that arc [ is incident to a node in Z;. Since the given EC&R assign-
ment leads to a facet-defining inequality after applying the relaxation step, its aggregation weights correspond to
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an extreme point of C' as descried in the proof of Proposition 1. The resulting system of equations for the associ-
ated basic feasible solution can be written as

+E; =L *I; 0 0 0 Gt + ¢l
0 0 0 iEz ilz ij2 Cz 1| = 0 ’ (3)
0 0 0 0 0 0 Cs 0 0

where the columns and rows of the basis matrix have been suitably reordered. In (3), the first (resp second) row block
corresponds to bilinear terms y;x; for arcs i € A that are incident to the nodes in Z; (resp. Z5), and the last row
block corresponds to all the other bilinear terms that do not appear during aggregation. The first (resp. fourth) column
block denotes the transpose of the node-arc incidence matrix for nodes in 71 (resp. 7). The second (resp. fifth)
column block contains positive or negative multiples of columns of the identity matrix representing the weights used
in the relaxation step of the EC&R procedure corresponding to the McCormick bounds. The third (resp. sixth) column
block represents positive or negative multiples of the bilinear constraints in the description of S! used in the relaxation
step corresponding to the arcs appearing in the first (resp. second) row blocks. All these columns have weights equal
to 1 according to Proposition 1 as denoted in the first two row blocks of the solution vector multiplied with this matrix.
The last column in the basis corresponds to the constraints that have weights 0 in the basic feasible solution and
are added to complete the basis. Lastly, e’ is a unit vector whose elements are all zeros except that corresponding to
y1x;, which is equal to 1. It follows that the linear combination of the columns in the column blocks 4, 5, and 6 of the
basis matrix with weights 1 yields the zero vector. This shows that these columns are linearly dependent, a
contradiction. O

Proposition 2 implies that each nontrivial EC&R inequality can be obtained as an aggregation of constraints corre-
sponding to a special tree structures. The next theorem provides the converse result that aggregating constraints asso-
ciated with each special tree structure can produce EC&R inequalities.

Theorem 2. Consider set S* with E that represents the network polytope corresponding to the network G = (V,A). Let T
be a tree in G with the node set T C'V, and let | € A be an arc that is incident to exactly one node of T. Then, for any parti-
tzonfl andfz of I (ie, TyNIy=0and T, UI,=1), we have that

(i) ifh(l) € Z, then [{i*}icz, (i Yicz,] is an EC&R assignment for class-1",

(i) ifh(l) € Z, then [{i~ ez, {l+}1612] is an EC&R assignment for class-17

111) if (1) € Z, then [{i~ };cz, {i* ez, is an EC&R assignment for class-1",

(iv) if t() € Z, then [{i*},c7, i }iez,] is an EC&R assignment for class-1-

Proof. We show the result for part (i), as the proof for parts (ii)—(iv) follows from similar arguments. It suffices to
show that the aggregation procedure performed on the constraints in the proposed assignment satisfies the
EC&R conditions (C1) and (C2). For condition (C1), we need to show that at least |Z1| + |Z,| bilinear terms are
canceled during aggregation. Let R be the set of arcs in T, which is the directed variant of T obtained by replacing
each edge with its corresponding arc in G. It is clear from the definition that [ ¢ R. As a result, for each r € R, the
only constraints in the aggregation that contain x, are the flow-balance constraints corresponding to the head
node h(r) and tail node #(r) of r since both of these nodes are included in 7 as  is an arc in T. There are four cases
for the partitions of 7 that these head and tail nodes can belong to. For the first case, assume that h(r) € 7 and
t(r) € Z;. It follows from the EC&R assignment in case (i) that the positive flow-balance constraints /(r)" and t(r)"
are used in the aggregation with weights y;. In particular, we have y1 (> cs+ )Xk — 2_kes- () Xk — Xr = fin(r))
added with y1(3cst (1013 Xk — 2okes- (i) Xk + Xr 2 fs(7)), which results in the cancellation of y1x;. For the second
case, assume that /i(r) € 71 and t(r) € Z,. It follows from the EC&R assignment that the positive flow-balance con-
straints /()" and the negative flow-balance constraint t(r)* are used in the aggregation with weights y; and
(1 —y1), respectively. In particular, we have y1(3 ies* (i) Xk — 2okes- i)\ 1)k — Xr = finy)) added with (1 —y1)
(=2 kes* () rk T 2kes(1(r))*k — Xr = —f(1r))), Which results in the cancellation of yix,. For the remaining two
cases, we can use similar arguments by changing the inequality signs to show that the term y;x, will be canceled
during aggregation. As a result, we obtain at least |R| cancellations during the aggregation corresponding to the
arcs of T. Since T is a tree, we have that |R| = |Z1| + |Z,| — 1. Finally, for arc /, it follows from the assumption of
case (i) in the problem statement that h(l) € Z and t(I) ¢ Z. If h(l) € Z1, then according to the EC&R procedure for
class-I*, we aggregate y1x; — 2 = 0 with y1(3 cs+ uy Xk — 2kes %k — X1 = finay), which results in the cancella-

tion of y1x;. If h(l) € Z,, we aggregate y;x; —z = 0 with (1 — Y= kes ity Xk + Dkes- a1y Xk T X1 = —fnay), which
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results in the cancellation of y;x;. As a result, in total we have at least |R| +1=|Z;| + |Z| cancellations during
the aggregation of the constraints in the EC&R assignment, showing the satisfaction of condition (C1) of the
EC&R procedure. For condition (C2) of the EC&R procedure, we need to show that for each constraint used in
the aggregation, including the base equality, at least one bilinear term among those created after multiplication
of that constraint with its corresponding weight is canceled. There are two types of constraints to consider. The
first type is the flow-balance constraints in 7, and Z,, which correspond to the nodes of T. It follows from the
previous discussion that for each node i € 7, UZ,, the bilinear term y1X;, where r is an arc in T that is incident to
i, that is, h(r) =i or t(r) =i, is canceled during aggregation. This proves that at least one bilinear term is canceled in
the inequality obtained after multiplying the corresponding flow-balance constraint at node 7 with y; or 1 —y;.
The second type of constraints used in the aggregation is the base equality I. The proof follows from an argument
similar to that given above where we showed that the bilinear term y,x; that appears in the base constraint y,x; —
z; =0 is canceled. We conclude that condition (C2) of the EC&R procedure is satisfied for all constraints used in
the aggregation. O

In view of Theorem 2, note that for the simplest choice of the tree T, that is, an empty set, the resulting EC&R
inequalities recover the classical McCormick bounds. Therefore, considering any nonempty tree structure can poten-
tially improve the McCormick results by adding new valid inequalities for the bilinear set.

Proposition 2 and Theorem 2 suggest that the EC&R assignments have a sim?le graphical interpretation for S°,
which can be used to generate all nontrivial EC&R inequalities to describe conv(S") without the need to search for all
possible constraints and their aggregation weights that satisfy the EC&R conditions as is common for general bilinear
sets. This attribute can significantly mitigate cut-generation efforts when used systematically to produce cutting plane.
Such a systematic procedure can be designed by identifying tress of a given network and then following the result of
Theorem 2 to obtain the corresponding EC&R assignments. We illustrate this procedure in the following example.

Example 1. Consider set S' where E represents the network model corresponding to a spiked cycle graph G =
(V,A) shown in Figure 1. We refer to each arc in this network as a pair (7, ) of its tail node 7 and its head node j,
and denote its corresponding flow variable as x; ;. Assume that we are interested in finding EC&R assignments
for class-(1,5)". According to Theorem 2, we need to identify the trees that contain exactly one of the tail and
head nodes of arc (1, 5). For instance, we may select the tree T composed of the nodes 7 =1{8,4,1,2,6} that
contain the tail node of arc (1, 5). Consider the partitions Z; = {8,2} and Z, = {4, 1,6}. Following case (iii) in Theorem 2,
we can obtain the EC&R assignment [{87,27},{4%,1%,6"}] for class-(1,5)". As a result, we multiply the negative
flow-balance constraints at nodes 8 and 2 with y;, and we multiply the positive flow-balance constraints at
nodes 4, 1, and 6 with 1 —y;, and aggregate them with the base bilinear equality corresponding to arc (1, 5) with

Figure 1. Graph G of Example 1.

Q@ Oéﬁ O
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weight 1 to obtain the aggregated inequality

—z1,5 — Y1X2,3 —YiXaz + (fs +fo +fi +fa +fo)n
+Xx15 —Xp1+Xs3—Xga+Xe2—fi—fa—fo 20

where f; denotes the supply/demand value at node i. Following Remark 1, we may relax each remaining bilinear term
—11%2,3 and —y1xy, 3 into three possible linear expressions, leading to 9 total EC&R inequalities. If implemented inside
of a separation oracle, we can use Remark 2 to find the most violated inequality among these 9 efficiently. O

3.1.1. Generalization of the Coefficient Matrix for Bilinear Constraints. Consider a generalization of S' where the
bilinear constraints may contain multiple bilinear terms:

5‘1 ={(xyz)eExX A xR"lylAkxzzk, Vk € K},

where A" is a matrix of appropriate size with potentially multiple nonzero elements. For instance, S ! may include the
constraint 21 x; — 5y1X; = zk for some 7,j € N. In this case, the coefficient matrix (2) of ¢! will be modified as follows
after rearranging columns and rows.

[ET| = ET|I| - I|T| —I|A] — Al @)

In the above matrix, the row and column blocks are defined similarly to those of (2) with a difference that the seventh
and eighth column blocks correspond to the weights of the bilinear constraints y; A x = z;, which are represented by
B and B in the dual weight vector, respectively, for all k € K;. In particular, the element at column k € K; and row i €
N of A is equal to Ah It is clear from the structure of (4) that this matrix may lose the 1’U property when A contains
multiple nonzero elements for some k € K;. In fact, this property may not hold even if A, € {0,1, — 1} for all k € K; and
i€ N. As a result, there is no guarantee that the aggregation weights for all the EC&R inequalities corresponding to
nontrivial facets of ConV(S ) will be 1. While an explicit derivation of the convex hull description through identifying
special network structures, such as those presented for S', may not be attainable for this problem in its original space
of variables, we can use the following ancillary result to apply Theorem 2 and obtain a convex hull description for S
in a higher-dimensional space.

Proposition 3. Consider sets
={xyw) e EX A XR"|ynx; =w;, VieN},
and
D={(xy,w;z) e Ex A xR" x R"|Akw =z, VkeK},
Then,

conv((S' x R¥) N D) = (conv(S') x R¥) N D. 5)

Proof. We prove the result by showing both directions of inclusion for the equality. The direct inclusion follows
from the fact that the convex hull of intersection of two sets is a subset of the intersection of the convex hulls of
those sets. For the reverse inclusion, we need to show that corw((S1 x R*) N D) 2 (conv(S?!) x R¥) N D. Consider a
point ¢ = (¥; y,w z) € (conv(S") x R) N D. We show that ¢ € conv((S' x R) N D). It follows from the assump-
tion that z; = A for all k € K. Further, there must exist a finite collection of points qb &9, w)eS forje]
such that x =3, w;®¥/, j = Zle]w]y and w = Zle]a)]w] for some nonnegative weights w; such that 2jgwi=1.

Consider the set of points ¢ = (&L y/;'; 2) for j € ] such that ¥/ =&/, i/ =/, w/ = @/, and zk A for all ke K.
It is clear that qb €(S'XR)ND for all je] by definition of the components of these points. It follows
that ¢= Z]qa)jqb , since X = Zle]a)]x = Z]qa)jy , and w = Zjeja)]w by definition, and since Zzj = Aw =
A (Zle]a)jw ) = Z]qw]Akw > E]a)]A w! Z]e]wjzk for all k € K. This proves that qb econv((S' xR )ND). O
The result of Proposition 3 shows that we can obtain a convex hull description for S'ina higher dimension, which

is expressed on the left-hand-side of (5), by finding the convex hull of S' through application of Theorem 2 and then
intersecting it with the linear constraints in D as indicated on the right-hand-side of (5).
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3.2. The Case with m>1
In this section, we consider the general case where m>1 in S. The coefficient matrix of ' in (1) can be written as fol-
lows after a suitable rearrangement of columns and rows.

ET 0 ... 0 -ET [ -I'IT - 0 0 ... 0 0 I' -T"90o o0 ... 0 O
0 ET ... 0 -ET I -1 0o 0 I -I ... 0 0 O O I> -I> ... 0 0O ©
o0 0 ... EY - ET' I -T 0o 0 0 O ... I -I o0 O O O .. I™ —Im

In the above matrix, each row block j € M represents the bilinear terms y;x; for all i € N. The first m column blocks cor-
respond to the weights of the flow-balance constraints in & multiplied by y; for j € M, which are denoted by y’t for all
t € T in the dual vector. The next column block represents the weights of the flow-balance constraints in = multiplied
by 1 — >y, which are denoted by 0, for all t € T in the dual vector. The next two column blocks indicate the lower
and upper bound constraints on variables in & multiplied by 1 —},;, which are recorded by A; and p;, respec-
tively, for all i € N. The next 2m columns blocks correspond to the Welghts.of the lower and upper bound constraints
on variables in & multiplied by y; for j € M, which are recorded by 1 and p}, respectively, for all i € N. The last 2m col-
umn blocks correspond to the weights of the positive and negative bilinear constraints in S, which are represented by
B and p for all k € K;. For instance, for constraint y;x; — zx > 0 with (i,7) € N x M and k € K, the elements of column k
in I’ are all zero except the one in the row corresponding to the bilinear term y;x; which is equal to one.

It is clear from the structure of (6) that this matrix does not have the TU property, implying that a result similar to
that of Proposition 1 does not necessarily hold. Therefore, there is no guarantee that the aggregation weights for all the
EC&R assignments obtained from the extreme points of C' are 1. In fact, Example 2 shows that there exists EC&R
assignments with aggregation weights that map to extreme points of C' with components that are not all 0 or 1.

Example 2. Consider set S where E describes the network polytope corresponding to network G =(V,A)
in Figure 1, and A = {(y1,12) € R2|y1 +y» < 1}. Select class-I* corresponding to the base equality y;xs 4 —z = 0.
Let [Z1,7,,Z|J,J] be an assignment for class-I* where Z; = {4*,3"}, 7, ={27},Z ={1"}, 7 ={(4,1)}, and J =
{(2,3)}. Next, we show that the above assignment is an EC&R assignment for class-I" when considering the dual
weight 1 for all constraints except the bound constraint in 7 which has a dual weight of 2 in the aggregation.
Specifically, we aggregate the base constraint y1xg 4 — z; > 0 with weight 1, the positive flow-balance constraints
at node 4 that is xy4,1 + x4 3 — X3 4 > f3 with weight y;, the positive flow-balance constraints at node 3 that is x3,7 —
X43—X2,3 > f3 with weight 1, the negative flow-balance constraints at node 2 that is x¢2 —x2,1 —X2,3 > —f>
Zxe,2 — X2,1 — X2,3 > —f» with weight y», the positive flow-balance constraints at node 1 that is x1,5 — x41 —x2,1 > fi
with weight 1 —y; — 1, the lower bound constraint for arc (4, 1) that is x4 1 > 0 with weight 2(1 —y; — 1), and
the upper bound constraint for arc (2, 3) that is up 3 — x,3 > 0 with weight 1 — y; — y». During this aggregation,
six bilinear terms will be canceled, satisfying condition (C1) of the EC&R procedure. Further, at least one bilinear
term for each constraint involved in the aggregation is canceled, satisfying condition (C2) of the EC&R proce-
dure. Therefore, the above assignment is a valid EC&R assignment for class-I". Next, we argue that the dual
weight vector for this assignment corresponds to an extreme point of €' in (1). For S in this example, the coeffi-
cient matrix of C', as depicted in (6), has 16 rows corresponding to bilinear terms y;x; for all j=1, 2 and i € A. It is
easy to verify that the columns corresponding to the six constraints in the above EC&R assignment are linearly
independent. As a result, we can form a basis by adding to the above six columns 10 more linearly independent col-
umns corresponding to the constraints used in the relaxation step for the bilinear terms remaining in the aggregated
inequality together with the columns that complete the basis. The resulting basis corresponds to a basic feasible
solution where all variables (interpreted as the dual weights for constraints involved in the EC&R procedure) are 0
or 1, except the one associated with the column representing the lower bound constraint for arc (4, 1) which has a
dual weight equal to 2. Therefore, there exists extreme points of C' with components that are notall 0 or 1. [

In light of the above observation, even though identifying the aggregation weights for the EC&R procedure for S is
not as straightforward compared with that of S', we next show that a generalization of the previously discussed tree
structures can still be detected for a given EC&R assignment. First, we give a few definitions that will be used to derive
these results.

Definition 1. Consider set S where E describes the network polytope corresponding to network G = (V,A). We
define a parallel network G/ = (V/, AV) for j € M to be a replica of G that represents the multiplication of flow vari-
ables x with y; during the aggregation procedure. For instance, the selected nodes in the parallel network j repre-
sent the multiplication of their corresponding flow-balance constraints with variable y;.
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In view of Definition 1, to simplify presentation, we use the same node and arc notation across all parallel net-
works. In particular, given the network G = (V, A), we refer to the replica of node v € V (resp. arc a € A) in the
parallel network G by v (resp. a) for all j € M. Following this rule, given a subnetwork G of the parallel network
G for some j € M, we say that a node v € V (resp. arc a € A) is adjacent to (resp. incident to) a node of G/, if the
replica of v in the parallel network G/ is adjacent to (resp. incident to) a node of G/.

Definition 2. Consider set S where & descrlbes the network polytope correspondmg to network G = (V,A). Con-
sider a collection of networks G (V A ) fork=1,...,r, where each G is a subnetwork of a parallel networks
G for some j € M. We say that this collection is oertzcally connected through the connection nodes C, C 'V and connec-
tion arcs C, C A if there exists an ordering sy,sy,...,s, of indices 1 ..,v such that for each i=1,...,r —1, there
exists either (i) an arc a € C, such that a is incident to anode of G™ and it is incident to a node of some subnet-
works among G™',...,G”, or (ii) a set of nodes v1,..-,0p € Cy, each adjacent to the previous one in the original net-
work G, such that vy is ad]acent to a node of G s and v, is adjacent to a node of some subnetworks among
G”,...,G". In this definition, if node v, is in G™', it counts as an adjacent node to the connection node v;.
The next example illustrates the concepts 1ntroduced in Definitions 1 and 2.

Example 3. Consider set S where E describes the network polytope corresponding to network G =(V,A) in
Figure 1, and A = {(y1,12) € R |y1 +y» < 1}. According to Definition 1, since 7=2, we create two parallel networks

G = (V) A) for j=1, 2. Consider subnetworks G' = (Vl,Al) and G = (\'72 Az) of the parallel network G' = (V!,Al),
and the subnetwork G’ = (V3,A3) of the parallel network G?=(V?,A?), where v'= {1,5}, Al =
{(1,5)}, V= {7}, A’ = 0, v = {2,6}, A’ = {(6,2)}. Further, define C, = {3} and C, = {(2,1)}. According to Definition
2, the subnetworks Gk, for k=1, 2, 3, are vertically connected through the connection nodes C, and connection arcs C,
due to the following observations. Consider the ordering s; =1, s, = 3, and s3 = 2 of the indices 1, 2, 3 of the subnet-
works. It follows that G™ is vertically connected to G” through arc (2,1) € C, as it satisfies the condition (i) of Defini-
tion 2 because it is incident to node 1 of G” and node 2 of G™. Similarly, G™ is vertically connected to G through
node 3 € C, as it satisfies the condition (ii) of Definition 2 because it is adjacent to node 2 of G” andnode 7 of G”. O

Now, we are ready to show the relationship between an EC&R assignment and a special graphical structure in the
underlying network.

Proposition 4. Consider set S with E that represents the network polytope corresponding to the network G = (V, A). Let
[Z1,...,Zwm,Z|T,T] be an EC&R ass gnment that leads to a nontrivial facet-defining inequality of conv(S). Assume that
UjemZ; # 0. For each j€ M, define I’ ={ieV|i* €1}, I={ieV|i* GI} and J ={icAlie JU J}. Then, there
exzst forests F/ in the parallel network G for j e M, each composed of trees T}, for k € T}, where T is an index set, such that
) the forest F/ is composed of the nodes in 7 foralljeM,

(11) the collection of the trees T), for all k € T; and all j € M are vertically connected through connection nodes I and connec-
tion arcs J

(iii) the collection of all nodes in ¥ for all j € M together with the connection nodes I form a tree in G, which has at least
one incident node to each connection arcin J .

Proof. We show the result by proving conditions (i)—(iii). First, we may assume that the given EC&R assignment
corresponds to class-I = for some | € K. Since [Z;,...,T LT, T] leads to a nontrivial facet- defining inequality of
conv(S), its corresponding dual weights in the aggregation should represent an extreme point of C' defined in
(1). This extreme point is associated with a basis in the coefficient matrix (6). In this basis, the subset of the col-
umn block that contains ET in the row block j represents the flow-balance constraints (multiplied with ;) for the
nodes i € 7/, which can be viewed as the selected nodes in the parallel network G/ for j € M. Further, the rows in
the row block j represent the flow variables (multiplied with y;) for each arc in G, which can be viewed as an arc
in the parallel network G/. We may reorder the columns and rows of this basis corresponding to each parallel
network G/ to obtain a diagonal formation composed of diagonal blocks E[} for k in an index set I';. It follows from
this structure that the nodes corresponding to the columns of ET in the parallel network G/ are cormected via arcs
of G/ represented by the matrix rows. Therefore, these nodes can form a tree T] for k €T, the collection of which
represents a forest F/ for all j € M, satisfying condition (i) of the proposition statement

For condition (ii), considering the aforementioned diagonal block structure and representing the subset of col-
umn blocks of (6) containing I’ and I in the basis by one block with * sign (as only one of them can be selected in
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the basis), we can write the resulting system of equations for the associated basic feasible solution as follows

[Ef, 0 O ]
0 -~ 0 0 0 —ET *I *I 0 .. 0 0 =*I' 0o .. 0 0 C
0 0 Ep

E;, 0 0
0 0 0 0 —ET ] 0 I 0 o0 0 =I’ 0 0 C,
0 0 EJn,
ET, 0 0
0 0 .0 -~ 0 —ET I 0 0 .. *I 0 0 0 ... =I" 0 Cun
0 0 EJ
0 0 0 -ET *xI 0 0 .. 0 =I 0 0 ... 0 *=I¥" Cup
L 0 0 0 0 0 0 0 .. 0 0 © 0 ... 0 0 Cuisz ]
@)

where the last column in the basis corresponds to the constraints that have weights 0 in the basic feasible solution and
are added to complete the basis, and where the last row represents all bilinear terms that do not appear in any con-
straints during aggregation. Further, the row block next to the last row corresponds to the bilinear terms that appear
during aggregation but not in any of the selected flow-balance constraints; the matrix =I" " denotes the bilinear
constraints in S that contain these bilinear terms and could be used during the relaxation step. In the above basis, the
column block that contains —ET represents the flow-balance constraints (multiplied with 1 —3",,y;) corresponding
to the nodes in Z. Similarly, the column block that contains = I in all rows represents the bound constraints on the
flow variables (multiplied with 1 —}..\/;) corresponding to the arcs in J . We refer to the column group composed
of the columns of E]T for any je M and k € T; as the column group representing the nodes of the tree T}. It is clear
from the diagonal structure of the submatrix contamlng E], that the column groups representing the nodes of T] are
all arc disjoint, that is, there are no two columns from dlfferent groups that have a nonzero element in the same row.
We claim that there exists an ordering (s1,71), (§2, 7),...,(sn, rh) of the pairs (j, k) for all j € M and k € I'; such that for
each column group representing the nodes of T}, for all i = ., h, there exists either (i) a column from the column
blocks corresponding to 7 that has a nonzero element inarow correspondlng toarow of E] , and a nonzero element
in a row corresponding to a row of E] , for some t € {1,...,i— 1}, or (ii) a sequence of columns in the column block
corresponding to Z, each sharing a nonzero element in a common row with the previous one, such that the first col-
umn has a nonzero element in a row corresponding to a row of E] . and the last column has a nonzero element in a
row corresponding to a row of E] . forsomete€{1,...,i—1}. Assume by contradiction that no such ordering exists.
Therefore, we can partition the rows in the first m + 1 row blocks of (7) in such a way that no two rows in all columns
composed of the columns in }E]T for all j € M and k € T; and those corresponding to the columns of Z and J have all
their nonzero elements in the rows of one of these parhtlons In this case, considering that the column blocks composed
of = and those composed of = I’ have exactly one nonzero element in the basis, we can compactly rewrite the system
of equations for the basic feasible solution as follows:

+E, I, *I; 0 0 0 Cq + +el
0 0 0 =+E, =L *I, G +l=1 0 |, ®)
0 0 0 0 0 0 CuollO 0

where the first and second row blocks respectively correspond to the first and second partitions discussed above. In
(8), €' is a unit vector whose elements are all zero except that corresponding to the row representing y;x; for some i’,’
that satisfy Al,l, =1, which is equal to 1. We may assume without the loss of generality that the row containing this
nonzero element in ¢’ belongs to the first row block. All these columns except the ones in the last column block have
positive weights because the associated constraints are assumed to be used in the aggregation. These weights are
denoted by + in the first two row blocks of the vector multiplied with this matrix. It follows that the linear combination
of the columns in the second column block of the basis matrix with positive weights yields the zero vector. This shows
that the columns are linearly dependent, a contradiction. Now, consider the ordering (si,71),(s2,72),--.,(Sn, 1)
described above. It follows that for each i=2,...,h, there exists either (i) a column from the column block
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corresponding to J that has a nonzero element in a row Correspondmg to a row of E] . and a nonzero element in a
row corresponding to a row of E] , for somet € {1,...,i — 1}, or (ii) a sequence of columns in the column block corre-
sponding to Z, each sharing a nonzero element in a common row with the previous one, such that the first column has
a nonzero element in a row corresponding to a row of E; . and the last column has a nonzero element in a row corre-
sponding to a row of E] , for some t€{1,...,i—1}. First, consider the case (i) in the above either-or argument holds
for a column k € 7. This column has nonzero elements in the rows representing arc k in all subnetworks G/ for j € M.
Matrix EJ . has a nonzero element in row k if the tree T}’ has an incident node to arc k. we conclude that T} and T}
have at least one node incident to k, satisfying criterion ( ) in Definition 2. Second, consider the case (ii) in the above
either-or argument holds for a sequence ki, ... ., k, of the nodes corresponding to Z where p < |Z|. Any such column,
say ki, has nonzero elements in the rows representing the arcs that are incident to node k; in all parallel networks G/
for j € M. Therefore, since each column contains a nonzero element in a common row with the previous one, the nodes
corresponding to these columns must be adjacent to one another in G. Further, since the column corresponding to k;
has a nonzero element in a row corresponding to a row of E_ ., we conclude that k; is adjacent to a node in Tﬁ;, which
means that either k; belongs to this tree, or it is adjacent to a node of this tree. A similar argument can be made about
node k, and the tree T}'. This satisfies criterion (ii) of Definition 2. This proves condition (ii) of the proposition state-
ment due to Definition 2.

For condition (iii), we show there exists a sequence vy,...,v; of all the nodes in U jeMI UZ, where q=
|U]eMI Uz | and v; € UjeMI such that every node v; is ad]acent to at least one node in vy,...,v;_1 for every
i=2,...,9. We may assume that v, is incident to arc i" defined prev10usly that is associated with the base equality
I. For other cases, where i’ is not incident to any nodes in UjeMI the argument will be similar with an adjustment
of the partitions described below. It follows from the previously proven conditions (i) and (ii) of the problem
statement, as well as Definition 2 that there exists a sequence 01, ...,0, of all the nodes in UjeMI UZ for some
7 C 7 such that 9; is adjacent to at least one node in 71,...,7,_1 for every i =2,...,p. We claim that there exists a
sequence 01,...,0,_p of all the nodes in 7 \f such that 9; is adjacent to at least one node in 0y,...,0,,01,...,0; 1
for every i=1,...,4 —p. Assume by contradiction that no such sequence exists. Then, we can use an argument
similar to that of case (ii) above to partition the rows of (7) in such a way that all columns corresponding to the
nodes in 01, ...,0p,01,...,0; have all their nonzero elements in the first partition, and the columns corresponding
to all the remaining nodes 0,1, ...,9;, have all their nonzero elements in the second partition. Then, a similar
argument to that following (8) will show that the columns in the second group are linearly dependent, a contra-
diction. The case for the second part of the statement regarding the connection arcs in J can be shown
similarly. O

Although Proposition 4 shows that an EC&R assignment corresponds to a forest structure in the parallel networks
created from the underlying network in S, the converse result—similar to the one presented for set S'—does not hold
here. More specifically, a forest structure that satisfies the conditions of Proposition 4 does not necessarily lead to a
valid EC&R assignment, and even when it does, the calculation of the aggregation weights to satisfy the EC&R condi-
tions is not as straightforward; see Example 4 below.

Example 4. Consider set S where E describes the network polytope corresponding to network G =(V,A) in
Figure 1, and A = {(yl,yz) €R2|y; +y, < 1}. Select class-I* correspondmg to the base equality y1x1,5 —z =0. In
the parallel network G!, we select the forest F! composed of the tree T} with the node set Z = {1,2}. In the paral-
lel network G?, we select the forest F> composed of the tree T1 with the node set 7~ = ={2,6}. We select the connec-
tion node set Z = {6}, and the connection arc set J = 0. It is easy to verify that these sets satisfy the conditions
(i)—(iii) of Propositions 4. However, we cannot find an aggregation weight for the flow-balance constraints corre-
sponding to the nodes in the above sets that yields a cancellation of at least 5 bilinear terms. As a result, there is
no EC&R assignment that matches the considered forest structure. 0

A common way to circumvent the above-mentioned difficulty in obtaining valid EC&R assignments and their
aggregation weights is to aim at a special class of EC&R assignments with more specific attributes that can be used to
strengthen the connection between an EC&R assignment and its corresponding network structure. An important
example of such class is the class of EC&R assignments that are obtained through pairwise cancellation. In this proce-
dure, each cancellation of bilinear terms is obtained by aggregating two constraints. This definition includes the bilin-
ear terms that are canceled during the relaxation step, that is, the constraint used to relax the remaining bilinear terms
counts as one of the two constraints in the preceding statement. Following this procedure, the aggregation weight for
each constraint can be determined successively as the constraint is added to the assignment to ensure the satisfaction
of the EC&R conditions. The next result shows that the aggregation weights for all constraints used in the EC&R
assignments obtained through pairwise cancellation are 1.
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=

Proposition 5. Consider set S where E describes the network polytope corresponding to network G=(V,A). Let
[Z1,...,Zwm,Z|T,T] be an EC&R assignment for class-1*= for some | € K corresponding to pairwise cancellation. Then, the
agqregation weights for all constraints used in this assignment are 1.

Proof. Let 7' be the solution vector for the system of Equation (1) of C' corresponding to the aggregation weights
of the given EC&R assignment. We may rewrite this system of equations as follows by rearranging its rows and
columns.

Py 0 G [ +e
P, *I G| |#&|=]| 0 |, 9)
0 0 Cs 0 0

In the coefficient matrix of (9), the first row block represents the bilinear terms that are canceled during aggrega-
tion. The second row block corresponds to the remaining bilinear terms in the aggregated inequality that are
relaxed in the last step of the EC&R procedure. The last row block represents all the bilinear terms that are not
involved in the aggregation procedure. Further, in this matrix, the first column block corresponds to the con-
straints used in the aggregation, whose aggregation weights in the solution vector 7' are denoted by 4}. The sec-
ond column block corresponds to the variable bound constraints in = as well as the bilinear constraints in S used
in the EC&R procedure to relax the remaining bilinear terms in the aggregated inequality, whose weights in the
solution vector 7' are denoted by 5. The last column block represents all other constraints that are not used dur-
ing the EC&R procedure and their weights in the solution vector 7' are zero. Finally, e’ on the right-hand-side of
this system is a unit vector whose elements are all zeros except that corresponding to the row representing y; x;
for some 7',/ that satisfy Al,, =1, which is equal to 1. It is clear that this row belongs to the first row block since
according to the EC&R condition (C2), the bilinear term in the base equality  must be canceled during the aggre-
gation procedure when the assignments are not empty. It follows from the Equation (9) that P&} = = ¢'. Next,
we analyze the structure of P;. Note that all elements of P; belong to {0, —1,1} because it is a submatrix of (6)
that represents the coefficients of the constraints in S. Considering that the columns of P; represent the con-
straints used in the aggregation except the base equality (as that constraint has been moved to the right-hand-
side to form Cl), and that the rows of P; correspond to the canceled bilinear terms during aggregation, according
to condition (C1) of EC&R, we conclude that the number of rows of P; is no smaller that the number of columns
of P;. Further, it follows from condition (C2) of EC&R that each constraint used in the aggregation (after being
multiplied with its corresponding weight) will have at least one bilinear term canceled, which implies that each
column of P; has at least one nonzero element. The assumption of pairwise cancellation for the given EC&R
assignment implies that each canceled bilinear term corresponding to the rows of P; are obtained through aggre-
gation of exactly two constraints. As a result, each row of P; must contain exactly two nonzero elements, except
for the row corresponding to the bilinear term y;x» that appears in the base equality y;x; —z =0 which must
have only one nonzero element because the weight of the base equality has been fixed at =1 and its column has
been moved to the right-hand-side of the equation captured by = ¢'; see the derivation of (1). Therefore, we may
rearrange the rows and columns of the matrices in this equation to obtain the form:

+1 0 - 0
{0, £1} +1 . 0
0,+1} {0,+1} - +1 |&l==¢!, (10)

{0, £1} {0, =1} - {0, =1}

_{O,;:l} {0, ;:1} - {0, ;:1}_

where 7! is composed of the elements of 47 that are rearranged to match the rearrangement of columns of P; in the

above form, and where the first row corresponds to the bilinear term y; x so that the right-hand-side vector becomes
=+ el. It follows from the above discussion about the structure of P; and Equation (10) that all components of 7} must
be equal to 1 as they need to be nonnegative. Finally, for the equations in the second row block of (9), we have that
P& = Iwh = 0. It follows from the pairwise cancellation assumption that each row of P, contains exactly one nonzero
element as it corresponds to a remaining bilinear term in the aggregation inequality. Since all of the elements in P,

belong to {0, —1, 1}, and all the components in 7} are equal to 1, it must hold that 7, = 1. O
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Remark 3. Consider the special case with m=1. As described in the proof of Proposition 2, for any i € N\ {I}
(resp. for i=1), there are two (resp. three) possible scenarios for constraints that could be used in the aggregation
to cancel a bilinear term y;x;. Since the aggregation weights for all constraints are 1 in this case (see Proposition
1), we conclude that each cancellation is obtained through aggregation of exactly two constraints. Further, any
remaining bilinear term in the aggregated inequality corresponds to an arc that is incident to exactly one node of
the tree associated with the EC&R assignment (see Proposition 2), which implies that each such bilinear term
appears in exactly one constraint during aggregation. As a result, all EC&R inequalities for the case with m=1
can be obtained through pairwise cancellation.

Although the EC&R inequalities obtained through pairwise cancellation do not necessarily produce a full con-
vex hull description for S, the result of Proposition 5 provides three important advantages: (i) it generalizes the
convexification results for the case with m=1 as described in Remark 3; (ii) it can produce inequalities stronger
than those obtained by applying Theorem 2 to relaxations of S that contain one y variable at a time, because it
considers all the y variables in their original simplex set A,,; and (iii) it enables us to derive explicit EC&R
inequalities cognizant of the underlying network structure without the need to search for the aggregation
weights that satisfy the EC&R conditions, as will be shown in the sequel. These advantages are corroborated by
the computational experiments presented in Section 4. The next proposition shows that the pairwise cancellation
property provides more information about the forest structure presented in Proposition 4.

Proposition 6. Consider the setting of Proposition 4, and assume that the EC&R assignment [+, ... I, LT, T has the
pairwise cancellation property. Further, let this assignment correspond to a class-1* for some | € K such that A]’-,i, =1 for
some (i',j") € N x M. Then, in addition to the outcome of Proposition 4, we have that

(i) arc i’ is either in 7 or incident to exactly one node in T U 77, but not both,

(i) each arc in 7 is incident to at most one node in T U T’ for each j € M,
_ (iii) each node in 0T, for je M\ {j'} (resp. j =), is adjacent to no other nodes in that set and no arcs in 7 (resp.
J U {i'}).

Proof. For case (i), it follows from condition (C2) of the EC&R procedure that the bilinear term y;x; in the base
equality must be canceled during aggregation. Further, according to the pairwise cancellation property, there
must be exactly one constraint in the aggregation in addition to the base equality that would contain y;x after
multiplication with the corresponding dual weight. There are two possible scenarios. The first possibility is that
the bound constraints for x; are used in the aggregation, which implies that arc i’ is a connection arc and belongs
to 7. The second possibility is that the flow-balance constraint at either node #(i’) or h(i’), but not both, is used in
the aggregation, which implies that i’ is incident to exactly one nodein Z UZ’ .

For case (ii), consider an arc i € 7. Therefore, either of the bound constraints x; > 0 or u; — x; > 0 is used in the
aggregation with weight 1 —3"..\/y;. It follows from the pairwise cancellation property that, for each j € M, there
can be at most one additional constraint in the aggregation that contains a term y;x;. The only possibility for such
a constraint is the flow-balance constraint at either node £(i’) or h(i’), but not both. We conclude that i is incident
to at most one node in Z U Z’ for each j € M.

For case (iii), consider a node i € Z N Z’ for some j € M\ {j'}. Therefore, the aggregation contains the (positive
or negative) flow-balance constraint at node i multiplied with 1 -3, \y; due toi € 7, together with the (positive
or negative) flow-balance constraint at node i multiplied with y; due to i€ 7. Therefore, the bilinear terms YiXg
for all k € 67 (i) U 6™ (i) already appear in two constraints, which implies that they cannot appear in any other con-
straints during aggregation. As a result, the bound constraints for each variable x; corresponding to arc k cannot
be included in J. Similarly, the flow-balance constraint at node h(k) for any k € 6" (i) and at node f(k) for any k €
6~ (i) cannot be included in the aggregation, which implies that i cannot be adjacent to any other nodes in Z N Z’.
The proof for the case where j = j* follows from a similar argument. [

As noted earlier, an important consequence of the pairwise cancellation property is providing the ability to
derive the converse statement to those of Propositions 4 and 6, which identifies EC&R assignments based on a spe-
cial forest structure in the underlying network. The procedure to obtain such an EC&R assignment is given in The-
orem 3, which makes use of Algorithm 1 to determine the aggregation weights for deriving the corresponding
EC&R inequalities.

Theorem 3. Consider set S with E that represents the network polytope corresponding to the network G = (V,A). Let F/,
for each j € M, be a forest in the parallel network G/, composed of trees T}, for k € T}, where T} is an index set, that satisfies
the conditions (i)—(iii) of Propositions 4 and 6 with the corresponding node sets I’ the connection node set I, the connection
arc set J, and the class 1. Then, the assignment [Z+,. T, I|T,T] obtained from Algorithm 1 is an EC&R assignment
for class-1*.
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Proof. First, we argue that conditions (i)—(iii) of Proposition 4 imply that each member of the sets Z, 7, and 7’
for j € M receives a label assignment through the steps of Algorithm 1, that is, the member is added to set D
defined in that algorithm. It follows from condition (i) of Proposition 4 that once a member of the node subset in
7/, for each j € M, that represents a tree T), with k € T is added to D, all the remaining nodes in T} are eventually
added to D because of the loop in lines 11-13 in the algorithm, as all nodes of the tree are connected. Condition
(ii) of Proposition 4 implies that all trees:ﬂ( for k € I'; and j € M are connected through an appropriate sequence of
the tree nodes, the connection nodes in Z, and the connection arcs in 7. Consequently, the loops in lines 1044 of
the algorithm ensure that each member of these sets is visited following that sequence and becomes added to D.
Further, condition (iii) of Proposition 4 suggests that each member in the sets Z and 7 is connected to the sub-
graph composed of the set of all tree nodes in Z ""and their associated connection nodes and connection arcs. As a
result, there exists a sequence of adjacent nodes and arcs that lead to each member of Z and 7, thereby getting
added to D.

Second, we show that each bilinear term created during the aggregation can appear in at most two constraints.
There are four cases. In case 1, consider the bilinear term y;x; that appears in the base equality /. Condition (i) of
Proposition 6 implies that this bilinear term can appear in exactly one other constraint, which could be either the
bound constraint on variable x;; (which would be included in J) or the flow-balance constraint at one of the inci-
dent nodes to i’ (which would be included in Tuz ). In case 2, consider a bilinear term y;x;, for some j € M, that
appears in the bound constraint on variable x; for any arc i € 7. Condition (ii) of Proposition 6 implies that this
bilinear term can appear in at most one other constraint, which could be the flow-balance constraint at one of the
incident nodes to i (which would be included in 7ui ). In case 3, consider a bilinear term y;x;, for some j € M,
that appears in the flow-balance constraint at an incident node of arc i after being multiplied with both y; (i.e., the
node being in Z’) and 1 — >_jemYj (i-e., the node being in 7). Condition (iii) of Proposition 6 implies that this bilin-
ear term cannot appear in any other constraints during aggregation. In case 4, consider a bilinear term y;x;, for
some j € M, that appears in the flow-balance constraint at an incident node of arc i that is not in Z’ N Z. It follows
from condition (iii) of Proposition 4 that this bilinear term can appear in at most one other constraint because of
the tree structure of all the nodes in Ujer Tut.

Third, we discuss that, for any k € D that has been newly added to this set, its label value has been determined
through lines 1044 of Algorithm 1 in such a way that, for a member i € Ujerj UZ U J that has been previously
added to D and is adjacent/incident to i, the bilinear term that commonly appears in the weighted constraints
corresponding to both i and k is canceled. For instance, consider the case where i € Z (line 22 of the algorithm)
and k € 7/ for some j € M is an adjacent node to i (line 26 of the algorithm). Assume that 1(i) = +, and that arca €
A is such that f(a) =i and h(a) =k. It follows from line 27 of the algorithm that 1(k) = —. Considering the assign-
ment rule in lines 48 and 52 of the algorithm, we should aggregate the constraint 3¢5+ () Xr — 2res- )% +Xp =
fi with weight 1 -3 )yj, together with the constraint —3 s+ 0Xr + >_c5- o) () Xr + %p = —f with weight y;, which
results in the cancellation of the bilinear term y;x,. A similar argument can be made for any other possible case in
Algorithm 1. )

Combining all the results shown in the previous parts, that is, (I) each member of the sets Z, 7, and Z’ for j
M receives a label assignment and is added to D; (II) each bilinear term created during the aggregation can
appear in at most two constraints; and (III) for any k € D, its label value is determined in such a way that the bilin-
ear term that is common between the weighted constraints corresponding to i and a previously added member k
in D is canceled, we conclude that at least |_f | + |;7 | + ZjeM |Z’| bilinear terms will be canceled during aggrega-
tion in the desired assignment [Z4,...,Z,,Z|J,J]. This satisfies the EC&R conditions (C1). Finally, the above
argument also implies t~hat each flow-balance constraint at the nodes in Ujer] U Z, and each variable bound con-
straint for the arcs in 7 will have at least one of their bilinear terms (after being multiplied with appropriate
weights) canceled because each such node or arc will eventually be added to D when it receives a label for the
desired cancellation. This satisfies the EC&R condition (C2). We conclude that [Z1,...,Z,,,Z|J,J] is an EC&R
assignment. [

Algorithm 1 (Derive an EC&R Assignment Associated with a Forest Structure)
Require: network G = (V, A), forest node sets 7’ for j € M, connection node set 7, connection arc set J, class
with (i',j/) € N x M such that A%, = 1, and a class sign indicator =, that satisfy the conditions of Theorem 3
Ensure: the EC&R assignment tI eI, 1T, T] for class-I*
1: assign an empty label denoted by 1(i) to each node i € 7 Ujer] and each arcie 7 U {I}, and define set D =0
2: set 1(i’") = the class sign indicator, and let k € 7" U T either be an incident node to i’ or be the arc i’ € J
3:if(k=h(i")eZ Yor(k=t(i")eT)or (k=i €J) then
4:  setl(k)=1(i),and add kto D
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5: elseif (k=1t(i") € fj') or (k=h(i") € ) then

6:

7

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:

set 1(k) = =1(i"), and add k to D (- represents the negation symbol)

end if
while D # 0 do

selecti € D
if i € 7’ for some j € M then , B
for each unlabeled node k € 7 "and k € 7 that is adjacent to i do
set 1(k) = 1(i), set L(k) = =1(i), and add k and k to D
end for
for each unlabeled arc k € 7 that is incident to i do
if i = t(k) then
set 1(k) = 1(i),and add k to D
else
set 1(k) = =1(i),and add kto D
end if
end for
end if
ifi €7 then )
for each unlabeled node k € 7’ for j € M such that k=i do
set 1(k) = 1(i), and add k to D
end for ) B
for each unlabeled node k € 7 TforjeM,and k € 7 thatis adjacent to i do
set 1(k) = =1(i), set 1(k) = 1(i),and add kand k to D
end for
for each unlabeled arc k € 7 that is incident to i do
if i = t(k) then
set 1(k) = —1(i),and add k to D
else
set 1(k) = 1(i),and add k to D
end if
end for
end if
ifi e 7 then ) )
for each unlabeled node k = (i) € Z’ and k = h(i) € 7’ forje M do
set 1(k) = 1(i), set 1(k) = =1(i), and add k and k to D
end for B
for each unlabeled node k = t(i) € 7 and k = h(i) € 7 do
set 1(k) = =1(i), set 1(k) = 1(i),and add kand k to D
end for
end if
Remove i from D

end while y
for each i € 7’ for each j € M do

add 1@ to 7

end for
foreachie 7 do
add i*D to T
end for
foreachie J do
if i*® = + then
addito J
else
addito J
end if
end for
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In view of Theorem 3, once we identify a forest structure with the desired conditions, we can use the steps in Algo-
rithm 1 to determine the weight of each constraint in the corresponding EC&R assignment by following a path that
starts from the arc associated with the base equality and reaches the node or arc associated with that constraint. We
illustrate this approach in the following example.

Example 5. Consider set S with m=2 and E that represents the primal network model corresponding to the
graph G = (V, A) shown in Figure 1. Similarly to Example 1, we refer to each arc in this network as a pair (i, j) of
its tail node i and its head node j, and denote its corresponding flow variable as x; ;. Assume that we are inter-
ested in finding EC&R assignments for class-I" where the base equality I contains the bilinear term y;x; 5, that is,
i’ =(1,5) and j/ = 1. According to Theorem 2, we need to identify a forest structure that satisfies the conditions
(i)—(iii) of Propositions 4 and 6. In the parallel network G', we select the forest F' composed of the tree T1 with
the node set {1, 2, 6} and the tree T} with the node set {8}. In the parallel network G?, we select the forest F? com-
posed of the tree T? with the node set {1, 4}. Therefore, we can form the set 7' = {1 2,6,8} and 7= ={1,4}. We
select the connection node set Z = {3}, and the connection arc set 7 = {(8,4)}. It is easy to verify that these sets
satisfy the conditions (i)—(iii) of Propositions 4 and 6. Next, we determine the label of each node and arc in the
above sets through applying Algorlthm 1. According to line 2 of this algorithm, we set 1(1,5) = + in parallel net-
work G, and select k =#(1,5)=1¢ 7. It follows from line 5 of the algorithm that 1(1) = — and k is added to D.
Followmg lines 10-13, we obta1n for 7" that 1(2) = 1(6) = —, and for 7 that 1(3) = +. Then, from lines 26-28 of
Algorithm 1, we deduce for 77 that 1(4) = —, and from hnes 11-13 for I we obtaln that 1(1) = —. Lines 32-34
imply that 1(8,4) = — for J. Lastly, we conclude from lines 3840 that 1(8) = — for 7 . As a result, following lines
47-59 of the algorithm, we obtain the EC&R assignment [{17,27,67,87},{17,47},{3%}(0,{(8,4)}] for class-I".
Based on this assignment, we multiply the negative flow-balance constraints at nodes 1,2, 6,8 with y;, we multi-
ply the negative flow-balance constraints at nodes 1, 4 with y,, we multiply the positive flow-balance constraint
at node 3 with 1 —y; —y», and we multiply the upper bound constraint on variable xg 4 with 1 —1y; —,, and
aggregate them with the base bilinear equality corresponding to arc (1, 5) with weight 1 to obtain the aggregated
inequality

—Z1,5 — Y1X4,5 — Y1X3,7 + Y1X4,3 — Y2X1,5 + Y2X4,5 + Y2X2 3 — Y2X3 7
+(fi +fo+fa+fo+fs —ug a)yr + (fi +f3+f1 —ug 4)yn
+X37 —Xp3—X43—Xg4—f3+ugs>0,

where f; denotes the supply/demand value at node 7, and u; ; denotes the upper bound for variable x; ;. Following the
relaxation step in the EC&R procedure, we may relax each of the seven remaining bilinear terms into two possible lin-
ear expressions, leading to 128 total EC&R inequalities. If implemented inside of a separation oracle, we can use
Remark 2 to find the most violated inequality among these 128 inequalities efficiently in linear time. O

We conclude this section with a remark on the practical implementation of the proposed EC&R inequalities. While
there is an efficient separation algorithm to find a separating EC&R inequality among those created from a given
EC&R assignment as noted in Remark 2, the choice of the class of an EC&R assignment and its possible forest structure
in the underlying network can lead to a large pool of candidates to consider during a branch-and-cut approach. Note
that each EC&R inequality is obtained through an aggregation of the constraints of S with proper weights. In particu-
lar, given an EC&R assignment [Z1,...,Z LT, TJ] for class-1*, we aggregate the base inequality of the form
fi(x,y,z) > 0 with constraints of the general form h(y)g(x) > 0, where h(y) represents the aggregation weight that could
bey;jorl—3)y;, and where g(x) > 0 denotes a linear network flow constraint that could be the flow-balance or vari-
able bound constraints. In most branch-and-cut approaches, the starting relaxation of the problem contains all linear
side constraints on x and y. It follows that an optimal solution (¥;; z) of such relaxation that is to be separated satisfies
h(y)g(x) = 0 for all valid choices of function h(y) and constraint g(x) > 0. Therefore, for the resulting aggregated
inequality to be violated at a point (¥;i;z), we must have the base inequality violated at that point, that is,
filx,,z) < 0. This observation can be used to select the class and sign of the EC&R assignment to be generated during
a separation process. To this end, we may sort the residual values defined by W = |y]x1 — Zi| for all (i, j, k) such that
Ak =1, and choose class k as that associated with largest W with the class sign +if §,X; — Zx < 0, and class sign — other-
w1se This perspective can shed light on explaining the observation that the EC&R inequalities obtained from fewer
aggregations tend to be more effective in practice as noted in Davarnia et al. [12] and also observed in our experiments
in Section 4. Specifically, the addition of constraints /(y)g(x) > 0 in the aggregation can increase the left-hand-side
value in the aggregated inequality when h(i)g(x) > 0, which could reduce the odds of obtaining a violated aggregated
inequality.
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Another observation that can be helpful for choosing the forest structures is considering the relaxation step in the
EC&R procedure. As described therein, each remaining bilinear term y;x; can be relaxed using either the bound con-
straints or the bilinear constraints. The former case is equivalent to aggregating the inequality with a constraint of the
form h(y)g(x) > 0 where h(y) = y; and g(x) € {x; > 0,u; — x; > 0}, for which the previous argument holds about achiev-
ing a violation. For the latter case, on the other hand, we aggregate the inequality with a bilinear constraint of the form
* (yjxi —zx) 2 0 for (i, j, k) such that Ak =1, which can potentially lead to a violation depending on the value of
WYy = |y X; —Zx|. As a result, we might choose forest structures that contain the nodes incident to arcs i € A corre-
spondmg to the most violated values in |j yiXi—zZ Zk|. In our computational experiments presented in Section 4, we use
the above-mentioned approaches in our separahon oracle to select the class of EC&R assignments and their forest
structures, which show promising results.

4. Computational Experiments

In this section, we present preliminary computational results to evaluate the impact of the cutting planes generated
through the results of Section 3 on improving the relaxation gap for two network flow applications that contain bilin-
ear constraints. For these experiments, the codes are written in Python 3.8.8. and the optimization problems are solved
using Gurobi 9.5.2 at its default settings.

4.1. Fixed-Charge Network Flow Problem

We study the bilinear formulation for the fixed-charge network flow problem proposed in Rebennack et al. [26].
Consider a directed bipartite network structure where the nodes in the first partition are supply nodes with supply s;
for i € S, and the nodes in the second partition are demand nodes with demand d; for j € D. For each arc (i, j), let x;
represent its flow and u;; denote its capacity. We assume that the cost of sending one unit flow through arc (i, j) is 0
when x;;=0, and it is ¢; ; + t;x; when 0 < x; < u; for some constant ¢;>0 and slope ;> 0. In Rebennack etal. [26], a
piecewise concave underestimator of this cost function is considered, which calculates the cost as c;; + xU when 0 <
xij < €; for some 0 < €; < uy, and ¢;; + t;x; when €; < x;; < u;;. Through introducing a binary Varlable v €{0,1}
that indicates the line segment in the piecewise function above, Rebennack et al. [26] proposes the following bilinear
formulation for the corresponding fixed-charge problem.

ty
min Z Z ( (C’J )Xz] + tijyij — G—;Zj]) (11)

ieS jeD
> xy <, VieS (12)
jeD
> xizd, VieD (13)
i€S
xi]'yi]’ = Zij/ Vie S,] eD (14)
2D yish (15)
ieS jeD
0 < x5 < uy, VieS,jeD (16)
v €{0,1}, vieS,jeD (17)

where the objective function computes the total cost of transportation. Constraints (12) and (13) represent the flow-
balance equations for the supply and demand nodes, respectively. Constraint (14) defines the bilinear terms in the
objective function. Further, Constraint (15) imposes a budget requirement on the y variables. The base relaxation for
this problem, which we refer to as the McCormick relaxation, is obtained by replacing Constraints (14) with their McCor-
mick relaxations and relaxing y variables to be continuous. For each variable y;;, the structure of the corresponding
relaxation (12), (13), (14), (16) conforms to that of S with m=1. Therefore, our goal is to assess the effectiveness of the
EC&R inequalities associated with the tree structures in the above network using the results of Section 3.1.

For our computational experiments, we generate 10 random instances for each size category based on the following
data specifications. We consider four different size categories by choosing the number of nodes in the complete bipar-
tite network from {50, 100} and by selecting the fraction value ;. 21 for arcs (i, j) that have fixed-charge structure (which
determines the position of the break point in the piecewise linear cost function) from {0.2,05}. The number of y vari-
ables is equal to 20% of the total number of arcs, where each such variable is associated with a randomly selected arc.
Supply and demand parameters are chosen from a discrete uniform distribution between (20, 50). The arc capacity is
produced from a discrete uniform distribution between (1, 50), and the budget b is set at 20% of the total number of y
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variables. The slope t for each cost function is randomly generated from a discrete uniform distribution between (50,
100). If an arc (i, j) follows the fixed-charge structure, the value of ¢;; is selected from a uniform distribution between (1,
5). Otherwise, this value is generated from a uniform distribution between (10, 20).

Table 1 shows the results of adding the EC&R cutting planes for the single-variable relaxations of (12)~(17) as
described above. The first column contains the network size (the number of nodes), the second column shows the frac-
tion =L of arcs (i, j) that have fixed-charge structure (which determines the position of the break point in the piecewise
linear cost function), and the third column indicates the instance number. The fourth column shows the optimal value
of the McCormick relaxation of (11)—~(17). The fifth and sixth columns, respectively, represent the optimal value and
the solution time (in seconds) of (11)~(17) obtained by the Gurobi solver at its default setting. If an optimal solution is
not found within the time limit of 1,000 seconds, the best solution found at termination is reported, which is indicated
by “>1,000” in the “Time” column. The percentage of the gap improvement obtained by the Gurobi solver at the root
node (compared with the McCormick relaxation), before the start of branch-and-bound, is given in the seventh col-
umn. The next two columns under “Full EC&R” contain the result of adding all violated EC&R inequalities obtained

Table 1. Evaluating EC&R cutting planes for the fixed-charge network flow problem.

Solver Tree EC&R RLT
Node # Frac. # Lp Opt. Time Root Full Time Sep. Time Full Time
50 0.2 1 4,437.82 5,322.36 735.83 0.58 0.72 94.42 0.66 2.19 0.72 859.62
2 3,815.63 4,617.38 128.63 0.69 0.82 90.74 0.8 2.58 0.83 1,878.66
3 4,769.89 5,654.0 92.98 0.57 0.77 91.15 0.72 2.44 0.77 824.01
4 5,361.71 5,935.23 378.29 0.44 0.69 93.58 0.69 2.54 0.69 1,913.67
5 4,424.93 5,446.63 >1,000 0.65 0.76 104.65 0.73 2.66 0.77 2,714.41
6 4,508.74 5,302.18 322.14 0.62 0.83 103.06 0.82 3.11 0.83 1,186.32
7 4,693.38 5,590.65 >1,000 0.56 0.73 72.07 0.7 1.97 0.74 2,452.11
8 4,441.68 5,145.72 283.13 0.58 0.74 94.69 0.7 2.45 0.75 1,009.55
9 4,233.48 5,233.15 22.76 0.84 0.93 90.82 0.88 1.81 0.93 1,116.21
10 4,897.29 5,636.04 710.44 0.64 0.77 97.04 0.76 2.58 0.77 838.35
avg 467.42 0.62 0.78 93.22 0.75 2.44 0.78 1,479.29
50 0.5 1 4,735.93 5,347.03 254.85 0.55 0.77 90.53 0.75 2.1 0.78 197.58
2 42744 4,856.78 10.23 0.61 0.87 72.98 0.83 224 0.89 293.13
3 5,026.89 5,610.48 7.87 0.75 0.86 7124 0.84 1.93 0.88 199.79
4 4,630.15 5,246.89 98.49 0.65 0.85 67.95 0.82 2.45 0.86 198.27
5 4,036.38 4,669.68 106.82 0.71 0.85 91.06 0.81 19 0.87 236.8
6 4,474.54 5,151.84 198.48 0.59 0.81 87.82 0.75 1.72 0.83 211.01
7 5176.22 5,646.79 80.32 0.63 0.82 67.16 0.8 2.41 0.83 316.09
8 5,084.2 5,721.84 >1,000 0.54 0.79 67.33 0.77 2.53 0.8 254.97
9 4,523.52 5,088.3 105.66 0.63 0.79 87.54 0.77 2.64 0.8 241.79
10 4,735.93 5,347.03 254.85 0.55 0.77 90.53 0.75 2.1 0.78 197.58
avg 186.7 0.63 0.83 79.6 0.8 2.26 0.84 238.89
100 0.2 1 7,088.91 9,213.18 >1,000 0.36 0.51 1,162.19 0.46 8.4 — >5,000
2 7,146.18 8,960.31 >1,000 0.48 0.63 1,142.41 0.57 8.74 — >5,000
3 7,248.75 9,040.84 >1,000 0.34 0.47 882.9 0.42 9.28 — >5,000
4 7,692.17 9,836.81 >1,000 0.3 0.43 902.66 0.39 8.51 — >5,000
5 6,802.61 8,709.36 >1,000 0.4 0.55 1,144.94 0.48 8.57 — >5,000
6 6,950.35 8,862.86 >1,000 0.47 0.61 1,272.74 0.57 8.58 — >5,000
7 7,052.04 8,963.63 >1,000 0.43 0.59 1,151.14 0.52 8.37 — >5,000
8 7,018.5 8,894.89 >1,000 0.49 0.62 1,169.81 0.57 10.64 — >5,000
9 6,732.16 8,723.6 >1,000 041 0.53 1,132.3 0.48 8.49 — >5,000
10 7,088.91 9,213.18 >1,000 0.36 0.51 1,162.19 0.46 8.4 — >5,000
avg >1,000 0.41 0.55 1,111.73 0.49 8.87 >5,000
100 0.5 1 7,277.28 8,572.76 >1,000 0.6 0.78 1,537.78 0.7 8.52 — >5,000
2 6,991.21 8,398.58 >1,000 0.63 0.75 1,388.98 0.68 8.1 — >5,000
3 7,486.13 8,604.12 >1,000 0.52 0.72 1,331.14 0.63 7.76 — >5,000
4 6,768.0 8,145.13 >1,000 0.52 0.7 1,370.79 0.61 7.93 — >5,000
5 7,018.42 8,413.21 >1,000 0.58 0.73 1,439.65 0.67 8.33 — >5,000
6 7,139.52 8,558.94 >1,000 0.51 0.67 1,470.46 0.6 7.89 — >5,000
7 7,362.48 8,822.47 >1,000 0.51 0.65 1,519.48 0.58 8.3 — >5,000
8 7,232.95 8,613.9 >1,000 0.6 0.76 1,493.97 0.72 10.38 — >5,000
9 6,881.73 8,112.89 >1,000 0.59 0.77 1,510.83 0.72 10.47 — >5,000
10 7,277.28 8,572.76 >1,000 0.6 0.78 1,537.78 0.7 8.52 — >5,000

avg >1,000 0.57 0.73 1,445.3 0.66 8.89 >5,000
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from tree structures according to Theorem 2 with up to two cancellations (i.e., three aggregations). These cuts are
added in loops after the LP relaxation is solved to separate the current optimal solution until the improvement in the
optimal value is less than 1%. To find the most violated EC&R inequalities produced from an EC&R assignment, we
use the technique in Remark 2. The column “Gap” contains the gap improvement obtained by adding these EC&R
inequalities compared with the optimal value of the McCormick relaxation reported in column 6. The next column
shows the total solution time to add these inequalities. The column “Gap” under “Separation EC&R” includes the
result of adding the above EC&R inequalities through a separation oracle according to that discussed in Section 3. In
particular, for a current optimal solution (¥; /; z), we consider the EC&R assignment class and sign associated with the
35 largest values for Wy = [X;7,; — Z;| for all (i, j). We add the resulting EC&R inequalities in loops as discussed above.
The next column shows the solution time when using this separation method. The last two columns under “RLT” con-
tain the results of using the reformulation-linearization technique (RLT) of level 1 (Sherali and Adams [29], Sherali et al.
[31]). Specifically, the column “Full RLT” shows the gap closure achieved by augmenting the McCormick relaxation
with the linearized constraints as a result of multiplying each constraint of the formulation with y; and (1 — y;;) for all
i€ Sandj € D. The next two columns show the gap improvement obtained by this method compared with the McCor-
mick relaxation, and the solution time for this approach. The symbol “-” indicates that the model has not been solved
to optimality within the time limit of 5,000 seconds. The last row for each problem size reports the average values over
the 10 random instances.

The results in Table 1 indicate the effectiveness of the EC&R approach in five areas. First, the gap improvement values
show the effectiveness of the proposed EC&R inequalities based on the tree structures in improving the gap closure and
strengthening the classical McCormick relaxation. Second, the gap improvement obtained through addition of the EC&R
inequalities exceeds that obtained by the Gurobi solver at the root node. Third, these results also imply that the EC&R
approach is more effective in improving the dual bounds compared with the RLT application; the EC&R cuts provide
similar gap improvement values in a much smaller time. Fourth, they support the general observation for aggregation-
based methods, such as the EC&R, that the inequalities obtained from fewer aggregations (up to three in these experi-
ments) tend to be the most impactful, as they account for a considerable portion of the total gap closure for most instances.
This is evident from comparing the improvement achieved by the EC&R cuts with that of the RLT, which provides an
upper bound for the possible gap improvement that can be obtained from single-variable disjunctive programming (Balas
[2]) relaxations of the problem. Fifth, these experiments demonstrate the effectiveness of the proposed separation method,
which achieves similar gap improvement values in much smaller time compared with the case without separation. These
observations show promise for an efficient implementation of the EC&R technique to solve practical problems.

4.2. Transportation Problem with Conflicts

In this section, we study a generalization of the Red-Blue Transportation Problem—which is a class of the Transporta-
tion Problem with Conflicts—presented in Vancroonenburg et al. [34]. In particular, we consider a balanced set of sup-
ply and demand nodes that are arranged in a bipartite network structure, where there is a route (arc) between each
supply node to each demand node. Each supply node i € S has a supply s;, and each demand node j € D has a demand
d;. For each arc (i, j), we refer to the flow sent through that arc as x;; and to the capacity of that arc as u;. The default cost
of transportation using arc (i, j) is c;. In addition to the regular transportation means, there are multiple transportation
services that could be used to facilitate the transfer of goods via different routes. Binary variable v represents whether
service k € K is used. The relative incentive/cost of using service k € K for each arc (i, ) is denoted by 7. In the Red-
Blue Transportation Problem, due to certain logistic conflicts, some pairs of services could not be used simultaneously,
that is, yy; = 0 for each pair of services k and [ that are in the conflict set C. This problem can be formulated as

min Z Z (c,jxl-j + Z rZzi;) (18)

i€S jeD keK

> xj <, VieS (19)

jeD

> xizd, VjeD (20)

ieS

XYk =25, VieS,jeDkeK (21)

vty <1, V(kI)eC (22

0 <y < uy, VieS,jeD (23)
)

}/ke{ozl}/ Vke K (24
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where the objective function calculates the total cost of transportation. Constraints (19) and (20) represent the flow-
balance equations for the supply and demand nodes, respectively. Constraint (21) defines the bilinear terms in the
objective function that capture the incentive collected through using different transportation services. The conflicts
between the pair of transportation services in C are imposed by Constraint (22). The base relaxation for this problem,
which we refer to as the McCormick relaxation, is obtained by replacing Constraints (21) with their McCormick relaxa-
tions and relaxing y variables to be continuous.

For our experiments, we generate random generated instances with the following specifications. We consider four
size categories by choosing the number of nodes in the complete bipartite network from {50, 100}, and selecting the
number of transportation services from {20, 30}. Supply and demand parameters are generated from a discrete uni-
form distribution between (100, 200), and the arc capacities are generated from a discrete uniform distribution between
(1, 25). The number of conflicts is set at 10% of all possible pairwise conflicts between the transportation services. The
cost ¢;; for each arc (i, j) is chosen randomly from a uniform distribution between (20, 40) multiplied by the number of

Table 2. Evaluating EC&R cutting planes for the transportation problem with conflicts.

Solver EC&R RLT
Tree Tree Forest  Forest
Node # |K| # LP Opt. Time  Root Full  Time Full Time Sep.  Time  Full Time
50 20 1 1,816,461.35 1,845,306.7 5871 0.14 024 106.05  0.54 424.88 0.5 4255 0.63 41.39
2 1911,383.7  1,932,617.96 61.13 013 0.3 92.53 0.6 407.09  0.56 482  0.68 44.42
3 1,791,541.33 1,815,825.43 6651 0.03 027 107.84  0.56 449.59 0.53 50.07 0.62 37.26
4 1916,558.28 1,938,151.82 5396 0.12 0.25 102.08  0.53 60555 0.5 46.53 0.7 37.42
5 1,88397393 1,907,566.87  102.68 0.13 0.25 10591  0.54 443.17  0.52 43.61 0.65 36.89
6 1,754,821.67 1,779,059.14 4584 0.06 0.29 104.15 0.6 555.97 0.56 43.03 0.67 39.77
7 1,859,891.92 1,882,935.97 6143 0.07 033 90.97  0.62 609.47 0.58 4493 0.7 37.78
8 1,878,222.67 1,907,158.85 71.31 0.04 0.24 102.66  0.54 423.88 0.51 4437 0.56 32.62
9 1,888,464.09 1,917,359.49 10442 013 027 110.78  0.54 633.7  0.51 4951 0.63 34.44
10 1,828942.4  1,853,959.15 81.38 0.13 031 104.1 0.56 42772 0.52 47.27  0.67 34.09
avg 7074 01 028 102.71  0.56 498.1  0.53 46.01 0.65 37.61
50 30 1 273513047 2,769,326.44 41631 0.18 0.29 17318  0.57 1,382.33 0.56 87.34 0.69 107.66
2 2,758,928.32 2,797,673.91 219.19 019 0.24 139.81  0.55 854.01 0.52 76.51 0.67 98.79
3 2,790,718.79  2,830,074.49 152.08 0.16  0.22 141.19  0.56 1,179.99 0.52 76.41 0.65 98.27
4 2948,401.96 2,977,573.06 7543 022 037 148.31  0.69 1,215.35 0.66 7541 0.85 117.27
5 2,848,728.26  2,884,380.56 189.93 0.16  0.27 153.52 058 1,0103  0.55 74.65 0.7 93.62
6 291390434 296052037 51074 024 02 177.89  0.53 1,067.57 0.51 9251 0.63 98.26
7 260059236 2,643,997.19 36713 0.16 0.26 184.94 057 1,055.12  0.55 83.96 0.63 113.51
8 2,798975.64 2,841,262.04 32484 02 0.25 176.37  0.53 1,467.63 0.49 84.44 0.7 105.82
9 2909,192.25 2,948,513.71 219.4 0.2 0.28 187.26  0.59 950.87  0.56 93.77 0.72 106.4
10 2,611,547.24 2,656,632.4 936.96 0.16 0.23 150.52  0.54 8784 052 82.67 0.62 91.72
avg 341.2 019 0.26 163.3 0.57 1,106.15 0.54 82.77 0.69 103.13
100 20 1 3,160,875.04 3,261,52549 290152 0.11 0.14 983.68  0.44 3,932.78 042 40997 041 1,296.16
2 3322,767.42 3,41834948 138827 0.11 0.15 986.57  0.46 3,821.98 0.44 32839 0.44 1,93597
3 3,264,069.46 3,356,160.8 1,19499 0.13 0.16 1,03229 049 393234 046  359.18 046 1,344.05
4 3301,911.59 3,398,167.09 1,182.85 0.11 0.13 910.19 047 3,275.66  0.45 314.41 041 2,110.84
5 3,334,562.36 3435820.55 2,770.33 0.11 0.14 97461  0.44 3,806.47 042 31875 041 2,052.78
6 3,316,001.88 3,414,631.77 2,088.83 0.09 0.16 960.33  0.46 391227 0.44 32451 041 2,661.02
7 33413414 343843511 1,5519.65 0.03 0.16 1,019.78 05 3,956.82 048 34723 037 1,227.38
8 3,252,602.14 3,351,139.62 2,477.65 0.12 0.14 788.56  0.46 3,174.85 0.43 31343 042 1,082.16
9 3273,121.61 3,369,04593 1,647.25 0.12 0.14 74521 044 3,025.82  0.42 287.02 043 1,201.9
10 3,231,657.29 3,339,983.21 2,644.37 0.03 0.13 791.88 0.4 32424  0.38 333.17 0.33 993.24

avg 1,981.57 0.1 0.15 919.31 045 3,608.14 0.44 333.6 041 1,590.55

100 30 1 4,834,376.78 4,968,183.0 >5,000 019 017 1,866.58 0.55 10,207.78 0.54 1,179.07 051 2,243.39
2 4,803,153.48 4,955,801.77 >5,000 019 012 164288 051 11,944.64 0.49 99429 0.46 2,236.58
3 4995871.11 5,147,567.66 >5,000 0.13 0.14 1,838.84 0.5 11,362.07 0.5 1,091.86 043 2,322.86
4 496124487 514326224 >5,000 017 012 197634 046 12,195.03 044 1,30895 042 2,062.33
5 4,863,00891 5,024,866.15 >5,000 0.17 0.13 1,833.8 049 11,701.45 048 984.07 0.45 2,238.44
6  4,902,278.58 5,060,62513 >5000 0.17 013 1,498.19 049 8,708.22 049 1,099.36 045 1,983.21
7 4,866,69551 5,017,000.38 >5000 0.2 0.14 1,517.02  0.52 8,596.32 0.51 1,331.52 049 1,886.76
8 5,023334.69 5,184,890421 >5000 022 013 143716 0.51 9,807.23 05 1,086.44 048 1,701.46
9 5,043,560.92 5,198,406.71 >5,000 015 0.14 1,420.03 049 898396 048 1,382.81 045 1,784.4
10 4,969,879.76  5,117,213.58 >5,000 0.18 0.14 1,379.89 0.5 8,421.21 049 1,189.98 047 1,911.2

avg >5,000 018 0.14 1,641.07 0.5 10,192.79 049 1,164.84 046 2,037.06
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transportation services for each problem set, and the relative incentive/cost rf; of using service k is randomly chosen
from a uniform distribution between (—10, 10).

Table 2 shows the results of adding the EC&R cutting planes to the McCormick relaxation described above. The first
column contains the network size (the number of nodes), the second column represents the number of available trans-
portation services (i.e., the number of y variables), and the third column indicates the instance number. The values in
the next four columns are defined similarly to those of Table 1. The time limit to solve the MIP reformulation of the
problem by Gurobi is set to 5,000 seconds. If the problem is not solved to optimality within the time limit, its best solu-
tion found at termination is reported, which is indicated by “>5,000" in the “Time” column. The columns under
“EC&R” contain the gap improvement results obtained by adding different types of EC&R inequalities to the McCor-
mick relaxation. In particular, “Tree Full” represents the gap improvement obtained by adding EC&R inequalities
with up to three aggregations (two cancellations) generated from the one-variable relaxations of (19)-(24) where only
one y variable is considered. For this approach, we use the EC&R results of Theorem 2 to identify the tree structures
for each one-variable relaxation and add the resulting cutting planes for each relaxation separately through loops as
previously described in Section 4.1. The next column contains the time to implement these tree inequalities. The col-
umn “Forest EC&R” includes the gap improvement obtained by adding EC&R inequalities with up to three aggrega-
tions obtained for S where two y variables in a conflict are considered in their original simplex. To add EC&R cutting
planes, we consider the forest structures according to Theorem 3. The next column shows the time it takes to use this
approach. The next two columns “Sep.” and “Time” indicate the gap closure and the solution time to implement these
EC&R cutting planes using the separation oracle introduced in Section 3.2, respectively. The values in the columns
with the header “RLT” are defined similarly to those of Table 1.

It is evident from the results of Table 2 that the EC&R cuts obtained from the forest structures that simultaneously
consider multiple y variables significantly outperform those obtained from the tree structures that consider y variables
individually, showing the effectiveness of the introduced class of EC&R inequalities with the pairwise cancellation
property. Further, these results show the remarkable impact of using a separation oracle to produce the EC&R inequal-
ities on reducing the solution time, especially for larger size problems where the gap improvement by the EC&R
inequalities based on forest structures outperform the RLT approach in both the gap improvement and solution time.

5. Conclusion

We study a bipartite bilinear set, where the variables in one partition belong to a network flow model, and the vari-
ables in the other partition belong to a simplex. We design a convexification technique based on the aggregation of
side constraints with appropriate weights, which produces an important class of facet-defining inequalities for the con-
vex hull of the bilinear set, describing the convex hull for the special case where the simplex contains a single variable.
We show that each such inequality can be obtained by considering the constraints corresponding to the nodes of the
underlying network that form a special tree or forest structure. This property leads to an explicit derivation of strong
inequalities through identifying special graphical structures in the network model. These inequalities can be added to
the classical McCormick relaxation to strengthen the relaxation and improve the dual bounds, as corroborated in the
preliminary computational experiments conducted on network problems in different application areas.
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