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ABSTRACT 
The educational data mining community has extensively investi-
gated affect detection in learning platforms, finding associations 
between affective states and a wide range of learning outcomes. 
Based on these insights, several studies have used affect detectors 
to create interventions tailored to respond to when students are 
bored, confused, or frustrated. However, these detector-based inter-
ventions have depended on detecting affect when it occurs and 
therefore inherently respond to affective states after they have be-
gun. This might not always be soon enough to avoid a negative 
experience for the student. In this paper, we aim to predict students' 
affective states in advance. Within our approach, we attempt to de-
termine the maximum prediction window where detector 
performance remains sufficiently high, documenting the decay in 
performance when this prediction horizon is increased. Our results 
indicate that it is possible to predict confusion, frustration, and 
boredom in advance with performance over chance for prediction 
horizons of 120, 40, and 50 seconds, respectively. These findings 
open the door to designing more timely interventions. 
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1. INTRODUCTION 
Since its beginnings, the educational data mining community has 
been studying the affective states that emerge during learning ex-
periences mediated by digital platforms, attempting to identify, 
measure, analyze, and appropriately respond to them [16]. Previous 
research has demonstrated that affective states within digital learn-
ing platforms, such as intelligent tutoring systems and educational 
video games, are correlated with a variety of other important con-
structs, including self-efficacy [20], analytical reasoning [12], 
learning outcomes [4, 19, 24, 29], and college enrollment [32]. His-
torically, engaged concentration (flow) correlates positively with 
learning outcomes, while confusion and frustration have shown 
mixed and complex associations with these outcomes. In contrast, 
boredom has consistently shown a negative impact on learning (see 
review in [16]). 
These insights have led to the use of affect detection in the design 
of customized interventions aimed at enhancing student 

engagement and minimizing the experience of affective states like 
confusion, frustration, and boredom [9, 10, 17, 23]. The core prem-
ise of all these research works is that recognizing and addressing 
students’ affective states enhances their interaction with learning 
environments, making these interactions more engaging and effec-
tive [16]. However, existing research primarily targets the 
identification of affective states at the point when students are al-
ready experiencing it, potentially too late to prevent negative 
impacts. 
The challenge of timely intervention is further complicated by the 
current reliance on methods to establish the ground truth for train-
ing these models which do not identify the exact moment when 
these affective states start (e.g. [2, 15]). Therefore, current detectors 
are dependent on training labels that might only identify an affec-
tive state after it has been occurring for some time, causing even 
more delayed detection and intervention. Additionally, both detec-
tion and intervention do not occur instantaneously, delaying the 
entire process even more. 
Knowing these limitations of current affect detectors, we propose 
to reframe this task as a prediction of future affect. Early prediction 
of frustration or boredom enhances the probability of sustaining or 
quickly restoring a positive affective state rather than trying to re-
verse negative affect once it has already emerged. Based on this 
motivation, in this paper, we use machine learning techniques to 
predict affective states in advance within the ASSISTments learn-
ing platform. Specifically, we explore various time horizons for 
forecasting engaged concentration, confusion, frustration, and 
boredom, determining the maximum prediction window where per-
formance remains sufficiently high. Additionally, we compare the 
prediction windows with the half-life of these affective states ob-
served in previous research to assess the feasibility of interventions 
that can make proactive interventions rather than react.  

2. RELATED WORK 
2.1 Affect Detection and Learning Outcomes 
There has been considerable work to use machine learning models 
to detect affective states [1, 5, 15, 31] and explore how these affec-
tive states are associated with different learning and educational 
outcomes [18, 24, 32]. These findings, as in research conducted 
with other methods (see review in [16]), have found relationships 
between affect and learning, with many replicating across learning 
environments. For example, Pardos et al. [24] used affect detectors 
within the ASSISTments platform to investigate the association be-
tween detected affect and state test scores. Their results indicated 
that both engaged concentration and frustration were positively cor-
related with learning outcomes, whereas confusion and boredom 
had a negative association with this outcome. Using data from the 
same platform, San Pedro et al. [32] used affect detectors to predict 
future college enrollment. They found that engaged concentration 
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positively predicts college attendance, while those students for 
whom the detectors identified higher levels of boredom or confu-
sion were also less likely to enroll in college. Within another 
platform, Reasoning Mind, Kostyuk and colleagues [18] found that 
detected boredom and confusion were negatively associated with 
learning, whereas engaged concentration was positively associated 
with learning. However, these results are complicated somewhat by 
results such as [19], which found that the duration of confusion or 
frustration (detected in Cognitive Tutor Algebra) also matters for 
learning outcomes. 

2.2 Detector-Based Interventions 
Given that it is possible to detect affect, and affect is associated 
with learning, there has been considerable research focusing on us-
ing detectors to drive interventions that influence student affect. For 
instance, Padron-Rivera et al. [23] implemented a system to offer 
hints upon detecting students’ confusion or frustration, arguing that 

such interventions could facilitate a return to engaged concentration 
while preventing boredom (in line with the affective state dynamics 
model in [11]). Additionally, they integrated congratulatory mes-
sages after correct answers to sustain student engagement. 
However, their work was not able to impact student affect.  
D’Mello and Graesser [10] conducted a study comparing an affect-
sensitive version of an intelligent tutoring system with a non-affec-
tive version. The affect-sensitive version was designed to recognize 
and respond to students’ affective states, specifically boredom, con-

fusion, and frustration, through pre-programmed emotional 
responses. Their system was successful at improving learning out-
comes, but more for students with lower domain knowledge. In a 
third study along these lines, DeFalco et al. [9] detected student 
frustration, giving learners three different types of motivational 
messages designed around control-value theory, social identity, and 
self-efficacy. They found that giving frustrated students motiva-
tional messages focused on self-efficacy led to higher learning 
outcomes compared to a control group who did not receive mes-
sages. However, the intervention’s success did not replicate in a 

subsequent learning environment designed to be less frustrating, 
suggesting that the impact of these messages may vary depending 
on the affective context of the learning environment. 
Overall, automated interventions based on affect detection have 
shown promise but have not fully demonstrated that potential. One 
possible reason is that these systems may be intervening too late. If 
a student is already experiencing a negative emotion, it could be 
less likely for them to return to a more positive affect. Once a stu-
dent is already frustrated or bored, that negative affect may be 
difficult to disrupt. By contrast, if an intervention is applied in an 
earlier stage when students are at risk of becoming frustrated or 
bored but have not yet done so (or who are just beginning to expe-
rience shifts), the chances of maintaining or returning quickly to 
positive affect are higher. Consequently, the primary objective of 
this research is to determine how much sooner affective states can 
be accurately predicted, so that interventions can be proactive about 
negative emotion rather than reactive to it. 

2.3 Advanced Forecasting of Affect 
To the best of our awareness, there has not yet been research on the 
advanced forecasting of affect in education, but efforts along these 
lines have been conducted in other domains. For example, both 
neural networks and random forest have been successfully used to 
forecast a speaker’s future affect a few seconds later, from their 

current and past speech and image data [21, 33]. In addition, re-
searchers have successfully predicted future stress levels from 

current and recent multimodal data [34, 35]. Though these efforts 
have involved very different data than digital learning platforms, 
they increase confidence that this challenge is feasible. 

3. METHODS 
3.1 Dataset 
ASSISTments is a learning platform designed to enable teachers to 
assign content, offer automated feedback and support for student 
responses, and generate comprehensive reports on student perfor-
mance. For this study, 9 middle-school mathematics teachers who 
frequently used ASSISTments [14] were recruited between 2021 
and 2023, to assign problems using the platform and collect affec-
tive data from their students. A total of 312 middle-school students 
from the 9 teachers participated in the study, where they solved 
mathematics problems using the ASSISTments platform and re-
ported their affective states. To support the replicability of our 
results and further experiments, the full data set and code used in 
this research can be found at https://osf.io/spg6v/.  
To facilitate the collection of affective data, a self-reporting infra-
structure was integrated into the ASSISTments platform, as shown 
in Figure 1. This infrastructure was designed to be minimally dis-
ruptive, ensuring that the primary focus of students remained on 
their mathematics learning. Upon the completion of a problem 
within their assigned mathematics assignment, students were 
prompted to report their affective state. The self-reports were de-
signed based on past self-report approaches for affect [27] and 
iteratively designed with members of the target population. For this 
study, we focused on engaged concentration, confusion, boredom, 
and frustration, which are the most commonly studied affective 
states in online learning environments (see reviews in [2, 16]). The 
order of each affective state was randomized in the survey each 
time it was presented to the students. Students were randomly asked 
to report their affective states, either once or twice, for each assign-
ment they completed. This decision was governed by a probabilistic 
algorithm, where there was a 10% chance of picking two problems 
from an assignment for affective reporting and a 90% chance of 
picking only one problem. The students were instructed to report 
their affective states immediately after completing the selected 
problem(s), thereby ensuring the timeliness and relevance of the 
affective data. We limited how often students were asked about 
their affective states to avoid fatigue, minimize potential disrup-
tions to their learning experience, and avoid inadvertently inducing 
disinterest and boredom. 

Figure 1. Self-Report survey within an assignment in the AS-
SISTments platform, asking students to report their affective 
state when working on an assignment. 



This dataset collected using the ASSISTments infrastructure in-
cludes information about students’ correct and incorrect answers, 
hint requests, and self-reported affective states. On average, each 
student solved 1.81 assignments (SD = 1.21), submitted 14.2 re-
sponses (SD = 10.5), requested hints 2.84 times (SD = 2.2), and 
self-reported their affective state 1.75 times (SD = 1.25).  
The distribution of these reported affective states is detailed in Ta-
ble 1. The most common affective state reported was None (29.0%), 
followed by engaged concentration (27.8%). Frustration was the 
least reported state, noted by only 8.3% of the reports. These pro-
portions are similar to those observed in previous studies when 
students categorized their own affective states. For instance, Baker 
et al. [3] reported that students most frequently identified as feeling 
Neutral (29%) and Engaged Concentrated (20%) when they as-
sessed their own affective states every 20 seconds while watching 
recordings of themselves using AutoTutor (a computerized tutor 
that mimics human tutors and converses with students in natural 
language, as described by [13]). In that study, students categorized 
Frustration, Confusion, and Boredom at rates of 11%, 18%, and 
16%, respectively, which aligns to the distribution observed in our 
study. 
Table 1. Distributions of affective states. 

Affective State # Samples % 
Eng. Concentration 151 27.8 

Confusion 90 16.5 
Frustration 46 8.3 
Boredom 99 18.2 

None 158 29.0 
Total 544 100 

 

Past studies where affect was identified by trained experts had a 
very different distribution of affective states than the student self-
reports we observed. Generally, Engaged Concentration is the pre-
dominant affective state noted by trained human observers, 
exceeding 60% in multiple studies across various learning plat-
forms, including ASSISTments [1, 3, 22, 24]. This difference in 
proportions between researcher-categorized affect and student self-
reports has been found even within the exact same sample of stu-
dents. For instance, [38] reported that substantially fewer positive 
emotions (concentration, focus, delight, and happiness) were ob-
served by trained experts compared to self-reports collected 
simultaneously. Though experts disagree with self-report, it is un-
clear which method is more accurate, given the limitations of each 
approach (systematic error and bias for observers; demand, self-
presentation, and lack of meta-awareness for self-report; see dis-
cussions in [26, 27]). 

3.2 Prediction in Advance 
The dataset was segmented into 5-second clips. This approach was 
adopted instead of the more commonly used 20-second segmenta-
tion to increase the granularity of the analysis. For each clip, we 
crafted 58 features, capturing diverse aspects of student interaction 
with the educational software. These aspects include the correct-
ness of responses, the frequency of answers, hints requested, the 
time elapsed since the last action, and others. These features were 
tailored to reflect both general and skill-specific student interac-
tions. Although the core clip is defined as 5 seconds, when 

predicting the label (typically from before the clip, since we are 
predicting in advance), the set of features also included data aggre-
gated over the prior 20 seconds, 1 minute, and 3 minutes, and 
during the prior 3, 5, and 8 actions within the current study session. 
These features are inspired by similar features employed in previ-
ous studies that trained affect detectors using ASSISTments data 
[24, 36]. When aggregating data on the last 3, 5, or 8 actions, we 
do not consider actions of previous learning sessions that ended 
more than one hour earlier, because these older actions are fairly 
unlikely to influence the student's current affective state. Addition-
ally, if the student has not performed any actions recently, it 
becomes impossible to calculate certain features, or they default to 
values of 0. Therefore, we filtered out periods of inactivity exceed-
ing one hour. 

In a model capable of predicting an affective state N minute in ad-
vance, the features must correspond to actions that occurred more 
than N minutes prior to the affective self-report of the students. For 
this reason, all affective states reported during the first N minutes 
after the first action of a studying session cannot be used for train-
ing and testing the models. This constraint, while necessary, does 
distort the sample somewhat, for students who solve a few or only 
one question in each studying session because those affective states 
will not be matched with a set of previous actions before the corre-
sponding prediction horizon, reducing the number of samples 
available for developing the machine learning models. 
Figure 2 presents the number of self-reports for each affective state 
with enough data (at least one action before the corresponding time 
horizon of N seconds within the same study session) for developing 
prediction models for each horizon ranging from 0 to 5 minutes in 
10-second increments. As this time horizon increases, the number 
of samples with sufficient data to train and test a predictive model 
decreases. Based on the data available for each time horizon, we 
only considered horizons between 0 and 3 minutes in advance. This 
selection aimed to keep an adequate number of samples for training 
and testing the detectors while also establishing a sufficiently wide 
range of prediction horizons to investigate whether there is a de-
cline in prediction performance as this horizon widens. 

 
Figure 2. Number of samples for each affective state and each 
time horizon. 

In Table 2, we present the distribution of samples that have suffi-
cient prior data for a 3-minute temporal horizon to be possible. 
From the initial pool of 544 samples, only 265 (48.7%) met the cri-
teria for the selected horizon. The distribution of affect in this 
reduced data set closely resembles the original dataset. Although 
more data is available for prediction horizons shorter than 3 
minutes, we used this selected set of 265 samples for training and 



validating all models across all the temporal horizons considered in 
this study (from 0 to 180 seconds in 10-second increments). This 
methodological choice allows us to attribute any observed changes 
in model performance specifically to the extension of the prediction 
horizon rather than to the influence of sample size variation or dif-
ferences in affect at different times within the session. 

Considering the dataset’s relatively small size, we employ Logistic 

Regression (LR) and decision tree-based methods like Random 
Forests (RF) and Extreme Gradient Boosting (XGB) with the de-
fault parameter settings [8, 25]. For each affective state, separate 
binary classifiers were trained, as in [1, 24]. To validate these mod-
els, we applied a 4-fold stratified student-level cross-validation, 
selecting 4 folds to keep test sets large despite the small sample 
size. To enhance the robustness of our estimation, we repeated this 
process with 10 unique random seeds, thereby generating 40 unique 
combinations of training and testing sets. We assessed model per-
formance using the Area under the Receiver Operating 
Characteristic Curve (AUC ROC), providing a comprehensive 
evaluation across various thresholds. This is particularly useful for 
evaluating the model's applicability in diverse interventions with 
varying cost-benefit trade-offs. The mean and standard deviation of 
the AUC were calculated across these 40 validation sets. Addition-
ally, we examined the confusion matrix to identify and understand 
each detector's misclassification patterns. We evaluated the mean 
decrease impurity (MDI; [7]) feature importance of each model to 
understand how the most important features varied across different 
prediction horizons. This feature importance metric was chosen due 
to its straightforward computation, which relies on the division of 
decision trees, while reducing the risk of hiding important features 
that do not have a uniform association (either positive or negative) 
with the outcome and that are dependent on interactions with other 
features [7]. 

Table 2. Affect distributions for samples with enough data for 
training prediction models with a time horizon of at least 3 
minutes. 

Affective State # Samples % 
Eng. Concentration 74 27.9 

Confusion 42 15.8 
Frustration 32 12.1 
Boredom 39 14.7 

None 78 29.4 
Total 265 100 

 

4. RESULTS 
4.1 Affect Detection 
Table 3 presents the baseline performance of affect detectors, oper-
ating with a zero-second time horizon (i.e. the actual clip time), 
using Random Forest (RF), XGBoost (XGB), and Logistic Regres-
sion (LR) models. The results indicate that frustration is the best 
predicted affective state using the decision tree-based models (RF 
and XGB), with the XGB model achieving the highest performance 
(AUC=0.727). Confusion and boredom are also effectively de-
tected by the ML models, showing an AUC of 0.671 for confusion 
and 0.638 for boredom using RF and XGB, respectively. In con-
trast, the models could not accurately detect engaged concentration 
in this data set, showing an AUC of 0.503 (chance level). 

Table 4 presents the confusion matrix for the detectors. Columns 
represent the real affective states reported by the students, while 
rows indicate the number of instances where the corresponding de-
tector identifies each affective state. We set the classification 
threshold at 0.3, as the detectors’ outputs tended to be below the 
conventional 0.5 threshold. Table 4 also includes, in parentheses, 
the percentage of each actual affective state that was identified by 
the detectors as the ground truth affect in that column (whether cor-
rectly or incorrectly). For example, the confusion matrix reveals 
that the Engaged Concentration detector incorrectly identifies 
49.5% of actual Boredom instances and 45.9% of None instances 
as Concentration, both higher percentages than its correct identifi-
cation of actual Engaged Concentration instances (36.7%). This 
suggests that the Engaged Concentration detector’s performance is 
compromised by misidentifying Boredom and None instances. One 
possible interpretation is that the None category may include some 
cases which would have been categorized as Engaged Concentra-
tion by experts, and that students do not fully understand the 
distinction between these affective states (and therefore are actually 
incorrectly categorizing their own affect). Similarly, the Boredom 
detector also misclassifies 10.5% of None instances and 8.2% of 
Engaged Concentration instances as Boredom. 

Table 3. Detection of current affective state. 4-fold student-level 
cross-validation AUC of affect detectors employing different 
ML techniques. Best performing models for each affective state 
are shown in bold. Standard deviation of performance metrics 
across the 4 folds are shown in parenthesis. 

Affective 
State RF XGB LR 

Eng. Con 0.503 (0.070) 0.483 (0.068) 0.439 (0.072) 
Conf 0.671 (0.065) 0.668 (0.079) 0.597 (0.074) 
Fru 0.688 (0.095) 0.727 (0.087) 0.556 (0.115) 
Bor 0.627 (0.085) 0.638 (0.082) 0.570 (0.075) 

 
Table 4. Confusion Matrix of Detections. Columns correspond 
to self-reported affect and rows correspond to detector outputs. 
In parentheses, the percentage of each actual affective state that 
was identified by the detectors as the ground truth affect in that 
column (whether correctly or incorrectly).  

Detector Eng. Con Conf Fru Bor None 
Eng. Con 27.2 

(36.7) 
11.1 

(26.4) 
10.2 

(31.9) 
19.3 

(49.5) 
35.8 

(45.9) 
Conf 7.2 

(9.7) 
10.1 

(24.4) 
8.4 

(26.3) 
2.5 

(6.4) 
6.1 

(7.1) 
Fru 3.1 

(4.2) 
4.2 

(10.0) 
6.6 

(20.6) 
0.4 

(1.0) 
3.4 

(4.4) 
Bor 6.1 

(8.2) 
2.5 

(6.0) 
1.7 

(5.3) 
8.4 

(21.5) 
8.2 

(10.5) 
 
The confusion and frustration detectors successfully identified En-
gaged Concentration, Boredom, and None as neither frustration nor 
confusion. None of these three affective states is misidentified by 
the confusion or frustration detectors at a rate higher than 10%. 
However, the confusion detector identifies 24.4% of confusion and 
26.3% of frustration instances as confusion. Similarly, but at a 
lesser level, the frustration detector identifies 20.6% of the frustra-
tion instances and 10% of confusion instances as frustration. These 
results suggest that some students might be having trouble distin-
guishing between these two affective states or that both share 



similar patterns that make them be identified together. Indeed, 
some recent work has argued that these two affective states should 
be lumped together during detection [28]. 

4.2 Affect Prediction in Advance 
Figures 3 through 5 present the performance of predictive models 
for each affective state with different time horizons ranging be-
tween 0 to 3 minutes with 10-second increments. In each figure, a 
range representing +1 and -1 standard deviations, as well as the 
chance level performance, are included. For this analysis, we ex-
clude Engaged Concentration because, as shown in Table 3, the 
detection and prediction models for Engaged Concentration do not 
surpass chance-level performance. 

The confusion detectors trained using RF perform above 0.6 AUC 
for temporal horizons within the 1-minute range, as shown in Fig-
ure 3. For all horizons less than 2 minutes, performance was 
consistently more than one standard deviation above chance. In the 
case of frustration detectors (trained using XGB), performance re-
mained at least one standard deviation above chance for prediction 
horizons up to 40 seconds in advance, as shown in Figure 4. In all 
these cases, the models achieved an AUC of over 0.6. The predic-
tive models for Boredom (trained using XGB; see Figure 5) show 
comparable outcomes. In this case, for prediction horizons up to 50 
seconds, all models had an AUC above 0.6, with performance at 
least one standard deviation better than chance. 

 
Figure 3. Confusion prediction with different time horizons us-
ing RF. 

 
Figure 4. Frustration prediction with different time horizons 
using XGB. 

 
Figure 5. Boredom prediction with different time horizons us-
ing XGB. 

4.3 Most Important Features 
We evaluated the most important features for each affect prediction 
considering the horizons of 0 (current affect), 60, and 120 seconds. 
As shown in Table 5, the time spent in the assignment appeared as 
an important feature across all prediction horizons for confusion. 
Errors in the current problem type (i.e. multiple-choice question) 
and time since the last error were important for the predictions of 0 
and 60 seconds but not for 120 seconds. Time since the last correct 
answer and time spent in the last attempt appeared as important fea-
tures for 60 and 120 seconds but not for detecting the current affect. 
In the case of frustration detection, the number of errors in the last 
8 attempts appeared as an important feature across all time hori-
zons. However, in contrast with the results observed for the 
confusion prediction, the detector of current frustration does not 
share any other feature with the 60-second and 120-second predic-
tion models. Finally, the boredom detection and prediction models 
shared 3 of the top 5 most important features (time since requesting 
the last hint, number of errors in multiple-choice questions, and at-
tempts during the last minute). 

5. DISCUSSION AND CONCLUSIONS 
According to our results, confusion, frustration, and boredom can 
be predicted in advance with performance over chance for time ho-
rizons of 120, 40, and 50 seconds, respectively. For each affective 
state, and particularly for confusion and boredom, the most im-
portant features for both prediction (60 and 120 second horizons) 
and detection (0 second horizon) models were similar. This result 
suggests that both models might be capturing a similar signal, just 
varying the timing of the prediction, indicating that the labels are 
likely autocorrelated. This finding reinforces the argument that 
these affective states can be anticipated. However, one limitation to 
our interpretation is that we are uncertain when each affective state 
instance actually began, a difficult thing to be certain of with any 
ground truth method. Thus, it is important to be careful in the inter-
pretation of these results. Nevertheless, it is unlikely that all of our 
predictive success is due to capturing earlier onset of the later af-
fective state. Botelho et al. [6] found that for the ASSISTments 
platform, confusion can persist for 40 seconds to 1 minute, frustra-
tion for 2 minutes, and boredom for even 5 minutes. Comparing 
this with our prediction windows, we see that our 120-second pre-
diction window for confusion exceeds its half-life. This suggests 
that we are likely to be predicting at least some confusion before it 
actually occurs. In contrast, our prediction windows for frustration 
and boredom are shorter than their potential durations. For this  



Table 5. Top 5 most important features for the top-performing prediction model for each affective state for a prediction horizon of 
0 (detection), 60, and 120 seconds. Common features across different time horizons are shown in bold. 

Detector 0 seconds 60 seconds 120 seconds 

Conf 

Time Spent in the Assignment Time Spent in the Assignment Time Spent in the Assignment 

Errors in Current Problem Type Errors in Current Problem Type Time Spent in the Last 8 Attempts 

Time since Last Error Time since Last Error Time Spent in the Last 3 Attempts 

Time in Questions of the Same Skill Time since Last Correct Answer Time since Last Correct Answer 

Errors in Questions of the Same Skill Time Spent in the Last Attempt Time Spent in the Last Attempt 

Frust 

Errors in Last 8 Attempts Errors in Last 8 Attempts Errors in Last 8 Attempts 

Errors in Questions of the Same Skill Hints in the Assignment Hints in the Assignment 

Time since Last Hint Hints in Last 8 Attempts Hints in Last 8 Attempts 

Hints Requested for Skill Attempts in Current Problem Type Attempts in Current Problem Type 

Time in Questions of the Same Skill Attempts in Check-All Questions Errors in Last 20 seconds 

Bored 

Time since Last Hint Time since Last Hint Time since Last Hint 

Errors in Multiple Choice Questions Errors in Multiple Choice Questions Errors in Multiple Choice Questions 

Attempts in Last Minute Attempts in Last Minute Attempts in Last Minute 

Attempts in Multiple Choice Questions Errors in Last 8 Attempts Errors in Last 8 Attempts 

Errors in Current Problem Type Time since Last Error Attempts in Same Problem Type 

reason, students might be already experiencing those affective 
states, in some cases, when the prediction models determine that 
students would report them in the next minute. Although this alter-
nate interpretation of the model functionality does not correspond 
to the original goal of intervening before students feel frustration or 
boredom, even in this case this approach remains useful because it 
allows earlier detection than what previous detectors can do. 

The potential autocorrelation of these signals suggests that future 
work could compare the predictive improvements of ML-based de-
tectors against models that solely use autocorrelation based on the 
labels' time series. If autocorrelation models alone (using the col-
lected labels exclusively) provide substantial predictive accuracy, 
it could indicate that labels of previous instances should be included 
in the feature set of ML-based models. In this case, we excluded 
the labels from the feature set because we want to be able to use 
detectors without continuously asking students about their affective 
states. However, the predicted labels in previous instances could 
also be considered when making later predictions, as is seen in 
some neural network topologies, such as the Long-Short Term 
Memory networks that have shown promising performance for af-
fect detection [5].  

One limitation of our study that prevented us from exploring neural 
networks was the limited sample size available for training the ma-
chine learning models. The reduced number of self-report requests 
for each student, to reduce issues from repeating the same question 
excessively, resulted in a smaller sample size than what previous 
detector research based on self-reports has typically gathered [37, 

38]. Using a larger dataset collected among a larger number of 
learners or increasing the granularity of the data acquisition would 
likely lead to better model performance. This ground truth with 
higher granularity or larger number of samples would enable a 
more precise tuning of the hyperparameters in the ML models and 
use other machine learning techniques like artificial neural net-
works [5], potentially enhancing the performance of the models. 
Additionally, future work can also explore data augmentation tech-
niques as an alternative to obtaining more training samples. 
One surprise in our findings is the relatively low frequency of en-
gaged concentration and the unusually poor performance of 
engaged concentration detection compared to previous engaged 
concentration detection in ASSISTments (and other systems as 
well) [3, 24, 31]. One possible interpretation is that offering None 
as a response option in students’ self-reports might be skewing the 
performance of our models, particularly engaged concentration. 
Engaged concentration is commonly the dominant affective state in 
various learning environments [3, 22, 24, 38], as the only affective 
state with a non-negative valence studied in most environments [2, 
30]. Typically, engaged concentration is low activation [3], so it is 
possible that some students are not even realizing that they are en-
gaged. Alternatively, it may be that past studies based on expert 
judgment confused engaged concentration with the neutral affec-
tive state or an absence of affect. Earlier research also indicates that 
positive emotions, especially engaged concentration, are reported 
less frequently when individuals assess their own affective state [3, 
38]. The reduced effectiveness of engaged concentration detection 



in this study, along with its tendency to identify instances of bore-
dom and None more than actual engaged concentration, suggests 
that self-reporting might be less reliable for identifying engaged 
concentration compared to expert labeling methods. 
Despite these limitations, models that can predict (or early detect) 
confusion, frustration, and boredom can be useful, as they can lead 
to intervention before a student’s negative affect (particularly bore-

dom) lead to problematic behaviors such as gaming the system, 
which are detrimental to their learning outcomes [3]. This is partic-
ularly important in systems with high latency as such delays further 
postpone interventions, amplifying the risk of negative outcomes 
stemming from late responses. For instance, early detection of frus-
tration or boredom enables the learning platform to suggest breaks 
or deliver motivational messages to the students. This early detec-
tion can also facilitate other interventions, such as switching to a 
different learning activity in the next problem or even increasing 
the difficulty of the subsequent activities if the system detects that 
boredom will appear soon, but there is a low risk of future confu-
sion or frustration. This approach would help prevent students from 
becoming disinterested in their studies, a typical outcome of bore-
dom, or unresolved confusion or frustration, which lead to poorer 
learning. As such, detecting affect early or in advance may help us 
to develop learning systems that better support learners’ motivation 

and learning. 
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8. APPENDIX I: LIST OF FEATURES 
The complete list of features employed in this study is: 

• Number of skills practiced by the student. 

• Time taken in the last response. 

• Average time taken in the last 3 responses. 

• Average time taken in the last 5 responses. 

• Average time taken in the last 8 responses. 

• Time taken in the current assignment. 

• Days since the student started the current assignment. 

• Total attempts. 

• Percentage of wrong answers in the last 3 responses. 

• Percentage of wrong answers in the last 5 responses. 

• Percentage of wrong answers in the last 8 responses. 

• Hints requested in the current assignment. 

• Hints requested in the last 3 responses. 

• Hints requested in the last 5 responses. 

• Hints requested in the last 8 responses. 

• Total errors. 

• Total hints requested. 

• Attempts in the last 20 seconds. 

• Attempts in the last minute. 

• Attempts in the last 3 minutes. 

• Errors in the last 20 seconds. 

• Errors in the last minute. 

• Errors in the last 3 minutes. 

• Hints requested in the last 20 seconds. 



• Hints requested in the last minute. 

• Hints requested in the last 3 minutes. 

• Time since the last attempt. 

• Time since the last error. 

• Time since the last correct answer. 

• Time since the last hint requested. 

• Is the current problem a Match problem? 

• Is the current problem a numeric value problem? 

• Is the current problem a multiple-choice problem? 

• Is the current problem an algebraic expression problem? 

• Is the current problem a check all that apply problem? 

• Attempts in the current problem type. 

• Errors in the current problem type. 

• Hints requested in the current problem type. 

• Attempts in the match problems. 

• Attempts in numeric value entry problems. 

• Attempts in multiple-choice problems. 

• Attempts in algebraic expression problems. 

• Attempts in check-all that apply problems. 

• Total errors in match problems. 

• Total errors in numeric value entry problems. 

• Total errors in multiple-choice problems. 

• Total errors in algebraic expression problems. 

• Total errors in check-all that apply problems. 

• Total time solving problems of the current skill. 

• Is this problem the first time the student has practiced 
this skill? 

• First time practicing a skill in the last 20 seconds. 

• First time practicing a skill in the last minute. 

• First time practicing a skill in the last 3 minutes. 

• Error in the first time the student practiced the skill. 

• Total responses of the student in problems of the current 
skill. 

• Total errors of the student practicing the current skill. 

• Total hints requested by the student practicing the cur-
rent skill. 

• Action outside school hours (before 8 in the morning or 
after 5 in the afternoon).

 


