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Giant energy oscillations mediated by a quasiperiodically driven qubit
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A qubit driven by two incommensurate frequencies can mediate a quantized average energy current in the
adiabatic limit. We show that nonadiabatic processes result in reversals of the energy current and corresponding
oscillations in the net energy transferred between the drives. The oscillations are bounded but giant—much
larger than the qubit energy splitting. A Landau-Zener analysis predicts that the timescale of the oscillations is
exponentially large in the period of the drives. However, numerical analysis reveals that this timescale is not a
monotonic function of the period and has increasing substructure as the adiabatic limit is approached. We show
that this nonmonotonicity arises from interference effects between subsequent Landau-Zener transitions. Giant
energy oscillations should be observable in near-term experiments with nitrogen-vacancy centers.
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I. INTRODUCTION

Strong driving by multiple incommensurate frequencies
can enrich the physical properties of qubits and lattice mod-
els. In particular, each frequency gives rise to an additional
synthetic lattice dimension [1-7]. Topological invariants in
the synthetic space then manifest as nonequilibrium quantized
responses in the driven system. Examples in the adiabatic
regime include the well-known Thouless pump [8-11], the
qubit energy pump [2,7,12-18], and nonadiabatic charge
[19-27] or energy [13,28-30] pumps. Energy pumps can be
used to prepare highly nonclassical states of light [17], which
have applications in quantum metrology and error correction
[31-42]. In many-body settings, quasiperiodic driving can re-
sult in emergent dynamical symmetries [43—46], time crystals
[47-50], and protected edge qubits [6,51].

A qubit slowly driven by two incommensurate drives
pumps energy from one drive to another at an average quan-
tized rate for finite times. Although the net energy pumped
between the drives vanishes at long times [2,7,12—-14], the
small Hilbert space of the system allows for coherence effects
in its dynamics, as we show in this article. The two tone
driven qubit has a two-dimensional synthetic space. When the
driving is slow and the synthetic lattice exhibits a quantum
Hall effect [52,53], the qubit mediates a time-averaged energy
current between the drives when prepared in the instantaneous
ground state (& = 1) [2]:

w12

[Pl = C—— + ot™). ¢))

s

Above, C is the Chern number of the synthetic ground-state
band, w; and w, are the frequencies of the two drives, and
[-]; denotes an average up to time ¢. The long-time average
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current Cwjw, /2w corresponds to a transfer of C energy
quanta [Fig. 1(a)], w,, of drive two per period of drive one,
T\ = 27 /w,. Given that the Chern number is a topological
invariant, the energy current is robust—insensitive to details
of the driving protocol.

The energy current in Eq. (1) relies on the adiabatic evo-
lution of the qubit. The magnitude of nonadiabatic effects
are controlled by the adiabatic parameter 5—the ratio of
the squared instantaneous gap to the rate of change of the
Hamiltonian. The adiabatic theorem [54-58] indicates that
adiabaticity is violated on timescales T exponentially large
in 8, w;t ~ ¥4, Previous works [7] showed that devia-
tion from quantized pumping occurred on the timescale
[Fig. 1(a)].

We show that the dynamics of the energy current beyond
the timescale 7 exhibits experimentally observable coherence
effects. We find that the energy current quasiperiodically os-
cillates on the timescale 7 indefinitely. In concert, the qubit
quasiperiodically oscillates between the instantaneous ground
and excited states. Indeed, the early time deviation from quan-
tized pumping can be understood as an early time expansion
of an oscillatory function, similar to an expansion of sin (¢ /7).
As t is exponentially large in §, slowly oscillating energy
currents lead to giant oscillations in the net energy transferred
between the drives—far exceeding the qubit energy splitting
(Fig. 1). Note that the qubit splitting would be the scale of
energy transfer if the qubit acted as a source of energy in
the system. The giant energy oscillations are mediated by the
qubit and signify unidirectional energy transfer between the
drives for long times.

The oscillations of the energy current follow from the ob-
servation that the qubit spectrum is pure-point [7,59-63]—all
observables behave as if the spectrum is discrete and thus
oscillate quasiperiodically. The exponential scaling of 7 is a
consequence of the nonadiabatic effects in qubit dynamics.
Through the use of the adiabatic impulse model (AIM) we are
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FIG. 1. A qubit driven by two incommensurate frequencies w;
and w, mediates an energy current between the drives in the adiabatic
limit [panel (a) inset]. (a) At early times the energy is pumped into
drive 2 at a rate close to that in Eq. (1) (magenta). (b) At long times,
the energy of each drive, AE| and AE,, exhibits giant oscillations
much larger than the maximal energy splitting of the qubit (shaded
region). The oscillations occur on timescales similar to the timescale
of quantized pumping breakdown. Parameters: By =2,A =1, T} =
25 in the BHZ model (2). AE; is calculated by integrating the spin-
lock fidelity (which is a proxy for the energy current mediated by the
qubit—Sec. II1 A).

able to numerically simulate the very long timescales needed
to observe these oscillations (Sec. III).

A second numerical observation is that (§) is not mono-
tonic and exhibits fine structure about the coarse-grained
exponential behavior. We show that this stems from the in-
terference effects in instantaneous state population dynamics
of the qubit. Indeed, adding sufficiently strong dephasing to
the qubit dynamics results in 7 becoming monotonic in §
(Sec. IV O).

We estimate that the slow oscillation dynamics is observ-
able in nitrogen vacancy (NV) centers in diamond (Sec. V)
before concluding with a discussion of our results.

II. ENERGY PUMPING
A. Model

We consider energy pumping in a skew Bernevig—Hughes—
Zhang (BHZ) model of a qubit driven by two circularly
polarized fields. The time-dependent Hamiltonian is given by

= =

H(t)= 1B(6,)- &, )

1
2
where 5, = (0y;, 0y ) and

A sin 091;
sin 0y, . 3)
1 —cosBy; — cos Oy

B(6,) = By

The drive phases advance with angular frequencies w; and w,,
respectively, so that 6, = &t + 6, where 6, are initial phases

of the drive. We fix wy/w; = (1 + \/5)/2 to be the golden
ratio.

The dimensionless parameter A controls the skewness
of the model—the relative amplitude of the external fields
generated by the drive. A = 1 is the well-studied Bernevig-
Hughes-Zhang (BHZ) model of Refs. [2,7,12-18,64,65]. We
consider the A >> 1 limit because this is amenable to treatment
with the adiabatic impulse model (Sec. III). Note that the qual-
itative conclusions are independent of the skewness parameter
A.

The instantaneous eigenstates of the model are given by the
states anti-aligned and aligned with the driving field

H|¢. (@) = £31B@)||p+ (). )

B. Adiabatic limit

In the adiabatic limit (& — 0) time evolved states follow
instantaneous eigenstates of the model (4):

[¥(0)) = c_(0)|p—(Bo)) + ¢4 (0)|p+ (Bo))
= Y1) = c-(D)|p—(8)) + c1(O)ld+(6)). Q)

The populations of the two states |c.(¢)|> vary slowly as
compared with the states |¢i(§,)). The states |¢:t(§t)> can
be dressed by corrections controlled by |®|/By, such that the
dressed state populations vary still more slowly.

In the adiabatic limit the qubit mediates a quantized energy
current. The pumped power operator from drive 1 to drive 2 is
Pi_.5 = w;p, H. As the long-time value of [P;_.,], is O(|®]?)
[Eqg. (1)], one must use the states |q§i(§,)) dressed to order
|@|. Evaluating the pumped power operator in the diagonal
ensemble of the dressed basis gives [14]

(Pi_2) = (w185, |B| + w102B)B - (&) + O(|@|*/By),  (6)

where B(6,) = 2Im(dg,¢_(,)|96,¢_(6,)) is the Berry curva-
ture of the dressed ground state regarded as a function of
6 and B - (3) = |¢_|* — |&4|? is the dressed state occupation
difference. The dressed state occupation difference B - (G) is
a sum of two terms: The contribution from the instantaneous
states B - (3), which we define as the spin-lock fidelity, and
a rapidly oscillating term, which averages to zero at times
t > 1/|B(t)|.

For an initial state prepared in an instantaneous eigenstate
[so that B - (6(0)) = £1], the time-averaged energy current
follows from averaging Eq. (6),

[(Pi-2)]: ~ (@1[86,|BE)[]; + @102[BE)];)
~ 22 7
o2 7

Here, [], denotes an average [X], = %fotX(t’)dt/, and ~
denotes asymptotic equality in the limit of ¢, T — oo such
that T} < t < t. C is the Chern number associated with the
topology of the dressed eigenstates—equivalent to the Chern
number of the corresponding instantaneous eigenstates (4).
The first term in the upper line of Eq. (7) averages to zero at
times ¢ 3> T;. The lower line in Eq. (7) follows directly from
integrating the Berry curvature on the 6 torus.
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Therefore, in the adiabatic limit, the average energy current
is quantized in the units of the Chern number of the instanta-
neous eigenstates:

w13

P, = .
1 CZTL’ ®

C. Nonadiabatic effects

For any finite drive frequency, and in the absence of
fine tuning [7,66], at late times nonadiabatic effects become
important. This causes the time-averaged energy current to
vanish,;

lim [(P,)], = 0. ©))
t—>0o0
Equation (9) follows from results regarding the behavior of
generic two tone driven qubit models [7,67]—they only sup-
port topologically trivial steady states.

The energy current deviates from its quantized value due
to variations in spin-lock fidelity, which can be modeled by
transitions between instantaneous eigenstates of the qubit. The
probability of transition between the states (per period of one
of the drives) is given by the exponentially small Landau-
Zener (LZ) transition probability p;7z = e=>7°. It thus takes
exponentially many periods to produce an O(1) probability
of excitation, and a reversal of the energy current. In later
sections we use a numerical fransfer-matrix technique to show
that (P;_,,) is a function oscillating on timescale O(7).

III. ADIABATIC IMPULSE MODEL

In this section we develop an adiabatic impulse model
(AIM) [55,68-75] for calculating the energy current effi-
ciently, allowing us to access the exponentially long times
necessary to observe reversal of the current. In Sec. III A
we relate the average energy current to the spin-lock fidelity,
which can be calculated with the transfer-matrix method of
Sec. III B.

A. Energy current proxy

The average spin-lock fidelity is a good proxy for the
average energy current mediated by the qubit. This follows
from averaging the pumped power, given by Eq. (6), on the
timescales s > T}

SA[(P1_2)15(t0) = P,SA[B - (3)](ty) + O(s™"),  (10)

where

1 to+s

SA[X () = ;/ dtX (1) an
fo

is a sliding average.

The key assumption necessary for the validity of Eq. (10)
is the separation of timescales on which the different compo-
nents of the two terms in Eq. (6) vary. The total derivative of
the qubit’s energy averages to zero on timescales s = O(T).
The Berry curvature term averages to P, on timescales set by
the convergence of its line integral to an area integral. This
occurs when s = O(cT}), with a constant ¢ controlled by the
smoothness of the Berry curvature 5’(5) on the 6 torus. The
spin-lock fidelity of the dressed states, B - (5) has a slowly
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FIG. 2. (a) Time-averaged energy current calculated through nu-
merical integration [{P;_,,)]; /P, (exact) and via the spin-lock fidelity
[B-(3)), (proxy) for a single initial phase Gy = (4.0321, 2.0645).
(b) Error in using proxy for average energy current measurement
behaves as in Eq. (10). Parameters: By =2, A = 1, T} = 35 in the
BHZ model (2).

varying component given (to first order in |@|) by B-(G), and
an additional small, rapidly oscillating component (due to the
initial state being a bare eigenstate and not a dressed state).
The latter averages to zero on timescales s = O(1/ |B|), while
the former only varies on times exponential in the adiabatic
parameter T = 0(e¥Ty). Therefore, the required separation
of timescales justifying Eq. (10) is satisfied in the adiabatic
limit, where we have 1/ Bl < T <.

Figure 2(a) shows the time-averaged energy current cal-
culated exactly and approximately via the spin-lock fidelity.
Time averaging is equivalent to #p = 0 in Eq. (11). The dif-
ference between the exact and approximate curves [Fig. 2(b)]
confirms the error terms in Eq. (10) indeed decrease as O(s™").
Similar evidence for the skew BHZ model with A > 1 is
shown in Appendix C.

B. Transfer-matrix evolution

Nonadiabatic processes are the most significant when the
energy gap between the instantaneous states is small com-
pared with its typical value. By approximating time evolution
as perfectly adiabatic away from such avoided crossings and
treating nonadiabatic transitions near the crossings as instan-
taneous, we arrive at a transfer-matrix representation of the
evolution operator. This approximation is known as the adia-
batic impulse model (AIM) [55,68-82].

The AIM approximation to the evolution of the qubit from
time O to ¢ is given by

Uam(t,0) =G(t, tn)M (tn )Gty , tn—1)
<= Glty, 1M (1)G(11, 0), (12)
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where there are N avoided level crossings given by the instan-
taneous energy minima |§(ti)| =0, 8[2|§(t,-)| > 0.

In the basis of instantaneous eigenstates of the Hamilto-
nian, the adiabatic part of the evolution is expressed as

Gltiy1, ;) = e ottt (13)

This captures the phase accrued during the adiabatic evolution
between consecutive avoided level crossings, t =¢; and t =
ti+1. This phase consists of a dynamical and geometric part,

|B(1)|

s<r,-+1,r,->=/[“ dr[T—<¢+(r)|ia,|¢+(r>>], (14)

corresponding to the first and second terms in the integrand,
respectively. The geometric phase depends on the gauge
choice of |¢.(¢)). For explicit calculations, we pick the north

pole gauge:
—sin[n(¢)/2]
. , 15
|+ (1)) (eixmcos [77(’)/2]> "
e~ x® cos [n(t)/2]
o ’ (16)
o (1)) ( sin [n(2)/2] )

where the coordinates (7, x ) are the spherical coordinates for
B@).

The transfer matrix M(¢;) captures the transition ampli-
tudes between the instantaneous eigenstates at the avoided
level crossing at t = t;. For the skew BHZ model [A > 1 in
Eq. (2)], this matrix is

—is() /T = ;
M) = (6 V1= prz(t)

O
e /prz () ’

e T —=pLz ()
where
prz(t;) = e 20w (18)

os(t;) = /4 +arg (1 —i8(t;)) + 8(Ans(t;) — 1), and T'(x)
is the Gamma function. The adiabatic parameter at each
avoided level crossing is

-
(1) = 2
412,B(1)

The transition probability (18) is largest when the adiabatic
parameter 6(#;) is smallest. The minima of Eq. (19) occur at
cos(fy;,) = 1 in Eq. (2) and are given by

- 4Aa)1

The phase v(t;) is fixed by the gauge choice for the adiabatic
states. Appendix A contains a detailed derivation of Eq. (17)
and the function v(t;).

Figure 3 shows that AIM accurately predicts the average
adiabatic state population for the skew BHZ model (2). When
A > 1, the adiabatic parameter of the drive &(¢) has well sep-
arated local minima—making it well suited to treatment with
AIM. The instantaneous adiabatic populations show ringing
around the crossing points which the transfer matrix does not
capture. However, such oscillations have a negligible contri-
bution to average quantities, including the average spin-lock
fidelity and average energy transferred between the drives.

19)
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FIG. 3. Instantaneous spin-lock fidelity for a single initial state
and phase 8y calculated with the transfer matrix (AIM) and direct in-
tegration (exact). Note the ringing effects occurring at each crossing
point which are not captured with AIM. These become unimportant
upon averaging over time or initial phases. Parameters: By = 2, A =
30, T; = 300, and 6, = (3.6223, 0.9714) in the skew BHZ model (2).

IV. GIANT ENERGY OSCILLATIONS

The total energy transferred from drive 1 to drive 2,

AE>(t) = / dt' (Pra), @1)
0

is bounded, but giant in comparison to the qubit band-
width ABy. This result follows from the slow oscillations of
SA[(P;—2)], which integrate to large amplitude excursions in
(21).

Numerically verifying this claim requires accurately cal-
culating the oscillatory function (P;_.,) over very long
timescales. Section IV A discusses the results of doing this
for the skew BHZ model (2) using AIM and the spin-lock
fidelity. We find that the typical timescale of energy oscilla-
tions t is a nonmonotonic function of the adiabatic parameter
8 (Sec. IVB). We interpret this as a result of interference
effects in the transition amplitudes. Introduction of decoher-
ence in qubit dynamics reduces the scale of nonmonotonic
dependence of t with § (Sec. IV C), providing evidence for
our claim.

A. Energy current oscillations

The qubit mediates a quasiperiodically oscillating energy
current for each initial phase Bo (Fig. 4). The energy cur-
rent reverses direction approximately every t, capturing the
timescale of energy current oscillations.

Energy current oscillations result in quasiperiodic oscilla-
tions of the energy transferred into drive two, AE,, with an
amplitude set by the typical timescale of the energy current
oscillations (Fig. 1),

AE) nax = O(F,T). (22)
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FIG. 4. Oscillations in the average energy current via the sliding
average (s = 407;) of spin-lock fidelity using AIM in three initial
phases: Full 6, = (1.4454, 5.3288), dashed 6y = (0.2324, 2.6727),
and dotted éo = (1.6707, 1.6094). Parameters: By =2, A = 30,
Ty =320 in the skew BHZ model (2).

The timescale of energy current oscillations t stems from
nonadiabatic effects in the qubit dynamics. The probability
of transition between instantaneous eigenstates per avoided
crossing is given by prz = e 2", with § given by (20). As
there are O(1) avoided crossings per period 7j, the transi-
tion rate is O(prz/T;). Ignoring the coherence effects be-
tween subsequent avoided crossings, this calculation predicts
T =O(T1/pLz). Thus, the scale of energy current oscillations
is exponentially large in the adiabatic parameter (20),

AE2,max = 0(627[6(1)2)~ (23)

In the adiabatic limit of the drive this energy mediated by the
qubit is much larger than the bandwidth of the qubit ABy—the
oscillations are giant.

Quasiperiodic energy current oscillations follow from pre-
vious work. Reference [7] shows that a generic d-level system
driven by two tones at finite frequency exhibits a pure-point
spectrum. This means that generic observables exhibit coher-
ent quasiperiodic oscillations with a finite set of fundamental
frequencies (three for a qubit).

The energy current oscillation patterns in Fig. 4 are very
sensitive to initial phases of the drive at times ¢ > t. More
precisely, the different initial phases have correlated energy
currents on timescales t < t,

(PLoa(t.00)) — (Poa(t.60)) = O(t/T),  (24)

for (G — 50/) . %503(50) « 1, where B(#) is the Berry cur-
vature of the instantaneous ground state defined on the 6
torus. Beyond this time, (P (%, %)) remains a continuous
function of 6, but is only smooth on initial phase separation

scales inversely proportional to 7, |§0 — §6| < O0((zr/TH)™YH
(Appendix B).

B. Typical timescale of energy oscillations

Numerically measuring T confirms its exponential scaling
with the adiabatic parameter § (Sec. IV A). However, the
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FIG. 5. (a) The typical timescale 7 of energy current oscillations
(black points) scale as ae*™*T; (blue line), with large deviations.
The adiabaticity parameter § is calculated from Eq. (20) with model
parameters By = 2, A = 30 and varying 7;. Timescales 7 are mea-
sured by fitting early time average (denoted by [-]5, , over 1000 initial
phases) spin-lock fidelity to b — ¢/t between 0.4 < B - (5) < 1 (in-
set). Errors are estimated through bootstrap resampling. (b) The scale
in the variation of § such that t is smooth is very small, A§ ~ 107",
7 is measured as in panel (a), only with 500 initial phase realizations.

detailed dependence of t(8) is nonmonotonic in the adiabatic
parameter 6 [Fig. 5(a)].

The timescale t is estimated through a fit to the early
time drop-off in the energy current. The initial phase averaged
energy current has the form

[(Pioa)]g, = Pyl —t/T + O /T))], (25)

so a linear fit to the initial phase averaged spin-lock fidelity
[Fig. 5(a) inset] produces an estimate of t [Fig. 5(a)]. Aver-
aging over initial phases captures the mean response of the
energy current for every adiabatic parameter §. This is valid
due to insensitivity of the energy current on the initial phase
6y at times ¢ < 7 (Fig. 4).

In Fig. 5(b), we observe variation between 7(§) and t(6 +
AJd) at extremely small scales in the difference A§. We can
estimate the A§ required to have At <« T by assuming that
this variation is due to the dynamical phase accrued by the
adiabatic states, and thus is an effect of coherence in the
dynamics.

Suppose we perturb the Hamiltonian parameters on the
scale |B — B'| = AB, such that t changes to t’. The dif-
ference in the dynamical phase accrued within the time t
is O(ABt). When ABt « 1, dynamics is unaffected within
time 7. As the evolution of any observable is quasiperiodic
with an oscillation scale which is O(t), the variation in an ob-
servable between the perturbed an unperturbed Hamiltonian
being bounded within time O(7) implies that the variation is
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bounded for all time. In particular, B - (¢)’ must remain close
to B - (G). The former defines the new 7’, so when

ABt <1 = ASKe ¥, (26)

where we used AB ~ AS/T; and t = O(T1e*™%), it follows
that |7 — 7] < Th.

Note that the change in the transition amplitude pyz is
exponentially smaller in § than AB. Thus, assuming dynamics
is governed by the accrued phase, rather than the nonadiabatic
crossings, estimates a much smaller value of A§ such that
T is smooth. The smallness of this estimate conforms with
our numerical observations [Fig. 5(b)]. In fact, we observe
variation in T at scales even smaller than e~27%. Equation (26)
should be interpreted as a scaling estimate [because we used
the scaling expression T = O(T;e*™?)], so it is possible that
the coefficient in this scaling happens to be very small.

The derivation of the exponential scaling ignored coher-
ence effects between subsequent avoided crossings. These
coherence effects have a nontrivial role in determining the
detailed dependence of 7, and result in

T~ C(8, ¢aa)e™™ 1. 27)

Here, C(8, ¢.q) is set by the adiabatic parameter and phase
¢4 accrued during adiabatic evolution of the qubit between
avoided crossings. Interference effects can cause C(8, ¢,q) to
have a nonmonotonic dependence on §, consistent with our
numerical observations.

C. Decoherence

To further test the hypothesis that the nonmonotonicity of
T is due to interference effects, we simulate the addition of de-
phasing to the qubit dynamics. This results in the decoherence
in the instantaneous basis and, if our hypothesis is correct,
results in T becoming a monotonic function of 8.

Indeed, in Fig. 6(b) we observe that sufficiently strong
decoherence causes t to become monotonic. The noise
model is implemented in the AIM evolution of the qubit
(Sec. IIIB) via a quantum channel [[83], Chap. 8] (in the
Kraus formulation)—representing noise in the dynamical
phase of the qubit evolution. Specifically, we make a replace-
ment in the adiabatically accrued phase (14)

fit1
Etip1, 1) = E(titr, 1;) +/ din(t), (28)
1

where are 1(¢) are the independent and identically distributed
(i.i.d.) normal random variables with the two point correlator
[n(tir 0], = T'é(tiy1 — 1;). Here [x], denotes averaging
over the Gaussian ensemble and &(x) is the delta function.
Averaging over the random noise processes in Eq. (28) yields
the effective AIM evolution for the density matrix given by

pltiy) = Y Kiltipr, t)G i1, tOM(E:)p (1)
=t
X M (t)G (11, 1)K (11, 1), (29)
where p(t;41) is the density matrix just before the avoided

level crossing at time ¢ = #;+1, G and M are the adiabatic evo-
lution and transfer matrices (Sec. III B). The Kraus operators
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FIG. 6. (a) The sensitive dependence of t on § is eliminated
by introducing dephasing of sufficient strength I'. The timescale ©
is measured is in Fig. 5 for small I (which shows underdamped
oscillations of B - (&)), and as the timescale for the exponential decay
of the spin-lock fidelity for large ' (where B - (3) is overdamped).
Parameters in model (2): By =2, A =30, T} =360 (blue curve)
and T; = 361 (red curve) with averages over 200 initial phase real-
izations. (b) Sufficient dephasing causes T to become a monotonic
function of § (blue). The light gray points are a copy of data in
Fig. 5(a), and the blue line is proportional to ¢*® [same as the blue
line in Fig. 5(a)].

K, are

1
=1
2(1+y?)

where y = J/tanh (T'(t;31 — t;)/4).

At any nonzero decoherence rate I', the qubit mediates
damped energy oscillations between the drives. The timescale
T remains the oscillatory timescale of the energy current in
the underdamped regime I' < t~!(I" = 0). However, in the
overdamped regime t should be interpreted as the exponen-
tial decay timescale of the energy current. Figure 6(a) shows
that the values of t for two nearby values of the adiabatic
parameter § converge to essentially the same limit at large
decoherence rate—consistent with an incoherent model of
population transfer at subsequent avoided level crossings.

Y:), (30)

V. DISCUSSION

Our results show that a quasiperiodically driven qubit
can mediate a slowly oscillating energy current between
the drives, resulting in giant amplitude oscillations in the
transferred energy. The typical timescale of energy current
oscillations t is exponentially large in the adiabatic parameter
8, with nonmonotonicities on small scales.

Nitrogen-vacancy (NV) centers provide a room-
temperature platform for experimentally realizing giant
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energy oscillations. Indeed, Boyers et al. [15] have already
observed the topological regime (C # 0) of qubit dynamics.
In this experiment, perfect adiabaticity was achieved via
counterdiabatic driving—a fine-tuned drive protocol which
suppresses transitions between the instantaneous states [66].
Energy current oscillations occur when the driving protocol
is perturbed away from perfect counterdiabaticity; these
can be indirectly measured through the spin-lock fidelity.
The challenge is decoherence. The observed decoherence
time 75 &~ 10 us of the NV center [15] requires a drive of
frequency 2 ~ 10 MHz and a perturbation of the same scale
to see an energy current reversal.

Our results are relevant to other adiabatic topological
pumps, including the disordered Thouless charge pump
[84—88]. Indeed, the synthetic lattices of the two tone driven
qubit and the Thouless pump are closely related. Our results
imply that at any nonzero frequency and disorder strength,
charge pumping only persists for a finite time [89]. The total
charge pumped would similarly be finite, but giant.

We showed that the nonmonotonic behavior of 7(8) arises
from interference effects in qubit dynamics. As § — oo, T(§)
develops structure at exponentially small scales in §. The
possibility of an underlying fractal structure is an intriguing
avenue for future work [90,91].
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APPENDIX A: DERIVATION OF THE GENERAL
TRANSFER MATRIX

A change of basis in the model (2) relates the transfer ma-
trix M (¢;) in Eq. (12) to the transfer matrix of the analytically
solved Landau-Zener (LZ) ramp Hamiltonian [55,68,69].

The LZ ramp Hamiltonian is given by

vt A
HLZ = _?JZ — EUX.

In the adiabatic basis in north pole gauge, Eq. (15), the

transfer matrix is

M e T—piz —/PLz (A2)
Lz = . ,
PLz e JT—piz

where the parameters have the same form as in Eq. (20),
but with the adiabatic parameter § = A?/4v. Note that the
only variable controlling this matrix is §, which quantifies
the adiabaticity of the ramp—a large § gives an exponentially
small probability of transition. The exact solution relies upon
Hy 7 being linear in 7.

A change of basis is necessary to compute the transfer
matrix for a qubit driven by an arbitrary external field H(¢) =

(AD)

B(1) - 3 /2. We expand the Hamiltonian near an avoided level
crossing point ¢ = 7., defined as a minimum point of |B(¢)|.

H(t —1.) = 3[B(t.) -6 + (t —1.)8,B(tc) - & + O((t — 1))].
(A3)

There is a unitary transformation which rotates the Hamil-
tonian (A3) into the LZ ramp Hamiltonian (A1), allowing us
to find M(¢.) for generic H(t), provided the quadratic error
term of Eq. (A3) is small. This transformation exists because
the two terms in Eq. (A3) are trace orthogonal when |B(z.)| is
a local minimum,

O, Te[H (1)*] = 2Tr[(B(t.) - 6)(3:B(t:) - 5)1 = 0. (Ad)
Thus, each term can be rotated into a distinct Pauli matrix with
a unique (up to a phase) unitary transformation,

Hi7(1) = Up (t)H (t — 1) Uror (1), (A5)
In sum, the transfer matrix is
M(te) = Upn(to ) M12U (20), (A6)

with matrix elements (17) evaluated in the basis of Eq. (15).
The rotation matrix Uy is constructed by lifting a corre-
sponding SO(3) rotation matrix R(f.) to SU(2)—making U,
unique up to a sign. The rotation matrix R(z.) is fixed by the
linearized Hamiltonian at each avoided level crossing point ¢,

B(t.)
3B(t.) x B(t.) |.
3 B(t.)

R@,) = (AT)

where this construction ensures det(R(z.)) = 1 for all ¢.. De-
scribing R(f.) as a rotation by angle ® around the axis of
rotation 71, we lift it to SU(2) via U,y = exp(—i®it - 6 /2).

Matrix elements of the transfer matrix at each crossing
point can now be related to the matrix elements of the transfer
matrix for the LZ ramp problem [Eq. (A2)] by inserting a
rotation from the adiabatic states before the avoided crossing
to those after, Y, [pF*) (¢} *|, into

Mij(t) = ($i1) | UralM12U | (2.)) (A8)
The diagonal elements remain unchanged as U, does not
couple k # i and [ # j elements. The off-diagonal elements
acquire a phase difference 2v such that
M) = ({4 U |91, (A9)
as denoted in Eq. (17).
Comparing the linearized Hamiltonian in Eq. (A3) with

the LZ ramp problem Eq. (Al) we can identify the gap
as A = |B(t.)] and the velocity v = |9,B(t.)|—giving the
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FIG. 7. Deviation in the spin-lock fidelity from the unperturbed
set of initial conditions: By = 2, A = 30, T; = 380, 50 =(2.4,5.3)
(black line). The perturbation in initial phase is given by o =
(2.401, 5.301) (blue line), with |A§O| = 0(107%). The perturbation
in adiabatic parameter is given by a change in 7} (red line), with
A8 = 0(1077).

adiabatic parameter at each avoided crossing as

5] 2
sy = B

= = . A10
410, B(t.)| A0

APPENDIX B: SENSITIVITY TO PERTURBATIONS

The energy current is exponentially sensitive to pertur-
bations in the drive. This is a consequence of the long
timescale T on which the qubit reverses the energy current
direction. The spin-lock fidelity of the perturbed initial phase
ABy < O(e=27%), or adiabatic parameter A8 < O(e~27) start
deviating from the unperturbed spin-lock fidelity around
t = O(7). Indeed, Fig. 7 shows the difference in the spin-lock
fidelity as a function of time between the unperturbed set
of initial conditions (black line) and the perturbed ones. The
difference in the spin-lock fidelity starts growing significantly
neart = O(1).

3 F LI L L I I Y O
_of
< 1E 3
= F W E
T UE @
E; -1 — exact [J
2 — proxy [

-3 PRI NN T N T T YT T N W T Y o o O

0 20 40 60 80 100 120 140 160

t/T:

1.1 prr L B |/| |1 LI
1.0 — exact
’ff 0.9 — proxy
= 08 =
= 07 3
™ E
1 06 3
_, =
= 0.5 (b) E
0.4 3
0.3 I B AN A BRI B AN AT A A

0 20 40 60 80 100 120 140 160

t/Ty

FIG. 8. (a) Time-averaged energy current calculated by nu-
merical integration [(Pi_,)l;/P, (exact) and via the spin-lock
fidelity, with AIM, [B-(3)], (proxy) for a single initial phase
B = (5.1545,2.0452). (b) Initial phase averaged (denoted as in
Fig. 5) curves (1000 realizations) for the parameters: By = 2,
A = 30, T =300 in the skew BHZ model (2).

APPENDIX C: ENERGY CURRENT PROXY FOR THE
SKEW BERNEVIG-HUGHES-ZHANG MODEL

The average energy current is well approximated by the
average spin-lock fidelity even in the skew BHZ model (2)
with A > 1. That s, Eq. (10) still holds with a larger prefactor
than in the BHZ model [A = 1 in Eq. (2)]. This can be seen
by comparing Fig. 2 with Fig. 8(a). In the skew BHZ model,
the micromotion of the qubit is much larger—the maximum
energy the qubit can absorb is proportional to ABj. Averaging
over this micromotion controls the scale of the error term
in Eq. (10). Averaging over the initial phases of the drive
in Eq. (2) decreases the scale of the error term [Fig. 8(b)].
This is because the micromotion of the qubit is independently
distributed for each initial phase of the drive.
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