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In brief

Single-cell signaling analysis of >2,500
patient-derived organoid (PDO) and
cancer-associated fibroblast (CAF)
cultures using a method called Trellis
reveals patient-specific drug responses.
CAFs can protect PDOs by polarizing
proliferative colonic stem cells to slow-
cycling revival stem cells.
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SUMMARY

Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening
technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic
performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-
translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal
cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell
resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell da-
tasets, we developed “Trellis”—a highly scalable, tree-based treatment effect analysis method. Trellis single-
cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in
chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell
PTM signaling. We find that CAFs can regulate PDO plasticity—shifting proliferative colonic stem cells
(proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.

INTRODUCTION

Tumors are heterogeneous cellular systems comprising can-
cer cells, stromal fibroblasts, and various immune cells. Tu-
mor phenotypes are regulated by cell-intrinsic mutations
within cancer cells and cell-extrinsic cues from the tumor
microenvironment (TME)." Colorectal cancer (CRC) kills >0.9
million people per year worldwide® and is characterized by
high inter-patient genetic heterogeneity and patient-specific
responses to therapy.® Cancer-associated fibroblasts (CAFs)
are one of the most profuse cell types in the CRC TME,*
and high CAF abundance correlates with poor overall survival®
and influences response to both targeted therapies® and
radiotherapy.” Unfortunately, how CAFs regulate cancer cell
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therapy responses in a patient-specific manner is poorly
understood.

Patient-derived organoids (PDOs) are personalized cancer
models® that can mimic their parent tumors’ response to chemo-
therapies,’ with several studies proposing PDOs as personalized
avatars of drug response.'® However, epithelial PDO monocul-
tures cannot model the influence of stromal cells on therapy
response. PDOs can be co-cultured with stromal and immune
cells to recapitulate elements of the TME,"" but how this alters
PDO phenotypes and drug response mechanisms is unknown.
Moreover, PDO drug sensitivity is typically measured using
bulk live/dead viability assays'? that cannot resolve cell-type-
specific data from co-cultures and provide no mechanistic
insight into drug responses.'®

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. TOBis mass cytometry single-cell PTM PDO-CAF drug screening
(A) Multidimensional array of 10 CRC PDOs (7 microsatellite stable [MSS], 3 microsatellite unstable [MSI]) treated with 11 titrated drug combinations either alone

or in co-culture with CRC CAFs in three replicates (Rep) (2,520 3D cultures).

(B) PDO-CAFs were barcoded in situ using TOBis; stained with 44 rare-earth metal antibodies spanning cell-type identification, cell state, DNA-damage response,
and PTM signaling; and analyzed by mass cytometry (3,360 single-cell PTM datasets).

See also Tables S1, S2, and S3.

To overcome these limitations, here we developed a highly
multiplexed Thiol-reactive Organoid Barcoding in situ (TOBis)
mass cytometry'*'® platform to study how anti-cancer therapies
regulate the post-translational modification (PTM) signaling,
DNA-damage, cell-cycle, and apoptosis response of CRC
PDOs in the presence or absence of CAFs at single-cell
resolution across >2,500 PDO-CAF cultures. To compare
single-cell drug responses from thousands of cell-type-specific
datasets, we developed “Trellis,” a tree-based treatment effect
analysis method that derives generalized optimal transport dis-
tances between samples after normalizing by their own controls.
TOBiIs mass cytometry and Trellis single-cell screening revealed
that drug-induced PTM signaling responses are PDO-specific
and demonstrated that CAFs shift epithelial cells toward a
slow-cycling revival stem cell fate to protect CRC cells from
chemotherapy. CAF chemoprotection could be rationally
reversed using insights from single-cell PTM data, demon-
strating the utility of mechanism-focused drug screening for
overcoming therapy resistance. These results illustrate the func-
tional intertumoral heterogeneity of patient-specific drug
response mechanisms and highlight the role of TME cells in regu-
lating drug resistance plasticity in cancer.

RESULTS

Patient- and microenvironment-specific single-cell PTM
PDO-CAF drug screening

To study how CAFs regulate patient-specific drug response
signaling, we established a high-throughput 3D organoid co-cul-
ture system comprising 10 CRC PDOs'? (Table S1) cultured
either alone or with CRC CAFs.'®'” Organoid cultures were
treated in triplicate with either vehicle control or titrated combi-
nations of clinical therapies 5-fluorouracil (5-FU), SN-38 (active
metabolite of Irinotecan), Oxaliplatin, and Cetuximab (EGFR in-

hibitor). LGK974 (PORCN inhibitor)'? was also studied to inves-
tigate PDO-CAF WNT signaling and Berzosertib (VX-970), as
ATR inhibition has been hypothesized to synergize with DNA-
damaging agents in CRC'® (Figure 1A; Table S2). Following
treatment, each culture was fixed in situ, stained with thiol-reac-
tive monoisotopic TOBis barcodes,'® pooled, dissociated into
single cells, stained with a panel of 44 rare-earth metal anti-
bodies (identifying cell type, cell state, DNA damage, and PTM
signaling; Table S3), and analyzed by mass cytometry
(Figure 1B). Following multiplexed debarcoding'® and cell-
type-specific gating, we obtained >10 million PDO cells and
>15 million CAFs from 2,520 3D cultures (3,360 cell-type-spe-
cific single-cell PTM signaling datasets).

Trellis: Tree-based single-cell treatment effect analysis

To understand how PDO-CAF communication affects therapeu-
tic response, we face the challenge of comparing 3,360 single-
cell datasets. To address this, we use optimal transport, a
rigorous mathematical framework for comparing large high-
dimensional datasets.?° The idea of optimal transport is to treat
high-dimensional datasets as piles of dirt and compute the cost
of transporting one pile to the other in the most efficient way
possible. This cost is then considered the “earth mover’s dis-
tance” (EMD) between two data samples. However, there are
several analytical challenges when applying optimal transport
to large single-cell screening data. First, existing EMD methods
use the manifold structure of transcriptomic technologies,
embodied as an affinity of nearest neighbor graphs to define
EMD based on manifold distances.?'2® However, in cytometry
data, antibody panels are designed to delineate specific cell
types and cell states and analyzed using gating strategies that
follow a tree structure. This leads to a data topology better
described by tree distances rather than a smooth manifold or a
graph discretization of such a manifold. Second, our single-cell
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Figure 2. Trellis: Tree-based single-cell treatment effect analysis

(A) Single cells from control and variable conditions are distributed through a decision tree based on markers selected based on prior biological knowledge and
experimental design. This decision tree supervenes upon randomized k-means clustering nodes. The first decision tree weighs cytometry gating strategies, while
randomized hierarchical clustering leverages latent parameters. In each node of the tree, variables are subtracted from paired controls to create a multi-scaled

differential matrix that scales to thousands of conditions.

(B) Single-cell density PHATE embeddings of PDO 21 treated with DMSO or SN-38 (irinotecan). SN-38 results in cell-cycle exit (IdU~, pHH3~, and pRB™) and

induction of apoptosis (cPARP").

(C) Trellis analysis for single-cell PDO on-target drug responses leveraging cell-state branches and randomized PTM and DNA-damage parameters. Paired Trellis
scores are calculated per PDO by comparing untreated controls to drugs for both mono-cultures and co-cultures. CB1, Cyclin B1.
(D) Sankey diagram showing data from (B) distributing through the Trellis layout in (C) (terminal layer of clusters not shown).

See also Figures S1-S3.

PDO-CAF screen compares independent systems (e.g., pa-
tients, microenvironments, and/or technical batches) perturbed
by common drug treatments. To derive a common treatment
effect across all 3,360 conditions, we therefore need to compare
each drug treatment to its own internal control in a com-
mon space.

To solve these problems, we developed Trellis, a method that
embeds cytometry data into a partially randomized decision tree
that accounts for control samples and defines a generalized
EMD distance on a random forest of such trees (Figure 2A). First,
Trellis leverages the design of cytometry experiments by using a
fixed gating tree that captures hierarchies inherent in the marker
panel. Designing a decision tree using selected markers (e.g.,
cell type or cell state) enables an automated assessment of
cell populations that mimics human intuition in the design of
the experiment and subsequently its interpretation. Trellis can
leverage gating strategies that use single or multiple trees (Algo-
rithm 1, line 3). Following the supervised decision tree, data
points are hierarchically clustered based on the intensities of
the remaining markers. Trellis then creates embeddings of all
conditions by projecting data points onto these decision trees
and thus populating the nodes and leaves of the trees with
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data densities (Algorithm 1, lines 4 and 5). Second, “paired”
Trellis allows variables to be compared to controls by subtract-
ing their relative densities at all intermediate nodes and leaves
(Algorithm 1, line 6; Figure 2A). Finally, Trellis allows an EMD to
be defined on these measures, which are not necessarily
positive (due to control subtraction), by simply measuring a

Algorithm 1. Trellis algorithm for comparing single-cell treat-

ment effects

1: Input: Dataset containing single-cell expression values for all con-
trols and variables.

2: Output: Distances between treatment effects to their relative
controls.

3: Build decision tree incorporating experimental design on known
markers followed by random construction with edge weights w for
each node.

4: Embed each condition to a vector with each element as proportion
of cells in intermediate node or leaf forming abundance matrix A.

5: Multiply element-wise w ® A to calculate Trellis embeddings E.

6: (optionally) Subtract relevant control vectors for paired Trellis em-
beddings E.

7: return Relevant L' distances between embeddings.
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weighted distance between the node populations. Therefore,
paired Trellis enables thousands of single-cell samples to
be compared to their internal controls in a common space—
enabling clear distinction of individual treatment effects
in paralleled high-dimensional single-cell screening data
(Figure S1).

Trellis pairing treatments to controls enables paralleled visuali-
zation of treatment effects (Figure S1A) and reduces batch effects
in serially acquired single-cell screening data (Figure S1B). Exper-
imentally designed branches further resolve biologically important
treatment effects compared to fully randomized trees (Figures S1C
and S1D). Trellis outperforms existing single-cell treatment
effect methods (Figure S2A), and the tree domain structure
enables thousands of single-cell datasets to be analyzed rapidly
(Figure S2B)and accurately (Figure S2C). Experimentally designed
branches are customizable to different biological questions,
and Trellis recapitulates features of published datasets (Fig-
ure S2D). Trellis is therefore a fast, scalable, and accurate treat-
ment effect analysis method for analyzing large-scale single-cell
cytometry screening data. Further details on Trellis’ scalability,
theoretical soundness, and robustness can be found in STAR
Methods.

Trellis single-cell analysis of PDO cell state and PTM
signaling

Anti-cancer drugs typically induce major shifts in cell cycle
and apoptosis that can be detected by mass cytometry. For
example, SN-38 inhibits topoisomerase 1,°* resulting in
S-phase blockage (IdU™), cell-cycle exit (pRB™), and induction
of apoptosis (CPARP*) (Figure 2B). Similarly, 5-FU blocks nucle-
otide biosynthesis by inhibiting thymidylate synthase,?® which
subsequently stalls S-phase entry, whereas oxaliplatin induces
ribosome biogenesis stress to block mitotic progression®®
(Figures S3A-S3D). Capturing shifts in cell state is therefore
crucial for understanding on-target drug responses in single-
cell data.

In mass cytometry, cell state is identified by hierarchical gating
of pRB, IdU, pHH3, Cyclin B1, and cPARP/cCaspase-3°"*% and
is therefore well suited for Trellis branches. For cell-type-specific
analysis of PDO-CAF co-cultures, we designed a Trellis tree us-
ing a cell-state-driven decision tree that supervenes upon ran-
domized DNA damage and PTM signaling hierarchical clustering
(Figures 2C and S3E). When cell-state markers are used for the
decision tree, the subsequent unsupervised clustering tree is
only performed with PTM and DNA-damage markers. This tree
topology sensitizes Trellis to canonical on-target drug-induced
shifts in cell cycle and apoptosis while also leveraging latent
changes in DNA damage and PTM signaling (Figures 2D and
S3A-S3D).

Trellis analysis of cell-type-specific PDO-CAF drug
responses

We used paired Trellis to analyze 3,360 (1,680 PDO, 1,680 CAF)
single-cell PTM profiles (>25 million single cells; Figure 3A),
exploring drug-, patient-, and microenvironment-specific ther-
apy responses for both PDOs (Figures 3B-3D) and CAFs
(Figures S3F-S3I). Since paired Trellis performs pairwise normal-
ization to internal controls, all controls group on the left side of
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the PHATE (potential of heat diffusion for affinity-based transition
embedding) graph (Figures 3B and S1A), and treatments embed
relative to their controls, depending on their distribution through
the Trellis tree. This enables therapeutic effects to be visualized
across PHATE 1 and mechanistic response in PHATE 2
(Figure S4A).

If the same drug were to have an equal effect on all PDOs, Trellis
would group each condition by drug type. However, we found that
PDO treatment effects are characterized not by drug type, but by
patient-specific signaling responses (Figures 3C and S4B). We
observed four patient-grouped responses to 5-FU, SN-38, and
oxaliplatin chemotherapies: (1) broadly chemosensitive with high
apoptosis (PDOs 21 and 75), (2) broadly chemosensitive with
apoptosis and a strong DNA damage response (PDOs 23 and
27), (3) anecdotally chemosensitive (i.e., only apoptotic with a spe-
cific drug; PDOs 99 and 109), and (4) chemorefractory with mini-
mal apoptosis and low DNA damage response (PDOs 05, 11,
141, and 216; Figures 3C and S4B). Cetuximab, Berzosertib,
and LGK974 generally had modest effects on PDO cell state
and PTMs relative to chemotherapies (Figure 3B). While PDOs
demonstrate clear patient- and microenvironment-specific drug
responses, CAF signaling did not cluster by patient or drug
(Figures S3F-S3I), suggesting chemotherapies mainly alter the
cell state, DNA damage, and PTM profiles of PDOs, not CAFs.
Intriguingly, Trellis also revealed CAFs protect some PDOs from
chemotherapies (Figure 3D).

PDO drug signaling responses are patient-specific

PDOs have been proposed as personalized avatars of drug
response,'® but how clinical treatments mechanistically alter
patient-specific PDO biology is not well understood. To explore
patient-specific drug response signaling, we updated the Trellis
decision tree by combining cell-state parameters with a pHH2AX
[S139] detection layer to enrich on-target DNA double-strand
breaks and analyzed each patient drug response in parallel
(Figures S5A-S5D). Patients continue to display either broad
(PDOs 21, 23, 27, and 75) or anecdotal (PDOs 99 and 109)
chemotherapeutic sensitivity and multiple examples of drug
insensitivity (Figure 4A).

Unlike univariate live/dead metrics used in traditional drug
screens, TOBis mass cytometry can detect on-target treatment
effects that do not result in cell death. For example, we observed
that SN-38 induces on-target M- and S-phase blockage and
double-strand breaks in both PDO 21 and PDO 05, yet only
PDO 21 translates genotoxic stress into apoptosis (Figure 4B).
Similarly, in PDOs 23 and 99, 5-FU and SN-38 result in a large
DNA damage response and stalled mitosis, respectively, but
not apoptosis (Figure S5E). 5-FU and SN-38 can clearly induce
double-strand breaks and cell-cycle arrest in these PDOs, but
they do not translate genotoxic replication stress into cell death.
In fact, chemotherapies display on-target mitotic arrest in nearly
all PDOs (83%), but only a subset of patient and treatment com-
binations trigger apoptosis (40%; Figures S5F-S5H). This sug-
gests on-target drug responses are common in CRC PDOs but
are often insufficient to induce cell death.

The patient-specific drug sensitivity demonstrated by several
PDOs reinforces the notion that PDOs could be used to identify
drugs uniquely potent to an individual’s cancer. For example, in
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Figure 3. Trellis analysis of single-cell PDO-CAF drug responses

(A) Trellis-PHATE of 1,680 PDO single-cell PTM profiles (1 dot = 1 organoid culture comprising >5,000 single cells) colored by apoptosis with representative
single-cell density embeddings of PDO 21 + DMSO or + SN-38. Single-cell plots are calculated with PHATE on 34 dimensions (raw intensities of cell state, PTMs,
and DNA-damage markers), while Trellis plots (1 dot = 1 condition) are calculated by PHATE based on 504 dimensions (paired abundance matrix of cells from

each condition along each node of the tree).

(B) PDO drug-treatment-specific responses. Controls used for pairing group on the left, with treatment effects spreading across PHATE 1 and response

mechanisms resolving across PHATE 2.

(C) Patient-specific drug responses illustrate different chemosensitive mechanisms and chemorefractory patients.
(D) CAFs provide patient-specific chemoprotection from 5-FU, SN-38, and oxaliplatin.

See also Figures S3 and S4.

PDO 99, 5-FU blocks mitosis and SN-38 causes a large DNA
damage response—yet neither chemotherapy induces sub-
stantial apoptosis. However, when treated with oxaliplatin,
PDO 99 exits the cell cycle and enters apoptosis (Figure S5E).
Unlike 5-FU and SN-38, oxaliplatin does not kill cells directly
through blocking S-phase, but rather via inducing ribosome
biogenesis stress.”® PDO 99 appears refractory to cytostatic
stress but hypersensitive to ribosome biogenesis stress.
Similarly, ATR inhibitors block single-stranded DNA damage
response and typically synergize with DNA-damage-inducing
drugs.'® However, we find Berzosertib only increases SN-38-
induced apoptosis in microsatellite unstable (MSI) PDOs (Fig-
ure S5I), suggesting ATR inhibitors might only be effective in
MSI CRC patients.

Chemosensitive PDOs have distinct cell-intrinsic PTM
signaling

We next sought to understand features common to chemosensi-
tive and chemorefractory PDOs. Therapeutic response does

5610 Cell 186, 5606-5619, December 7, 2023

not correlate with MSI/MSS (microsatellite stable) status,
clinical staging, anatomical location, or KRAS/APC genotypes
(Figures S4C and S4D; Table S1). However, we found that base-
line PDO cell state and PTM signaling are patient-specific and
align with chemosensitivity (Figures 4C, S4C, and S4D). Chemo-
sensitive PDOs 21, 23, 27, and 75 are highly proliferative at base-
line and experience canonical S-phase blockage, increased
DNA damage, and apoptosis when treated with both 5-FU and
SN-38. In contrast, chemorefractory PDOs are slow-cycling
(Figure 4C). When treated with 5-FU, SN-38, and oxaliplatin, che-
morefractory PDOs undergo a reduction in S-phase and blocked
M-phase consistent with on-target drug responses but generally
elicit a lower double-strand break response compared to che-
mosensitive patients and do not activate PARP or Caspase-3
(Figures 4D and 5E). This suggests that even chemorefractory
PDOs experience on-target drug responses, but their slow
mitotic signaling flux means drug-induced cytostatic stress
cannot trigger widespread DNA damage and apoptosis. We
found that chemorefractory PDOs typically have high levels of
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Figure 4. PDO drug response mechanisms are patient-specific and

align with cell-intrinsic cell state and PTM signaling

(A) Trellis-PHATE patient-specific PDO drug responses (840 single-cell PTM datasets).
(B) Patient-specific distribution of cells within Trellis branches reveals on-target cell-state shifts upon drug treatments. Treatment cell state quantifies the fold
change of the proportion of cells/cell state over the controls for each treatment (Z score). DNA damage is quantified by the fold change of the proportion of

PHH2AX™ cells over controls.

(C) Trellis-PHATE resolves high IdU/pRB (red outline) and low IdU/pRB (blue outline) cell-intrinsic cell state PDO groups (colored by proportion of cells in S-phase).
(D) SN-38-induced apoptosis in low IdU/pRB and high IdU/pRB PDOs. Unpaired t test, *** < 0.001.
(E) TreEMD-PHATE of cell-intrinsic PTM signaling nodes demonstrates PTMs up-regulated in chemorefractory PDOs.

See also Figure S5.

cell-intrinsic pPSMAD2/3, pSMAD1/5/9, pMKK4, pBAD, pBTK,
and pNF-«kB signaling (Figure 4E)—suggesting these pathways
relate to a chemorefactory cell state. In summary, TOBis mass
cytometry and Trellis reveal that on-target drug activity is
common in CRC PDOs (even in chemorefractory PDOs), but
cytotoxicity is patient-specific and correlates with cell-intrinsic
PDO cell states and PTM signaling.

CAF-chemoprotected PDOs have altered PDO PTM
signaling

CAFs have both pro- and anti-cancer roles across a variety of solid
tumors, but to what extent these effects are patient-specific is
poorly understood.” To functionally explore the role of CAFs in pa-
tient-specific CRC PDO drug responses, we performed paralleled
Trellis analysis of PDO monocultures and PDO-CAF co-cultures
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Dots colored by treatment; outlines colored by microenvironment. Solid arrows refer to full protection; dashed arrows refer to low protection by CAFs.
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(D) CAF regulation of PTM signaling networks in PDO 21 and PDO 27. CAFs down-regulate MAPK and PI3K pathways and up-regulate SMAD, NF-«kB, and BAD
signaling nodes in protected PDOs. Scale bar, 200 um.

following drug treatments (Figure 5A). Trellis revealed that CAFs
provide varying degrees of chemoprotection in a patient- and
drug-specific manner. For example, CAFs completely protect che-
mosensitive PDOs 21 and 75 from SN-38, 5-FU, and oxaliplatin-
induced apoptosis, whereas PDOs 23, 27, and 99 only experience
partial chemoprotection (Figure S6A). Chemorefractory PDOs 05,
11, and 141 are largely unaffected by CAFs. This dichotomy sug-
gests CAFs deregulate cancer cells in a patient-specific manner.
We next sought to understand why CAFs have such different pa-
tient-specific regulations of PDO drug response. Chemosensitive
PDOs 21 and 75 are highly proliferative in monoculture but reduce
cell-cycle activity when co-cultured with CAFs (Figures 5B and
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S6B). We found that CAFs that protect PDOs also have a distinct
PTM signaling profile in co-culture (Figure 5C), suggesting
patient-specific reciprocal signaling between PDOs and CAFs
occurs during chemoprotection. Crucially, CAFs do not cause pro-
tected PDOs to exit the cell cycle, but instead reduce MAPK and
PI3K signaling, increase TGF-B, JNK, and NF-«B signaling, and
slow PDO S-phase entry —rendering PDOs less vulnerable to che-
motherapies (Figure 5D). Notably, these pathways are also cell-
intrinsically active in chemorefractory PDOs (Figure 4E), suggest-
ing PTM signaling could represent a general biomarker for drug
response. CAFs also dramatically alter the macrostructure of
PDOs, with chemoprotected PDOs switching from an enveloped
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shape to a cyst-like morphology—indicative of a major cell-fate
transition. PDOs that do not benefit from CAF chemoprotection
do not experience these morphological shifts. Collectively, we
find that CAFs can rapidly regulate PTM signaling networks in
PDOs and shift previously chemosensitive cancer cells toward a
new chemorefractory cell fate.

CAFs polarize chemoprotected PDOs to a revival colonic
stem cell fate

We recently demonstrated that colonic stem cells exist on a
continuous plasticity landscape spanning hyper-proliferative
colonic stem cells (proCSCs) to slow-cycling revival colonic
stem cells (revCSCs).?° proCSCs have high PI3K and MAPK
signaling flux, whereas revCSCs have low PI3K activity and are
dependent on fibroblast-derived TGF-B-driven YAP signaling.
Given that CAFs can polarize PDOs toward a slow-cycling (Fig-
ure S6B), high TGF-8, JNK, and NF-«B, and low MAPK and PI3K
signaling state (Figure 5D), we hypothesized that CAF chemo-
protection may involve a proCSC-to-revCSC transition.

To test this hypothesis, we performed a multivariate scRNA-
seq analysis of PDO 21 (high CAF protection) and PDO 27 (low
CAF protection) +/— CAFs (n = 18; Figures 6, S6C, and S6D).
In agreement with single-cell PTM signaling analysis, Manifold
Enhancement of Latent Dimensions (MELD)*® analysis revealed
CAFs have patient-specific effects on PDOs. We found CAFs
polarize PDO 21 toward a new cell fate not found in cancer cells
alone (Figure 6A), whereas CAFs have little effect on PDO 27
(Figure 6B).

Chemosensitive PDO 21 alone is enriched for a classical
proCSC gene signature (EPHB2*, OLFM4*, and MKI67*; Fig-
ure 6C) with minimal differentiation into enteroendocrine cells
(Figures S6E-S6G). By contrast, PDO 21 + CAFs are polarized
torevCSCs (ANXA1*, SOX9*, ITGA2*, CLDN4*, and YAP1*; Fig-
ure 6D). PDO 27 contains a mixture of proCSCs and revCSCs
that are not regulated by CAFs (Figure S6H). It has recently
been shown that CRC cells can escape chemotherapy by differ-
entiating toward a slow-cycling “diapause™’ or fetal/revival
stem cell fate®” —although the processes driving this plasticity
are unclear. Our results suggest that intercellular CAF signaling
can drive the proCSC-to-revCSC cell-fate transition in a pa-
tient-specific manner to protect cancer cells from chemother-
apies (Figures 6E, S6F, and S6G).

Mechanistic understanding of drug responses by single-cell
screening could identify opportunities to rationally re-sensitize
refractory PDOs.*® For example, mass cytometry revealed that
CAFs protect chemosensitive PDOs—not by reducing on-target
S-phase blockage or DNA damage (Figure S6l), but by polarizing
cancer cells toward a slow-cycling, high TGF-B, JNK, and
NF-kB, and low MAPK and PI3K signaling state (Figures 6F-
6H, S6A, and S6B). These results were consistent across
primary CAFs derived from three alternative CRC patients
(Figures S6J-S6L), suggesting that PDOs have a patient-
specific response to mesenchymal cues. revCSCs are depen-
dent on YAP signaling,”®**** and both scRNA-seq (Figure 6E)
and YAP immunofluorescence (Figure 6l) of PDOs confirmed
CAFs activate YAP signaling in chemoprotected PDOs.

Using PTM signaling and cell-state insights from single-cell
drug screening, we hypothesized that CAFs chemoprotect can-
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cer cells by polarizing them to a YAP-dependent revCSC fate. To
test this, we treated PDO 21 + CAF cultures +/— 100 nM Verte-
porfin (YAP-TEAD complex inhibitor) +/— SN-38 and measured
PTM and cell-state responses using TOBis mass cytometry. Ver-
teporfin alone did not induce apoptosis in PDOs (Figure 6J), did
not increase on-target SN-38-induced DNA damage in PDOs
(Figure S7A), and did not regulate CAF cell cycle or apoptosis
(Figures S7B and S7C). However, Verteporfin blocked nuclear
YAP translocation (Figure S7D) and restored PDOs to an envel-
oped morphology when in co-culture with CAFs (Figure S7TE)—
indicating YAP inhibition re-polarized revCSCs back to
proCSCs.?° Crucially, we observed that Verteporfin completely
re-sensitized CAF-protected PDOs to SN-38-induced apoptosis
(Figure 6J). These results suggest that CAFs can chemoprotect
PDOs via a YAP-driven revCSC fate polarization and underscore
the value of mechanism-focused single-cell drug screening in
overcoming therapy resistance.

Collectively, single-cell PDO-CAF drug screening revealed
that CRC drug responses are patient-specific and closely align
with pre-treatment cancer cell PTM signaling. Chemosensitive
PDOs have high PI3K and MAPK signaling flux and mitotic entry
(indicative of proCSCs), whereas chemorefractory PDOs
demonstrate high TGF-B, JNK, and NF-kB signaling and low
cell-cycle activity (similar to revCSCs). Crucially, CAFs can
polarize mitotic proCSC cancer cells to a slow-cycling, drug-
tolerant revCSC fate in a patient-specific manner. These results
support a CRC drug sensitivity model whereby mitotic proCSC
cancer cells retain high stemness but are vulnerable to anti-
mitotic chemotherapies (Figure 7A). By contrast, CAFs can
polarize cancer cells toward a revCSC fate that also retains
high multi-potency, but they are chemorefractory due to their
low mitotic PTM signaling (Figure 7B). By combining high stem-
ness with low cell-cycle activity, revCSCs are potent drug-
tolerant persister cells that have the potential to repopulate tu-
mors following chemotherapies.® Given the relative abundance
of revCSC-like cells in vivo,® our results suggest targeting CAF-
induced proCSC-to-revCSC plasticity could improve chemo-
therapy responses in CRC.

DISCUSSION

PDOs have been widely proposed as personalized avatars of
patient-specific drug responses.’® However, bulk screening
technologies have limited previous studies to PDO monocultures
alone and provide no mechanistic insight into PDO drug
response.’® Using highly multiplexed single-cell PTM profiling
by TOBis mass cytometry and tree-based treatment effect anal-
ysis by Trellis, we demonstrate that PDO drug responses are pa-
tient-specific and reveal that CAFs regulate PDO PTM signaling
and cell fate to alter chemosensitivity. PDO-CAF interactions are
also patient-specific, with CAFs both stimulating and repressing
PTM signaling, cell-cycle activity, and cell-fate plasticity in a pa-
tient-specific manner. Crucially, we demonstrate mechanistic
profiling of patient-specific drug responses can be used to
re-sensitize CAF-protected PDOs.

Unlike static diagnostic metrics (e.g., pharmacogenomics)
that have failed to substantially advance precision oncology,*®
PDOs are functional biopsies that can be experimentally tested
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Figure 6. CAFs polarize chemoprotected PDOs to a revival stem cell fate
(A and B) Single-cell PHATE and MELD scores of (A) PDO 21 and (B) PDO 27 +/— CAFs scRNA-seq.
(C) Single-cell PDO 21 proCSC gene signature ranked by MELD score and colored by experimental condition. Mean value of a linear generalized additive model

(GAM) for each replicate, unpaired t test.

(D) Single-cell PDO 21 revCSC gene signature ranked by MELD score and colored by experimental condition.
(E) Mean relative expression in group for proCSCs, revCSCs, and Wnt and Yap gene signatures per MELD group.

(F) CAFs protect PDOs from SN-38-induced apoptosis.

(G) CAFs slow PDO S-phase entry, and PDOs experience on-target S-phase blockage by SN-38 irrespective of CAFs.

(H) EMD heatmap of PTMs in PDO 21 +/— CAFs demonstrate CAFs regulate PDO PTM signaling.

() CAFs induce nuclear translocation of YAP (red) to PDO nucleus (white). Scale bar, 25 um.

(J) 100 nM Verteporfin re-sensitizes CAF-protected PDOs to SN-38-induced apoptosis. Unpaired t test, *** < 0.0001, ** < 0.001, * < 0.01.

See also Figures S6 and S7.

to reveal patient-specific drug responses alongside clinical care
in real time.®"~*° However, recent studies have suggested PDOs
alone are not sufficient to biomimetically predict drug response.
For example, only 20% of monoculture drug combination “hits”
could be validated in ex vivo organotypic CRC tumors containing
a TME,®” and growth factor regulation of PDO cell state can
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change organoid drug responses.*’ In agreement with a recent
bulk analysis of autologous PDOs and CAFs,*" our results reveal
that PDO-CAF interactions are a source of functional inter-tumor
heterogeneity and that the role of CAFs should not be general-
ized. Given that cell-extrinsic signals can have dramatic effects
on drug performance, we propose TME cells should be included
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(A) VR landscape model of PDO 21 scRNA-seq. proCSC cancer cells retain high multipotency (CCAT) and high cell-cycle activity (MKI67*) with minimal dif-

ferentiation into enteroendocrine cells.

(B) VR landscape model of PDO 21 + CAF scRNA-seq. CAFs increase PDO plasticity to polarize proCSCs toward revCSCs that retain high multipotency but have

low cell-cycle activity (MKI67 ), enabling revCSCs to escape chemotherapy.

in future studies evaluating PDOs as personalized functional
biopsies.

Phenotypic plasticity is an emerging hallmark of cancer,* and
therapeutic targeting of cancer-specific cell states is a growing
area of cancer research.*>** As stem-cell-driven model sys-
tems, PDOs are capable of rapid differentiation® and are there-
fore well-suited to studying drug- or TME-induced cancer cell
plasticity. We observed that PTM cell state (not MSI/MSS status,
tumor stage, anatomical location, or genotype) aligned with pa-
tient-specific drug response (Figures 4C, 4D, and S5) and found
CAFs can polarize PDOs toward a revCSC-like fate to protect
PDOs from clinical therapies. A recent survey of CRC tumors
concluded phenotypic variance is largely driven by transcrip-
tional changes rather than genotype,45 and work in pancreatic
ductal adenocarcinoma has demonstrated that PDO transcrip-
tional profiles, not genotype, correlate with drug response.*®
Moreover, recent studies of oncogenic®” and kinase*® activity
suggest cancer cell signaling flux predicts patient survival better
than genotype. Taken with our observations, mounting evidence
suggests metrics that more closely describe cancer cell state
such as transcription and PTM signaling predict patient-specific
drug responses more accurately than genomic profiles or clinical
staging.

In contrast to traditional live/dead drug screens, TOBis
mass cytometry reveals molecular insights into PDO drug re-
sponses. We observed PDOs frequently experience on-target
drug responses (83%), but only a subset of PDOs enter drug-
induced apoptosis (40%). This suggests chemorefractory
PDOs do not translate cytostatic and genotoxic stress into
apoptosis. Single-cell PTM profiling further revealed CAFs

chemoprotect PDOs by shifting cancer cells into a slow-
cycling revCSC fate. We used this mechanistic insight to re-
sensitize PDOs by blocking revCSC activation via YAP. Given
that drug synergy is rare when using unbiased screens,*® our
study suggests mechanism-focused screening could be used
to rapidly identify rational drug synergies to re-sensitize re-
fractory cancers.

The advent of high-dimensional single-cell technologies
such as mass cytometry and scRNA-seq provides new oppor-
tunities to study heterogeneous drug response mechanisms
beyond simple viability scores.’® However, high-dimensional
drug screening data are challenging to interpret—with existing
tools designed to analyze dozens, not thousands, of samples.
Trellis overcomes this scalability bottleneck by distributing
single-cell data across a tree domain, enabling the EMD
between thousands of single-cell samples to be computed
rapidly. While we use cell-state branches to sensitize
Trellis results toward canonical on-target anti-cancer drug
responses, alternative decision trees could in theory be de-
signed to enrich for PTM signaling hierarchies (e.g., for kinase
inhibitor screens) or cell-type hierarchies (e.g., in immune
profiling) (Figure S2D). Trellis’ scalability is independent of su-
pervening branches, providing a flexible platform for future
single-cell screening applications.

In summary, we demonstrate that highly multiplexed single-
cell PTM profiling by TOBis mass cytometry and tree-based
treatment effect analysis by Trellis can reveal patient-specific
drug responses in thousands of PDO-CAF cultures. CAFs can
regulate PDO drug response by polarizing proCSC cancer cells
to arevCSC fate in a patient-specific manner, and PTM signaling
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insights can be used to overcome CAF protection. We propose
single-cell PTM analysis as a powerful alternative to traditional
bulk viability measurements and suggest TME cells should be
considered in future precision medicine models.

Limitations of the study

This study used PDOs from the Human Cancer Models Initiative
(https://www.cancer.gov/ccg/research/functional-genomics/hcmi)
where stromal cells were not collected, so it was not possible to
study autologous CAF-PDO communication. While we observe
that CAF chemoprotection is common to all CAF lines tested,
ideally, future TME models should incorporate autologously
paired TME cells.”' The mass cytometry antibody panel used
in this study only targets PTM signaling, cell state, and DNA-
damage response, so it could not easily detect cell-fate transi-
tions at scale. Given the emerging importance of cell-fate plas-
ticity in cancer drug resistance, future screening panels should
incorporate plasticity markers to detect cell-fate transitions
across large PDO cohorts.
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KEY RESOURCES TABLE

Cell

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Phospho-Histone H3 [S28] BioLegend Cat#641007; Clone: HTA28; RRID:
AB_2562851

CD326 (EpCAM) (Hm) BioLegend Cat#324229; Clone: 9C4; RRID:
AB_2563742

Pan-Cytokeratin (Pan-CK) BioLegend Cat#628602; Clone: AE1/AE3; RRID:
AB_2616960

CK18 Abcam Cat#ab668; Clone: C-04; RRID: AB_305647

Phospho-PDK1 [S241]

Cleaved-Caspase 3 [D175]

Cleaved-PARP [D214]
Phospho-MKK4/SEK1 [$257]

Phospho-BTK [Y551]

Phospho-SRC [Y418]

Phospho-4E-BP1 [T37/46]
Phospho-RB [S807/811]

Phospho-PKCa. [T497]

Phospho-AKT [T308]

Phospho-CREB [S133]

Phospho-SMAD1 [S463/465]
Phospho-SMADS5 [S463/465]
Phospho-SMAD9 [S465/467]

Phospho-AKT [S473]
Phospho-NF-kB p65 [S529]

Phospho-MKK3 [S189]/MKK6 [S207]

Phospho-p38 MAPK [T180/Y182]

Phospho-MAPKAPK2 [T334]
Phospho-AMPKa. [T172]
Phospho-BAD [S112]
Phospho-p90RSK [T359]

Phospho-p120-Catenin [T310]

B-Catenin [Active]

BD Biosciences

CSsT

CST
CSsT

BD Biosciences

Thermo

CST
BD Biosciences

BD Biosciences

BD Biosciences

CST

CST

CST

BD Biosciences

CST

CST

CST
CST
CST
CST

BD Biosciences

CST
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Cat#558395; Clone: J66-653.44.22; RRID:
AB_647291

Cat#9579; Clone: D3E9; RRID:
AB_10897512

Cat#5625BF; Clone: F21-852

Cat#4514; Clone: C36C11; RRID:
AB_2140946

Cat#558034; Clone: 24a/BTK; RRID:
AB_2067823

Cat#14-9034-82; Clone: SC1T2M3; RRID:
AB_2572916

Cat#2855; Clone: 236B4; RRID: AB_560835

Cat#558389; Clone: J112-906; RRID:
AB_647295

Cat#560141; Clone: K14-984; RRID:
AB_1645332

Cat#558316; Clone: J1-223.371; RRID:
AB_647259

Cat#9198; Clone: 87G3; RRID:
AB_2561044

Cat#13820; Clone: D5B10; RRID:
AB_2493181

Cat#4060; Clone: D9E; RRID: AB_2315049

Cat#558393; Clone: K10-895.12.50; RRID:
AB_647284

Cat#12280; Clone: D8E9; RRID:
AB_2797868

Cat#4511; Clone: D3F9; RRID:
AB_2139682

Cat#3007; Clone: 27B7; RRID: AB_490936
Cat#2535; Clone: 40H9; RRID: AB_331250
Cat#5284; Clone: 40A9; RRID: AB_560884

Cat#8753; Clone: D1E9; RRID:
AB_2783561

Cat#558203; Clone: 22/p120 (pT310);
RRID: AB_397057

Cat#8814; Clone: D13A1; RRID:
AB_11127203

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER
Phospho-GSK-3 [S9] CST Cat#5558; Clone: D85E12; RRID:

Phospho-ERK1/2 [T202/Y204]

Phospho-SMAD?2 [S465/467]
Phospho-SMAD3 [S423/425]

GFP

Phospho-MEK1/2 [S221]
Phospho-NDRG1 [T346]

Phospho-S6 [$235/236]

Phospho-Histone H2A.X [S139]
Phospho-DNAPK [S2056]
Phospho-CHK1 [S345]

BD Biosciences
CST

eBiosciences

CST
CST

CST

CST
Abcam
BD Biosciences

AB_10013750
Cat#612359; Clone: 20A; RRID: AB_399648

Cat#8828; Clone: D27F4; RRID:
AB_2631089

Cat#13-6498-82; Clone: 5F12.4; RRID:
AB_11043422

Cat#2338; Clone: 166F8; RRID: AB_490903

Cat#5482; Clone: D98G11; RRID:
AB_10693451

Cat#4858; Clone: D57.2.2E; RRID:
AB_916156

Cat#80312BF; Clone: D7T2V
Cat#ab174576; Clone: EPR5670
Cat#2348BF; Clone: 133D3

CD90 (THY1) BioLegend Cat#328102; Clone: 5E10; RRID:
AB_940390

Cyclin B1 BD Biosciences Cat#554179; Clone: GNS-11; RRID:
AB_395290

Podoplanin BioLegend Cat# 127401; Clone: 8.1.1;
RRID:AB_1089186

RFP eBiosciences Cat#200-301-379; Clone: 8E5.G7; RRID:
AB_2611063

mCherry Thermofischer Cat#M11217; Clone: 16D7; RRID:
AB_2536611

Geminin Santa Cruz Cat#10802-1-AP; Clone: Polyclonal; RRID:
AB_2110945

CHGA Insight Biotechnology Cat#sc-393941; Clone: C-12; RRID:
AB_2801371

Vimentin BD Biosciences Cat#5741; Clone: D21H3; RRID:
AB_10695459

PLKA1 Thermofischer Ca# 37-7000; Clone: 35-206; RRID:
AB_2533335

YAP CST Cat#14074; Clone: D8H1X; RRID:
AB_2650491

Goat Anti-Mouse IgG (H + L) Invitrogen Cat# 15491034

Goat Anti-Rabbit IgG (H + L) Invitrogen Cat# 10348502

Chemicals, peptides, and recombinant proteins

Advanced DMEM F/12 Thermo Cat# 12634010

Growth Factor Reduced Matrigel Corning Cat# 354230

B-27 Supplement Thermo Cat# 17504044

N-2 Supplement Thermo Cat# 17502048

L-glutamine Thermo Cat# 25030081

A83-01 Generon Cat# 04-0014

SB202190 Avantor Cat# CAYM1001039910

HEPES Sigma Cat# H3375

EGF Thermo Cat# PMG8041

Gastrin | Sigma Cat# SCP0152

HyClone Penicillin-Streptomycin Solution Fisher Cat# SV30010

N-acetyl-L-cysteine Sigma Cat# A9165

Nicotinamide Sigma Cat# 0636

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
Insulin-Transferrin-Selenium-Sodium Thermo Cat# 51300044
Pyruvate (ITS-A)

Heat Inactivated Fetal Bovine Serum Thermo Cat# 10082147
TrypLE™ Express Enzyme Thermo Cat# 12604013
Dispase Il Thermo Cat# 17105041
Recovery™ Cell Culture Freezing Medium Thermo Cat# 12648010
1275_|0do-2'-deoxyuridine (*27IdU) Sigma Cat# 17125
Protease Inhibitor Cocktail Sigma Cat# P8340
PhosSTOP™ Sigma Cat# 4906845001
194Cisplatin Standard BioTools Cat# 201194
198Cisplatin Standard BioTools Cat# 201198
Collagenase IV Thermo Cat# 17104019
DNase | Sigma Cat# DN25

Cell Staining Buffer Standard BioTools Cat# 201068
TOBiIs (9-choose-4) Sufi et al., 2021"° N/A
L-Glutathione Sigma Cat# G6529
SN-38 Sigma Cat# H0165
5-FU Merck Cat# F6627
Oxaliplatin Merck Cat# 09512
Cetuximab MedChem Express Cat# HY-P9905
VX-970 Selleckchem Cat# S7102
LGK-974 Peprotech Cat# 1241454
Verteporfin Cayman Chemical Cat# CAY17334
PROTECTOR RNASE INHIBITOR, 10 000 U Sigma/Merck Cat# 3335402001
SUPERase-In RNase Inhibitor (20 U/uL) Thermo Cat# AM2694
Maxima H Minus Reverse Transcriptase Thermo Cat# EP0753
(200 U/pL)

dNTP Mix (10 mM ea)-100 uL Thermo Cat# 18427013
NEB buffer 3.1 10x NED Cat# B7203S
T4 DNA Ligase NED Cat# M0202L
T4 DNA Ligase reaction buffer 10x NED Cat# B0202S
EDTA Solution (BioUltra, for molecular Sigma Cat# 03690-100ML

biology, pH 8.0, ~0.5 M in H20)
Proteinase K

DiYO™-1 FITC dsDNA stain - 1mg
(AAT Bioquest)

NaCl(5 M), RNase-free (100mL)
SDS

Tris 1M pH 8.0 RNase-free 100mL
UltraPure 1M Tris-HCI, pH 8.0-1 L

"Tween 20 Surfact-Amps Detergent
Solution, Formulation: 10% (w/v) aqueous
solution of Tween 20, Properties: Nonionic"

PMSF (Phenylmethylsulfonyl fluoride)
peptidase inhibitor

Dynabeads™ MyOne™ Streptavidin C1
Ficoll PM-400 (20%)

KAPA HiFi HotStart ReadyMix

SPRI Kapa Pure Beads

Invitrogen (Thermo)
Stratech

Thermo
Invitrogen (Thermo)
Thermo
Thermo
Thermo

Thermo

Invitrogen (Thermo)
Merck

KAPA (Roche)
Kapa (Roche)

Cat# AM2546
Cat# 17579

Cat# AM9760G
Cat# 15553027
Cat# AM9855G
Cat# 15568025
Cat# 85113

Cat# 36978

Cat# 65001

Cat# F5415-25ML
Cat# KK2601
Cat# KK8000
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REAGENT or RESOURCE SOURCE IDENTIFIER
Critical commercial assays

Nextera XT DNA Library Preparation lllumina Cat# FC-131-1024

Kit (24 samples)

Qubit™ 1X dsDNA HS Assay Kit Invitrogen (Thermo) Cat# Q33230

Agilent High Sensitivity DNA Kit Agilent Cat# 5067-4626

NovaSeq 6000 S2 Reagent Kit v1.5 llumina Cat# 20028315

(200 cycles)

Deposited data

Mass cytometry data (raw) This paper https://community.cytobank.org/cytobank/
projects/1461

Mass cytometry data (processed) This paper https://data.mendeley.com/datasets/
hc8gxwks3p

scRNA-seq data (raw) This paper GEO: GSE239386

scRNA-seq data (processed) This paper https://zenodo.org/record/8177571

Experimental models: Organoids

PDO 5

Sanger Institute

HCM-SANG-0266-C20

PDO 11 Sanger Institute HCM-SANG-0267-D12
PDO 21 Sanger Institute HCM-SANG-0270-C20
PDO 23 Sanger Institute HCM-SANG-0271-D12
PDO 27 Sanger Institute HCM-SANG-0273-C18
PDO 75 Sanger Institute HCM-SANG-0278-C20
PDO 99 Sanger Institute HCM-SANG-0282-C18
PDO 109 Sanger Institute HCM-SANG-0529-C18
PDO 141 Sanger Institute HCM-SANG-0284-C18
PDO 216 Sanger Institute HCM-SANG-0520-C18
Experimental models: Cell lines
CRC CAFs GFP* Prof. Olivier de Wever, University of Gent. N/A
L cells Shintaro Sato, Research Institute of N/A

Microbial Diseases, Osaka University.
Primary CRC CAFs UCL Biobank, University College London N/A

Hospital.
Oligonucleotides
SPLiT-Seq BARCODE SEQUENCES This paper Table S4
Software and algorithms
FIJI NIH https://fiji.sc/
Cytobank Cytobank, Inc. http://www.cytobank.org

Graphpad Prism 7
OmniGraffle Professional 7
scprep

phate
Trellis

Scanpy
Seurat

zUMIs (Version 2.9.7)
STAR (Version 2.7.3a)

GraphPad Software
The Omni Group

Laboratory of Smita Krishnaswamy,
Yale University

Moon et al.*°
This paper

Wolf et al.>’

Laboratory of Rahul Satija, New York
Genome Center

Parekh et al.””

Dobin et al.>®

https://www.graphpad.com/
https://www.omnigroup.com/omnigraffle
https://scprep.readthedocs.io/en/stable/

https://phate.readthedocs.io/en/stable/

https://github.com/KrishnaswamyLab/
Trellis

https://scanpy.readthedocs.io/en/stable/
https://satijalab.org/seurat/

https://github.com/sdparekh/zUMIs
https://github.com/alexdobin/STAR

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER
Other

u-Slides ibidi Cat#80826
gentleMACS C-Tube Miltenyi Cat#130-096-334
gentleMACS Octo Dissociator Miltenyi Cat#130-096-427

(with Heaters)

EQ™ Four Element Calibration Beads
EQ™ Six Element Calibration Beads
Helios Mass-Cytometer

CyTOF XT Mass-Cytometer

lllumina NovaSeq 6000

Standard BioTools (previously Fluidigm)
Standard BioTools
Standard BioTools (previously Fluidigm)
Standard BioTools

lllumina

Cat#201078
Cat#201245
http://cn.fluidigm.com/products/helios

https://www.standardbio.com/products/
instruments/cytof-xt

https://www.illumina.com/systems/

sequencing-platforms/novaseq.html

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Christo-
pher J. Tape (c.tape@ucl.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability

® Single-cell RNA-seq data have been deposited at GEO and are publicly available as of the date of publication. Accession num-
ber is listed in the key resources table. Raw and gated mass cytometry data have been deposited at Community Cytobank and
are publicly available as of the date of publication. The project URL is listed in the key resources table. Aligned scRNA-seq
count matrices, spliced/unspliced RNA count matrices, integrated Seurat objects, and integrated mass cytometry dataframes
have been deposited at Mendeley and Zenodo and are publicly available as of the date of publication. DOls are listed in the key
resources table.

® All original code to reproduce figures in the manuscript together with supplemental analysis has been deposited at GitHub and
is publicly available as of the date of publication. The repository URL is listed in the key resources table.

® Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

CRC PDO and CRC CAF culture

CRC PDOs were obtained from the Human Cancer Models Initiative (Sanger Institute, Cambridge, UK)'? and expanded in 12-well
plates (Helena Biosciences 92412T) in x3 25 uL droplets of Growth Factor Reduced Matrigel (Corning 354230) per well with 1 mL
of Advanced DMEM F/12 (Thermo 12634010) containing 2 mM L-glutamine (Thermo 25030081), 1 mM N-acetyl-L-cysteine (Sigma
A9165), 10 mM HEPES (Sigma H3375), 500 nM A83-01 (Generon 04-0014), 10 uM SB202190 (Avantor CAYM10010399-10), and 1X
B-27 Supplement (Thermo 17504044), 1X N-2 Supplement (Thermo 17502048), 50 ng mL~ ' EGF (Thermo PMG8041), 10 nM Gastrin |
(Sigma SCP0152), 10 mM Nicotinamide (Sigma N0636), and 1X HyClone Penicillin-Streptomycin Solution (Fisher SV30010), and
conditioned media produced as described in>* at 5% CO,, 37°C. PDOs were dissociated into single cells with 1X TripLE Express
Enzyme (Gibco 12604013) (incubated at 37°C for 20 min) and passaged every 10 days. L-cells for conditioned media production
were obtained from Shintaro Sato (Research Institute of Microbial Diseases, Osaka University, Osaka, Japan). To aid cell-type-spe-
cific visualization and gating, CRC PDO were transfected with H2B-RFP (Addgene 26001). CRC CAFs (+GFP) were a kind gift from
Prof. Olivier De Wever (University of Gent).'®"” Primary CAFs were isolated from consented CRC patients at UCLH via the UCL
Biobank (HTA Licence: 12055, REC ref. 15/YH/0311). All CAFs were cultured in DMEM (Thermo 11965092) enriched with 10%
FBS (Gibco 10082147), and 1X HyClone Penicillin-Streptomycin Solution (Fisher SV30010) at 5% CO,, 37°C.

PDO-CAF drug treatments

PDOs were dissociated into single cells on day 0, and expanded in 12-well plates in Growth Factor Reduced Matrigel (Corning 354230)
with Advanced DMEM F/12 (Thermo 12634010) containing 2 mM L-glutamine (Thermo 25030081), 1 mM N-acetyl-L-cysteine (Sigma
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A9165), 10 mM HEPES (Sigma H3375), 1X B-27 Supplement (Thermo 17504044), 1X N-2 Supplement (Thermo 17502048), 50 ng mL™ "
EGF (Thermo PMG8041), 10 nM Gastrin | (Sigma SCP0152), 10 mM Nicotinamide (Sigma N0636), 500 nM A83-01 (Generon 04-0014),
10 uM SB202190 (Avantor CAYM10010399-10) and 1X HyClone Penicillin-Streptomycin Solution (Fisher SV30010) at 5% CO,, 37°C for
4 days. On day 5, PDOs were starved in Reduced media (Advanced DMEM F/12 containing only 2 mM L-glutamine, 1 mM N-acetyl-L-
cysteine, 10 MM HEPES, 1X B-27 Supplement, 1X N-2 Supplement, 10 mM Nicotinamide, and 1X HyClone-Penicillin Streptomycin So-
lution) at 5% CO,, 37°C. In parallel, CAFs were starved in 2% FBS DMEM with 1X Hyclone-Penincillin Streptomycin Solution. PDOs and
CAFs were seeded on day 6 in 96-well plates (Helena Biosciences 92696T) in 50 uL Matrigel stacks with 300 puL of reduced media. PDO
monocultures are seeded at a density of ~ 1.5 x 10° organoids/well, and CAFs at 2.5 x 10° cells/well, co-cultures were mixed in Matrigel
on ice at the densities described, and seeded together on the plates for polymerization. On day 7, media was replaced with titrated
concentrations of SN-38 (Sigma H0165), 5-FU (Merck F6627), Oxaliplatin (Merck 09512), Cetuximab (MedChem Express HY-
P9905), VX-970 (Stratech), and LGK-974 (Peprotech 1241454) (Table S2) diluted in Reduced media. On day 8, media was replaced
with the corresponding treatments (same as on day 7). After 72 h of co-culture, and 48-h of treatment (day 9), cultures were processed
for TOBis mass cytometry (see below). Verteporfin (Cambridge Bioscience CAY17334) was used at 100 nM as above and added in the
media from the start of the co-cultures, on day 6.

PDO-CAF sample preparation for scRNA-seq

PDO-CAF co-cultures were cultured as described above. After 72 h, organoids were dissociated into single cells using TrypLE
(Thermo 12604013) incubated for 10 min at 37°C on a heated orbital shaker at 300 rpm. Sample preparation was then performed
based on the SPLiT-seq protocol Rosenberg et al.*>° Briefly, cells were filtered 1-2x through a 35 uM filter until in a single-cell sus-
pension and re-suspended in 1 mL of PBS with 1.25 uL Protectorase RNAse inhibitor (Merck 3335402001) and 2.5 uL Superase
RNase inhibitor (Thermo AM2694), which was the standard RNase inhibitor concentration, known as ’+RI’. Cells were then fixed
in 1% (v/v) ice-cold FA/PBS (Thermo 28906) for 10 min on ice. Cells were then permeabilized in 0.2% Triton X-100 +RI for 3 min
on ice. Fixation was quenched with 50 mM Tris-HCL and cells were re-suspended in 0.5x PBS +RI. Cells were counted and 5%
(v/v) DMSO was added before aliquoting cells for freezing in a Mr Frosty at —80°C.

METHOD DETAILS

PDO-CAF TOBis mass cytometry

PDO-CAF co-cultures were analyzed using the TOBis mass cytometry protocol outlined in detail by Sufi and Qin et al., Nature Pro-
tocols, 2021."° Briefly, following drug treatment, PDO-CAF cultures were incubated with 25 uM (5-lodo-2’-deoxyuridine) ('2” IdU)
(Fluidigm 201127) at 37°C for 30 min, and 5 min before the end of this incubation, 1X Protease Inhibitor Cocktail (Sigma, P8340)
and 1 XPhosSTOP (Sigma 4906845001) are added into the media. After the incubation with "7 IdU, protease inhibitors and
PhosSTOP, each well is fixed in 4% PFA/PBS (Thermo J19943K2) for 1 h at 37°C. PDO-CAFs were washed with PBS, dead cells
were stained using 0.25 uM'% Cisplatin (Fluidigm 201194), and PDO-CAFs were barcoded in situ with 126-plex (9-choose-4) TOBis
overnight at 4°C. Unbound barcodes were quenched in 2 mM GSH and all PDO-CAFs were pooled. PDO-CAFs were dissociated into
single cells using 1 mg mL~" Dispase Il (Thermo 17105041), 0.2 mg mL™" Collagenase IV (Thermo 17104019), and 0.2 mg mL™’
DNase | (Sigma DN25) in C-Tubes (Miltenyi 130-096-334) via gentleMACS Octo Dissociator with Heaters (Miltenyi 130-096-427).
Single PDO and CAF cells were washed in cell staining buffer (CSB) (Fluidigm 201068) and stained with extracellular rare-earth metal
conjugated antibodies (Table S3) for 30 min at room temperature. PDO-CAFs were then permeabilized in 0.1% (v/v) Triton X-100/PBS
(Sigma T8787), 50% methanol/PBS (Fisher 10675112), and stained with intracellular rare-earth metal conjugated antibodies for
30 min at room temperature. PDO-CAFs were then washed in CSB and antibodies were cross-linked to cells using 1.6% (v/v)
FA/PBS for 10 min. PDO-CAFs were incubated in 125 nM'®! Ir/193 Ir DNA intercalator (Fluidigm 201192A) overnight at 4°C.
PDO-CAFs were washed, resuspended in 2 mM EDTA (Sigma 03690) in water (Fluidigm 201069), and analyzed using a Helios
Mass Cytometer (Fluidigm) fitted with a *Super Sampler’ (Victorian Airships) or CyTOF XT (Fluidigm) at 200-400 events s~ .

Immunofluorescence microscopy

PDOs and CAFs were expanded as explained previously (days 1-5), on day 6, monocultures and co-cultures were seeded in 8-well
u slides (ibidi 80826) in 10 pL of Matrigel. Cells were cultured in 200 pL of base media containing Verteporfin or vehicle control (water)
and media was refreshed every 24h with the same concentration of inhibitor or vehicle. On day 9, media was removed and cells were
washed with PBS at room temperature for 5 min. Cultures were fixed with 4% PFA/PBS (Thermo J19943K2) for 30 min at 4°C. Cells
were washed twice with PBS and permeabilised with 0.2% Triton X-100 (Sigma T8787) in PBS for 30 min at room temperature. Perme-
abilising solution was removed and cells were incubated in blocking solution, containing PBS with 1% BSA (CST 9998) and 0.3% Triton
X-100/PBS for 30 min at room temperature. PBS was removed from the wells and cells were incubated with primary antibodies diluted in
blocking solution overnight at 4°C. Cells were washed three times with PBS for 5 min and then stained with secondary antibodies and
4’ 6-diamidino-2-phenylindole (DAPI) (Thermo D1306) diluted in blocking solution for 1 h at room temperature, protected from the light.
Cells were washed 3 times with PBS for 5 min and once with ddH,O and mounted with Fluoromount-G mounting medium (Thermo Fisher
00-4958-02). Samples were imaged with a Zeiss LSM880 Confocal Microscope and images were analyzed using FIJI.°®

Phase-contrast microscopy images were generated using an EVOS FL Base Microscope System.
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scRNA-seq library, sequencing, and alignment
The scRNA-seq processing protocol followed the SPLiT-seq protocol®® with minor modifications to the RT oligos and linker oligos.”’
All oligonucleotides and the layout of the barcoding plates used in the protocol can be found in Table S4, reverse transcription Round
1 oligos 01-96 and ligation linking and blocking oligos BC_0340, BC_0335 and BC_0284 were derived from.>” All other oligos were
derived from.>® One complete SPLiT-seq experiment was performed for each PDO studied (two independent SPLiT-seq runs total).
Briefly, cells were thawed, diluted in 0.5x PBS + Rl and 8 plL loaded into 12 uL of RT-mix in the 48-wells of the SPLiT-seq barcode-1
reverse transcription plate and reverse transcription performed with Maxima H Minus Reverse Transcriptase (Fisher Scientific
EP0753) as specified in.> Cells were then pooled and resuspended into NEB 3.1 Buffer (New England BiolLabs B7203S), T4 DNA
Ligase (New England BioLabs M0202L) and Ligase Buffer (New England BioLabs B0202S). Cell-ligase reaction mixture (40 plL)
was then loaded into the 96-well barcode-2 ligation plate (10 uL) and ligation was carried out in a thermocycler for 30 min at
37°C. The round 2 blocking solution (10 uL) was added to each well of the barcode-2 plate and incubated in a thermocycler for
30 min at 37°C. Cells were then pooled and filtered through a 40 uM filter into a basin and 100 puL T4 DNA ligase was added.
50 pL Cell-ligase reaction mixture was then loaded into the 96-well barcode-3 ligation plate (10 pL) and ligation was carried out in
a thermocycler for 30 min at 37°C. The round 3 blocking solution (20 pL) was added to each well of the barcode-3 plate and cells
were then pooled into a new basin and filtered through a 40 uM into a 15 mL tube on ice. Cells were then washed with 4 mL
0.1% Triton X-100 solution and resuspended in 50 pL of 1x PBS +RI. Cells were then counted on a Haemocytometer with Trypan
Blue dye and aliquoted into sub-libraries to determine the number of cells to sequence. Approximately 9000 barcoded cells were
diluted in 25 pL of PBS +RI and combined with 25 uL of 2x Lysis mix with 5 uL of Proteinase K (Thermo AM2546) for each sublibrary.
Lysis was carried out in a thermocyler at 65°C for 1 h and then frozen at —80°C until sequencing library preparation. Complete cell
lysis was confirmed by examining lysates under an EVOS FL fluorescent microscope with DiYO dsDNA binding dye (Stratech 17579).
Following cell barcoding, 2 sublibraries of 9000 cells were carried forwards per PDO (x4 total) for cDNA isolation, amplification, and
library generation. Sublibrary cDNA isolation and library generation steps were performed at 0.5x volume scale to fit into a thermo-
cycler compatible PCR tube for all temperature incubation steps. Sublibrary cell lysates were thawed at 37°C for 5 min in a thermo-
cycler and neutralized the lysis mixture with 0.45 mM PMSF (Thermo 36978) for 10 min at RT. Biotinylated cDNA was captured and
washed with 44 L of MyOne C1 Dynabeads (Thermo 65001) per sublibrary to as described in.>® The template switching reaction was
performed as described using Maxima H Minus Reverse Transcriptase. Sublibrary cDNA was amplified for 5 (first cycling) + 8 (second
cycling) PCR cycles using KAPA HiFi HotStart ReadyMix (Roche KK2601) and subsequently cleaned up using 0.8x SPRI bead size
selection with SPRI Kapa Pure Beads (Roche KK8000). Sequencing libraries were generated using the Nextera XT DNA tagmentation
(Mumina FC-131-1024), followed by PCR amplification with BC_0118 and one of BC_0076, BC_0077 (PDO21) or BC_0079, BC_0080
(PDO27). Tagmented and amplified sequences were purified with a 0.8x SPRI cleanup and cDNA was quantified (Qubit dsDNA High
Sensitivty kit, Thermo Q33230) and the base pair size distribution measured (Agilent High Sensitivity DNA Kit, Agilent 5067-4626).
Libraries were then pooled together and loaded onto onto an lllumina Novaseq (200 cycle NovaSeq 6000 S2 Reagent Kit v1.5).
The libraries were then sequenced with the following format: R1:74-i7:06-i5:00-R2:86. This sequencing yielded a paired end read
structure where the cDNA transcriptomic information was contained in read 1, read 2 was composed of UMI (bp 1-10), BC3 (bp
11-18), BC2 (bp 49-56), BC1 (bp 79-86). Cell barcodes were assigned and reads aligned to the GRCh38 reference genome using
the zUMIs package (Version 2.9.7)° with STAR version 2.7.3a, filtering on a whitelist of permitted cell barcodes and merging cells
that shared the PolyA and Random Hexamer RT1 barcodes from the same RT well plate position with identical L2 and L3 barcodes,
counting reads originating from exons and introns. We collapsed cell barcodes with 2 hamming distance of close cell barcodes and
UMIs with 1 hamming distance of UMI sequence.

QUANTIFICATION AND STATISTICAL ANALYSIS

TOBis mass cytometry data preprocessing

Multiplexed FCS files were debarcoded into separate experimental conditions by using the Zunder Lab Single Cell Debarcoder
(https://github.com/zunderlab/single-cell-debarcoder).'® Debarcoded FCS files were uploaded to Cytobank (Beckman Coulter),
gated for Gaussian parameters, and DNA ('°! Ir/ 12 Ir). Epithelial cells were gated on PCK*™ and EpCAM"*, and CAFs were gated
on Vimentin® and GFP*. Arcsinh transformed values were mean centered across batches before Trellis analysis.

Background in optimal transport for Trellis

Single-cell data are being collected in massively parallel experiments with numerous conditions in order to characterize libraries of
treatments®® including small-molecules®® and gene-perturbations.®® One method that directly generalizes bulk measurements to sin-
gle-cell samples is through the theory of optimal transport and more specifically, the Wasserstein distance.?'2*

Optimal transport is well suited to the formulation of distances between collections of points, as it generalizes the notion of dis-
tances between points to distances between distributions. Intuitively, the distance between distributions should be the minimum
total work to move a pile of dirt located at a source distribution to a target distribution. This framework yields a natural definition of
similarity between experimental conditions, namely two conditions are similar when their collections of cells are not far from
each other.
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These distances aim at answering a deeper question: Which treatments have similar and different effects on the system? We as-
sume that for each treated condition X we have access to an associated control condition X.. When all treated conditions are
measured relative to a single X. we show approaches based on the Wasserstein distance are a valid metric between changes in den-
sities. However, in larger experiments it is impossible to measure all treated conditions within a single batch, and thus treated con-
ditions may have different controls. In this case, we show that Wasserstein-based approaches fail, and show that a generalization to
an approach based on the Kantorovich-Rubinstein norm®" gives a valid metric between changes in densities in this more general
multi-control case.

The Wasserstein metric as a norm
Let u, » be two probability distributions on a measurable space X with ground metric d(x, y) between points (x,y) € &2, let II(u, ») be
the set of joint probability distributions 7 on the space X2 where for any subset w C X, m(wXX) = u(w) and 7(X X w) = »(w). The
a-Wasserstein distance is defined as:

1/a

W4 (u,v) = inf /d(x,y)“n(dx,dy) ) (Equation 1)

e (u.p)
X2
This lifts the ground distance defined between points, to a distance between distributions relative to that ground distance. The
Kantorovich-Rubinstein dual for the Wasserstein distance on arbitrary measures is

sup f(x)du(x) + /g(y)dv(y) (Equation 2)

2
(fg)e CX)"y,

subject to f(x) +g(y) < d(x,y)" for all (x,y) € X2. Most work applying the Wasserstein distance focuses on a = 2°? or more general
convex costs with a> 1,°° due to the provable regularity of the transport map. We instead focus on the case where 0 <a < 1. Here the
transportation map loses regularity but admits a simplification of the dual as when 0 <« < 1, it can be shown that ((2)) achieves opti-
mality when g= —f°' Prop. 6.1 and so simplifies to:

Wy = sup /f(x)(du(x) — dv(x)) : Hg(f)< 1 (Equation 3)
f
X
where
aif. ) = fy)l . } -
Hy(f): = <x§;jepx2{ oy XFEY . (Equation 4)

When 0<a < 1, ((3)) shows that W is the dual of the a-Hblder functions {f : H.(f)< 1} and is a norm, namely

Wa(u,v)= lln — vlwe, (Equation 5)

and is valid for any measures u,» such that [u = [v. Of particular interest is that W is still a norm even for non-positive measures.
X X

This generalization to non-positive measures will form the basis for our Trellis metric between datasets and is known as the Kantor-
ovich-Rubinstein norm®* when applied to differences of non-positive measures.
Definition 1(%%).
The Kantorovich-Rubinstein (KR) distance between measures u,v such that [u = [v with respect to ground distance d as
X X

KRS (w,v): = sup /f(x)(du(x) — dv(x)) : Hy(F)<1 5 = [l — v[lkns. (Equation 6)
X

For simplicity we will drop the o. term and assume « = 1, but all statements apply to 0 <a < 1 unless otherwise specified. Trellis can
be thought of as an efficient implementation of the KR norm over a tree ground distance.

The Wasserstein distance with tree ground distance

Consider discrete distributions 1 = >°7_ ,w;6;and v = Y I ,»;6; where 3 is the dirac function in R and S 4w — v = 0. Then for gen-
eral costs, the Wasserstein distances between p and v can be computed exactly in é(ns) using the Hungarian algorithm,®® and
approximated using a slightly modified entropy regularized problem in é(nz) with the Sinkhorn algorithm.®® However, for some clas-
ses of the ground distance, there exist more efficient algorithms (See Table below). For example, if d is the Euclidean distance in R,
then the Wasserstein distance can be computed in O(n log n) time and is equivalent to sorting.>>®” This special case is exploited in
sliced-Wasserstein metrics®®°° to compute approximate Wasserstein distances in higher dimensions. Another more general class of
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ground distances where there exist efficient algorithms is the class of tree metrics. Let 7 be a rooted tree with non-negative edge
lengths, and let dr be a tree metric on 7. Then for two measures u, v over 7, the Wasserstein distance with respect to dr, Wy, (u,
v), can be computed in O(n) time by exploiting the fact that there is a single path between any pair of masses.’®’? In this case
the 1-Wasserstein distance, also known as the Earth Mover’s Distance (EMD) can be expressed as

Wa, = S wilu(T(x) - »(D(0))| (Equation 7)

xeT

where wy is the weight/distance to the parent node of x and I'(x) represents the set of nodes in the subtree of x. Let P(x,y) be the
unique path between x and y, then I'(x) = {ye T'|x € P(r,y)}. This alternative formulation can be embedded in /1:

Wer = [lv(u) — v(@)ll4 (Equation 8)

where v : u(7)—R" is a function such that v(u), = wyu(I'(x)). Approximating the Euclidean distance with a tree distance can be
done probabilistically with O(d logA) distortion in expectation where A is a resolution parameter.”® Following the result of Charikar,”
this implies that the 1-Wasserstein distance with tree ground distance has the same order distortion. One simple tree construction
that achieves this distortion is known as “Quadtree”, where each node has four children in R? and 29 children in R?.”° We introduce a
new tree construction based on k-means clustering, which we show is a generalization of the Quadtree construction but can be
applied to higher dimensions.

Comparison of Earth Mover’s Distance computation methods separated into super-linear (top) and log-linear methods (bottom) based
on time-complexity of computing k-Wasserstein-nearest-neighbors

Method Exact KR-control Ground cost k-NN-Time
Exact EMD®® Yes No Any O(m?n®)
Sinkhorn EMD®® No No Any 0O(m?n?)
PhEMD?' No No di O(m?T® +nd)
Mean No Yes Any O(kmn)
Diffusion EMD?? No Yes du O(kmn)
Trellis/TreEMD (ours) Yes Yes dr O(kmT +n)

Assumes a dataset of m distributions over n points with (optionally) a tree of size |T| = O(n).

Unpaired and paired Trellis
We start with a more detailed overview of the Trellis algorithm for comparing the effects of drugs on different experimental conditions.
The Trellis algorithm is summarized in the below Algorithm. At a high level Trellis consists of four steps.

(1) Construct a tree partitioning of the data T.

(2) Embed each distribution u/ over T to a vector v(u') such that Trellis(u', /) = ||v(i) — v(i/)||1 to form a Trellis embedding ma-
trix E.

(3) (optionally) Subtract a control distribution embedding v(u.) from each v(u) for paired Trellis embeddings E.

(4) Compute nearest Trellis neighbor distributions exploiting L' geometry using fast-nearest-neighbor graph construction algorithms.

Trellis(X, u, k, [, T 1, €)
Input: nxf data matrix X, nxm distributions u, # of clusters k, and # of levels /, manual tree 7 ,,, and (optional) control mapping ¢ specifying control
distribution set for each distribution.
Output: mx|T| distribution embeddings v
T «BuildTree(X, kI, T m)
for Node 7, with parent edge weight w; in 7 do
V[, i —w;n(T(T;))
end for
if ¢ is null then
return v
end if
for control distribution set u. for each distribution p in ¢ do
v —v[u] — mean,, (v[u))
end for
return v
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We next discuss potential methods of constructing 7', how to embed an empirical distribution to a vector and its equivalence to the
Wasserstein distance, the effect of subtracting a control distribution embedding, and finally how to construct a Trellis-metric nearest
neighbor graph for subsequent visualization with a non-linear embedding algorithm such as PHATE,*® UMAP,”® or t-SNE.”®

Constructing trees on single-cell mass cytometry data

Trellis gives a distance between measures or differences in measures over a tree metric space. Often the data is not associated with
an explicit tree metric, but is naturally hierarchical such as in the case of single-cell cytometry data. Previous methods have used
manual gating, automatic gating, or a combination of the two to hierarchically cluster single-cell mass cytometry data.”” These
methods build trees, but are missing the ‘metric’ component, which can be encoded as the edge weights between parent and child
clusters. We use a simple tree metric where each edge weight for node x is the Euclidean distance between the cluster center
mean(x) and the center of its parent mean(Pa(x)).

w, = || mean(x)—mean(Pa(x))|lz. (Equation 9)

The tree metric between two nodes u,ve T is the sum of the path lengths along the unique path geodesic betweenu andvin T
denoted by Pr(u,v) then

dr(x,x) = Z wy. (Equation 10)

vePr(xy)

Trellis applies to any clustering method; we demonstrate the Trellis framework using a simple combination of manual gating for non-
Euclidean features and automatic gating to approximate Euclidean distances among sub populations. This strategy allows us to
leverage manual gating when appropriate and follows the experimental design, or automatic gating using repeated unsupervised
k-means clustering on the biological splits. This clustering method is of particular interest because in specific settings we can show
that the Trellis metric is topologically equivalent to an Wasserstein distance with Euclidean ground distance in R?. Given a number
of clusters at each level k and a depth h construct a divisive tree-like clustering of the data as described in the below Algorithm. Where
Kmeans is the k-means algorithm with some fixed set of parameters. Interestingly, with a specific setting of k-means we show Trellis is
topologically equivalent to the a-Wasserstein distance with Euclidean ground distance. This is formalized in the following proposition.

BuildTree(X, k,1, T 1)
Input: nxf data matrix X, # of clusters k, # of levels / and (optional) manual base tree 7.
Output: Weighted clustering tree 7.
if /= 0 then
return null
end if
if Tpy is not null then
for leaf node n; in 7, do
T i< BuildTree(X[n],k,/,null)
end for
//Where TreeJoin replaces each of the leaves with the respective subtree
return 7 < TreeJoin(7 m, [Ti])
end if
labels —Kmeans(X)
fori=1tokdo
T < BuildTree(X[labels = i],k,/— 1)
end for
return TH[T,-]ﬁ‘: 1

Proposition 1
Letk = 29, max_iter = 0, data X be normalized suchthat X e [ 1, 1]d with precision A and initialize the k™ cluster at level | with parent
center p as p +2' 7 (Binary(k) — 1 /2). Then there exists constants ¢, C such that

c - Wy, (u,v) < E[Trellis(u, v)] < ClogA-W,., (u,v). (Equation 11)

This can be seen by first noting that this initialization is equivalent to a QuadTree construction in the topological sense. If two points are
clustered together in our construction at some level then they are also clustered together in QuadTree at the equivalent level. In addition,
the edge weights are equivalent up to a constant with the edge weights decaying by 1,/2 at every level in both constructions. Once these
two properties are verified, then we can leverage existing results on QuadTree constructions from’® and”“ to show that the inequalities
hold. We also note that there exist results on the approximate nearest neighbors of this construction in.”> While this relates tree distances
using k-means clustering to the Euclidean ground distance, interestingly, this proposition can be applied more generally to any
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embedding space allowing us to link tree distances to general ground metrics defined over embeddings. For example, k-means is often
also applied in a Laplacian embedding space, which is known as spectral clustering.”® Here it is easy to show that the k-means based tree
construction in Proposition 1 relates the Trellis distance to the Wasserstein distance with spectral ground distance distance. While these
parameters for k-means-clustering work well in low dimensions, the number of clusters scales exponentially with dimension. In practice
we use four levels of four clusters. This expectation holds over arandomly selected initialization of the zero’th level cluster. In practice, we
take the expectation over k-means initializations, building ten parallel trees with different initializations. Trellis can be applied to any tree
metric or ensemble of tree metrics. We have presented a method that allows for combining manual and automatic gating, as well as an
automatic gating method that in expectation is similar to a Euclidean distance. Many other choices for partitioning CyTof data have been
explored in the automatic gating literature.””-”*~®" These automatic gating methods are generally used for partitioning the data not build-
ing atree metric. However, it is simple to convert them into tree metrics by assigning edge weights based on cluster means. This strategy
can be applied to a precomputed tree-like clustering of the data with no knowledge of how those clusters were chosen. This allows for
adaptation of Trellis to different systems where either manual or automatic gating is preferred or already computed.

Trellis given a metric tree

Given a general metric tree 7 of size ||, we first define the embedding function v : (7)) — RI"! which takes distributions defined over
the tree and embeds them in a vector space where the L' between vectors is equivalent to the Wasserstein distance with tree ground
distance. Given edge weights w, and denoting the subtree at node x as I'(x) = {ye T'|x € P(r,y)}, then v is defined element-wise as

vip) = Wip(T(X))]\e 7- (Equation 12)

Intuitively, this can be thought of computing the sum of the mass below each node times the edge weight at each node. The dif-
ference betweenv(u), — v(v), foragiven node xe 7 can be thought of as the amount of work needed to move p to v. If this difference
is positive, then this means that mass of . is greater in the subtree I"(x) than the mass of v. This means that the transport map must
move exactly u(I'(x)) — »(I'(x)) mass upwards from x at cost w,. Adding up these aggregate movements over all nodes gives the
total work needed and is equivalent to the work required by the Wasserstein distance. For our tree construction with the additional
manual tree step, we define the unpaired Trellis distance (uTrellis) as

uTrellis(u,v) = ||v(n) — v(¥)|1- (Equation 13)

We also define a Tree-Earth Mover’s Distance (TreEMD) without the manual tree construction, considering only the k-means con-
struction. TreEMD is similar to previous Tree-based Wasserstein distance constructions for high dimensions.”"”? These two un-
paired distances are comparable to existing methods for computing the Wasserstein distance between distributions. However, these
distances do not take into account control, treatment, batch, and replicate information. Given information on which samples were
taken under similar conditions, we are able to improve the distances with Paired Trellis.

Paired Trellis

To examine the effects of a drug across many conditions it is useful to measure the differences of the treated condition relative to a
matched control. For each sample p and v, let the associated control distributions be u. and v, respectively, and v be defined as
above. Then we define the Paired Trellis metric between changes in distributions as:

pTrellis(u,v): = [v(k) - Viue) — v(v) — v()]l.

Intuitively, the Paired Trellis distance measures the difference in the change in density between treated conditions from their respec-
tive controls. This allows us to control for unmeasured confounders that are implicit in the treated cell population p and v respectively.
Proposition 2
Fortwo distributions u, » with their respective controls u.,v., the Paired Trellis is equivalent to a Kantorovich-Rubenstein distance with
tree ground distance as in ((7))

pTrellis(u,v) = KRq, (b — pe,v — ve). (Equation 14)

Proof. The equivalence of paired Trellis to a Kantorovich-Rubenstein distance can be verified through algebraic manipulation
foIIowing.82 We start with the definition of the Kantorovich-Rubenstein distance and show that this is equivalent to pTrellis for an
arbitrary tree domain 7~ with ground distance dr. Denote the family of Hlder functions under dr as 7 = {f : Hg (f)< 1 &f(r)= 0}
and let A be the (unique) length measure on 7 such that dr(x,y) = A(P(x,y)). Then there exists a unique function g: 7 —[—1,1]

such that f(x) = P(f )g(z),\(dz) = [cprx9(2)A(dz).

J
Jroadutd = [ [tecreng@iezidut = [o@urais). (Equation 15)
T T T

r

For the optimal witness function f*, we have
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9@) = {j1 s (F(ZL)I;"(F(Z)). (Equation 16)
Plugging this equivalence into Equation 6 we have
KR, (1,v) = sgp{ / F00) (du(x) — dv(x)) - 1, (F)< 1} = / w(P@) — »(T(2))|A(d2). (Equation 17)
T T

Therefore, for two measures a, b over 7 such that fa(x)dx = fb dx = c we have that a(I'(r)) = b(I'(r)) = cand forv: 7 —R" as
defined in Equation 12 we have

KRy, (a,b) wa|a — b(T(x))|= |v(@) — v(b)|- (Equation 18)

xe T

substitutinga = 4 — p, and b = v — v yields the proposition since [a = [b= 0 for any distributions u, u., 7, and vc.
T T
We ablate both the pairing and manual tree construction steps in Figure S1. A paired Trellis embedding better separates the effects
of increased drug concentration as compared to TreEMD (Figure S1C) and an unpaired Trellis embedding according to a k-NN clas-
sifier trained with 10-fold cross validation, while also being less sensitive to batch effects by the same metric (Figure S1B).

Nearest Trellis neighbors

Fast nearest neighbor calculation is useful in graph-based methods which use the k-nearest neighbor graph for down stream tasks
such as clustering,® classification, ” or visualization.’®:"*#? In this paper, for example we visualize the space of all experimental con-
ditions using PHATE®® (Figures 3, 4, 5, and 6). For nearest neighbors in normed spaces such as the L2 norm, the geometry of the
space can be utilized for fast exact or approximate nearest neighbor calculation in time scaling logarithmically with the number of
points. For more general distances between objects, these algorithms may not apply. For instance, to compute the k-nearest
neighbor distributions in terms of the Wasserstein distance for m distributions, there is no faster algorithm than computing the Was-
serstein distance to all other distributions then computing the k closest ones in O(m) time. However, the Unpaired and Paired Trellis
versions of the Wasserstein distance for finite data can be expressed as norms in a finite dimensional space, this allows us to apply
fast nearest neighbor algorithms which exploit the induced geometry between distributions. In this case, to find nearest neighbor
distributions we can apply tree-based algorithms such as KD-Trees, or Ball-Trees as used in PHATE® and scikit-learn,® locality sen-
sitive hashing in O(T log m) time for m distributions on trees of size T.

Visualizing Trellis embeddings

Trellis embeds measures p in a metric space endowed with a Tree-Wasserstein distance to vectors v in R7! with the L' metric. These
embeddings can be further embedded into R? using a non-linear dimensionality reduction which relies on fast k-nearest-neighbors
calculations. We make extensive use of Trellis-PHATE, which further embeds Trellis (or paired Trellis) embeddings into 2D for visu-
alization and exploratory analysis. Trellis-PHATE takes the embedding matrix E or E e R™*V"| as a data for the PHATE algorithm with
the additional argument knN_pisT = “manhattan” to encode the L' metric between Trellis embedding vectors. The PHATE algorithm
then gives a PHATE embedding E”"A™ e R™*? which can be visualized as a scatterplot of m points (one per sample) in 2D as shown
in Figures 3, 4, 5, S1, S2, S4, and S5. We note any other dimensionality reduction method could be chosen that can take vectors
embedded in an L' vector space as input such as t-SNE’® or UMAP.”®

Parameter robustness

Trellis has a few important parameters that may affect the resultant output. In Figure S2C, we test the effect of these parameters on
the Trellis distances on the PDO dataset. Specifically, we compare the effects of changing the default number of trees |7|, the depth
of the automatic tree construction /, and the number of clusters used at each level c. We default to 10 trees with 4 levels of 4 clusters.
We measure how much the Trellis distances between samples change relative to this default setting. We test |7| € {1,5,10,50}, /€

{2,3,4,5,6},andce {2,3,4,5,6}. We ablate each parameter individually and measure the correlation in distance matrices between
samples with the Spearman R correlation, and the precision of the 50 nearest neighbors. The Spearman correlation measures the
overall correspondence between distances and remains extremely high at >0.9 for all settings (and >0.98 for all neighboring settings).
Since we are interested in constructing manifolds of samples using non-linear dimensionality reduction, we are particularly interested
in the nearest-neighbor samples, which affect the graph construction. Here the P@50 metric measures for each sample how many of
the 50-nearest-neighboring samples in the reference setting are in the set of 50-nearest-neighbors of the test setting. This can be
summarized in the following equation:

Z |k_argmin (D**") Nk_argmin (D}") |

Pa@k Dtest Dref
(0=, :
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where we use k = 50, i indexes into the samples of the distance matrices D, and the k-argmin returns the set of k indices with the
smallest values. We see a majority (>0.5) of the nearest neighbors are preserved in all settings. This is quite high given the classifi-
cation over >3,000 individual samples, where a random sampling would give P@50 of <0.02.

Related work and time complexity

There are many methods for computing or approximating the Wasserstein distance. In Table we present methods for computing the
nearest neighbor distributions according to the Wasserstein distance split into two groups. Here we consider the time it takes for the
method to compute the k-Wasserstein-nearest-neighbors on a dataset with m distributions over n points with access to a precom-
puted tree over the data of size |T| = O(n). The first three methods are widely used, but do not scale well to large datasets with a
large number of distributions or a large number of points. For the first three methods, the Hungarian algorithm,®® the Sinkhorn algo-
rithm,®® and Phenotypic Earth Mover’s Distance (PhEMD),?" to find the k-nearest-neighbors for a distribution it is necessary to
compute the distance to all m other distributions. This implies that they scale poorly with the number of distributions as illustrated
in S2b. PhEMD saves significant time by only computing the distances between a small set of clusters, however, eventually this
is dominated by an increasing number of distributions. Trellis and TreEMD scale log linearly in the number of points, distributions,
and the size of the precomputed tree 7. Constructing the tree partitioning for Trellis takes é(n) time. Embedding the distributions
takes O(mT) time. Subtracting the control distribution embedding for paired Trellis takes O(T) time. finally, computing the k-nearest
neighbors of the Trellis distance takes O(kmT) time. In total both unpaired and paired Trellis take O(kmT +n) time to compute the k
nearest neighbor distributions. When T < n as in our case, we can see substantial increases in speed in line with simply taking the
Euclidean distance between means of clusters. As T achieves its upper bound of 2n— 1, Trellis has the same complexity as
computing the nearest distribution means and of DiffusionEMD.??

Single-cell RNA-seq data pre-processing and quality control

Each sublibrary’s digital gene expression matrix (DGE) was processed with the splitRtools package (https://github.com/
TAPE-Lab/splitRtools) to annotate each cell barcode with sample-specific and well-specific barcoding SPLiT-seq information.
Downstream analysis was performed in Scanpy.®' Sublibrary DGEs were then merged per PDO and trimmed to exclude low
quality cells based on the following parameters, <1000 UMIs, <20% mictochondrial transcripts, <400 genes detected and out-
liers with high numbers of genes that were >(median(log10(UMI)) + 2*IQR) and likely represented cell doublets. Genes that were
not detected in at least 25 cells were further removed. We used scrublet® to remove neotypic doublets on a per PDO basis with
an expected doublet rate of 3% (n = 244 cells), before merging both PDO datasets. Cells were then normalized by a size factor
of 10000 excluding highly expressed genes for the computation of the size factor if it has more than 5% of the total counts
in at least one cell. The normalised data was then natural log transformed for downstream analysis. An initial exploration of
the data was performed using a coarse SNN-based clustering, scaling the data and performing PCA over 5000 variable genes
and building an SNN graph (n_pcs = 50, n_neighbbors = 100) and clustered the cells using the leiden implementation (res = 0.1)
to identify either PDO or Fibroblast and removed barcoding collisions for monoculture samples that clustered an alternate cell
type (n = 26 cells). This workflow yielded a dataset of high-quality single cells (n = 31572, median UMI = 2552, median genes =
1282) with a low overall mitochondrial fraction of transcripts (median = 0.07). Using this trimmed dataset the clustering proced-
ure was repeated to generate a final cell type assignment.

Single-cell RNA-seq perturbation analysis with MELD

In order to leverage the ability to multiplex multiple replicate samples using SPLiT-seq, MELD was used to identify PDO cellular pop-
ulations for each PDO sample that are enriched or depleted based on co-culture with CAFs.*° MELD is a manifold-geometry based
method of quantifying the effect of an experimental perturbation by estimating the relative likelihood of observing cells in each exper-
imental condition over a graph learned from all cells in a sample. PHATE embeddings of all cells per PDO were used for visualisation
purposes only of the scRNA-seq data. However, if all conditions and replicates were analyzed all together certain samples might be
over-represented in a given manifold and we therefore may lose important enrichment information. To preserve enrichment informa-
tion across replicates one density estimate was generated per experimental replicate and then L' normalization was applied to these
densities within each replicate to normalize the values to sum to 1 across samples within each replicate. We used the average likeli-
hood of the PDO co-culture samples as the measure of perturbation.

Generation of single-cell RNA-seq expression signature scores

All gene expression signature scores were computed as previously described in®® by defining an input set of literature curated signa-
ture genes (Table S5) and comparing their average relative expression to that of a sampled control gene set.?®*2:%5:87-°0 The control
gene set was randomly sampled to mirror the expression distribution of the genes used for each binned expression value. proCSC
and revCSC gene signatures were derived from curated literature sources describing these transcription programs and where genes
signatures were derived from murine systems, gene homologs were identified with biomart.”' Gene signatures were further filtered to
keep genes that were detected in at least 320 PDO 21 cells or 50 PDO 21 cells for the enteroendocrine signature before computing
the signature score. Gene expression signature score trends over MELD score for each replicate were computed using a linear
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generalized additive model (GAM) of 10 cubic splines using the python package pyGAM.* The average GAM model value of the three
replicates was used for visualization along with the upper and lower 95% confidence interval.

Single-cell RNA-seq VR landscapes

Valley-Ridge (VR) scores were computed as described in Qin & Cardoso Rodriguez et al.?° The VR score is a cellular metric computed
on a per sample (mono-culture or co-culture) and cluster (defined with Leiden clustering at res = 0.2) labels and is defined as the
weighted sum of the two components: CCAT signalling-entropy® and RNA velocity vector length.”* CCAT has been defined as
an estimate for a cell’s Signaling Entropy Rate, which has been shown to be a robust metric for cellular pluripotency.®*°%°¢ RNA ve-
locity vector lengths are the modulus of the inferred RNA velocity vectors as determined by a cell’s ratio of spliced and unspliced
mRNA, thus measuring the overall rate of transcriptomic change undergone by a cell. In brief, the CCAT scores and RNA velocity
vector lengths were computed on all epithelial cells from the PDO21 mono- and co-culture conditions. At a cluster’s center, the
VR score is solely determined by the median CCAT. However, the VR scores at the cluster periphery are augmented by weighting
the inverse of scaled RNA velocity component and the scaled distance from the cluster center. We use the inverse of the velocity
vector length to model rates of local transcriptional change, so that transitions substantiated by high RNA velocities do not locally
increase landscape elevation at a cluster’s boundary, with the opposite happening for low velocity cells. To generate the landscapes
in Figure 7 we projected the VR scores into the PHATE embedding of PDO21 cells (Figure 6A) using the 3D rendering software SideFX
Houdini and Maxon Redshift. After the VR scores were used to interpolate the landscape surface, individual cells were overlaid on the
surface and colored according to their relative expression of MKI67. A full step-by-step protocol for generating VR landscapes can be
found in Qin & Cardoso Rodriguez et al.?®
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Figure S1. Trellis ablation test, related to Figure 2
(A) Comparison of Trellis’ ablated algorithm into L" distance over k-NN clusters, Wasserstein distance over automatic gating (Unpaired TreEMD), Kantorovich-

Rubenstein (KR) norm over automatic gating (Paired TreEMD), Wasserstein distance over tree partitions of the data by cell state (Unpaired Trellis), and KR norm
tree partitions of the data by cell state (Paired Trellis).

(B) k-NN accuracy score on acquisition batches. A higher k-NN accuracy infers a higher batch separation effect by the method.

(C) k-NN accuracy score on drug concentrations vs. controls. Paired Trellis improves drug treatment effect detection.

(D) Schematic representation of the comparison across methods. One-way ANOVA, *** < 0.0001 (n = 10).
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Figure S2. Comparison of Trellis to alternative methods and datasets, related to Figure 2
(A) Trellis performance compared to existing methods such as L distance of differential abundance of cells in clusters, PhEMD, and Diffusion EMD. Alternative
methods fail to capture therapeutic effects and cannot identify CAF protection.
(B) Trellis speed and scalability relative to alternative EMD methods.

(C) Analysis of Trellis sensitivity to its three components—number of trees, clusters, and levels—demonstrates a strong stability when manipulating these

components.

Cell

(D) Trellis analysis of murine immune cell atlas. Unpaired TreEMD, Paired TreEMD (paired to bone marrow control), Unpaired Trellis (using immune cell-type
branches), and Paired Trellis (using immune cell-type branches, paired to bone marrow control) analysis of murine immune atlas mass cytometry data (from
Spitzer et al.”’; 202 single-cell datasets). All tree-based methods resolve tissue-specific immune profiles, but Paired Trellis also captures broad hematopoietic
development trajectories and reveals mouse-strain-specific differences (specifically regarding strain-specific lymph node profiles).
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Figure S3. Trellis detection of PDO and CAF cell-state drug responses, related to Figures 2 and 3

(A) Single-cell density PHATEs of PDO 75 treated with NH,OH vehicle control or 5-FU.

(B) Sankey diagram showing data from (A) distributing through the cell-state Trellis layout in Figure 2 (terminal leaves not shown).

(C) PDO 99 treated with H,O vehicle control or Oxaliplatin.

(D) Sankey diagram showing data from (C) distributing through the cell-state Trellis layout in Figure 2 (terminal leaves not shown).

(E) Trellis cell-state branch thresholds for PDO 21 (batch-mean centered and arcsinh transformed intensities). Thresholds are designed based on prior knowledge
and adjusted manually following classical cytometry gating by setting the limit of a population on the edges.

(F-H) Trellis-PHATE of PTM profiles from PDO-CAF cultures fails to identify (F) drug-specific CAF responses, (G) patient-specific CAF drug responses, or
(H) microenvironment-specific CAF drug responses.

(I) Fold-changes to vehicles of pRB [S807/S811], cPARP [D214], and pHH2AX [S139] fail to resolve drug- or patient-specific shifts in cell state.
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Figure S4. PDO Trellis-PHATE cell-state distributions, related to Figures 3 and 4

(A) Cell-state proportions (Z score) across 1,680 single-cell PDO cultures reveal PDO-specific mechanistic drug treatment effects.

(B) Individual patient distributions on Trellis-PHATE embedding show patient-specific mechanisms of response: chemosensitive PDOs spread across the PHATE
1, activating mechanisms of DNA damage and/or apoptosis, while chemorefractory PDOs show similar positions on the Trellis-PHATE embedding to their internal
controls, suggesting minimal responses to treatments.

(C) Trellis-PHATE plots of patient metadata. Patient-specific treatment effects do not align with MSS/MSI, tumor stage, tumor location, MAPK pathway muta-
tions, or APC mutations. High baseline cell-cycle activity correlates with broad chemosensitivity.

(D) Quantification of the correlation between PDO metadata information and PDO cell state. Unpaired ¢ test, *** < 0.0001.

(E) Quantification of 5-FU chemocytotoxicity in low- and high-cycling PDOs.
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Figure S5. Patient-specific regulation of cell state and DNA damage, related to Figure 4
(A) Trellis tree containing cell-state branches with a pHH2AX [S139] DNA double-strand break detection layer.
(B) Sankey diagram showing NH,OH vehicle control and 5-FU treatment of PDO 23 distributing through the cell-state and DNA-damage-driven Trellis branches in

(A) (leaves not shown).

Cell

A H ©O N~
Treatment Cell-State (Z-Score)

(C and D) Trellis-PHATE of PDO 23 treatments analyzed using (C) cell-state branches alone or (D) cell-state branches and pHH2AX [S139] detection layer. The
DNA-damage detection layer improves resolution of 5-FU on-target treatment effect. Solid arrows refer to strong treatment effect; dashed arrows refer to partial

treatment effect.

(legend continued on next page)
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(E) Patient-specific distribution of cells within Trellis branches reveals mechanistic cell-state shifts and DNA damage upon drug treatments. Treatment cell state
quantifies the fold change of the proportion of cells/cell state over the controls for each treatment (Z score). DNA damage is quantified by the fold change of the
proportion pHH2AX" cells over the controls.

(F) PDO cells in S-phase following 100 nM SN-38.

(G) PDO cells in S-phase following 200 nM Oxaliplatin.

(H) PDO cells in M-phase following 200 nM 5-FU. PDOs with a significant >1.5-fold increase in apoptosis are indicated in red.

(I) PDO apoptosis following treatment with SN-38 and/or Berzosertib. Only MSI PDOs are sensitive to ATR inhibitors either alone (PDO 27) or in combination with
SN-38 (PDOs 99 and 216). Unpaired t test using three replicates, *** < 0.0001, ** < 0.001, * < 0.01.
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Figure S6. CAF-induced PDO cell-state shifts, related to Figures 5 and 6

(A) PDO SN-38-induced apoptosis +/— CAFs. Partial CAF protection is defined as a reduction in drug-induced apoptosis in co-culture relative to monoculture, yet

apoptosis is still >1.5-fold over control and statistically significant.

(B) Fold difference to monoculture of PDO cells in S-phase when co-cultured with CAFs.
(C) Gene counts per cell for x18 scRNA-seq datasets.

(D) Single-cell PHATE of PDO 21 and PDO 27 +/— CAFs scRNA-seq.

(legend continued on next page)
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(E) Enteroendocrine gene signature over MELD score.

(F) Single-cell PHATE of PDO 21 colored by proCSC, revCSC, and enteroendocrine gene signatures.

(G) Single-cell PHATE of PDO 21 colored by MKI67.

(H) procCSC and revCSC signatures in PDO 27 (low CAF protection) +/— CAFs. Unpaired t test.

(I) SN-38 induces on-target DNA double-strand breaks (DSBs) (pHH2AX*) in PDO 21 irrespective of CAFs.

(J) PDO 21 chemoprotection via different primary CAFs derived from CRC patients.

(K) Fold difference to monoculture controls of PDO cells in S-phase when co-cultured with primary CRC CAFs. Unpaired t test, *** < 0.0001, ** < 0.001, * < 0.01. ns,
not significant.

(L) PDO 21 morphology changes when co-cultured with different primary CRC CAFs.
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Figure S7. YAP inhibition of CAF-induced chemoprotection, related to Figure 6

(A) Verteporfin does not alter SN-38-induced on-target DNA-double strand breaks (pHH2AX") in PDOs.
(B and C) Verteporfin does not alter (B) S-phase or (C) apoptosis in CAFs. Unpaired t test; ns, not significant.

(D) CAF-induced nuclear translocation of YAP (red) to PDO nucleus (white) is reversed by Verteporfin. Scale bar, 25 um.

(E) PDO 21 morphology +/— CAFs, +/— Verteporfin, +/— SN-38. Verteporfin reverses CAF-induced cyst-like morphology. Scale bar, 200 um.
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