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SUMMARY
Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening
technologies cannot reveal drug responsemechanisms or how tumormicroenvironment cells alter therapeutic
performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-
translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal
cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell
resolution. To compare patient- andmicroenvironment-specific drug responses in thousands of single-cell da-
tasets, we developed ‘‘Trellis’’—a highly scalable, tree-based treatment effect analysis method. Trellis single-
cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in
chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell
PTM signaling. We find that CAFs can regulate PDO plasticity—shifting proliferative colonic stem cells
(proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.
INTRODUCTION

Tumors are heterogeneous cellular systems comprising can-

cer cells, stromal fibroblasts, and various immune cells. Tu-

mor phenotypes are regulated by cell-intrinsic mutations

within cancer cells and cell-extrinsic cues from the tumor

microenvironment (TME).1 Colorectal cancer (CRC) kills >0.9

million people per year worldwide2 and is characterized by

high inter-patient genetic heterogeneity and patient-specific

responses to therapy.3 Cancer-associated fibroblasts (CAFs)

are one of the most profuse cell types in the CRC TME,4

and high CAF abundance correlates with poor overall survival5

and influences response to both targeted therapies6 and

radiotherapy.7 Unfortunately, how CAFs regulate cancer cell
5606 Cell 186, 5606–5619, December 7, 2023 ª 2023 The Author(s).
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therapy responses in a patient-specific manner is poorly

understood.

Patient-derived organoids (PDOs) are personalized cancer

models8 that canmimic their parent tumors’ response to chemo-

therapies,9 with several studies proposing PDOs as personalized

avatars of drug response.10 However, epithelial PDO monocul-

tures cannot model the influence of stromal cells on therapy

response. PDOs can be co-cultured with stromal and immune

cells to recapitulate elements of the TME,11 but how this alters

PDO phenotypes and drug response mechanisms is unknown.

Moreover, PDO drug sensitivity is typically measured using

bulk live/dead viability assays12 that cannot resolve cell-type-

specific data from co-cultures and provide no mechanistic

insight into drug responses.13
Published by Elsevier Inc.
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Figure 1. TOBis mass cytometry single-cell PTM PDO-CAF drug screening

(A) Multidimensional array of 10 CRC PDOs (7 microsatellite stable [MSS], 3 microsatellite unstable [MSI]) treated with 11 titrated drug combinations either alone

or in co-culture with CRC CAFs in three replicates (Rep) (2,520 3D cultures).

(B) PDO-CAFswere barcoded in situ using TOBis; stainedwith 44 rare-earthmetal antibodies spanning cell-type identification, cell state, DNA-damage response,

and PTM signaling; and analyzed by mass cytometry (3,360 single-cell PTM datasets).

See also Tables S1, S2, and S3.
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To overcome these limitations, here we developed a highly

multiplexed Thiol-reactive Organoid Barcoding in situ (TOBis)

mass cytometry14,15 platform to study how anti-cancer therapies

regulate the post-translational modification (PTM) signaling,

DNA-damage, cell-cycle, and apoptosis response of CRC

PDOs in the presence or absence of CAFs at single-cell

resolution across >2,500 PDO-CAF cultures. To compare

single-cell drug responses from thousands of cell-type-specific

datasets, we developed ‘‘Trellis,’’ a tree-based treatment effect

analysis method that derives generalized optimal transport dis-

tances between samples after normalizing by their own controls.

TOBismass cytometry and Trellis single-cell screening revealed

that drug-induced PTM signaling responses are PDO-specific

and demonstrated that CAFs shift epithelial cells toward a

slow-cycling revival stem cell fate to protect CRC cells from

chemotherapy. CAF chemoprotection could be rationally

reversed using insights from single-cell PTM data, demon-

strating the utility of mechanism-focused drug screening for

overcoming therapy resistance. These results illustrate the func-

tional intertumoral heterogeneity of patient-specific drug

responsemechanisms and highlight the role of TME cells in regu-

lating drug resistance plasticity in cancer.

RESULTS

Patient- andmicroenvironment-specific single-cell PTM
PDO-CAF drug screening
To study how CAFs regulate patient-specific drug response

signaling, we established a high-throughput 3D organoid co-cul-

ture system comprising 10 CRC PDOs12 (Table S1) cultured

either alone or with CRC CAFs.16,17 Organoid cultures were

treated in triplicate with either vehicle control or titrated combi-

nations of clinical therapies 5-fluorouracil (5-FU), SN-38 (active

metabolite of Irinotecan), Oxaliplatin, and Cetuximab (EGFR in-
hibitor). LGK974 (PORCN inhibitor)12 was also studied to inves-

tigate PDO-CAF WNT signaling and Berzosertib (VX-970), as

ATR inhibition has been hypothesized to synergize with DNA-

damaging agents in CRC18 (Figure 1A; Table S2). Following

treatment, each culture was fixed in situ, stained with thiol-reac-

tive monoisotopic TOBis barcodes,15 pooled, dissociated into

single cells, stained with a panel of 44 rare-earth metal anti-

bodies (identifying cell type, cell state, DNA damage, and PTM

signaling; Table S3), and analyzed by mass cytometry

(Figure 1B). Following multiplexed debarcoding19 and cell-

type-specific gating, we obtained >10 million PDO cells and

>15 million CAFs from 2,520 3D cultures (3,360 cell-type-spe-

cific single-cell PTM signaling datasets).

Trellis: Tree-based single-cell treatment effect analysis
To understand how PDO-CAF communication affects therapeu-

tic response, we face the challenge of comparing 3,360 single-

cell datasets. To address this, we use optimal transport, a

rigorous mathematical framework for comparing large high-

dimensional datasets.20 The idea of optimal transport is to treat

high-dimensional datasets as piles of dirt and compute the cost

of transporting one pile to the other in the most efficient way

possible. This cost is then considered the ‘‘earth mover’s dis-

tance’’ (EMD) between two data samples. However, there are

several analytical challenges when applying optimal transport

to large single-cell screening data. First, existing EMD methods

use the manifold structure of transcriptomic technologies,

embodied as an affinity of nearest neighbor graphs to define

EMD based on manifold distances.21–23 However, in cytometry

data, antibody panels are designed to delineate specific cell

types and cell states and analyzed using gating strategies that

follow a tree structure. This leads to a data topology better

described by tree distances rather than a smooth manifold or a

graph discretization of such a manifold. Second, our single-cell
Cell 186, 5606–5619, December 7, 2023 5607



Figure 2. Trellis: Tree-based single-cell treatment effect analysis

(A) Single cells from control and variable conditions are distributed through a decision tree based on markers selected based on prior biological knowledge and

experimental design. This decision tree supervenes upon randomized k-means clustering nodes. The first decision tree weighs cytometry gating strategies, while

randomized hierarchical clustering leverages latent parameters. In each node of the tree, variables are subtracted from paired controls to create a multi-scaled

differential matrix that scales to thousands of conditions.

(B) Single-cell density PHATE embeddings of PDO 21 treated with DMSO or SN-38 (irinotecan). SN-38 results in cell-cycle exit (IdU�, pHH3�, and pRB� ) and
induction of apoptosis (cPARP+).

(C) Trellis analysis for single-cell PDO on-target drug responses leveraging cell-state branches and randomized PTM andDNA-damage parameters. Paired Trellis

scores are calculated per PDO by comparing untreated controls to drugs for both mono-cultures and co-cultures. CB1, Cyclin B1.

(D) Sankey diagram showing data from (B) distributing through the Trellis layout in (C) (terminal layer of clusters not shown).

See also Figures S1–S3.

Algorithm 1. Trellis algorithm for comparing single-cell treat-
ment effects

1: Input: Dataset containing single-cell expression values for all con-

trols and variables.

2: Output: Distances between treatment effects to their relative

controls.

3: Build decision tree incorporating experimental design on known

markers followed by random construction with edge weights w for

each node.

4: Embed each condition to a vector with each element as proportion

of cells in intermediate node or leaf forming abundance matrix A.

5: Multiply element-wise w5A to calculate Trellis embeddings E.

6: (optionally) Subtract relevant control vectors for paired Trellis em-

beddings ~E.

7: return Relevant L1 distances between embeddings.
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PDO-CAF screen compares independent systems (e.g., pa-

tients, microenvironments, and/or technical batches) perturbed

by common drug treatments. To derive a common treatment

effect across all 3,360 conditions, we therefore need to compare

each drug treatment to its own internal control in a com-

mon space.

To solve these problems, we developed Trellis, a method that

embeds cytometry data into a partially randomized decision tree

that accounts for control samples and defines a generalized

EMD distance on a random forest of such trees (Figure 2A). First,

Trellis leverages the design of cytometry experiments by using a

fixed gating tree that captures hierarchies inherent in the marker

panel. Designing a decision tree using selected markers (e.g.,

cell type or cell state) enables an automated assessment of

cell populations that mimics human intuition in the design of

the experiment and subsequently its interpretation. Trellis can

leverage gating strategies that use single or multiple trees (Algo-

rithm 1, line 3). Following the supervised decision tree, data

points are hierarchically clustered based on the intensities of

the remaining markers. Trellis then creates embeddings of all

conditions by projecting data points onto these decision trees

and thus populating the nodes and leaves of the trees with
5608 Cell 186, 5606–5619, December 7, 2023
data densities (Algorithm 1, lines 4 and 5). Second, ‘‘paired’’

Trellis allows variables to be compared to controls by subtract-

ing their relative densities at all intermediate nodes and leaves

(Algorithm 1, line 6; Figure 2A). Finally, Trellis allows an EMD to

be defined on these measures, which are not necessarily

positive (due to control subtraction), by simply measuring a
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weighted distance between the node populations. Therefore,

paired Trellis enables thousands of single-cell samples to

be compared to their internal controls in a common space—

enabling clear distinction of individual treatment effects

in paralleled high-dimensional single-cell screening data

(Figure S1).

Trellis pairing treatments to controls enables paralleled visuali-

zation of treatment effects (Figure S1A) and reduces batch effects

in serially acquired single-cell screening data (Figure S1B). Exper-

imentally designed branches further resolve biologically important

treatment effects compared to fully randomized trees (FiguresS1C

and S1D). Trellis outperforms existing single-cell treatment

effect methods (Figure S2A), and the tree domain structure

enables thousands of single-cell datasets to be analyzed rapidly

(FigureS2B)andaccurately (FigureS2C). Experimentallydesigned

branches are customizable to different biological questions,

and Trellis recapitulates features of published datasets (Fig-

ure S2D). Trellis is therefore a fast, scalable, and accurate treat-

ment effect analysis method for analyzing large-scale single-cell

cytometry screening data. Further details on Trellis’ scalability,

theoretical soundness, and robustness can be found in STAR

Methods.

Trellis single-cell analysis of PDO cell state and PTM
signaling
Anti-cancer drugs typically induce major shifts in cell cycle

and apoptosis that can be detected by mass cytometry. For

example, SN-38 inhibits topoisomerase 1,24 resulting in

S-phase blockage (IdU�), cell-cycle exit (pRB�), and induction

of apoptosis (cPARP+) (Figure 2B). Similarly, 5-FU blocks nucle-

otide biosynthesis by inhibiting thymidylate synthase,25 which

subsequently stalls S-phase entry, whereas oxaliplatin induces

ribosome biogenesis stress to block mitotic progression26

(Figures S3A–S3D). Capturing shifts in cell state is therefore

crucial for understanding on-target drug responses in single-

cell data.

Inmass cytometry, cell state is identified by hierarchical gating

of pRB, IdU, pHH3, Cyclin B1, and cPARP/cCaspase-327,28 and

is therefore well suited for Trellis branches. For cell-type-specific

analysis of PDO-CAF co-cultures, we designed a Trellis tree us-

ing a cell-state-driven decision tree that supervenes upon ran-

domized DNA damage and PTM signaling hierarchical clustering

(Figures 2C and S3E). When cell-state markers are used for the

decision tree, the subsequent unsupervised clustering tree is

only performed with PTM and DNA-damage markers. This tree

topology sensitizes Trellis to canonical on-target drug-induced

shifts in cell cycle and apoptosis while also leveraging latent

changes in DNA damage and PTM signaling (Figures 2D and

S3A–S3D).

Trellis analysis of cell-type-specific PDO-CAF drug
responses
We used paired Trellis to analyze 3,360 (1,680 PDO, 1,680 CAF)

single-cell PTM profiles (>25 million single cells; Figure 3A),

exploring drug-, patient-, and microenvironment-specific ther-

apy responses for both PDOs (Figures 3B–3D) and CAFs

(Figures S3F–S3I). Since paired Trellis performs pairwise normal-

ization to internal controls, all controls group on the left side of
the PHATE (potential of heat diffusion for affinity-based transition

embedding) graph (Figures 3B and S1A), and treatments embed

relative to their controls, depending on their distribution through

the Trellis tree. This enables therapeutic effects to be visualized

across PHATE 1 and mechanistic response in PHATE 2

(Figure S4A).

If the samedrugwere to have an equal effect on all PDOs, Trellis

would group each condition by drug type. However, we found that

PDO treatment effects are characterized not by drug type, but by

patient-specific signaling responses (Figures 3C and S4B). We

observed four patient-grouped responses to 5-FU, SN-38, and

oxaliplatin chemotherapies: (1) broadly chemosensitive with high

apoptosis (PDOs 21 and 75), (2) broadly chemosensitive with

apoptosis and a strong DNA damage response (PDOs 23 and

27), (3) anecdotally chemosensitive (i.e., only apoptoticwith a spe-

cific drug; PDOs 99 and 109), and (4) chemorefractory with mini-

mal apoptosis and low DNA damage response (PDOs 05, 11,

141, and 216; Figures 3C and S4B). Cetuximab, Berzosertib,

and LGK974 generally had modest effects on PDO cell state

and PTMs relative to chemotherapies (Figure 3B). While PDOs

demonstrate clear patient- and microenvironment-specific drug

responses, CAF signaling did not cluster by patient or drug

(Figures S3F–S3I), suggesting chemotherapies mainly alter the

cell state, DNA damage, and PTM profiles of PDOs, not CAFs.

Intriguingly, Trellis also revealed CAFs protect some PDOs from

chemotherapies (Figure 3D).

PDO drug signaling responses are patient-specific
PDOs have been proposed as personalized avatars of drug

response,10 but how clinical treatments mechanistically alter

patient-specific PDO biology is not well understood. To explore

patient-specific drug response signaling, we updated the Trellis

decision tree by combining cell-state parameters with a pHH2AX

[S139] detection layer to enrich on-target DNA double-strand

breaks and analyzed each patient drug response in parallel

(Figures S5A–S5D). Patients continue to display either broad

(PDOs 21, 23, 27, and 75) or anecdotal (PDOs 99 and 109)

chemotherapeutic sensitivity and multiple examples of drug

insensitivity (Figure 4A).

Unlike univariate live/dead metrics used in traditional drug

screens, TOBis mass cytometry can detect on-target treatment

effects that do not result in cell death. For example, we observed

that SN-38 induces on-target M- and S-phase blockage and

double-strand breaks in both PDO 21 and PDO 05, yet only

PDO 21 translates genotoxic stress into apoptosis (Figure 4B).

Similarly, in PDOs 23 and 99, 5-FU and SN-38 result in a large

DNA damage response and stalled mitosis, respectively, but

not apoptosis (Figure S5E). 5-FU and SN-38 can clearly induce

double-strand breaks and cell-cycle arrest in these PDOs, but

they do not translate genotoxic replication stress into cell death.

In fact, chemotherapies display on-target mitotic arrest in nearly

all PDOs (83%), but only a subset of patient and treatment com-

binations trigger apoptosis (40%; Figures S5F–S5H). This sug-

gests on-target drug responses are common in CRC PDOs but

are often insufficient to induce cell death.

The patient-specific drug sensitivity demonstrated by several

PDOs reinforces the notion that PDOs could be used to identify

drugs uniquely potent to an individual’s cancer. For example, in
Cell 186, 5606–5619, December 7, 2023 5609



Figure 3. Trellis analysis of single-cell PDO-CAF drug responses

(A) Trellis-PHATE of 1,680 PDO single-cell PTM profiles (1 dot = 1 organoid culture comprising >5,000 single cells) colored by apoptosis with representative

single-cell density embeddings of PDO 21 + DMSO or + SN-38. Single-cell plots are calculated with PHATE on 34 dimensions (raw intensities of cell state, PTMs,

and DNA-damage markers), while Trellis plots (1 dot = 1 condition) are calculated by PHATE based on 504 dimensions (paired abundance matrix of cells from

each condition along each node of the tree).

(B) PDO drug-treatment-specific responses. Controls used for pairing group on the left, with treatment effects spreading across PHATE 1 and response

mechanisms resolving across PHATE 2.

(C) Patient-specific drug responses illustrate different chemosensitive mechanisms and chemorefractory patients.

(D) CAFs provide patient-specific chemoprotection from 5-FU, SN-38, and oxaliplatin.

See also Figures S3 and S4.
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PDO 99, 5-FU blocks mitosis and SN-38 causes a large DNA

damage response—yet neither chemotherapy induces sub-

stantial apoptosis. However, when treated with oxaliplatin,

PDO 99 exits the cell cycle and enters apoptosis (Figure S5E).

Unlike 5-FU and SN-38, oxaliplatin does not kill cells directly

through blocking S-phase, but rather via inducing ribosome

biogenesis stress.26 PDO 99 appears refractory to cytostatic

stress but hypersensitive to ribosome biogenesis stress.

Similarly, ATR inhibitors block single-stranded DNA damage

response and typically synergize with DNA-damage-inducing

drugs.18 However, we find Berzosertib only increases SN-38-

induced apoptosis in microsatellite unstable (MSI) PDOs (Fig-

ure S5I), suggesting ATR inhibitors might only be effective in

MSI CRC patients.

Chemosensitive PDOs have distinct cell-intrinsic PTM
signaling
We next sought to understand features common to chemosensi-

tive and chemorefractory PDOs. Therapeutic response does
5610 Cell 186, 5606–5619, December 7, 2023
not correlate with MSI/MSS (microsatellite stable) status,

clinical staging, anatomical location, or KRAS/APC genotypes

(Figures S4C and S4D; Table S1). However, we found that base-

line PDO cell state and PTM signaling are patient-specific and

align with chemosensitivity (Figures 4C, S4C, and S4D). Chemo-

sensitive PDOs 21, 23, 27, and 75 are highly proliferative at base-

line and experience canonical S-phase blockage, increased

DNA damage, and apoptosis when treated with both 5-FU and

SN-38. In contrast, chemorefractory PDOs are slow-cycling

(Figure 4C).When treatedwith 5-FU, SN-38, and oxaliplatin, che-

morefractory PDOs undergo a reduction in S-phase and blocked

M-phase consistent with on-target drug responses but generally

elicit a lower double-strand break response compared to che-

mosensitive patients and do not activate PARP or Caspase-3

(Figures 4D and 5E). This suggests that even chemorefractory

PDOs experience on-target drug responses, but their slow

mitotic signaling flux means drug-induced cytostatic stress

cannot trigger widespread DNA damage and apoptosis. We

found that chemorefractory PDOs typically have high levels of



Figure 4. PDO drug response mechanisms are patient-specific and align with cell-intrinsic cell state and PTM signaling

(A) Trellis-PHATE patient-specific PDO drug responses (840 single-cell PTM datasets).

(B) Patient-specific distribution of cells within Trellis branches reveals on-target cell-state shifts upon drug treatments. Treatment cell state quantifies the fold

change of the proportion of cells/cell state over the controls for each treatment (Z score). DNA damage is quantified by the fold change of the proportion of

pHH2AX+ cells over controls.

(C) Trellis-PHATE resolves high IdU/pRB (red outline) and low IdU/pRB (blue outline) cell-intrinsic cell state PDOgroups (colored by proportion of cells in S-phase).

(D) SN-38-induced apoptosis in low IdU/pRB and high IdU/pRB PDOs. Unpaired t test, *** < 0.001.

(E) TreEMD-PHATE of cell-intrinsic PTM signaling nodes demonstrates PTMs up-regulated in chemorefractory PDOs.

See also Figure S5.
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cell-intrinsic pSMAD2/3, pSMAD1/5/9, pMKK4, pBAD, pBTK,

and pNF-kB signaling (Figure 4E)—suggesting these pathways

relate to a chemorefactory cell state. In summary, TOBis mass

cytometry and Trellis reveal that on-target drug activity is

common in CRC PDOs (even in chemorefractory PDOs), but

cytotoxicity is patient-specific and correlates with cell-intrinsic

PDO cell states and PTM signaling.
CAF-chemoprotected PDOs have altered PDO PTM
signaling
CAFshavebothpro- andanti-cancer roles across a variety of solid

tumors, but to what extent these effects are patient-specific is

poorly understood.4 To functionally explore the role of CAFs in pa-

tient-specific CRC PDO drug responses, we performed paralleled

Trellis analysis of PDO monocultures and PDO-CAF co-cultures
Cell 186, 5606–5619, December 7, 2023 5611



Figure 5. CAFs chemoprotect PDOs by altering PDO PTM signaling

(A) Trellis-PHATE of patient-specific PDO PTM drug responses with or without CAFs illustrates CAFs can protect PDOs from therapy (1,680 PDO-CAF cultures).

Dots colored by treatment; outlines colored by microenvironment. Solid arrows refer to full protection; dashed arrows refer to low protection by CAFs.

(B) Alterations of PDO cell state and PTM signaling by CAFs correlates with chemoprotection. Dots correspond to 6 replicates colored by PDO.

(C) Baseline CAF cell state and PTM signaling when co-cultured with PDOs correlates with chemosensitivity protection. Dots correspond to 6 replicates colored

by PDO.

(D) CAF regulation of PTM signaling networks in PDO 21 and PDO 27. CAFs down-regulate MAPK and PI3K pathways and up-regulate SMAD, NF-kB, and BAD

signaling nodes in protected PDOs. Scale bar, 200 mm.
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following drug treatments (Figure 5A). Trellis revealed that CAFs

provide varying degrees of chemoprotection in a patient- and

drug-specificmanner. For example,CAFscompletelyprotect che-

mosensitive PDOs 21 and 75 from SN-38, 5-FU, and oxaliplatin-

induced apoptosis, whereas PDOs 23, 27, and 99 only experience

partial chemoprotection (Figure S6A). Chemorefractory PDOs 05,

11, and 141 are largely unaffected by CAFs. This dichotomy sug-

gests CAFs deregulate cancer cells in a patient-specific manner.

Wenext sought tounderstandwhyCAFshavesuchdifferentpa-

tient-specific regulations of PDO drug response. Chemosensitive

PDOs 21 and 75 are highly proliferative inmonoculture but reduce

cell-cycle activity when co-cultured with CAFs (Figures 5B and
5612 Cell 186, 5606–5619, December 7, 2023
S6B). We found that CAFs that protect PDOs also have a distinct

PTM signaling profile in co-culture (Figure 5C), suggesting

patient-specific reciprocal signaling between PDOs and CAFs

occursduringchemoprotection.Crucially,CAFsdonot causepro-

tected PDOs to exit the cell cycle, but instead reduce MAPK and

PI3K signaling, increase TGF-b, JNK, and NF-kB signaling, and

slowPDOS-phase entry—rendering PDOs less vulnerable to che-

motherapies (Figure 5D). Notably, these pathways are also cell-

intrinsically active in chemorefractory PDOs (Figure 4E), suggest-

ing PTM signaling could represent a general biomarker for drug

response. CAFs also dramatically alter the macrostructure of

PDOs, with chemoprotected PDOs switching from an enveloped
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shape to a cyst-like morphology—indicative of a major cell-fate

transition. PDOs that do not benefit from CAF chemoprotection

do not experience these morphological shifts. Collectively, we

find that CAFs can rapidly regulate PTM signaling networks in

PDOs and shift previously chemosensitive cancer cells toward a

new chemorefractory cell fate.

CAFs polarize chemoprotected PDOs to a revival colonic
stem cell fate
We recently demonstrated that colonic stem cells exist on a

continuous plasticity landscape spanning hyper-proliferative

colonic stem cells (proCSCs) to slow-cycling revival colonic

stem cells (revCSCs).29 proCSCs have high PI3K and MAPK

signaling flux, whereas revCSCs have low PI3K activity and are

dependent on fibroblast-derived TGF-b-driven YAP signaling.

Given that CAFs can polarize PDOs toward a slow-cycling (Fig-

ure S6B), high TGF-b, JNK, and NF-kB, and lowMAPK and PI3K

signaling state (Figure 5D), we hypothesized that CAF chemo-

protection may involve a proCSC-to-revCSC transition.

To test this hypothesis, we performed a multivariate scRNA-

seq analysis of PDO 21 (high CAF protection) and PDO 27 (low

CAF protection) +/� CAFs (n = 18; Figures 6, S6C, and S6D).

In agreement with single-cell PTM signaling analysis, Manifold

Enhancement of Latent Dimensions (MELD)30 analysis revealed

CAFs have patient-specific effects on PDOs. We found CAFs

polarize PDO 21 toward a new cell fate not found in cancer cells

alone (Figure 6A), whereas CAFs have little effect on PDO 27

(Figure 6B).

Chemosensitive PDO 21 alone is enriched for a classical

proCSC gene signature (EPHB2+, OLFM4+, and MKI67+; Fig-

ure 6C) with minimal differentiation into enteroendocrine cells

(Figures S6E–S6G). By contrast, PDO 21 + CAFs are polarized

to revCSCs (ANXA1+,SOX9+, ITGA2+,CLDN4+, and YAP1+; Fig-

ure 6D). PDO 27 contains a mixture of proCSCs and revCSCs

that are not regulated by CAFs (Figure S6H). It has recently

been shown that CRC cells can escape chemotherapy by differ-

entiating toward a slow-cycling ‘‘diapause’’31 or fetal/revival

stem cell fate32—although the processes driving this plasticity

are unclear. Our results suggest that intercellular CAF signaling

can drive the proCSC-to-revCSC cell-fate transition in a pa-

tient-specific manner to protect cancer cells from chemother-

apies (Figures 6E, S6F, and S6G).

Mechanistic understanding of drug responses by single-cell

screening could identify opportunities to rationally re-sensitize

refractory PDOs.33 For example, mass cytometry revealed that

CAFs protect chemosensitive PDOs—not by reducing on-target

S-phase blockage or DNA damage (Figure S6I), but by polarizing

cancer cells toward a slow-cycling, high TGF-b, JNK, and

NF-kB, and low MAPK and PI3K signaling state (Figures 6F–

6H, S6A, and S6B). These results were consistent across

primary CAFs derived from three alternative CRC patients

(Figures S6J–S6L), suggesting that PDOs have a patient-

specific response to mesenchymal cues. revCSCs are depen-

dent on YAP signaling,29,32,34 and both scRNA-seq (Figure 6E)

and YAP immunofluorescence (Figure 6I) of PDOs confirmed

CAFs activate YAP signaling in chemoprotected PDOs.

Using PTM signaling and cell-state insights from single-cell

drug screening, we hypothesized that CAFs chemoprotect can-
cer cells by polarizing them to a YAP-dependent revCSC fate. To

test this, we treated PDO 21 + CAF cultures +/� 100 nM Verte-

porfin (YAP-TEAD complex inhibitor) +/� SN-38 and measured

PTM and cell-state responses using TOBismass cytometry. Ver-

teporfin alone did not induce apoptosis in PDOs (Figure 6J), did

not increase on-target SN-38-induced DNA damage in PDOs

(Figure S7A), and did not regulate CAF cell cycle or apoptosis

(Figures S7B and S7C). However, Verteporfin blocked nuclear

YAP translocation (Figure S7D) and restored PDOs to an envel-

oped morphology when in co-culture with CAFs (Figure S7E)—

indicating YAP inhibition re-polarized revCSCs back to

proCSCs.29 Crucially, we observed that Verteporfin completely

re-sensitized CAF-protected PDOs to SN-38-induced apoptosis

(Figure 6J). These results suggest that CAFs can chemoprotect

PDOs via a YAP-driven revCSC fate polarization and underscore

the value of mechanism-focused single-cell drug screening in

overcoming therapy resistance.

Collectively, single-cell PDO-CAF drug screening revealed

that CRC drug responses are patient-specific and closely align

with pre-treatment cancer cell PTM signaling. Chemosensitive

PDOs have high PI3K and MAPK signaling flux and mitotic entry

(indicative of proCSCs), whereas chemorefractory PDOs

demonstrate high TGF-b, JNK, and NF-kB signaling and low

cell-cycle activity (similar to revCSCs). Crucially, CAFs can

polarize mitotic proCSC cancer cells to a slow-cycling, drug-

tolerant revCSC fate in a patient-specific manner. These results

support a CRC drug sensitivity model whereby mitotic proCSC

cancer cells retain high stemness but are vulnerable to anti-

mitotic chemotherapies (Figure 7A). By contrast, CAFs can

polarize cancer cells toward a revCSC fate that also retains

high multi-potency, but they are chemorefractory due to their

low mitotic PTM signaling (Figure 7B). By combining high stem-

ness with low cell-cycle activity, revCSCs are potent drug-

tolerant persister cells that have the potential to repopulate tu-

mors following chemotherapies.32 Given the relative abundance

of revCSC-like cells in vivo,35 our results suggest targeting CAF-

induced proCSC-to-revCSC plasticity could improve chemo-

therapy responses in CRC.

DISCUSSION

PDOs have been widely proposed as personalized avatars of

patient-specific drug responses.36 However, bulk screening

technologies have limited previous studies to PDOmonocultures

alone and provide no mechanistic insight into PDO drug

response.13 Using highly multiplexed single-cell PTM profiling

by TOBismass cytometry and tree-based treatment effect anal-

ysis by Trellis, we demonstrate that PDO drug responses are pa-

tient-specific and reveal that CAFs regulate PDO PTM signaling

and cell fate to alter chemosensitivity. PDO-CAF interactions are

also patient-specific, with CAFs both stimulating and repressing

PTM signaling, cell-cycle activity, and cell-fate plasticity in a pa-

tient-specific manner. Crucially, we demonstrate mechanistic

profiling of patient-specific drug responses can be used to

re-sensitize CAF-protected PDOs.

Unlike static diagnostic metrics (e.g., pharmacogenomics)

that have failed to substantially advance precision oncology,36

PDOs are functional biopsies that can be experimentally tested
Cell 186, 5606–5619, December 7, 2023 5613



Figure 6. CAFs polarize chemoprotected PDOs to a revival stem cell fate

(A and B) Single-cell PHATE and MELD scores of (A) PDO 21 and (B) PDO 27 +/� CAFs scRNA-seq.

(C) Single-cell PDO 21 proCSC gene signature ranked by MELD score and colored by experimental condition. Mean value of a linear generalized additive model

(GAM) for each replicate, unpaired t test.

(D) Single-cell PDO 21 revCSC gene signature ranked by MELD score and colored by experimental condition.

(E) Mean relative expression in group for proCSCs, revCSCs, and Wnt and Yap gene signatures per MELD group.

(F) CAFs protect PDOs from SN-38-induced apoptosis.

(G) CAFs slow PDO S-phase entry, and PDOs experience on-target S-phase blockage by SN-38 irrespective of CAFs.

(H) EMD heatmap of PTMs in PDO 21 +/� CAFs demonstrate CAFs regulate PDO PTM signaling.

(I) CAFs induce nuclear translocation of YAP (red) to PDO nucleus (white). Scale bar, 25 mm.

(J) 100 nM Verteporfin re-sensitizes CAF-protected PDOs to SN-38-induced apoptosis. Unpaired t test, *** < 0.0001, ** < 0.001, * < 0.01.

See also Figures S6 and S7.
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to reveal patient-specific drug responses alongside clinical care

in real time.37–39 However, recent studies have suggested PDOs

alone are not sufficient to biomimetically predict drug response.

For example, only 20% of monoculture drug combination ‘‘hits’’

could be validated in ex vivo organotypic CRC tumors containing

a TME,37 and growth factor regulation of PDO cell state can
5614 Cell 186, 5606–5619, December 7, 2023
change organoid drug responses.40 In agreement with a recent

bulk analysis of autologous PDOs and CAFs,41 our results reveal

that PDO-CAF interactions are a source of functional inter-tumor

heterogeneity and that the role of CAFs should not be general-

ized. Given that cell-extrinsic signals can have dramatic effects

on drug performance, we propose TME cells should be included



Figure 7. CAF-induced revCSC polarization model

(A) VR landscape model of PDO 21 scRNA-seq. proCSC cancer cells retain high multipotency (CCAT) and high cell-cycle activity (MKI67+) with minimal dif-

ferentiation into enteroendocrine cells.

(B) VR landscape model of PDO 21 + CAF scRNA-seq. CAFs increase PDO plasticity to polarize proCSCs toward revCSCs that retain high multipotency but have

low cell-cycle activity (MKI67� ), enabling revCSCs to escape chemotherapy.
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in future studies evaluating PDOs as personalized functional

biopsies.

Phenotypic plasticity is an emerging hallmark of cancer,42 and

therapeutic targeting of cancer-specific cell states is a growing

area of cancer research.43,44 As stem-cell-driven model sys-

tems, PDOs are capable of rapid differentiation8 and are there-

fore well-suited to studying drug- or TME-induced cancer cell

plasticity. We observed that PTM cell state (not MSI/MSS status,

tumor stage, anatomical location, or genotype) aligned with pa-

tient-specific drug response (Figures 4C, 4D, and S5) and found

CAFs can polarize PDOs toward a revCSC-like fate to protect

PDOs from clinical therapies. A recent survey of CRC tumors

concluded phenotypic variance is largely driven by transcrip-

tional changes rather than genotype,45 and work in pancreatic

ductal adenocarcinoma has demonstrated that PDO transcrip-

tional profiles, not genotype, correlate with drug response.46

Moreover, recent studies of oncogenic47 and kinase48 activity

suggest cancer cell signaling flux predicts patient survival better

than genotype. Taken with our observations, mounting evidence

suggests metrics that more closely describe cancer cell state

such as transcription and PTM signaling predict patient-specific

drug responsesmore accurately than genomic profiles or clinical

staging.

In contrast to traditional live/dead drug screens, TOBis

mass cytometry reveals molecular insights into PDO drug re-

sponses. We observed PDOs frequently experience on-target

drug responses (83%), but only a subset of PDOs enter drug-

induced apoptosis (40%). This suggests chemorefractory

PDOs do not translate cytostatic and genotoxic stress into

apoptosis. Single-cell PTM profiling further revealed CAFs
chemoprotect PDOs by shifting cancer cells into a slow-

cycling revCSC fate. We used this mechanistic insight to re-

sensitize PDOs by blocking revCSC activation via YAP. Given

that drug synergy is rare when using unbiased screens,49 our

study suggests mechanism-focused screening could be used

to rapidly identify rational drug synergies to re-sensitize re-

fractory cancers.

The advent of high-dimensional single-cell technologies

such as mass cytometry and scRNA-seq provides new oppor-

tunities to study heterogeneous drug response mechanisms

beyond simple viability scores.13 However, high-dimensional

drug screening data are challenging to interpret—with existing

tools designed to analyze dozens, not thousands, of samples.

Trellis overcomes this scalability bottleneck by distributing

single-cell data across a tree domain, enabling the EMD

between thousands of single-cell samples to be computed

rapidly. While we use cell-state branches to sensitize

Trellis results toward canonical on-target anti-cancer drug

responses, alternative decision trees could in theory be de-

signed to enrich for PTM signaling hierarchies (e.g., for kinase

inhibitor screens) or cell-type hierarchies (e.g., in immune

profiling) (Figure S2D). Trellis’ scalability is independent of su-

pervening branches, providing a flexible platform for future

single-cell screening applications.

In summary, we demonstrate that highly multiplexed single-

cell PTM profiling by TOBis mass cytometry and tree-based

treatment effect analysis by Trellis can reveal patient-specific

drug responses in thousands of PDO-CAF cultures. CAFs can

regulate PDO drug response by polarizing proCSC cancer cells

to a revCSC fate in a patient-specific manner, and PTM signaling
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insights can be used to overcome CAF protection. We propose

single-cell PTM analysis as a powerful alternative to traditional

bulk viability measurements and suggest TME cells should be

considered in future precision medicine models.
Limitations of the study
This study used PDOs from the Human Cancer Models Initiative

(https://www.cancer.gov/ccg/research/functional-genomics/hcmi)

where stromal cells were not collected, so it was not possible to

study autologous CAF-PDO communication. While we observe

that CAF chemoprotection is common to all CAF lines tested,

ideally, future TME models should incorporate autologously

paired TME cells.41 The mass cytometry antibody panel used

in this study only targets PTM signaling, cell state, and DNA-

damage response, so it could not easily detect cell-fate transi-

tions at scale. Given the emerging importance of cell-fate plas-

ticity in cancer drug resistance, future screening panels should

incorporate plasticity markers to detect cell-fate transitions

across large PDO cohorts.
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Antibodies

Phospho-Histone H3 [S28] BioLegend Cat#641007; Clone: HTA28; RRID:

AB_2562851

CD326 (EpCAM) (Hm) BioLegend Cat#324229; Clone: 9C4; RRID:

AB_2563742

Pan-Cytokeratin (Pan-CK) BioLegend Cat#628602; Clone: AE1/AE3; RRID:

AB_2616960

CK18 Abcam Cat#ab668; Clone: C-04; RRID: AB_305647

Phospho-PDK1 [S241] BD Biosciences Cat#558395; Clone: J66-653.44.22; RRID:

AB_647291

Cleaved-Caspase 3 [D175] CST Cat#9579; Clone: D3E9; RRID:

AB_10897512

Cleaved-PARP [D214] CST Cat#5625BF; Clone: F21-852

Phospho-MKK4/SEK1 [S257] CST Cat#4514; Clone: C36C11; RRID:

AB_2140946

Phospho-BTK [Y551] BD Biosciences Cat#558034; Clone: 24a/BTK; RRID:

AB_2067823

Phospho-SRC [Y418] Thermo Cat#14-9034-82; Clone: SC1T2M3; RRID:

AB_2572916

Phospho-4E-BP1 [T37/46] CST Cat#2855; Clone: 236B4; RRID: AB_560835

Phospho-RB [S807/811] BD Biosciences Cat#558389; Clone: J112-906; RRID:

AB_647295

Phospho-PKCa [T497] BD Biosciences Cat#560141; Clone: K14-984; RRID:

AB_1645332

Phospho-AKT [T308] BD Biosciences Cat#558316; Clone: J1-223.371; RRID:

AB_647259

Phospho-CREB [S133] CST Cat#9198; Clone: 87G3; RRID:

AB_2561044

Phospho-SMAD1 [S463/465]

Phospho-SMAD5 [S463/465]

Phospho-SMAD9 [S465/467]

CST Cat#13820; Clone: D5B10; RRID:

AB_2493181

Phospho-AKT [S473] CST Cat#4060; Clone: D9E; RRID: AB_2315049

Phospho-NF-kB p65 [S529] BD Biosciences Cat#558393; Clone: K10-895.12.50; RRID:

AB_647284

Phospho-MKK3 [S189]/MKK6 [S207] CST Cat#12280; Clone: D8E9; RRID:

AB_2797868

Phospho-p38 MAPK [T180/Y182] CST Cat#4511; Clone: D3F9; RRID:

AB_2139682

Phospho-MAPKAPK2 [T334] CST Cat#3007; Clone: 27B7; RRID: AB_490936

Phospho-AMPKa [T172] CST Cat#2535; Clone: 40H9; RRID: AB_331250

Phospho-BAD [S112] CST Cat#5284; Clone: 40A9; RRID: AB_560884

Phospho-p90RSK [T359] CST Cat#8753; Clone: D1E9; RRID:

AB_2783561

Phospho-p120-Catenin [T310] BD Biosciences Cat#558203; Clone: 22/p120 (pT310);

RRID: AB_397057

b-Catenin [Active] CST Cat#8814; Clone: D13A1; RRID:

AB_11127203
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Phospho-GSK-3b [S9] CST Cat#5558; Clone: D85E12; RRID:

AB_10013750

Phospho-ERK1/2 [T202/Y204] BD Biosciences Cat#612359; Clone: 20A; RRID: AB_399648

Phospho-SMAD2 [S465/467]

Phospho-SMAD3 [S423/425]

CST Cat#8828; Clone: D27F4; RRID:

AB_2631089

GFP eBiosciences Cat#13-6498-82; Clone: 5F12.4; RRID:

AB_11043422

Phospho-MEK1/2 [S221] CST Cat#2338; Clone: 166F8; RRID: AB_490903

Phospho-NDRG1 [T346] CST Cat#5482; Clone: D98G11; RRID:

AB_10693451

Phospho-S6 [S235/236] CST Cat#4858; Clone: D57.2.2E; RRID:

AB_916156

Phospho-Histone H2A.X [S139] CST Cat#80312BF; Clone: D7T2V

Phospho-DNAPK [S2056] Abcam Cat#ab174576; Clone: EPR5670

Phospho-CHK1 [S345] BD Biosciences Cat#2348BF; Clone: 133D3

CD90 (THY1) BioLegend Cat#328102; Clone: 5E10; RRID:

AB_940390

Cyclin B1 BD Biosciences Cat#554179; Clone: GNS-11; RRID:

AB_395290

Podoplanin BioLegend Cat# 127401; Clone: 8.1.1;

RRID:AB_1089186

RFP eBiosciences Cat#200-301-379; Clone: 8E5.G7; RRID:

AB_2611063

mCherry Thermofischer Cat#M11217; Clone: 16D7; RRID:

AB_2536611

Geminin Santa Cruz Cat#10802-1-AP; Clone: Polyclonal; RRID:

AB_2110945

CHGA Insight Biotechnology Cat#sc-393941; Clone: C-12; RRID:

AB_2801371

Vimentin BD Biosciences Cat#5741; Clone: D21H3; RRID:

AB_10695459

PLK1 Thermofischer Ca# 37-7000; Clone: 35-206; RRID:

AB_2533335

YAP CST Cat#14074; Clone: D8H1X; RRID:

AB_2650491

Goat Anti-Mouse IgG (H + L) Invitrogen Cat# 15491034

Goat Anti-Rabbit IgG (H + L) Invitrogen Cat# 10348502

Chemicals, peptides, and recombinant proteins

Advanced DMEM F/12 Thermo Cat# 12634010

Growth Factor Reduced Matrigel Corning Cat# 354230

B-27 Supplement Thermo Cat# 17504044

N-2 Supplement Thermo Cat# 17502048

L-glutamine Thermo Cat# 25030081

A83-01 Generon Cat# 04-0014

SB202190 Avantor Cat# CAYM1001039910

HEPES Sigma Cat# H3375

EGF Thermo Cat# PMG8041

Gastrin I Sigma Cat# SCP0152

HyClone Penicillin-Streptomycin Solution Fisher Cat# SV30010

N-acetyl-L-cysteine Sigma Cat# A9165

Nicotinamide Sigma Cat# 0636
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Insulin-Transferrin-Selenium-Sodium

Pyruvate (ITS-A)

Thermo Cat# 51300044

Heat Inactivated Fetal Bovine Serum Thermo Cat# 10082147

TrypLE� Express Enzyme Thermo Cat# 12604013

Dispase II Thermo Cat# 17105041

Recovery� Cell Culture Freezing Medium Thermo Cat# 12648010
1275-Iodo-20-deoxyuridine (127IdU) Sigma Cat# I7125

Protease Inhibitor Cocktail Sigma Cat# P8340

PhosSTOP� Sigma Cat# 4906845001
194Cisplatin Standard BioTools Cat# 201194
198Cisplatin Standard BioTools Cat# 201198

Collagenase IV Thermo Cat# 17104019

DNase I Sigma Cat# DN25

Cell Staining Buffer Standard BioTools Cat# 201068

TOBis (9-choose-4) Sufi et al., 202115 N/A

L-Glutathione Sigma Cat# G6529

SN-38 Sigma Cat# H0165

5-FU Merck Cat# F6627

Oxaliplatin Merck Cat# O9512

Cetuximab MedChem Express Cat# HY-P9905

VX-970 Selleckchem Cat# S7102

LGK-974 Peprotech Cat# 1241454

Verteporfin Cayman Chemical Cat# CAY17334

PROTECTOR RNASE INHIBITOR, 10 000 U Sigma/Merck Cat# 3335402001

SUPERase-In RNase Inhibitor (20 U/uL) Thermo Cat# AM2694

Maxima H Minus Reverse Transcriptase

(200 U/mL)

Thermo Cat# EP0753

dNTP Mix (10 mM ea)-100 uL Thermo Cat# 18427013

NEB buffer 3.1 10x NED Cat# B7203S

T4 DNA Ligase NED Cat# M0202L

T4 DNA Ligase reaction buffer 10x NED Cat# B0202S

EDTA Solution (BioUltra, for molecular

biology, pH 8.0, �0.5 M in H2O)

Sigma Cat# 03690-100ML

Proteinase K Invitrogen (Thermo) Cat# AM2546

DiYO�-1 FITC dsDNA stain - 1mg

(AAT Bioquest)

Stratech Cat# 17579

NaCl(5 M), RNase-free (100mL) Thermo Cat# AM9760G

SDS Invitrogen (Thermo) Cat# 15553027

Tris 1M pH 8.0 RNase-free 100mL Thermo Cat# AM9855G

UltraPure 1M Tris-HCl, pH 8.0–1 L Thermo Cat# 15568025

"Tween 20 Surfact-Amps Detergent

Solution, Formulation: 10% (w/v) aqueous

solution of Tween 20, Properties: Nonionic"

Thermo Cat# 85113

PMSF (Phenylmethylsulfonyl fluoride)

peptidase inhibitor

Thermo Cat# 36978

Dynabeads� MyOne� Streptavidin C1 Invitrogen (Thermo) Cat# 65001

Ficoll PM-400 (20%) Merck Cat# F5415-25ML

KAPA HiFi HotStart ReadyMix KAPA (Roche) Cat# KK2601

SPRI Kapa Pure Beads Kapa (Roche) Cat# KK8000

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Nextera XT DNA Library Preparation

Kit (24 samples)

Illumina Cat# FC-131-1024

Qubit� 1X dsDNA HS Assay Kit Invitrogen (Thermo) Cat# Q33230

Agilent High Sensitivity DNA Kit Agilent Cat# 5067-4626

NovaSeq 6000 S2 Reagent Kit v1.5

(200 cycles)

Ilumina Cat# 20028315

Deposited data

Mass cytometry data (raw) This paper https://community.cytobank.org/cytobank/

projects/1461

Mass cytometry data (processed) This paper https://data.mendeley.com/datasets/

hc8gxwks3p

scRNA-seq data (raw) This paper GEO: GSE239386

scRNA-seq data (processed) This paper https://zenodo.org/record/8177571

Experimental models: Organoids

PDO 5 Sanger Institute HCM-SANG-0266-C20

PDO 11 Sanger Institute HCM-SANG-0267-D12

PDO 21 Sanger Institute HCM-SANG-0270-C20

PDO 23 Sanger Institute HCM-SANG-0271-D12

PDO 27 Sanger Institute HCM-SANG-0273-C18

PDO 75 Sanger Institute HCM-SANG-0278-C20

PDO 99 Sanger Institute HCM-SANG-0282-C18

PDO 109 Sanger Institute HCM-SANG-0529-C18

PDO 141 Sanger Institute HCM-SANG-0284-C18

PDO 216 Sanger Institute HCM-SANG-0520-C18

Experimental models: Cell lines

CRC CAFs GFP+ Prof. Olivier de Wever, University of Gent. N/A

L cells Shintaro Sato, Research Institute of

Microbial Diseases, Osaka University.

N/A

Primary CRC CAFs UCL Biobank, University College London

Hospital.

N/A

Oligonucleotides

SPLiT-Seq BARCODE SEQUENCES This paper Table S4

Software and algorithms

FIJI NIH https://fiji.sc/

Cytobank Cytobank, Inc. http://www.cytobank.org

Graphpad Prism 7 GraphPad Software https://www.graphpad.com/

OmniGraffle Professional 7 The Omni Group https://www.omnigroup.com/omnigraffle

scprep Laboratory of Smita Krishnaswamy,

Yale University

https://scprep.readthedocs.io/en/stable/

phate Moon et al.50 https://phate.readthedocs.io/en/stable/

Trellis This paper https://github.com/KrishnaswamyLab/

Trellis

Scanpy Wolf et al.51 https://scanpy.readthedocs.io/en/stable/

Seurat Laboratory of Rahul Satija, New York

Genome Center

https://satijalab.org/seurat/

zUMIs (Version 2.9.7) Parekh et al.52 https://github.com/sdparekh/zUMIs

STAR (Version 2.7.3a) Dobin et al.53 https://github.com/alexdobin/STAR

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Other

m-Slides ibidi Cat#80826

gentleMACS C-Tube Miltenyi Cat#130-096-334

gentleMACS Octo Dissociator

(with Heaters)

Miltenyi Cat#130-096-427

EQ� Four Element Calibration Beads Standard BioTools (previously Fluidigm) Cat#201078

EQ� Six Element Calibration Beads Standard BioTools Cat#201245

Helios Mass-Cytometer Standard BioTools (previously Fluidigm) http://cn.fluidigm.com/products/helios

CyTOF XT Mass-Cytometer Standard BioTools https://www.standardbio.com/products/

instruments/cytof-xt

Illumina NovaSeq 6000 Illumina https://www.illumina.com/systems/

sequencing-platforms/novaseq.html

ll
OPEN ACCESS Resource
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Christo-

pher J. Tape (c.tape@ucl.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Single-cell RNA-seq data have been deposited at GEO and are publicly available as of the date of publication. Accession num-

ber is listed in the key resources table. Raw and gated mass cytometry data have been deposited at Community Cytobank and

are publicly available as of the date of publication. The project URL is listed in the key resources table. Aligned scRNA-seq

count matrices, spliced/unspliced RNA count matrices, integrated Seurat objects, and integrated mass cytometry dataframes

have been deposited at Mendeley and Zenodo and are publicly available as of the date of publication. DOIs are listed in the key

resources table.

d All original code to reproduce figures in the manuscript together with supplemental analysis has been deposited at GitHub and

is publicly available as of the date of publication. The repository URL is listed in the key resources table.

d Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

CRC PDO and CRC CAF culture
CRC PDOs were obtained from the Human Cancer Models Initiative (Sanger Institute, Cambridge, UK)12 and expanded in 12-well

plates (Helena Biosciences 92412T) in x3 25 mL droplets of Growth Factor Reduced Matrigel (Corning 354230) per well with 1 mL

of Advanced DMEM F/12 (Thermo 12634010) containing 2 mM L-glutamine (Thermo 25030081), 1 mM N-acetyl-L-cysteine (Sigma

A9165), 10 mM HEPES (Sigma H3375), 500 nM A83-01 (Generon 04–0014), 10 mM SB202190 (Avantor CAYM10010399-10), and 1X

B-27 Supplement (Thermo 17504044), 1XN-2 Supplement (Thermo 17502048), 50 ngmL� 1 EGF (ThermoPMG8041), 10 nMGastrin I

(Sigma SCP0152), 10 mM Nicotinamide (Sigma N0636), and 1X HyClone Penicillin-Streptomycin Solution (Fisher SV30010), and

conditioned media produced as described in54 at 5% CO2, 37
�C. PDOs were dissociated into single cells with 1X TripLE Express

Enzyme (Gibco 12604013) (incubated at 37�C for 20 min) and passaged every 10 days. L-cells for conditioned media production

were obtained from Shintaro Sato (Research Institute of Microbial Diseases, Osaka University, Osaka, Japan). To aid cell-type-spe-

cific visualization and gating, CRC PDO were transfected with H2B-RFP (Addgene 26001). CRC CAFs (+GFP) were a kind gift from

Prof. Olivier De Wever (University of Gent).16,17 Primary CAFs were isolated from consented CRC patients at UCLH via the UCL

Biobank (HTA Licence: 12055, REC ref. 15/YH/0311). All CAFs were cultured in DMEM (Thermo 11965092) enriched with 10%

FBS (Gibco 10082147), and 1X HyClone Penicillin-Streptomycin Solution (Fisher SV30010) at 5% CO2, 37
�C.

PDO-CAF drug treatments
PDOswere dissociated into single cells on day 0, and expanded in 12-well plates in Growth Factor ReducedMatrigel (Corning 354230)

with Advanced DMEM F/12 (Thermo 12634010) containing 2 mM L-glutamine (Thermo 25030081), 1 mM N-acetyl-L-cysteine (Sigma
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A9165), 10mMHEPES (Sigma H3375), 1X B-27 Supplement (Thermo 17504044), 1X N-2 Supplement (Thermo 17502048), 50 ngmL� 1

EGF (Thermo PMG8041), 10 nM Gastrin I (Sigma SCP0152), 10 mM Nicotinamide (Sigma N0636), 500 nM A83-01 (Generon 04–0014),

10 mMSB202190 (Avantor CAYM10010399-10) and 1XHyClone Penicillin-Streptomycin Solution (Fisher SV30010) at 5%CO2, 37
�C for

4 days. On day 5, PDOs were starved in Reduced media (Advanced DMEM F/12 containing only 2 mM L-glutamine, 1 mMN-acetyl-L-

cysteine, 10mMHEPES, 1XB-27 Supplement, 1XN-2 Supplement, 10mMNicotinamide, and 1XHyClone-Penicillin Streptomycin So-

lution) at 5%CO2, 37
�C. In parallel, CAFswere starved in 2%FBSDMEMwith 1XHyclone-Penincillin Streptomycin Solution. PDOs and

CAFs were seeded on day 6 in 96-well plates (Helena Biosciences 92696T) in 50 mLMatrigel stackswith 300 mL of reducedmedia. PDO

monocultures are seeded at a density of� 1.5 x 103 organoids/well, andCAFs at 2.5 x 105 cells/well, co-culturesweremixed inMatrigel

on ice at the densities described, and seeded together on the plates for polymerization. On day 7, media was replaced with titrated

concentrations of SN-38 (Sigma H0165), 5-FU (Merck F6627), Oxaliplatin (Merck O9512), Cetuximab (MedChem Express HY-

P9905), VX-970 (Stratech), and LGK-974 (Peprotech 1241454) (Table S2) diluted in Reduced media. On day 8, media was replaced

with the corresponding treatments (same as on day 7). After 72 h of co-culture, and 48-h of treatment (day 9), cultures were processed

for TOBismass cytometry (see below). Verteporfin (Cambridge Bioscience CAY17334) was used at 100 nM as above and added in the

media from the start of the co-cultures, on day 6.

PDO-CAF sample preparation for scRNA-seq
PDO-CAF co-cultures were cultured as described above. After 72 h, organoids were dissociated into single cells using TrypLE

(Thermo 12604013) incubated for 10 min at 37�C on a heated orbital shaker at 300 rpm. Sample preparation was then performed

based on the SPLiT-seq protocol Rosenberg et al.55 Briefly, cells were filtered 1-2x through a 35 mM filter until in a single-cell sus-

pension and re-suspended in 1 mL of PBS with 1.25 mL Protectorase RNAse inhibitor (Merck 3335402001) and 2.5 mL Superase

RNase inhibitor (Thermo AM2694), which was the standard RNase inhibitor concentration, known as ’+RI’. Cells were then fixed

in 1% (v/v) ice-cold FA/PBS (Thermo 28906) for 10 min on ice. Cells were then permeabilized in 0.2% Triton X-100 +RI for 3 min

on ice. Fixation was quenched with 50 mM Tris-HCL and cells were re-suspended in 0.5x PBS +RI. Cells were counted and 5%

(v/v) DMSO was added before aliquoting cells for freezing in a Mr Frosty at �80�C.

METHOD DETAILS

PDO-CAF TOBis mass cytometry
PDO-CAF co-cultures were analyzed using the TOBis mass cytometry protocol outlined in detail by Sufi and Qin et al., Nature Pro-

tocols, 2021.15 Briefly, following drug treatment, PDO-CAF cultures were incubated with 25 mM (5-Iodo-20-deoxyuridine) (127 IdU)

(Fluidigm 201127) at 37�C for 30 min, and 5 min before the end of this incubation, 1X Protease Inhibitor Cocktail (Sigma, P8340)

and 1 XPhosSTOP (Sigma 4906845001) are added into the media. After the incubation with 127 IdU, protease inhibitors and

PhosSTOP, each well is fixed in 4% PFA/PBS (Thermo J19943K2) for 1 h at 37�C. PDO-CAFs were washed with PBS, dead cells

were stained using 0.25 mM194 Cisplatin (Fluidigm 201194), and PDO-CAFs were barcoded in situ with 126-plex (9-choose-4) TOBis

overnight at 4�C. Unbound barcodes were quenched in 2mMGSH and all PDO-CAFs were pooled. PDO-CAFswere dissociated into

single cells using 1 mg mL� 1 Dispase II (Thermo 17105041), 0.2 mg mL� 1 Collagenase IV (Thermo 17104019), and 0.2 mg mL� 1

DNase I (Sigma DN25) in C-Tubes (Miltenyi 130-096-334) via gentleMACS Octo Dissociator with Heaters (Miltenyi 130-096-427).

Single PDO and CAF cells were washed in cell staining buffer (CSB) (Fluidigm 201068) and stained with extracellular rare-earth metal

conjugated antibodies (Table S3) for 30min at room temperature. PDO-CAFswere then permeabilized in 0.1% (v/v) Triton X-100/PBS

(Sigma T8787), 50% methanol/PBS (Fisher 10675112), and stained with intracellular rare-earth metal conjugated antibodies for

30 min at room temperature. PDO-CAFs were then washed in CSB and antibodies were cross-linked to cells using 1.6% (v/v)

FA/PBS for 10 min. PDO-CAFs were incubated in 125 nM191 Ir=193 Ir DNA intercalator (Fluidigm 201192A) overnight at 4�C.
PDO-CAFs were washed, resuspended in 2 mM EDTA (Sigma 03690) in water (Fluidigm 201069), and analyzed using a Helios

Mass Cytometer (Fluidigm) fitted with a ’Super Sampler’ (Victorian Airships) or CyTOF XT (Fluidigm) at 200–400 events s� 1.

Immunofluorescence microscopy
PDOs and CAFs were expanded as explained previously (days 1–5), on day 6, monocultures and co-cultures were seeded in 8-well

m slides (ibidi 80826) in 10 mL of Matrigel. Cells were cultured in 200 mL of base media containing Verteporfin or vehicle control (water)

and media was refreshed every 24h with the same concentration of inhibitor or vehicle. On day 9, media was removed and cells were

washed with PBS at room temperature for 5 min. Cultures were fixed with 4% PFA/PBS (Thermo J19943K2) for 30 min at 4�C. Cells
were washed twice with PBS and permeabilised with 0.2% Triton X-100 (Sigma T8787) in PBS for 30min at room temperature. Perme-

abilising solutionwas removed and cells were incubated in blocking solution, containing PBSwith 1%BSA (CST 9998) and 0.3%Triton

X-100/PBS for 30min at room temperature. PBSwas removed from thewells and cellswere incubatedwith primary antibodiesdiluted in

blocking solution overnight at 4�C. Cells were washed three times with PBS for 5 min and then stained with secondary antibodies and

40,6-diamidino-2-phenylindole (DAPI) (Thermo D1306) diluted in blocking solution for 1 h at room temperature, protected from the light.

Cellswerewashed3 timeswithPBS for 5min andoncewithddH2OandmountedwithFluoromount-Gmountingmedium (ThermoFisher

00-4958-02). Samples were imaged with a Zeiss LSM880 Confocal Microscope and images were analyzed using FIJI.56

Phase-contrast microscopy images were generated using an EVOS FL Base Microscope System.
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scRNA-seq library, sequencing, and alignment
The scRNA-seq processing protocol followed the SPLiT-seq protocol55 with minor modifications to the RT oligos and linker oligos.57

All oligonucleotides and the layout of the barcoding plates used in the protocol can be found in Table S4, reverse transcription Round

1 oligos 01–96 and ligation linking and blocking oligos BC_0340, BC_0335 and BC_0284 were derived from.57 All other oligos were

derived from.55 One complete SPLiT-seq experiment was performed for each PDO studied (two independent SPLiT-seq runs total).

Briefly, cells were thawed, diluted in 0.5x PBS + RI and 8 mL loaded into 12 mL of RT-mix in the 48-wells of the SPLiT-seq barcode-1

reverse transcription plate and reverse transcription performed with Maxima H Minus Reverse Transcriptase (Fisher Scientific

EP0753) as specified in.55 Cells were then pooled and resuspended into NEB 3.1 Buffer (New England BioLabs B7203S), T4 DNA

Ligase (New England BioLabs M0202L) and Ligase Buffer (New England BioLabs B0202S). Cell-ligase reaction mixture (40 mL)

was then loaded into the 96-well barcode-2 ligation plate (10 mL) and ligation was carried out in a thermocycler for 30 min at

37�C. The round 2 blocking solution (10 mL) was added to each well of the barcode-2 plate and incubated in a thermocycler for

30 min at 37�C. Cells were then pooled and filtered through a 40 mM filter into a basin and 100 mL T4 DNA ligase was added.

50 mL Cell-ligase reaction mixture was then loaded into the 96-well barcode-3 ligation plate (10 mL) and ligation was carried out in

a thermocycler for 30 min at 37�C. The round 3 blocking solution (20 mL) was added to each well of the barcode-3 plate and cells

were then pooled into a new basin and filtered through a 40 mM into a 15 mL tube on ice. Cells were then washed with 4 mL

0.1% Triton X-100 solution and resuspended in 50 mL of 1x PBS +RI. Cells were then counted on a Haemocytometer with Trypan

Blue dye and aliquoted into sub-libraries to determine the number of cells to sequence. Approximately 9000 barcoded cells were

diluted in 25 mL of PBS +RI and combined with 25 mL of 2x Lysis mix with 5 mL of Proteinase K (Thermo AM2546) for each sublibrary.

Lysis was carried out in a thermocyler at 65�C for 1 h and then frozen at �80�C until sequencing library preparation. Complete cell

lysis was confirmed by examining lysates under an EVOS FL fluorescent microscope with DiYO dsDNA binding dye (Stratech 17579).

Following cell barcoding, 2 sublibraries of 9000 cells were carried forwards per PDO (x4 total) for cDNA isolation, amplification, and

library generation. Sublibrary cDNA isolation and library generation steps were performed at 0.5x volume scale to fit into a thermo-

cycler compatible PCR tube for all temperature incubation steps. Sublibrary cell lysates were thawed at 37�C for 5 min in a thermo-

cycler and neutralized the lysis mixture with 0.45 mM PMSF (Thermo 36978) for 10 min at RT. Biotinylated cDNA was captured and

washedwith 44 mL ofMyOneC1Dynabeads (Thermo 65001) per sublibrary to as described in.55 The template switching reaction was

performed as described usingMaximaHMinus Reverse Transcriptase. Sublibrary cDNAwas amplified for 5 (first cycling) + 8 (second

cycling) PCR cycles using KAPA HiFi HotStart ReadyMix (Roche KK2601) and subsequently cleaned up using 0.8x SPRI bead size

selection with SPRI Kapa Pure Beads (Roche KK8000). Sequencing libraries were generated using the Nextera XT DNA tagmentation

(Illumina FC-131-1024), followed by PCR amplification with BC_0118 and one of BC_0076, BC_0077 (PDO21) or BC_0079, BC_0080

(PDO27). Tagmented and amplified sequences were purified with a 0.8x SPRI cleanup and cDNA was quantified (Qubit dsDNA High

Sensitivty kit, Thermo Q33230) and the base pair size distribution measured (Agilent High Sensitivity DNA Kit, Agilent 5067-4626).

Libraries were then pooled together and loaded onto onto an Illumina Novaseq (200 cycle NovaSeq 6000 S2 Reagent Kit v1.5).

The libraries were then sequenced with the following format: R1:74-i7:06-i5:00-R2:86. This sequencing yielded a paired end read

structure where the cDNA transcriptomic information was contained in read 1, read 2 was composed of UMI (bp 1–10), BC3 (bp

11–18), BC2 (bp 49–56), BC1 (bp 79–86). Cell barcodes were assigned and reads aligned to the GRCh38 reference genome using

the zUMIs package (Version 2.9.7)52 with STAR version 2.7.3a, filtering on a whitelist of permitted cell barcodes and merging cells

that shared the PolyA and Random Hexamer RT1 barcodes from the same RT well plate position with identical L2 and L3 barcodes,

counting reads originating from exons and introns. We collapsed cell barcodes with 2 hamming distance of close cell barcodes and

UMIs with 1 hamming distance of UMI sequence.

QUANTIFICATION AND STATISTICAL ANALYSIS

TOBis mass cytometry data preprocessing
Multiplexed FCS files were debarcoded into separate experimental conditions by using the Zunder Lab Single Cell Debarcoder

(https://github.com/zunderlab/single-cell-debarcoder).19 Debarcoded FCS files were uploaded to Cytobank (Beckman Coulter),

gated for Gaussian parameters, and DNA (191 Ir/ 193 Ir). Epithelial cells were gated on PCK+ and EpCAM+, and CAFs were gated

on Vimentin+ and GFP+. Arcsinh transformed values were mean centered across batches before Trellis analysis.

Background in optimal transport for Trellis
Single-cell data are being collected in massively parallel experiments with numerous conditions in order to characterize libraries of

treatments58 including small-molecules59 and gene-perturbations.60 Onemethod that directly generalizes bulkmeasurements to sin-

gle-cell samples is through the theory of optimal transport and more specifically, the Wasserstein distance.21–23

Optimal transport is well suited to the formulation of distances between collections of points, as it generalizes the notion of dis-

tances between points to distances between distributions. Intuitively, the distance between distributions should be the minimum

total work to move a pile of dirt located at a source distribution to a target distribution. This framework yields a natural definition of

similarity between experimental conditions, namely two conditions are similar when their collections of cells are not far from

each other.
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These distances aim at answering a deeper question: Which treatments have similar and different effects on the system? We as-

sume that for each treated condition X we have access to an associated control condition Xc. When all treated conditions are

measured relative to a single Xc we show approaches based on theWasserstein distance are a valid metric between changes in den-

sities. However, in larger experiments it is impossible to measure all treated conditions within a single batch, and thus treated con-

ditions may have different controls. In this case, we show that Wasserstein-based approaches fail, and show that a generalization to

an approach based on the Kantorovich-Rubinstein norm61 gives a valid metric between changes in densities in this more general

multi-control case.

The Wasserstein metric as a norm
Let m; n be two probability distributions on a measurable space X with ground metric dðx; yÞ between points ðx;yÞ˛X2, letPðm; nÞ be
the set of joint probability distributions p on the space X2 where for any subset u3X, pðu3XÞ = mðuÞ and pðX 3 uÞ = nðuÞ. The
a-Wasserstein distance is defined as:

Wa
d ðm; nÞ =

0
B@ inf

p˛Pðm;nÞ

Z
X2

dðx; yÞapðdx;dyÞ

1
CA

1=a

: (Equation 1)

This lifts the ground distance defined between points, to a distance between distributions relative to that ground distance. The

Kantorovich–Rubinstein dual for the Wasserstein distance on arbitrary measures is

sup
ðf;gÞ˛CðXÞ2

Z
X

fðxÞdmðxÞ +
Z
X

gðyÞdnðyÞ (Equation 2)

subject to fðxÞ+gðyÞ%dðx; yÞa for all ðx;yÞ˛X2. Most work applying the Wasserstein distance focuses on a= 262 or more general

convex costs with a> 1,63 due to the provable regularity of the transport map. We instead focus on the case where 0<a% 1. Here the

transportation map loses regularity but admits a simplification of the dual as when 0<a%1, it can be shown that ((2)) achieves opti-

mality when g= �f61 Prop. 6.1 and so simplifies to:

Wa
d = sup

f

8<
:
Z
X

fðxÞðdmðxÞ � dnðxÞÞ : Ha
dðfÞ%1

9=
; (Equation 3)
where
Ha
dðfÞ: = sup

ðx;yÞ˛X2

�jfðxÞ � fðyÞj
dðx; yÞa : xs y

�
: (Equation 4)
When 0<a%1, ((3)) shows that Wa is the dual of the a-Hölder fu
d nctions ff : HaðfÞ%1g and is a norm, namely

Wa
d ðm; nÞ= km � nkWa

d
; (Equation 5)
and is valid for any measures m; n such that
R
m =

R
n. Of particula
X X

r interest is that Wa
d is still a norm even for non-positive measures.

This generalization to non-positive measures will form the basis for our Trellis metric between datasets and is known as the Kantor-

ovich–Rubinstein norm64 when applied to differences of non-positive measures.

Definition 1(64).

The Kantorovich-Rubinstein (KR) distance between measures m; n such that
R
X

m =
R
X

n with respect to ground distance d as

KRa

dðm; nÞ: = sup
f

8<
:
Z
X

fðxÞðdmðxÞ � dnðxÞÞ : Ha
dðfÞ%1

9=
;= km � nkKRa

d
: (Equation 6)

For simplicity we will drop the a term and assume a = 1, but all statements apply to 0<a%1 unless otherwise specified. Trellis can

be thought of as an efficient implementation of the KR norm over a tree ground distance.

The Wasserstein distance with tree ground distance
Consider discrete distributions m =

Pn
i = 1midi and n =

Pn
i = 1nidi where d is the dirac function inRd and

Pn
i = 1mi � ni = 0. Then for gen-

eral costs, the Wasserstein distances between m and n can be computed exactly in ~Oðn3Þ using the Hungarian algorithm,65 and

approximated using a slightly modified entropy regularized problem in ~Oðn2Þwith the Sinkhorn algorithm.66 However, for some clas-

ses of the ground distance, there exist more efficient algorithms (See Table below). For example, if d is the Euclidean distance in ℝ,
then the Wasserstein distance can be computed in Oðn log nÞ time and is equivalent to sorting.52,67 This special case is exploited in

sliced-Wasserstein metrics68,69 to compute approximateWasserstein distances in higher dimensions. Another more general class of
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ground distances where there exist efficient algorithms is the class of tree metrics. Let T be a rooted tree with non-negative edge

lengths, and let dT be a tree metric on T . Then for two measures m; n over T , the Wasserstein distance with respect to dT , WdT
ðm;

nÞ, can be computed in OðnÞ time by exploiting the fact that there is a single path between any pair of masses.70–72 In this case

the 1-Wasserstein distance, also known as the Earth Mover’s Distance (EMD) can be expressed as

WdT =
X
x˛ T

wxjmðGðxÞÞ � nðGðxÞÞj (Equation 7)
where wx is the weight/distance to the parent node of x and GðxÞ
 represents the set of nodes in the subtree of x. Let Pðx; yÞ be the

unique path between x and y, then GðxÞ = fy˛ T jx ˛Pðr;yÞg. This alternative formulation can be embedded in l1:

WdT = kvðmÞ � vðnÞk1 (Equation 8)
where v : mðT Þ/Rn is a function such that vðmÞ = wxmðGðxÞÞ. A
x pproximating the Euclidean distance with a tree distance can be

done probabilistically withOðd logDÞ distortion in expectation where D is a resolution parameter.73 Following the result of Charikar,74

this implies that the 1-Wasserstein distance with tree ground distance has the same order distortion. One simple tree construction

that achieves this distortion is known as ‘‘Quadtree’’, where each node has four children inR2 and 2d children inRd.70 We introduce a

new tree construction based on k-means clustering, which we show is a generalization of the Quadtree construction but can be

applied to higher dimensions.
Comparison of Earth Mover’s Distance computation methods separated into super-linear (top) and log-linear methods (bottom) based

on time-complexity of computing k-Wasserstein-nearest-neighbors

Method Exact KR-control Ground cost k-NN-Time

Exact EMD65 Yes No Any Oðm2n3Þ
Sinkhorn EMD66 No No Any Oðm2n2Þ
PhEMD21 No No dM Oðm2T3 + n3Þ
Mean No Yes Any ~OðkmnÞ
Diffusion EMD22 No Yes dM

~OðkmnÞ
Trellis/TreEMD (ours) Yes Yes dT

~OðkmT + nÞ
Assumes a dataset of m distributions over n points with (optionally) a tree of size jT j = OðnÞ.
Unpaired and paired Trellis
We start with amore detailed overview of the Trellis algorithm for comparing the effects of drugs on different experimental conditions.

The Trellis algorithm is summarized in the below Algorithm. At a high level Trellis consists of four steps.

(1) Construct a tree partitioning of the data T.

(2) Embed each distribution mi over T to a vector vðmiÞ such that Trellisðmi;mjÞ= kvðmiÞ � vðmjÞk1 to form a Trellis embedding ma-

trix E.

(3) (optionally) Subtract a control distribution embedding vðmi
cÞ from each vðmiÞ for paired Trellis embeddings E~~.

(4) ComputenearestTrellis neighbordistributionsexploitingL1 geometryusing fast-nearest-neighborgraphconstructionalgorithms.
TrellisðX;m; k; l; T m; cÞ
Input: n3f data matrix X, n3m distributions m, # of clusters k, and # of levels l, manual tree T m, and (optional) control mapping c specifying control

distribution set for each distribution.

Output: m3jT j distribution embeddings v

T)BuildTreeðX;k; l;T mÞ
for Node T i with parent edge weight wi in T do

v½:; i�)wimðGðT iÞÞ
end for

if c is null then

return v

end if

for control distribution set mc for each distribution m in c do

v½m�)v½m� � meanmc
ðv½mc�Þ

end for

return v
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We next discuss potential methods of constructing T , how to embed an empirical distribution to a vector and its equivalence to the

Wasserstein distance, the effect of subtracting a control distribution embedding, and finally how to construct a Trellis-metric nearest

neighbor graph for subsequent visualization with a non-linear embedding algorithm such as PHATE,50 UMAP,75 or t-SNE.76

Constructing trees on single-cell mass cytometry data
Trellis gives a distance between measures or differences in measures over a tree metric space. Often the data is not associated with

an explicit tree metric, but is naturally hierarchical such as in the case of single-cell cytometry data. Previous methods have used

manual gating, automatic gating, or a combination of the two to hierarchically cluster single-cell mass cytometry data.77 These

methods build trees, but are missing the ‘metric’ component, which can be encoded as the edge weights between parent and child

clusters. We use a simple tree metric where each edge weight for node x is the Euclidean distance between the cluster center

meanðxÞ and the center of its parent meanðPaðxÞÞ.
wx = k meanðxÞ�meanðPaðxÞÞk2: (Equation 9)

The tree metric between two nodes u; v˛ T is the sum of the path lengths along the unique path geodesic between u and v in T

denoted by PT ðu; vÞ then
dT ðx; xÞ =

X
v˛PT ðx;yÞ

wv: (Equation 10)

Trellis applies to any clustering method; we demonstrate the Trellis framework using a simple combination of manual gating for non-

Euclidean features and automatic gating to approximate Euclidean distances among sub populations. This strategy allows us to

leverage manual gating when appropriate and follows the experimental design, or automatic gating using repeated unsupervised

k-means clustering on the biological splits. This clustering method is of particular interest because in specific settings we can show

that the Trellis metric is topologically equivalent to an Wasserstein distance with Euclidean ground distance in Rd. Given a number

of clusters at each level k and a depth h construct a divisive tree-like clustering of the data as described in the below Algorithm. Where

Kmeans is the k-means algorithm with some fixed set of parameters. Interestingly, with a specific setting of k-means we show Trellis is

topologically equivalent to the a-Wasserstein distance with Euclidean ground distance. This is formalized in the following proposition.
BuildTreeðX; k; l; T mÞ
Input: n3f data matrix X, # of clusters k, # of levels l and (optional) manual base tree T m.

Output: Weighted clustering tree T .

if l = 0 then

return null

end if

if T m is not null then

for leaf node ni in T m do

T i)BuildTreeðX½n�;k; l;nullÞ
end for

//Where TreeJoin replaces each of the leaves with the respective subtree

return T)TreeJoinðT m; ½T i �Þ
end if

labels)KmeansðXÞ
for i = 1 to k do

T i)BuildTreeðX½labels = i�;k; l� 1Þ
end for

return T)½T i �ki = 1
Proposition 1

Let k = 2d,max iter = 0, data X be normalized such that X ˛ ½� 1;1�d with precisionD and initialize the kth cluster at level l with parent

center p as p+ 21�lðBinaryðkÞ� 1 =2Þ. Then there exists constants c;C such that

c $Wk$k2 ðm; nÞ%E½Trellisðm; nÞ�%C logD$Wk$k2 ðm; nÞ: (Equation 11)

This can be seenby first noting that this initialization is equivalent to aQuadTree construction in the topological sense. If twopoints are

clustered together in our construction at some level then they are also clustered together inQuadTree at the equivalent level. In addition,

the edgeweights are equivalent up to a constantwith the edgeweights decaying by 1=2 at every level in both constructions. Once these

two properties are verified, then we can leverage existing results on QuadTree constructions from70 and74 to show that the inequalities

hold.Wealsonote that there exist results on the approximate nearest neighbors of this construction in.72While this relates treedistances

using k-means clustering to the Euclidean ground distance, interestingly, this proposition can be applied more generally to any
Cell 186, 5606–5619.e1–e14, December 7, 2023 e10
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embedding space allowing us to link tree distances to general groundmetrics defined over embeddings. For example, k-means is often

alsoapplied inaLaplacianembeddingspace,which is knownas spectral clustering.78Here it iseasy toshow that the k-meansbased tree

construction in Proposition 1 relates the Trellis distance to theWasserstein distancewith spectral grounddistancedistance.While these

parameters for k-means-clustering workwell in low dimensions, the number of clusters scales exponentially with dimension. In practice

weuse four levels of four clusters. This expectation holds over a randomly selected initializationof the zero’th level cluster. Inpractice,we

take the expectation over k-means initializations, building ten parallel trees with different initializations. Trellis can be applied to any tree

metric or ensemble of tree metrics. We have presented a method that allows for combining manual and automatic gating, as well as an

automatic gatingmethod that in expectation is similar to a Euclidean distance.Many other choices for partitioningCyTof data havebeen

explored in the automatic gating literature.77,79–81 These automatic gatingmethods are generally used for partitioning the data not build-

ing a treemetric. However, it is simple to convert them into treemetrics by assigning edgeweights based onclustermeans. This strategy

can be applied to a precomputed tree-like clustering of the data with no knowledge of how those clusters were chosen. This allows for

adaptation of Trellis to different systems where either manual or automatic gating is preferred or already computed.

Trellis given a metric tree
Given a general metric tree T of size jT j, we first define the embedding function v : mðT Þ/RjT j which takes distributions defined over

the tree and embeds them in a vector space where the L1 between vectors is equivalent to theWasserstein distance with tree ground

distance. Given edge weightswx and denoting the subtree at node x as GðxÞ = fy˛ T jx ˛Pðr;yÞg, then v is defined element-wise as

vðmÞ = ½wxmðGðxÞÞ�x˛ T : (Equation 12)

Intuitively, this can be thought of computing the sum of the mass below each node times the edge weight at each node. The dif-

ference between vðmÞx � vðnÞx for a given node x˛ T can be thought of as the amount of work needed tomove m to n. If this difference

is positive, then this means that mass of m is greater in the subtree GðxÞ than the mass of n. This means that the transport map must

move exactly mðGðxÞÞ � nðGðxÞÞ mass upwards from x at cost wx. Adding up these aggregate movements over all nodes gives the

total work needed and is equivalent to the work required by the Wasserstein distance. For our tree construction with the additional

manual tree step, we define the unpaired Trellis distance (uTrellis) as

uTrellisðm; nÞ= kvðmÞ � vðnÞk1: (Equation 13)

We also define a Tree-Earth Mover’s Distance (TreEMD) without the manual tree construction, considering only the k-means con-

struction. TreEMD is similar to previous Tree-based Wasserstein distance constructions for high dimensions.71,72 These two un-

paired distances are comparable to existingmethods for computing theWasserstein distance between distributions. However, these

distances do not take into account control, treatment, batch, and replicate information. Given information on which samples were

taken under similar conditions, we are able to improve the distances with Paired Trellis.

Paired Trellis
To examine the effects of a drug across many conditions it is useful to measure the differences of the treated condition relative to a

matched control. For each sample m and n, let the associated control distributions be mc and nc respectively, and v be defined as

above. Then we define the Paired Trellis metric between changes in distributions as:

pTrellisðm; nÞ: = kvðmÞ � vðmcÞ � vðnÞ � vðncÞk1:
Intuitively, the Paired Trellis distance measures the difference in the change in density between treated conditions from their respec-

tive controls. This allows us to control for unmeasured confounders that are implicit in the treated cell population m and n respectively.

Proposition 2

For two distributions m; nwith their respective controls mc;nc, the Paired Trellis is equivalent to a Kantorovich-Rubenstein distancewith

tree ground distance as in ((7))

pTrellisðm; nÞ = KRdT ðm � mc; n � ncÞ: (Equation 14)
Proof. The equivalence of paired Trellis to a Kantorovich-Rubenstein distance can be verified through algebraic manipulation

following.82 We start with the definition of the Kantorovich-Rubenstein distance and show that this is equivalent to pTrellis for an

arbitrary tree domain T with ground distance dT . Denote the family of Hölder functions under dT as F = ff : Ha
dT
ðfÞ%1 &fðrÞ= 0g

and let l be the (unique) length measure on T such that dT ðx; yÞ = lðPðx; yÞÞ. Then there exists a unique function g: T /½�1;1�
such that fðxÞ =

R
Pðr;xÞ

gðzÞlðdzÞ =
R
T

1z˛Pðr;xÞgðzÞlðdzÞ.Z
T

fðxÞdmðxÞ =

Z
T

Z
T

1z˛Pðr;xÞgðzÞlðdzÞdmðxÞ =

Z
T

gðzÞmðGðzÞÞlðdzÞ: (Equation 15)
For the optimal witness function f�, we have
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gðzÞ =

�
1 ifmðGðzÞÞ> nðGðzÞÞ
� 1 else

: (Equation 16)

Plugging this equivalence into Equation 6 we have

KRdT ðm; nÞ = sup
f

8<
:
Z
T

fðxÞðdmðxÞ � dnðxÞÞ : Ha
dT
ðfÞ%1

9=
; =

Z
T

jmðGðzÞÞ � nðGðzÞÞjlðdzÞ: (Equation 17)
Therefore, for two measures a;b over T such that
R
aðxÞdx =

R
bð
T T

xÞdx = c we have that aðGðrÞÞ = bðGðrÞÞ = c and for v: T /R+ as

defined in Equation 12 we have

KRdT ða;bÞ =
X
x˛ T

wxjaðGðxÞÞ � bðGðxÞÞj= kvðaÞ � vðbÞk1: (Equation 18)
substituting a = m � m and b = n � n yields the proposition sin
c c ce
R
T

a =
R
T

b= 0 for any distributions m;mc; n; and nc.

We ablate both the pairing andmanual tree construction steps in Figure S1. A paired Trellis embedding better separates the effects

of increased drug concentration as compared to TreEMD (Figure S1C) and an unpaired Trellis embedding according to a k-NN clas-

sifier trained with 10-fold cross validation, while also being less sensitive to batch effects by the same metric (Figure S1B).

Nearest Trellis neighbors
Fast nearest neighbor calculation is useful in graph-based methods which use the k-nearest neighbor graph for down stream tasks

such as clustering,78 classification,72 or visualization.50,75,83 In this paper, for example we visualize the space of all experimental con-

ditions using PHATE50 (Figures 3, 4, 5, and 6). For nearest neighbors in normed spaces such as the L2 norm, the geometry of the

space can be utilized for fast exact or approximate nearest neighbor calculation in time scaling logarithmically with the number of

points. For more general distances between objects, these algorithms may not apply. For instance, to compute the k-nearest

neighbor distributions in terms of the Wasserstein distance form distributions, there is no faster algorithm than computing the Was-

serstein distance to all other distributions then computing the k closest ones in OðmÞ time. However, the Unpaired and Paired Trellis

versions of the Wasserstein distance for finite data can be expressed as norms in a finite dimensional space, this allows us to apply

fast nearest neighbor algorithms which exploit the induced geometry between distributions. In this case, to find nearest neighbor

distributions we can apply tree-based algorithms such as KD-Trees, or Ball-Trees as used in PHATE50 and scikit-learn,84 locality sen-

sitive hashing in OðT log mÞ time for m distributions on trees of size T.

Visualizing Trellis embeddings
Trellis embedsmeasures m in a metric space endowed with a Tree-Wasserstein distance to vectors v inRjT j with the L1 metric. These

embeddings can be further embedded into R2 using a non-linear dimensionality reduction which relies on fast k-nearest-neighbors

calculations. We make extensive use of Trellis-PHATE, which further embeds Trellis (or paired Trellis) embeddings into 2D for visu-

alization and exploratory analysis. Trellis-PHATE takes the embedding matrix E or ~E˛Rm3jT j as a data for the PHATE algorithm with

the additional argument KNN_DIST = ‘‘manhattan" to encode the L1 metric between Trellis embedding vectors. The PHATE algorithm

then gives a PHATE embedding EPHATE ˛Rm32 which can be visualized as a scatterplot ofm points (one per sample) in 2D as shown

in Figures 3, 4, 5, S1, S2, S4, and S5. We note any other dimensionality reduction method could be chosen that can take vectors

embedded in an L1 vector space as input such as t-SNE76 or UMAP.75

Parameter robustness
Trellis has a few important parameters that may affect the resultant output. In Figure S2C, we test the effect of these parameters on

the Trellis distances on the PDO dataset. Specifically, we compare the effects of changing the default number of trees jT j, the depth

of the automatic tree construction l, and the number of clusters used at each level c. We default to 10 trees with 4 levels of 4 clusters.

We measure how much the Trellis distances between samples change relative to this default setting. We test jT j˛ f1; 5; 10;50g, l˛
f2;3;4; 5; 6g, and c˛ f2; 3; 4;5;6g. We ablate each parameter individually and measure the correlation in distance matrices between

samples with the Spearman R correlation, and the precision of the 50 nearest neighbors. The Spearman correlation measures the

overall correspondence between distances and remains extremely high at >0.9 for all settings (and >0.98 for all neighboring settings).

Since we are interested in constructingmanifolds of samples using non-linear dimensionality reduction, we are particularly interested

in the nearest-neighbor samples, which affect the graph construction. Here the P@50metric measures for each sample howmany of

the 50-nearest-neighboring samples in the reference setting are in the set of 50-nearest-neighbors of the test setting. This can be

summarized in the following equation:

P@k
�
Dtest;Dref

�
=
1

n

Xn

i = 1

��k argmin
�
Dtest

i

�
Xk argmin

�
Dref

i

���
k
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where we use k = 50, i indexes into the samples of the distance
 matrices D, and the k-argmin returns the set of k indices with the

smallest values. We see a majority (>0.5) of the nearest neighbors are preserved in all settings. This is quite high given the classifi-

cation over >3,000 individual samples, where a random sampling would give P@50 of <0.02.

Related work and time complexity
There are many methods for computing or approximating the Wasserstein distance. In Table we present methods for computing the

nearest neighbor distributions according to the Wasserstein distance split into two groups. Here we consider the time it takes for the

method to compute the k-Wasserstein-nearest-neighbors on a dataset with m distributions over n points with access to a precom-

puted tree over the data of size jT j = OðnÞ. The first three methods are widely used, but do not scale well to large datasets with a

large number of distributions or a large number of points. For the first three methods, the Hungarian algorithm,65 the Sinkhorn algo-

rithm,66 and Phenotypic Earth Mover’s Distance (PhEMD),21 to find the k-nearest-neighbors for a distribution it is necessary to

compute the distance to all m other distributions. This implies that they scale poorly with the number of distributions as illustrated

in S2b. PhEMD saves significant time by only computing the distances between a small set of clusters, however, eventually this

is dominated by an increasing number of distributions. Trellis and TreEMD scale log linearly in the number of points, distributions,

and the size of the precomputed tree T . Constructing the tree partitioning for Trellis takes ~OðnÞ time. Embedding the distributions

takes OðmTÞ time. Subtracting the control distribution embedding for paired Trellis takes OðTÞ time. finally, computing the k-nearest

neighbors of the Trellis distance takes ~OðkmTÞ time. In total both unpaired and paired Trellis take ~OðkmT + nÞ time to compute the k

nearest neighbor distributions. When T � n as in our case, we can see substantial increases in speed in line with simply taking the

Euclidean distance between means of clusters. As T achieves its upper bound of 2n� 1, Trellis has the same complexity as

computing the nearest distribution means and of DiffusionEMD.22

Single-cell RNA-seq data pre-processing and quality control
Each sublibrary’s digital gene expression matrix (DGE) was processed with the splitRtools package (https://github.com/

TAPE-Lab/splitRtools) to annotate each cell barcode with sample-specific and well-specific barcoding SPLiT-seq information.

Downstream analysis was performed in Scanpy.51 Sublibrary DGEs were then merged per PDO and trimmed to exclude low

quality cells based on the following parameters, <1000 UMIs, <20% mictochondrial transcripts, <400 genes detected and out-

liers with high numbers of genes that were >(median(log10(UMI)) + 2*IQR) and likely represented cell doublets. Genes that were

not detected in at least 25 cells were further removed. We used scrublet85 to remove neotypic doublets on a per PDO basis with

an expected doublet rate of 3% (n = 244 cells), before merging both PDO datasets. Cells were then normalized by a size factor

of 10000 excluding highly expressed genes for the computation of the size factor if it has more than 5% of the total counts

in at least one cell. The normalised data was then natural log transformed for downstream analysis. An initial exploration of

the data was performed using a coarse SNN-based clustering, scaling the data and performing PCA over 5000 variable genes

and building an SNN graph (n_pcs = 50, n_neighbbors = 100) and clustered the cells using the leiden implementation (res = 0.1)

to identify either PDO or Fibroblast and removed barcoding collisions for monoculture samples that clustered an alternate cell

type (n = 26 cells). This workflow yielded a dataset of high-quality single cells (n = 31572, median UMI = 2552, median genes =

1282) with a low overall mitochondrial fraction of transcripts (median = 0.07). Using this trimmed dataset the clustering proced-

ure was repeated to generate a final cell type assignment.

Single-cell RNA-seq perturbation analysis with MELD
In order to leverage the ability to multiplex multiple replicate samples using SPLiT-seq, MELD was used to identify PDO cellular pop-

ulations for each PDO sample that are enriched or depleted based on co-culture with CAFs.30 MELD is a manifold-geometry based

method of quantifying the effect of an experimental perturbation by estimating the relative likelihood of observing cells in each exper-

imental condition over a graph learned from all cells in a sample. PHATE embeddings of all cells per PDO were used for visualisation

purposes only of the scRNA-seq data. However, if all conditions and replicates were analyzed all together certain samples might be

over-represented in a given manifold and we therefore may lose important enrichment information. To preserve enrichment informa-

tion across replicates one density estimate was generated per experimental replicate and then L1 normalization was applied to these

densities within each replicate to normalize the values to sum to 1 across samples within each replicate. We used the average likeli-

hood of the PDO co-culture samples as the measure of perturbation.

Generation of single-cell RNA-seq expression signature scores
All gene expression signature scores were computed as previously described in86 by defining an input set of literature curated signa-

ture genes (Table S5) and comparing their average relative expression to that of a sampled control gene set.29,32,35,87–90 The control

gene set was randomly sampled to mirror the expression distribution of the genes used for each binned expression value. proCSC

and revCSC gene signatures were derived from curated literature sources describing these transcription programs and where genes

signatures were derived frommurine systems, gene homologs were identified with biomart.91 Gene signatures were further filtered to

keep genes that were detected in at least 320 PDO 21 cells or 50 PDO 21 cells for the enteroendocrine signature before computing

the signature score. Gene expression signature score trends over MELD score for each replicate were computed using a linear
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generalized additivemodel (GAM) of 10 cubic splines using the python package pyGAM.92 The averageGAMmodel value of the three

replicates was used for visualization along with the upper and lower 95% confidence interval.

Single-cell RNA-seq VR landscapes
Valley-Ridge (VR) scores were computed as described in Qin &Cardoso Rodriguez et al.29 The VR score is a cellular metric computed

on a per sample (mono-culture or co-culture) and cluster (defined with Leiden clustering at res = 0.2) labels and is defined as the

weighted sum of the two components: CCAT signalling-entropy93 and RNA velocity vector length.94 CCAT has been defined as

an estimate for a cell’s Signaling Entropy Rate, which has been shown to be a robust metric for cellular pluripotency.93,95,96 RNA ve-

locity vector lengths are the modulus of the inferred RNA velocity vectors as determined by a cell’s ratio of spliced and unspliced

mRNA, thus measuring the overall rate of transcriptomic change undergone by a cell. In brief, the CCAT scores and RNA velocity

vector lengths were computed on all epithelial cells from the PDO21 mono- and co-culture conditions. At a cluster’s center, the

VR score is solely determined by the median CCAT. However, the VR scores at the cluster periphery are augmented by weighting

the inverse of scaled RNA velocity component and the scaled distance from the cluster center. We use the inverse of the velocity

vector length to model rates of local transcriptional change, so that transitions substantiated by high RNA velocities do not locally

increase landscape elevation at a cluster’s boundary, with the opposite happening for low velocity cells. To generate the landscapes

in Figure 7we projected the VR scores into the PHATE embedding of PDO21 cells (Figure 6A) using the 3D rendering software SideFX

Houdini andMaxon Redshift. After the VR scores were used to interpolate the landscape surface, individual cells were overlaid on the

surface and colored according to their relative expression ofMKI67. A full step-by-step protocol for generating VR landscapes can be

found in Qin & Cardoso Rodriguez et al.29
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Supplemental figures

Figure S1. Trellis ablation test, related to Figure 2

(A) Comparison of Trellis’ ablated algorithm into L1 distance over k-NN clusters, Wasserstein distance over automatic gating (Unpaired TreEMD), Kantorovich-

Rubenstein (KR) norm over automatic gating (Paired TreEMD), Wasserstein distance over tree partitions of the data by cell state (Unpaired Trellis), and KR norm

tree partitions of the data by cell state (Paired Trellis).

(B) k-NN accuracy score on acquisition batches. A higher k-NN accuracy infers a higher batch separation effect by the method.

(C) k-NN accuracy score on drug concentrations vs. controls. Paired Trellis improves drug treatment effect detection.

(D) Schematic representation of the comparison across methods. One-way ANOVA, **** < 0.0001 (n = 10).
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Figure S2. Comparison of Trellis to alternative methods and datasets, related to Figure 2

(A) Trellis performance compared to existing methods such as L1 distance of differential abundance of cells in clusters, PhEMD, and Diffusion EMD. Alternative

methods fail to capture therapeutic effects and cannot identify CAF protection.

(B) Trellis speed and scalability relative to alternative EMD methods.

(C) Analysis of Trellis sensitivity to its three components—number of trees, clusters, and levels—demonstrates a strong stability when manipulating these

components.

(D) Trellis analysis of murine immune cell atlas. Unpaired TreEMD, Paired TreEMD (paired to bone marrow control), Unpaired Trellis (using immune cell-type

branches), and Paired Trellis (using immune cell-type branches, paired to bone marrow control) analysis of murine immune atlas mass cytometry data (from

Spitzer et al.97; 202 single-cell datasets). All tree-based methods resolve tissue-specific immune profiles, but Paired Trellis also captures broad hematopoietic

development trajectories and reveals mouse-strain-specific differences (specifically regarding strain-specific lymph node profiles).
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Figure S3. Trellis detection of PDO and CAF cell-state drug responses, related to Figures 2 and 3

(A) Single-cell density PHATEs of PDO 75 treated with NH4OH vehicle control or 5-FU.

(B) Sankey diagram showing data from (A) distributing through the cell-state Trellis layout in Figure 2 (terminal leaves not shown).

(C) PDO 99 treated with H2O vehicle control or Oxaliplatin.

(D) Sankey diagram showing data from (C) distributing through the cell-state Trellis layout in Figure 2 (terminal leaves not shown).

(E) Trellis cell-state branch thresholds for PDO 21 (batch-mean centered and arcsinh transformed intensities). Thresholds are designed based on prior knowledge

and adjusted manually following classical cytometry gating by setting the limit of a population on the edges.

(F–H) Trellis-PHATE of PTM profiles from PDO-CAF cultures fails to identify (F) drug-specific CAF responses, (G) patient-specific CAF drug responses, or

(H) microenvironment-specific CAF drug responses.

(I) Fold-changes to vehicles of pRB [S807/S811], cPARP [D214], and pHH2AX [S139] fail to resolve drug- or patient-specific shifts in cell state.
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Figure S4. PDO Trellis-PHATE cell-state distributions, related to Figures 3 and 4

(A) Cell-state proportions (Z score) across 1,680 single-cell PDO cultures reveal PDO-specific mechanistic drug treatment effects.

(B) Individual patient distributions on Trellis-PHATE embedding show patient-specificmechanisms of response: chemosensitive PDOs spread across the PHATE

1, activatingmechanisms of DNA damage and/or apoptosis, while chemorefractory PDOs show similar positions on the Trellis-PHATE embedding to their internal

controls, suggesting minimal responses to treatments.

(C) Trellis-PHATE plots of patient metadata. Patient-specific treatment effects do not align with MSS/MSI, tumor stage, tumor location, MAPK pathway muta-

tions, or APC mutations. High baseline cell-cycle activity correlates with broad chemosensitivity.

(D) Quantification of the correlation between PDO metadata information and PDO cell state. Unpaired t test, *** < 0.0001.

(E) Quantification of 5-FU chemocytotoxicity in low- and high-cycling PDOs.
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Figure S5. Patient-specific regulation of cell state and DNA damage, related to Figure 4

(A) Trellis tree containing cell-state branches with a pHH2AX [S139] DNA double-strand break detection layer.

(B) Sankey diagram showing NH4OH vehicle control and 5-FU treatment of PDO 23 distributing through the cell-state and DNA-damage-driven Trellis branches in

(A) (leaves not shown).

(C and D) Trellis-PHATE of PDO 23 treatments analyzed using (C) cell-state branches alone or (D) cell-state branches and pHH2AX [S139] detection layer. The

DNA-damage detection layer improves resolution of 5-FU on-target treatment effect. Solid arrows refer to strong treatment effect; dashed arrows refer to partial

treatment effect.

(legend continued on next page)
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(E) Patient-specific distribution of cells within Trellis branches reveals mechanistic cell-state shifts and DNA damage upon drug treatments. Treatment cell state

quantifies the fold change of the proportion of cells/cell state over the controls for each treatment (Z score). DNA damage is quantified by the fold change of the

proportion pHH2AX+ cells over the controls.

(F) PDO cells in S-phase following 100 nM SN-38.

(G) PDO cells in S-phase following 200 nM Oxaliplatin.

(H) PDO cells in M-phase following 200 nM 5-FU. PDOs with a significant >1.5-fold increase in apoptosis are indicated in red.

(I) PDO apoptosis following treatment with SN-38 and/or Berzosertib. Only MSI PDOs are sensitive to ATR inhibitors either alone (PDO 27) or in combination with

SN-38 (PDOs 99 and 216). Unpaired t test using three replicates, *** < 0.0001, ** < 0.001, * < 0.01.
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Figure S6. CAF-induced PDO cell-state shifts, related to Figures 5 and 6

(A) PDOSN-38-induced apoptosis +/�CAFs. Partial CAF protection is defined as a reduction in drug-induced apoptosis in co-culture relative tomonoculture, yet

apoptosis is still >1.5-fold over control and statistically significant.

(B) Fold difference to monoculture of PDO cells in S-phase when co-cultured with CAFs.

(C) Gene counts per cell for x18 scRNA-seq datasets.

(D) Single-cell PHATE of PDO 21 and PDO 27 +/� CAFs scRNA-seq.

(legend continued on next page)
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(E) Enteroendocrine gene signature over MELD score.

(F) Single-cell PHATE of PDO 21 colored by proCSC, revCSC, and enteroendocrine gene signatures.

(G) Single-cell PHATE of PDO 21 colored by MKI67.

(H) procCSC and revCSC signatures in PDO 27 (low CAF protection) +/� CAFs. Unpaired t test.

(I) SN-38 induces on-target DNA double-strand breaks (DSBs) (pHH2AX+) in PDO 21 irrespective of CAFs.

(J) PDO 21 chemoprotection via different primary CAFs derived from CRC patients.

(K) Fold difference tomonoculture controls of PDO cells in S-phasewhen co-culturedwith primary CRCCAFs. Unpaired t test, *** < 0.0001, ** < 0.001, * < 0.01. ns,

not significant.

(L) PDO 21 morphology changes when co-cultured with different primary CRC CAFs.
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Figure S7. YAP inhibition of CAF-induced chemoprotection, related to Figure 6

(A) Verteporfin does not alter SN-38-induced on-target DNA-double strand breaks (pHH2AX+) in PDOs.

(B and C) Verteporfin does not alter (B) S-phase or (C) apoptosis in CAFs. Unpaired t test; ns, not significant.

(D) CAF-induced nuclear translocation of YAP (red) to PDO nucleus (white) is reversed by Verteporfin. Scale bar, 25 mm.

(E) PDO 21 morphology +/� CAFs, +/� Verteporfin, +/� SN-38. Verteporfin reverses CAF-induced cyst-like morphology. Scale bar, 200 mm.
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