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Phenomenology of the Prethermal Many-Body Localized Regime
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The dynamical phase diagram of interacting disordered systems has seen substantial revision over the
past few years. Theory must now account for a large prethermal many-body localized regime in which
thermalization is extremely slow, but not completely arrested. We derive a quantitative description of these
dynamics in short-ranged one-dimensional systems using a model of successive many-body resonances.
The model explains the decay timescale of mean autocorrelators, the functional form of the decay—a
stretched exponential—and relates the value of the stretch exponent to the broad distribution of resonance
timescales. The Jacobi method of matrix diagonalization provides numerical access to this distribution, as
well as a conceptual framework for our analysis. The resonance model correctly predicts the stretch
exponents for several models in the literature. Successive resonances may also underlie slow thermalization
in strongly disordered systems in higher dimensions, or with long-range interactions.
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Localized systems fail to thermalize under their own
dynamics due to strong spatial inhomogeneities [1].
Without interactions, a stable fully localized phase exists
in any dimension [2—4]. Including interactions, the exist-
ence of many-body localization (MBL) becomes difficult to
confirm. The consensus from the last decade and a half
[5—11] is that sufficiently strong random disorder produces
stable MBL in short-ranged one dimensional systems only.
Specifically, the best-studied model—the Heisenberg chain
with random fields [8]—was believed to have a direct
transition from a thermalizing phase to a fully MBL phase
at a critical disorder strength W = W_. between 3 and 6 (in
units of the Heisenberg coupling) [8,12].

However, numerical evidence has been accumulating
that this understanding is wrong—there is no transition
near W = 3 [13-21]. In fact, recent studies suggest W, =
20 [19,20], which is larger than numerically or experi-
mentally observable [19,22]. The phase diagram must thus
be modified to contain a large prethermal MBL regime, in
which the system appears to be localized for a long time
[Fig. 1(a)].

Prethermal MBL phenomenology has been studied in
short chains using exact diagonalization techniques
[14,17,18,41,42]. Three key features have emerged: expo-
nential growth of the thermalization time 7 with disorder,
approximately logarithmic decay of autocorrelators up to a
time O(z), and apparent localization when 7 exceeds the
Heisenberg time 7y = O(2L) in finite chains. Rare
regions of anomalously high disorder can neither explain
the slow decay, nor are they empirically observed in
this parameter regime [15,16,26]. Rather, the observed
decay [43-49] and apparent localization can be partially
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explained [22,50] through resonances between many-body
states [22,43,50-52].

At short times, a product state may resonate with another
state with a locally different magnetization pattern.
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FIG. 1. (a) Disordered many-body systems cross over from a
well-thermalizing regime into a prethermal many-body localized
regime, where the local equilibration time 7 grows exponentially
with the disorder strength W. Any transition to an MBL phase
must occur at much larger disorder strength. (b) The successive
resonance model predicts that the stretch exponent (/) appearing
in stretched exponential decay of autocorrelators equals another
exponent (—0) which describes the broad distribution of reso-
nance timescales. Data from a one-dimensional Floquet circuit
model of MBL [19], a Floquet-Ising model [23], and the usual
disordered Heisenberg model [24-26] are broadly consistent the
prediction # = —0 in the prethermal MBL regime.
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FIG. 2. (a) Within a broad regime of disorder strengths (specific

values marked yellow in the color bar), local autocorrelation
functions (2) for the Floquet circuit model decay very slowly.
Fits to a stretched exponential (red, dashed for W € {3, 4, 5}) show
excellent agreement with the numerical data. (b) The decay times 7
extracted from stretched exponential fits (3) grow exponentially
with disorder W. (Fits with = > 10* exceed our maximum simu-
lation time, and are unreliable.) (Inset) The stretch exponent /3
decreases with disorder, and increases weakly with systemsize [26].

Physically, this manifests as large oscillations in local
autocorrelators. In this Letter we propose that, in the
prethermal regime, states become involved in still more
resonances at longer times. Thus, a hierarchy emerges of
successive resonances forming at progressively longer
timescales. Our statistical treatment of this resonance
formation predicts exponentially long thermalization times,
and stretched exponential decay of disorder averaged
autocorrelators. Numerically, we find that autocorrelators
indeed decay as a stretched exponential [23] (Fig. 2).

The Jacobi algorithm for iterative matrix diagonalization
[53,54] is the basis of our analytical framework, and allows
us to extract the distribution of resonance frequencies. The
distribution is described by a power law with exponent
—1 + 6 [22]. The successive resonance model predicts that
the stretch exponent £ for autocorrelator decay is linearly
related to 6:

p=-o. (1)

Both our own numerics and previously published data
show good agreement with this prediction [Fig. 1(b)].
Dynamics of autocorrelators.—Infinite-temperature
autocorrelation functions are a measurable probe of ther-
malization, and their slow decay is a notable characteristic
of the prethermal regime [23,25,55,56]. In a disordered

model, Fig. 2 shows that autocorrelators decay as a
stretched exponential (3) with a decay constant that is
exponential in the disorder strength (4).

We consider autocorrelators of operators which are
diagonal in the disorder basis (the z basis). The numerics
presented in the main text use

1

C(1) = 5 [Tr(o5(1)o5(0))] (2)

in the Floquet circuit model of Ref. [19] with periodic
boundary conditions, described in detail in the
Supplemental Material [26]. Here, of is the z spin operator
on an arbitrary site (labeled 0), L is the number of qubit
degrees of freedom, o§(t) = U(1)'65U(1), U(t) is the
unitary evolution operator, and square brackets denote a
disorder average. In this model, every o° operator is
conserved in the W — oo limit [26].

The Floquet circuit model has a well-thermalizing
regime for W < 1, where C(¢) rapidly decays to zero.
In any MBL phase, C(7) acquires a nonzero late time value.
In the intermediate regime of prethermal MBL,
1 S W <25, C(r) decays slowly to zero in the L — oo
limit [19].

In more detail, in the intermediate regime, C(r) first
drops to some O(1) value within a few tens of periods, and
then decays very slowly. The functional form of this decay
appears logarithmic at small system sizes or short times
[17], but a better fit for larger system sizes is to a stretched
exponential (Fig. 2) [26],

C(t) ~Ae /), (3)

(It is notoriously difficult to distinguish stretched expo-
nential relaxation from a logarithm at intermediate
times [57].)

The timescale for decay (7) is extracted from a fit of this
functional form to the late-time data for C(z). Consistent
with other recent observations [14,17,41], = increases
exponentially in the disorder strength.

logz = O(W). (4)

In a Hamiltonian system, local equilibration on the time-
scale 7 would be followed by slow hydrodynamic decay.

The observations (3) and (4) are the primary features that
the model of successive resonances explains.

Jacobi algorithm.—In the prethermal MBL regime,
eigenstates of large systems should be expected to obey
the eigenstate thermalization hypothesis (ETH) [58-60].
This makes them a poor basis for predicting finite time
dynamics of local correlators. It is more revealing to use a
short time expansion in a dressed basis.

The Jacobi algorithm for matrix diagonalization [53,54]
provides a convenient numerical tool for constructing such
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a dressed basis. It also provides a more concrete framework
within which to understand what is meant by a many-body
resonance in a system which, ultimately, thermalizes.

We describe the algorithm for the case of a Hermitian
operator (the Hamiltonian, H). Generalizations to the
unitary case [61,62] are appropriate for the Floquet setting,
and are discussed in the Supplemental Material [26].

The algorithm begins by identifying the largest (in
absolute value) off-diagonal matrix element of H, H,,
in the z basis. The 2 x 2 block containing this element is
diagonalized by the unitary rotation R,. (Note that R,
affects the entire a and b rows and columns of H.) The
(a, b) element of H is then set to zero in the rotated matrix
H(I)) = R(T)H Ry, where I'; is a flow time for the algorithm,
defined below in Eq. (6). We say the element H ,, of H is
decimated, in analogy to the renormalization group.

This process is iterated, so that the weight in the off-
diagonal of H(I';;,) = R;H(T';)R; strictly decreases. This
procedure constructs a basis

a(T;)) = Ry_y -+ RyRola(Ty), (5)
(where {|a(Ty))} is the bare product state basis) which is
dressed by the fast degrees of freedom in H.

The flow time I" is defined in terms of a physical

timescale associated with the basis {|a(I'))} (A = 1),

? LzLZ‘

a#b

)| H|a(D)) . (6)

and strictly increases throughout the course of the algo-
rithm [54]. Henceforth, we neglect all subexponential
factors of L, as in the denominator of Eq. (6).

The Jacobi algorithm diagonalizes H within O(4%) steps.
Only O(W2F) steps are necessary to construct the dressed
basis useful for computing autocorrelators. The dressed
states only have large overlap with O(1) bare states on
average, as discussed in the next section.

Dynamics of successive resonance.—Expressing the
autocorrelator C(¢) in the dressed basis relates it to the
statistics of the Jacobi algorithm (11). With two natural
assumptions—that dynamics are dominated by sparse
resonances (9), and that the timescales associated with
these resonances are power law distributed (13)—stretched
exponential decay follows.

When calculating autocorrelators of some operator Z
(assumed to be diagonal in the {|a(Iy))} basis) for t < T,
we can treat the Hamiltonian as being diagonal in the basis
{]a(T"))} at the cost of introducing a well-controlled error:

Colr) = ;L TH(2()2(0)]

=3 [ Dz o, )

where Z,,, (1) = (a(D)|Z|b(D)), @, (I) = (b(D)|H|b(I))~
(a(T")|H|a(T")), and square brackets are again used to denote a
disorder average.

The joint distribution function of |Z,,(I")|> and w,,(T"),
p(Z2, ;T), determines C(¢) through

Co(1) = 25227 1y + O[(#/T)?]. (8)
The subscript on the square brackets indicates the distri-
bution over which the average is performed.

We can deduce properties of p, and hence C,(t), from
the Jacobi algorithm. Namely, that large matrix elements in
the distribution only arise due to occasional large rotations
in the Jacobi algorithm.

As Z is diagonal in the initial basis {|a(Iy))}, its off-
diagonal elements only become large when some rotation
R, affecting that element is also large. This happens when
the decimated off-diagonal matrix element is much larger
than the difference in diagonal elements @, (I";)—that is,
when the states |a(I'y)) and |b(I';)) are resonant. Then, in
the next round of iteration,

|1Zap(Tes) P = O(1),
Haa(rk+1) ~ Haa(rk) + |Hab(rk> ’

©)

and similarly Hp,(Tii1) & Hpp(Td) F [Heap (D) |-

We make the approximation that rotations are either
trivial or cause resonances (9) [22]. Only the resonances
produce dynamics.

Before thermalization, resonances are sparse. The prob-
ability of a resonance occurring in a given rotation is small,
P(|lwgy| < |H,p|) = O(W™'). Further, the prefactor hidden
in this scaling expression is also small: between 0.1% and
1% of rotations are resonances in the studied parameter
regimes. Thus, after O(W) Jacobi steps per state (as in
Fig. 3), every dressed state |a(I")) is involved in O(1)
resonances on average.

Technically, the sparse resonance assumption is that
|Z,»|> = O(1) only for resonant states. This ignores the
effects of successive resonances which may reduce |Z,,|?,
and the possibility of many small rotations producing a
large |Z,,|*. This assumption is valid provided that the
number of resonances per state is O(1). This provides a
large intermediate window, a few multiples of z, in which
we can make predictions.

The resonance assumption splits p into a part due to
resonances, which contributes to C,(#), and a part where
matrix elements are all close to zero:

(22, w:T) % 8(22) po(@:T) + pro(Z2.@iT).  (10)

Equation (9) leads to two conclusions regarding p.
First, the matrix element |Z,,(I';)|?, being O(1), does not
depend strongly on @, (I'y ). Consequently, the expectation
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FIG. 3. The Jacobi decimated elements for the Floquet circuit

model (the main text discusses the Hamiltonian case) for 200 2-
iterations are approximately power law distributed for intermedi-
ate decimated weights w,,, which generalize the decimated
matrix elements |H,,| to the unitary case [26]. Furthermore,
the power law is in good agreement with the predicted —2 —
from the successive resonance model (dashed lines). For this
number of iterations, the average number of resonances per state
is <1. Matrix element distributions are averaged over 100
disorder realizations, pg.. is normalized as a number density,
and g is fit from Fig. 2.

of Z? at fixed w in p, can be factorized out of Eq. (8). This
gives a key intermediate result:

C2(1) » 2HZ%] () F{ Pres (@3 1)} (1), (11)

where p.,(@;T") is the marginal distribution function of the
resonance frequencies and F{-} is the Fourier transform.

The second consequence is found by repeatedly applying
Eq. (9) to find the energy differences w. They are of the
form

wa(T) = Sl HT)\ (12)

Ir,<r

where y;, = £1, and the sum runs over matrix elements
|H(T')| responsible for a resonance in either state |a(I")) or
|b(T")) at flow time T'. We have neglected the initial value
@4,(I), which must be small if the states are to become
resonant. Equation (12) encodes the effect of many reso-
nances, each contributing to dynamics at progressively
longer timescales 27/|H(I'})|.

Equation (9) relates the frequencies w,,(I') to the
resonance timescales, and hence the distribution of deci-
mated elements. Our central assumption, verified numeri-
cally in Fig. 3, is that the distribution of decimated elements
is a power law (cf. Ref. [42]). This is natural if the dressed
basis is quasilocal, as the distribution of matrix elements of
a quasilocal operator in a quasilocal basis is a power law in
one dimension [19,22,50,63]. (Matrix elements decrease
exponentially with spatial range, but there are exponentially
many of them).

As w,;, (') is the sum of many independent variables, the
central limit theorem may be invoked. The limit distribu-
tion for a sum of power-law distributed variables is not
normal, but is rather a Lévy stable distribution [64]. The
Fourier transform of a Lévy distribution is a stretched
exponential, which leads to the observed form of the
decay (3) through Eq. (11).

The distribution of decimated elements is parametrized
as a power law ansatz with an exponent 0 [22]:

Pacc(|H) = 2-C|H|747. (13)
Explicitly reinserting a local energy scale J = O(I;!),
dimensional analysis gives C = O(J'~%). The distribution
of |H(I'})| involved in resonances (treating w,;,(I") and
|H,,(I')| as uncorrelated) is

Pres(|H|) = P(lo| < |H|)paec(|H])
~ 2L p(w = 0)C|H|!+9, (14)

where we assumed |H| is small, so that P(|w| <
|H|) ~2p(w = 0)|H|, and p(w) = O(W™!') is the @ mar-
ginal of p(Z%, w).

The distribution of resonances (14) is also a power law,
but with a larger exponent, —1 + 0, than pg..

The exponent 6 appearing in Egs. (13) and (14) is the
central parameter of the single resonance model introduced
in Ref. [22] (see also Ref. [43]). With the chosen para-
metrization, @ < 0 implies thermalization. Successive res-
onances may cause a drift of 8 with I'. However, for
sufficiently negative 6, the system thermalizes before any
significant drift, and ¢ may be treated as a constant.
Figure 3 shows this is a reasonable approximation in
accessible parameter regimes.

The exponent # also controls the distribution of matrix
elements of generic local operators in the {|a(I"))} basis,
not just the decimated elements [26,63].

The Supplemental Material [26] computes the Fourier
transform (11) and shows that, for 8 < 0,

Aot/

Cy(1) ~ for 7' <t <!, (15)

where A is a constant, @, = O(77!) is a small frequency
cutoff, and J gives the large frequency cutoff.

The linear scaling of log(Jz) with W/J follows from our
previous assumptions and a linearization of -0~ in W/J
[22,26]. The power law form of p,. is appropriate while each
state is involved in few resonances. It breaks down when

J
[ ottt = 020, (16)
which immediately provides

log(Jz) = O[-607"log(—6W/J)] (17)
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[using p(w = 0) = O(W~!),CJ? = O(J), and that the ratio
J /w,.is proportional to Jz]. The exact dependence of —§~! on
W /J is unknown. Nevertheless, as —0~! is slowly varying in
the numerically accessible W /J range [inset of Fig. 2(b)], we
linearize it. This gives log(Jz) = O(W/J).

The dependence of log(Jz) may be different for larger
W/J. The purely linear form for log(Jz) obtained numeri-
cally [Fig. 2(b)] thus remain unexpected in the successive
resonance model.

Equation (15) accounts for both of our main observations
in Fig. 2. Furthermore, we have arrived at a falsifiable
prediction: the stretch exponent f of the decay should be
given by f = —0 (1). An independent numerical measure-
ment of € can test this prediction. Indeed, fitting a power
law —2 + 6 to the distribution of decimated elements in
Fig. 3 produces exponents —f which are in broad agree-
ment with f# as fit to C(z) [Fig. 1(b)]. This agreement
extends to several models with prethermal MBL regimes
[23-26]. Note that, as pg.. is not a pure power law,
agreement should not be exact.

Discussion.—Theory forbids a stable MBL phase in
many settings in which experiment and numerics observe
MBL phenomenology [65-76]. Even in one dimension,
MBL may only exist at much larger disorder strengths than
previously anticipated [10,17-19,77]. These settings are
instances of prethermal MBL. We have begun the study of
such prethermal dynamics in one dimension. The succes-
sive resonance model predicts stretched exponential decay
of autocorrelators, an exponentially long thermalization
time, and the value of the stretch exponent, all of which are
supported by numerics in several models at intermediate
values of W. These values of W lie in the regime that
diagonalization studies previously identified as critical.

At larger values of W in the prethermal regime (pre-
viously identified as many-body localized), the decimated
elements can be controlled by a power law exponent @ that
is positive for small Jacobi flow times. Here, the flow of 8
cannot be ignored, as thermalization should be signaled by
a negative 0. Testing resonance model predictions then
requires longer flow times and larger system sizes, or an
analytic theory of the flow of 6.

The successive resonance model does not use any
properties of the random potential. As such, its predictions
are identical for correlated potentials in one dimension.

More generally, successive resonance model predictions
are identical in any setting where py.. is a power law with
6 < 0. Future work should check this in higher dimensions
[65-67], translationally invariant MBL [68,69], and with
long range interactions [73—76]. Whenever py.. has a strong
separation of scales, the model may still be predictive,
although decay need not be stretched exponential. An
interesting open question is the applicability to Floquet
prethermalization [78], in which there is only one long-
lived global conservation law, but fidelities still show slow
decay [79].

In Anderson models on random regular graphs and
related random matrix models, return probabilities exhibit
stretched exponential decay [11,80-85]. With the
assumption of sparse resonances, the formal calculations
in these models are very similar to ours. The application of
the Jacobi method to random regular graphs is worth
exploring.

The Jacobi algorithm provides an effective off-diagonal
matrix element distribution at different time scales. Its
applications to quantum dynamics, the emergence of
hydrodynamics, and connections to other techniques
[45,86—88] deserve further investigation. Indeed, the most
rigorous analysis of MBL uses the Jacobi algorithm [9,89].
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