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The interplay of correlated spatial modulation and symmetry breaking leads to quantum critical
phenomena intermediate between those of the clean and randomly disordered cases. By performing
a detailed analytic and numerical case study of the quasi-periodically (QP) modulated transverse
field Ising chain, we provide evidence for the conjectures of Ref. [1] regarding the QP-Ising univer-
sality class. In the generic case, we confirm that the logarithmic wandering coefficient w governs
both the macroscopic critical exponents and the energy-dependent localisation length of the crit-
ical excitations. However, for special values of the phase difference ∆ between the exchange and
transverse field couplings, the QP-Ising transition has different properties. For ∆ = 0, a generalised
Aubry-André duality prevents the finite energy excitations from localising despite the presence of
logarithmic wandering. For ∆ such that the fields and couplings are related by a lattice shift,
the wandering coefficient w vanishes. Nonetheless, the presence of small couplings leads to non-
trivial exponents and localised excitations. Our results add to the rich menagerie of quantum Ising
transitions in the presence of spatial modulation.

PACS numbers:

I. INTRODUCTION

In the vicinity of a quantum Ising phase transition in
a spatially homogeneous (clean) system, the magnetisa-
tion (the order parameter) fluctuates on the respective
macroscopic length and time scales,

ξ ∼ δ−ν , ξt ∼ ξz, (1)

where ν and z are the correlation length and dynamic
exponent respectively, and δ is the control parameter
which measures the deviation from the transition [2].
These fluctuations of the order parameter are mediated
by long wavelength, low energy excitation modes. In
the clean transverse field Ising model (TFIM) the transi-
tion is in the celebrated Onsager universality class with
ν = z = 1 [3, 4].

Spatial modulation of the couplings can change the
universality class of a quantum phase transition. One fea-
ture of this is that locally different regions of the system
may be closer to, further from, or even on different sides
of, the critical point δ = 0. This is quantified by δi, the
local deviation from the transition point at the spatial po-
sition i. If the fluctuations of the spatially averaged δ in
a region of size l grow sufficiently quickly with l, then the
clean transition is perturbatively unstable by the Harris-
Luck criterion [5–7]. Accordingly, random modulation
destabilises the clean Ising transition and ultimately the
system flows to an infinite-randomness critical point [8–
14]. Both quasi-periodic and hyper-uniform modulation
allow the fluctuations of δ to be tuned, and can send the
system to new fixed points [1, 6, 15–25].

For sufficiently strong smooth quasi-periodic (QP)
modulation of the couplings in the TFIM, Ref. [1] showed

∗Electronic address: philip.jd.crowley@gmail.com

Case w ν z γ zL

0. Ising (Weak modulation) 0 1 1 7/4 –

1. QP-Ising (Generic ∆) 1.2 1+ 1.9 2.6+ 1.9

2. Zero-wandering (∆ ∈ Q(N+ 1

2
)) 0 1 3/2 2.2 3/2

3. Aubry-André (∆ = 0) 1.5 1+ 2.0 2.7+ –

TABLE I: Summary of critical exponents for smooth quasi-
periodic Ising transitions: The logarithmic wandering coeffi-
cient w, correlation length exponent ν, dynamical exponent z,
susceptibility exponent γ and localisation length exponent zL
for the model in Eq. (3) in various regimes. All data presented
for Q = (1+

√
5)/2 the golden mean. The exponents for cases

2 & 3 are obtained here for the first time. (Case 0) Weak QP
modulation is irrelevant to the clean Ising transition. (Case
1) Strong QP modulation is generically relevant due to the
logarithmic wandering w > 0; this enhances ν logarithmically
(indicated by superscript +), modifies z and γ, and induces
localisation of the finite energy modes. (Case 2) For special
relative phases ∆ = Q(N+ 1

2
), w vanishes but the weak cou-

plings nonetheless induce localisation. This case violates the
conjecture that w controls the macroscopic critical exponents.
(Case 3) For ∆ = 0, a generalised Aubry-André-type duality
prevents localisation of the finite energy modes. Nonetheless,
the wandering modifies equilibrium exponents.

that the fluctuations of Sl(j) =
∑j+l−1

i=j δi, the wander-
ing, grow logarithmically with region size l:

σ2(Sl) ∼ w log(l). (2)

The logarithmic growth violates the Harris-Luck crite-
rion but not strongly enough to drive the system to infi-
nite randomness. Ref. [1] argued that the resulting QP-
Ising transitions belonged to a new line of intermediate
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Spatial structure of low energy excitations

Delocalised Localised

Ising

Clean or periodic modulation [3, 26]
Weak-continuous-QP modulation [6]

Fine-tuned discontinuous-QP [6, 16, 17, 20–24, 27–30] Strongly hyper-uniform random disorder [25]

QP-Ising

Aubry-André strong-continuous-QP
modulation (∆ = 0)

Generic-discontinuous-QP modulation
Generic strong-continuous-QP modulation

(∆ 6= 0), (See also [1, 31])

Infinite
randomness —

Independent random disorder [11–13]
Weakly hyper-uniform random disorder [25]

TABLE II: Symmetry breaking fixed points of modulated Ising Chains: Different modulation organised by universality (rows),
and the localisation of low energy excitations (columns). QP modulation is Ising relevant if it is either strong or discontinuous
(J(θ),h(θ) have zeros or jump discontinuities respectively). In this manuscript we focus on the role of ∆ for strong and smooth
QP modulation (bold).

are classified according to this symmetry: the paramag-
netic (PM) phase is Ising symmetric, while in the fer-
romagnetic (FM) phase the symmetry is spontaneously
broken.

The QP-TFIM satisfies Ising duality. Under the trans-
formation:

(σx
i σ

x
i+1, σ

z
i ) → (τzi+1, τ

x
i τ

x
i+1) (6)

the QP-TFIM with couplings hi, Ji maps to another QP-
TFIM with couplings h′i = Ji−1, J

′
i = hi. Thus any self

dual points coincide with phase transitions.

B. Commensurate approximation

We may approach the limit of QP (i.e. incommensu-
rate) modulation through a series of commensurate ap-
proximations Q = 2πpi/qi, where the co-prime integers
pi, qi constitute the ith best rational approximation to the
irrational Q/2π. The best rational approximations p/q
to an irrational z are those which minimise |z−p/q| over
all rationals with a denominator no larger than q. The
incommensurate limit is obtained on taking qi → ∞.

As per the elementary results of Diophantine approxi-
mation [32], the best approximations pi/qi are given by
truncating the continued fraction expansion,

Q

2π
= a0 +

1

a1 +
1

a2+
1

a3+...

, (7)

at the ith level. For specificity, we focus on the Golden
Ratio Q/2π = τ ≡ (1 +

√
5)/2, for which the best ratio-

nal approximations are pi/qi = Fi+2/Fi+1 where Fi are
the Fibonacci numbers. However, our results are read-
ily generalisable to Q/2π equal to any badly approximable
number. Badly approximable numbers are defined by the
property that maxi ai is finite.

In the commensurate approximation, the QP-
TFIM (3) is invariant under translations by qi lattice
sites. The modes of the system are Bloch waves which can
be calculated exactly in the infinite system limit L→ ∞.
On length scales ` < qi, the scaling properties of corre-
lation functions is controlled by the critical properties of
QP-Ising universality class, whereas on scales `� qi the
periodicity is apparent, and the scaling of correlations
is correspondingly dictated by the Onsager universality
class. Thus qi plays the role of a finite size cut-off to the
QP-Ising transition.

C. Jordan-Wigner transformation to Majorana
fermions

Using the Jordan-Wigner transformation

γ2i−1 = σz
1 · · ·σz

i−1σ
x
i

γ2i = σz
1 · · ·σz

i−1σ
y
i ,

(8)

the QP-TFIM (3) maps to a quadratic Hamiltonian (see
Fig 1b):

H =
i

2





L−1
∑

j=1

Jjγ2jγ2j+1 +

L
∑

j=1

hjγ2j−1γ2j





=
1

4

2L
∑

i,j=1

Hijγiγj .

(9)

where γi are Majorana fermions satisfying {γi, γj} =
2δij . The antisymmetric-Hermitian matrix H has non-
zero elements Hij only for |i− j| = 1. The eigenvalues of
H come in ± pairs εα = −εβ , whose corresponding eigen-

vectors are related by complex conjugation ψα
j = ψβ

j . Let
α = 1 . . . L label the L positive eigenvalues. Define the
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Majorana fermions:

η2α−1 =
√
2

2L
∑

j=1

Re (ψα
j )γj , η2α =

√
2

2L
∑

j=1

Im (ψα
j )γj .

(10)
where {ηα, ηβ} = 2δαβ . Re-writing H in terms of these
Majorana fermions

H =
i

2

L
∑

α=1

εαη2α−1η2α =

L
∑

α=1

εα

(

c†αcα − 1

2

)

(11)

Above, the complex fermions cα = (η2α−1 + iη2α)/2 en-
code the excitations of the TFIM.

D. Spatial structure of excitation modes

Transport properties, such as the thermal conductivity,
are dictated by the spatial structure of excitations above
the ground state.

In the clean TFIM, H is translationally invariant, and
the ψα

j are delocalised Bloch waves. This give rise to bal-
listic spreading of energy which is locally injected into
the system. In non-interacting one-dimensional models,
random modulation leads to exponentially localised exci-
tations ψα

j ∼ exp (−|j − jloc.|/ζ) each with some locali-
sation centre jloc. and localisation length ζ [33].

Similar localisation of all excitations is seen in the equi-
librium phases of randomly modulated [34], or strongly
QP modulated Ising chains [1, 31]. At the transition,
the modulation-induced localisation competes with the
development of long-range order, which necessitates an
extended soft mode at zero energy. This forces ζ to di-
verge as a function of energy

1/ζ
ε→0−−−→ 0. (12)

In mesoscopic systems, this produces a vanishing frac-
tion of delocalised low energy states with ζ & L. Certain
QP-modulation leads to excitations with fractal struc-
ture [35–41]. Wavepackets formed from fractal modes
spread sub-ballistically but without bound [42], so they
are delocalised.

E. Scaling limit and scaling content

At a phase transition, correlation functions become
scale free [2]. In the vicinity of the transition, single
parameter scaling posits that correlation functions are
controlled by a single length scale ξ and time scale ξt
which both diverge at the transition:

ξ ∼ [δ]
−ν

ξt ∼ ξz (13)

Above, [δ] = [log(Ji/hi)] is the average deviation from
the transition, and ν and z are respectively the correla-
tion length and dynamic critical exponents. Here, and

throughout the manuscript, [·] denotes spatial averaging
(averaging over the site index). The dynamic critical ex-
ponent also controls the long-wavelength features of the
dispersion ε ∼ |k|z and the low energy features of the
density of states ρ(ε) ∼ ε1/z−1.

In a homogeneous system (AJ = 0, Ah = 0), the scales
ξ, ξt determine the correlations in the vicinity of the tran-
sition

〈σx
i (t)σ

x
i+r(0)〉c ∼

1

|r|2∆σ

Cxx
(

r

ξ
,
t

ξt

)

, (14)

where ∆σ is the spin scaling dimension and 〈·〉c denotes
the connected part of the ground state correlator. In a
spatially inhomogeneous systems, 〈σx

i (t)σ
x
i+r(0)〉c varies

with the position i. One can define mean and typical cor-
relators by taking either the spatial arithmetic-mean or
the spatial geometric-mean respectively, and these may
display different scaling behaviour [11–14, 25].

In this manuscript, we focus on the mean correlators,
as these determine macroscopic physical quantities via
linear response. These mean correlators similarly define
scaling functions

[

〈σx
i (t)σ

x
i+r(0)〉c

]

∼ 1

|r|2∆σ

Cxx
(

r

ξ
,
q

ξ
,
t

ξt

)

. (15)

where we have included the dependence on the period of
commensurate modulation q (see Sec. II B), which func-
tions much like a finite size cut-off. The critical data
Cxx,∆σ, ν, z of the inhomogeneous case may be altered
from the homogeneous case.

The susceptibility χ to a longitudinal field B is an ex-
ample of a physical quantity controlled by a mean cor-
relator. This diverges at the critical point χ ∼ [δ]−γ .
Differentiating the free energy density f we find

χ = − ∂2f

∂B2

∣

∣

∣

∣

B=0

=
∑

r

∫ β/2

−β/2

dτ
[

〈σx
i (0)σ

x
i+r(iτ)〉c

]

,

∼
∫

dr

∫ β/2

−β/2

dτ
1

|r|2∆σ

Cxx
(

r

ξ
,
iτ

ξt

)

. (16)

The dependence on ξ, ξt can be scaled out of the above
integral, yielding the relation

χ ∼ ξtξ
1−2∆σ ∼ [δ]−ν(1+z−2∆σ) = [δ]−γ . (17)

This provides a means to access susceptibility exponent
γ from the scaling of spatially averaged correlation func-
tions. The clean TFIM is a well-known example of the
Onsager universality class [3] with exponents z = 1,
ν = 1, γ = 7/4 and ∆σ = 1/8.
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boundaries

Ah = AJ , (26a)

(J̄ = h̄)

Ah
=

1 + (AJ/Ah)
2

2
for AJ < Ah, (26b)

(J̄ = h̄)

Ah
=

(AJ/Ah)
−1 +AJ/Ah

2
for AJ > Ah. (26c)

These lines are shown in Fig. 2. They meet at the bi-
critical point J̄ = h̄ = AJ = Ah. Under the action of
the duality transformation (6) the line (26a) is self dual,
whereas (26b) and (26c) are interchanged.

Note that the phase boundaries depend only on the
energetic scales J̄ , h̄, AJ , Ah of the model, and are inde-
pendent of the wave vector Q and the phases φ and ∆.

IV. WANDERING OF QP MODULATION

The primary effect of quasi-periodic modulation on the
critical TFIM is captured by the its wandering. In this
section, we define and analyse the wandering itself and in
Sec. V we consider the implications for the critical data.

The wandering records the variation of the reduced
coupling δj when summed over regions of finite length l.
The Onsager universality of the clean TFIM may persist
in the presence of modulation only if a criterion due to
Harris [5] and Luck [6, 7] is satisfied. We find generic
strong continuous and discontinuous QP modulation vi-
olates this criterion, albeit much more weakly than ran-
dom modulation, and thus leads to universality which is
intermediate to the clean and random cases.

A. Distinct cases analysed

Up to this point, our analysis has applied to the QP-
TFIM irrespective of the value of the phase difference ∆.
However, on the self-dual critical boundary AJ = Ah,
when the value ∆/Q takes special rational values lead
to fine tuned critical behaviour, distinct from the generic
case. Thus, we separate our discussion into the following
cases (cf. Table I):

0. Ising : When AJ < J̄ , Ah < h̄ the modulation is
weak and irrelevant to the clean Ising transition [6,
7], independent of ∆.

1. QP Ising: For strong modulation (AJ > J̄ or
Ah > h̄) with generic ∆ on the critical lines DB,
BE, BC, the universality class of the transition is
QP-Ising, with universal content completely deter-
mined by the wandering coefficient w [1].

2. Zero-Wandering : For strong modulation on the
self-dual boundary (BC) with ∆ = Q(d+ 1/2) for
d ∈ N, the wandering coefficient vanishes due to
fine tuning and the Harris-Luck criterion is satis-
fied by the clean Ising transition. However, we find

that the critical data are nonetheless modified and
the system behaves as if in the QP-Ising class but
with a broken relationship between wandering w
and critical exponents.

3. Aubry-André: Strong modulation with ∆ = 0 on
the self-dual boundary BC, the wandering coeffi-
cient is again finite and we find the equilibrium
scaling content is described by the generic QP-Ising
transition (Case 1). However, the excitations are
de-localised at all energies due to an Aubry-André
type symmetry.

B. Harris-Luck Criterion

The Harris-Luck criterion concerns the behaviour of
the wandering, which is defined as the sum of reduced
couplings over a region of length l

Sl(j) =

j+l−1
∑

i=j

δi. (27)

This quantity characterises the local deviation from crit-
icality over the region, δlocal(l) = Sl(j)/l. δlocal(l) has
mean value [δj ] and typical fluctuations of scale σ(Sl)/l,
with

σ(Sl) =

√

[Sl(j)2]− [Sl(j)]
2
. (28)

We decompose the local averaged reduced coupling into
its mean value, and fluctuations about the mean

δlocal(l) ∼ [δj ] + cj σ(Sl)/l (29)

where cj is some O(l0) number dependent on microscopic
details. It is clear that δlocal(l) cannot converge to its
mean value in the limit of large l if the fluctuations are
asymptotically larger than mean. This imposes the con-
sistency condition

lim
l→∞

σ(Sl)/(l| [δj ] |) <∞ (30)

To see how this condition bounds the critical exponents,
set l to ξ, the length-scale up to which the critical point
controls the ground state correlations. This recasts (30)
as the Harris-Luck criterion for the stability of the tran-
sition to spatial modulation:

lim
ξ→∞

σ(Sξ)/ξ
1−1/ν <∞ (31)

Random modulation provides a useful example. In this
case σ(Sξ) ∼

√
ξ whilst in the clean TFIM ν = 1. These

quantities violate (31), indicating that in the vicinity of
the transition, the fluctuations in [δ] on the length scale
ξ ∼ [δ]−1 are too large to determine the phase of the
system. Random modulation is therefore a relevant per-
turbation to the clean Ising transition. The random Ising
chain flows to an infinite-randomness critical point with
ν = 2 [11–13], the minimal value which satisfies (31).
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C. Case 0: Ising

In the QP-TFIM, we use the equivalence of spatial av-
erages [·], and phase averages [·]φ to recast σ2(Sl) in a
simple form:

σ2(Sl) =
∑

k 6=0

|δ̂k|2
sin2(Qkl/2)

sin2(Qk/2)
. (32)

Above, the Fourier coefficient δ̂k is defined as:

δ(θ) = log

∣

∣

∣

∣

J(θ)

h(θ)

∣

∣

∣

∣

=
∑

k

δ̂ke
ikθ. (33)

The values of σ2(Sl) in the weakly modulated regime
(J̄ > AJ , h̄ > Ah) are depicted in Fig. 5 (upper panel,
grey dots). We see that σ2(Sl) is a non monotonic func-
tion, bounded by its asymptotically separated infimum
and supremum

l−2 . σ2(Sl) . 1. (34)

Here Al . Bl is equivalent to Al < cBl for some finite c
and all sufficiently large l. Certain sub-series saturate the
lower scaling bound, for example in Fig. 5 (upper panel)
σ2(Sl) scales as its infimum when l is a Fibonacci (gold
line) or Lucas (green line) number.

As the infimum and supremum are asymptotically sep-
arated, we characterise the scaling behaviour by the
Cesàro mean

[

σ2(Sl)
]

Cesàro
=

1

l

l
∑

l′=1

σ2(Sl′). (35)

In the weakly modulated regime
[

σ2(Sl)
]

Cesàro
∼ c (36)

for some constant c. At the clean Ising transition ν = 1
and the Harris-Luck criterion (31) is not violated either
by the supremum or the Cesáro mean. The clean Ising
transition is therefore stable to the introduction of weak
QP modulation [6, 7].

D. Case 1: QP-Ising

In the strongly modulated regime, σ2(Sl) is a non-
monotonic function with an asymptotically separated in-
fimum and supremum (Fig 5, second panel, grey)

1 . σ2(Sξ) . log l. (37)

As in the weakly modulated case, the Fibonacci (gold
line) and Lucas (green line) numbers follow the infimum.
The Cesàro mean scales logarithmically

[

σ2(Sl)
]

Cesàro
∼ w log l (38)

where w is the logarithmic wandering coefficient. The
Harris-Luck criterion (31) is violated and the critical lines
BC, and the parabolic phase boundaries DB and BE
shown in Fig. 2 all have critical behaviour distinct from
the clean model.

FIG. 5: Logarithmic wandering of σ2(S`): σ2(S`) (grey dots)
has diverging infimum and supremum. The Césaro mean is
shown (blue), as are sub-series with l = Fibonacci (gold) and
Lucas numbers (green). Ising case: the supremum is bounded
by a constant, and the infimum decreases exponentially. QP
Ising case: The supremum and Césaro mean increase loga-
rithmically. The analytic prediction of Sec. IV D2 is shown in
red. Zero wandering case: ∆ ∈ Q(N+1/2), the wandering has
the same qualitative behaviour as Case 0. Aubry-André case:
∆ = 0 shows the same qualitative behaviour as Case 1, with
slightly larger w. Parameters (J = h)/(AJ = Ah) = 2, 1/2,
and Q/2π = τ the Golden ratio.
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1. Intuition for log-wandering

The log-wandering originate from the logarithmic di-
vergence in δ(θ) (33). In a region of size l running over
sites site i ≤ j < i+ l, the values of the reduced coupling
are set by δ(θ) evaluated at θ = Qj mod 2π. These val-
ues are sufficiently uniformly distributed over the interval
[0, 2π] that we can gain intuition from considering Sl as
analogous to the Riemann sum

l
∑

j=1

δ(2πj/l) ≈ l

∫ 2π

0

dθδ(θ) ∼ O(l) (39)

Shifting the region of interest by varying i moves this
roughly uniformly lattice of θ values around, and induces
fluctuations on this Riemann sum, these fluctuations are
analogous to quantity σ2(Sl). When δ(θ) is bounded and
continuous, these fluctuations are O(1), whereas when
δ(θ) has a logarithmic divergence, the fluctuations are
dominated by how close one samples to the divergence
and one finds σ2(Sl) ∼ log l [1].

2. The logarithmic wandering coefficient w

The logarithmic wandering coefficient w controls the
strength of the violation of the Harris-Luck criterion. As
w determines the universal content of the QP-Ising tran-
sition [1], we derive its precise value below. From the def-
inition of w (38), the Cesàro mean (35) and σ2(Sl) (32)

w = lim
l→∞

1

log l

∑

k 6=0

|δ̂k|2
l
∑

l′=1

sin2(Qkl′/2)

l sin2(Qk/2)
. (40)

For strongly modulated smooth couplings, the zeros in
J(θ), h(θ), imply that

δ̂k =
1

2π

∫ 2π

0

dθ e−ikθ log

∣

∣

∣

∣

J(θ)

h(θ)

∣

∣

∣

∣

∼ 1

k
. (41)

The logarithmic growth of the sum (41) with l is due to
exponentially spaced O(1) terms, which appear when the
denominator sin2(Qk/2) takes an O(1/k2) small value.

Eq. (40) can be simplified. We note first that the series
fk = k2|δk|2 is a quasi-periodic in k and has the following
values on the different critical lines

fk ≡ k2|δ̂k|2

=











T 2
k (J̄/AJ) for BE

4 sin2 [(∆/2−Q/4)k]T 2
k (J̄/AJ) for BC

4 sin2 [(∆/2−Q/4)k] for B

(42)
where Tk(z) = cos(k arccos z) is the kth Chebyshev poly-
nomial of the first kind. The properties of the line DB
follow by duality from BE. In all cases of (42), if Q
is rationally independent of ∆, and arccos(J̄/AJ), then

the O(1) terms of the sum in (40) uniformly sample the
values of fk and (40) factorises as

w = [f ]Cesàro wQ. (43)

The Cesàro mean of fk can be evaluated on the various
critical lines,

[f ]Cesàro = lim
k→∞

1

k

k
∑

k′=1

fk′

=











1/2 for DB and BE

1 for BC

2 for B

(44)

The second factor,

wQ = lim
l→∞

1

log l

∑

k 6=0

l
∑

l′=1

sin2(Qkl′/2)

k2l sin2(Qk/2)
. (45)

Refs. [1, 44] showed that this limit converges to a finite
value for Q/2π equal to any badly approximable number.

For example, in the case Q/2π = τ ≡ (1 +
√
5)/2, wQ

may be exactly evaluated [1, 44]

wQ =
2π2

15
√
5 log τ

= 1.22 . . . . (46)

This calculation of wQ is readily generalised to other
quadratic numbers. Putting it all together for Q/2π = τ ,

w =











0.61 . . . for DB and BE

1.22 . . . for BC

2.44 . . . for B

(47)

E. Case 2: Zero wandering

For ∆ = (Qd+Q/2) mod 2π with d ∈ N the wander-
ing coefficient is zero due to an exact cancellation. As the
exchange and field couplings are related by a lattice shift
Jj+d = hj , the sum Sl(j) separates into two boundary
pieces for l > d,

Sl(j) =

j+d−1
∑

i=j

log |Ji| −
j+l−1
∑

i=j+l−d

log |hi|. (48)

As a result, σ(Sl) = σ(Sd) for all l > d and the Harris-
Luck bound (31) is not violated. Nevertheless, we will
see later that this zero-wandering transition is not in the
clean Ising universality class, due to the presence of small
couplings.

F. Case 3: Aubry-André

For ∆ = 0 on the line BC, the calculation proceeds
similarly the QP-Ising case (Sec. IVD), and the wander-
ing grows logarithmically as in Eq. (38), with a slightly
enhanced value of w.
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a leading order approximation of the secular equation.
A macroscopic way to measure the dynamical exponent

is provided by the low-temperature heat capacity

c =
du

dT
=

d

dT

∫ ∞

0

dε ερ(ε)nF(ε/T ). (54)

Here nF(ε/T ) = (1+eε/T )−1 is the Fermi-Dirac distribu-
tion. For power law density of states ρ ∼ ε1/z−1,

c =
d

dT
T 1/z+1

∫ ∞

0

dx x1/znF(x) ∼ T 1/z (55)

1. QP-Ising (Generic ∆) and AA (∆ = 0) transition

The following calculation proceeds identically for
generic ∆ and ∆ = 0 because they both have logarithmic
wandering

[

σ2(Sl)
]

Cesàro
∼ w log l.

Consider the excitation spectrum of the QP-TFIM. For
finite period q, this spectrum consists of states with band
index α = 1 . . . q, momentum k ∈ [−π/q, π/q] and energy
εα(k). Let ε∗α = maxk εα(k) be the highest energy of the
αth band, thus

n(ε∗α) =
α

q
∼ (ε∗α)

1/z. (56)

Thus the top of the lowest band lies at an energy ε∗0 ∼
q−z. We note ε0(k) is the root of smallest magnitude of
the characteristic polynomial χ(ε0, k) = 0, where

χ(ε, k) = |H(k)− ε| =
q
∏

α=1

(

ε2α(k)− ε2
)

=

q
∑

n=1

χ2nε
2n

(57)

This allows us to estimate ε0 by truncating χ(ε, k) to
quadratic order

0 = χ(ε0) ≈ χ2 ε0
2 + χ0. (58)

From the form of H(k) the coefficients χ0, χ2 are found
to be

χ0 = (−1)q

∣

∣

∣

∣

∣

∏

i

hi − e−ikq
∏

i

Ji

∣

∣

∣

∣

∣

2

(59a)

χ2 = (−1)q−1

q−1
∑

i=0

q−1
∑

`=0

(

i+`−1
∏

n=i

|Jn|2
i+q−1
∏

n=i+`+1

|hn|2
)

.

(59b)

At the transition, P = |
∏

i Ji| = |
∏

i hi|. We therefore
find

χ0 = (−1)q2(1− σ cos kq)P 2 (60a)

χ2 = q(−1)q−1P 2

q−1
∑

l=0

[

e2Sl(i)

|hi+l|2
]

i

(60b)

where σ = sign(
∏

i Jihi) and Sl(i) is given by (27). As we
are interested in the maximum energy of the 0th band,
we set cos(kq) = −σ. This yields

− χ2

χ0
=
q

4

q−1
∑

l=0

[

e2Sl(i)

|hi+l|2
]

i

. (61)

To make progress it is necessary to approximate fur-
ther. We: (i) neglect the correlations between the nu-
merator and the denominator of the summand, (ii) re-
place the denominator hi+` with a single characteristic
energy scale h̄, and (iii) treat the S`(i) as Gaussian inde-
pendently distributed variables with mean [S`] = 0 and
variance σ2(S`) = w log `. This neglects correlations be-
tween S`(i) for different i, and non-Gaussianity of each
S`(i). Making this approximation yields

−χ2

χ0
≈ q

4h̄2

q−1
∑

`=0

[

e2S`(i)
]

i
=

q

4h̄2

q−1
∑

`=0

`2w ∼ q2+2w. (62)

By (58) this estimate implies that ε∗0 ∼
√

−χ0/χ2 ∼
q−1−w and hence z ≈ 1 + w. Using the results of
Sec. IV D 2 for Q/2π = τ = (1 +

√
5)/2, we obtain

z ≈ 1 + w = 2.22 . . . . (63)

for the QP-Ising transition on the critical line BC.
In Fig. 6 this prediction is compared with numerics.

The data is compared with extracted values for z indi-
cated by the dashed lines. Specifically, in each case we
extract values of z−1 by a least squares fit to the rela-
tionship

log[n(ε)]φ = z−1ε+ cons.. (64)

The values of n(ε) are computed exactly using the
method of Refs. [45, 46], for q = 1346 269. The nu-
merics confirms the power law behaviour with an ex-
ponent z ≈ 1.9, giving some discrepancy with the es-
timate (63). The power law behaviour of the integrated
DOS n(ε) ∼ ε1/z is additionally confirmed numerically
for other choices of Q in the supplementary material.

2. Zero-wandering transition (∆ ∈ Q(N+ 1/2) mod 2π)

When ∆ = Q/2, we have the relation Jj = hj . Equa-
tion (60) simplifies to

χ0 = (−1)q2(1− σ cos kq)

(

∏

i

J2
i

)

(65a)

χ2 = q(−1)q−1

(

∏

i

J2
i

)

q
∑

j=1

1

J2
j

. (65b)

Assuming that the sum is dominated by the minimal cou-
pling Jmin ∼ 1/q, we obtain

ε∗0 ≈
√

−χ0

χ2
=

√

4

q
∑

i
1
J2
i

∼ min |Ji|√
q

∼ q−3/2. (66)
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D. Aubry-André case: Multifractal excitations

At the special point ∆ = 0, the critical delocalisation
1/ζ(0) = 0 extends to the whole spectrum 1/ζ(ε) = 0.

This is enforced by a special duality which gener-
alises the well known Aubry-Andre duality [49–52]. The
Aubry-Andre model is dual to itself under the Fourier
transform. Many properties follow from this duality. For
example, if H has finite bandwidth, and hence extended
modes, then its dual model has a pure point spectrum
and localised modes, and vice versa [40, 53]. A corre-
sponding duality which applies to a wider class of single
particle quasi-periodic models is obtained if one consid-
ers the class of 1D short range hopping models which are
dual to 1D short range hopping models [31, 40].

Consider a single particle Hamiltonian of the form

H =

∞
∑

j=−∞

∞
∑

a=−∞
ta(Qj/2)|j + a〉〈j| (76)

where the QP modulated a-site hops and on-site po-
tentials are set by the 2π periodic functions ta(θ) and
t0(θ), respectively. Hermiticity, H = H†, requires
that t−a(θ) = t∗a(θ − Qa/2). The unitary V =
1√
N
∑

nm eiQnm/2|n〉〈m| Fourier transforms H to a dual

model of the same class

H̃ = VHV† =
∞
∑

j=−∞

∞
∑

a=−∞
t̃a(Qj/2)|j + a〉〈j| (77)

where the dual hops are defined by

t̃a(θ) =

∞
∑

b=−∞

∫ π

−π

dθ′

2π
ei(bθ−aθ′)t∗b(θ

′). (78)

As the high order Fourier components of ta(θ) contribute
to long range hops in the dual basis, generic modulated
nearest-neighbor hopping models are dual to models with
long-range hopping. However, for special models the hop-
ping is local in both bases.

On the vertical critical line at ∆ = 0 the single particle
Hamiltonian H in Eq. (9), and its corresponding dual H̃
are nearest neighbour hopping models. H is a tridiago-
nal matrix with on-site potentials and nearest neighbour
hops set by,

t0(Qj/2) = 0

t1(Qj/2) = ieik/2
[

J̄ +AJ cos (Qj/2 + φ)
] (79)

whilst H̃ has corresponding elements,

t̃0(Qj/2) = 2J̄ sin(Qj/2− k/2)

t̃1(Qj/2) = ei(φ−Q/4)AJ sin(Qj/2 +Q/4− k/2).
(80)

The amplitude of all longer range (a > 1) hops vanishes,
ta, t̃a = 0 [91].

A relation due to Thouless [54] states that for tridiag-
onal model H, the localisation length ζ and density of
states are related by

1

ζ(ε)
=

∫

dε′ρ(ε′) log |ε− ε′| − [log |t1(θ)|]θ . (81)

As H and H̃ are unitarily related, they have the same
density of states. Applying (81) to both H and H̃, we
find that the difference of the inverse localisation lengths,

1

ζ(ε)
− 1

ζ̃(ε)
= [log |t1(θ)|]θ −

[

log |t̃1(θ)|
]

θ
, (82)

is set by an energy independent constant. It is further
known that lattice model wave-functions cannot be lo-
calised in both real and reciprocal space [40, 53], i.e.

1/ζ(ε) > 0 implies 1/ζ̃(ε) = 0 and vice versa. Thus
critical delocalistion 1/ζ(0) = 0 implies the RHS of (82)
is non-positive: i.e. [log |t1(θ)|]θ ≤

[

log |t̃1(θ)|
]

θ
. Hence

1/ζ(ε) = 0 for all ε.
The critical delocalisation of the excitations at all ener-

gies is verified in Fig. 9. The numerically extracted 1/ζ(ε)
are found to be independent of energy (up to finite size
fluctuations) and tend to zero as q → ∞ (Fig./ 9, lower
panel, inset).

E. Dynamics of wavepackets

The localisation properties of the modes can also be
seen in the asymptotic spreading of wavepackets. The
spreading of a fermionic wavepacket created at site i
is captured by the time-evolved Majorana operators ex-
panded in the initial basis

e−iHtγie
iHt = Uij(t)γj (83)

where

Uij(t) =
(

e−iHt
)

ij
= 2Re

q
∑

α=1

ψ̄α
i ψ

α
j e

−iεαt. (84)

The probability of a transition from site i to j in time t
is Pij(t) = |Uij(t)|2, and we denote its spatial average by

P̄ (r, t) = [Pi,i+r(t)]i =
[

|Ui,i+r(t)|2
]

i
. (85)

This can be used as a proxy for a broad class of dynam-
ical correlation functions 〈Oi+r(t)Oi(0)〉 as the action of
any local parity-symmetric observable (ie. not involv-
ing Jordan-Wigner strings) is simply to create or destroy
local Majorana excitations.

Density plots of log P̄ (r, t) are shown in Fig. 10. In
each case we see the wave-packet spreading to be consis-
tent with r ∼ t1/z spreading of excitations (black dashed
lines).

In the Ising case of weak modulation, excitations below
a finite mobility edge are delocalised and ballistic. The
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conjecture these models to have the same critical proper-
ties and phenomenology as the Aubry-André case studied
in this manuscript, that is, critical exponents set by the
wandering coefficient w only, with delocalised excitations
and hence no localisation length exponent zL. We lastly
note that the discussion here includes the full class of QP
sequences, and furthermore any modulation generated by
discontinuous J(θ), h(θ), which are all captured using our
methodology. This extends previous work [6, 15–24, 27–
30, 47, 48] which has been restricted to QP sequences
satisfying an inflation rule.
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Appendix A: Relation of group velocity to
bandwidth

In this section we show the result that

W = πv̄ (A1)

where v̄ is the mean absolute group velocity, and W the
total bandwidth, these are given respectively by

v̄ =
1

q

∑

α

∫ π/q

−π/q

dk

2π/q
|∂kεα(k)| (A2)

W =
∑

α

(

max
k

εα(k)−min
k
εα(k)

)

. (A3)

We show below (Sec. A 1) that each band has exactly one
maximum and one minumum, from this it follows that

∫ π/q

−π/q

dk|∂kεα(k)| = 2

(

max
k

εα(k)−min
k
εα(k)

)

(A4)

and (A1) follows.
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1. Band extrema

The excitation mode energies εα(k) are the roots of the
characteristic polynomial χ(εα, k) = 0, where

χ(ε, k) = |H(k)− ε| =
q
∏

α=1

(

ε2α(k)− ε2
)

=

q
∑

n=1

χ2nε
2n.

(A5)

All coefficients χ2n are independent of k for n > 0. Thus
all the dependency on k comes from χ0

χ0 = (−1)q

∣

∣

∣

∣

∣

∏

i

hi − e−ikq
∏

i

Ji

∣

∣

∣

∣

∣

2

= (−1)q
[

P 2
h + P 2

J − 2PhPJ cos(kq)
]

(A6)

for Ph =
∏

i hi, PJ =
∏

i Ji. Thus χ0 has extrema at
kq = 0, π and changes monotonically between them. As

∂εα(k)

∂k
=

∂χ

∂ε

∣

∣

∣

∣

ε=εα(k)

/

∂χ0

∂k
(A7)

we see that ∂kεα(k) changes sign only where ∂kχ0 changes
sign, and hence each band has exactly two extrema. Here
we have used that ∂εχ does not change sign as k is varied

sign

(

∂χ

∂ε

∣

∣

∣

∣

ε=εα(k)

)

= (−1)q−α (A8)

where α = 1 . . . q indexes the positive roots from smallest
to largest.

Appendix B: Spectral measure of tri-diagonal
matrices

We prove the bound

W =
∑

α

Wα ≤ 2πmin
i
(|Ji|, |hi|) ∼ q−1. (B1)

where Wα = maxk εα(k) − mink εα(k) is the width of
the αth band. is the total width of the αth band of H.
This bound is trivially generalisable to any tri-diagonal
matrix.

The momentum appears as a phase eikq gained on
hopping a distance q. Without loss of generality we
choose a gauge in which the phase appears entirely on
Jmin = min(|Ji|, |hi|), the smallest magnitude coupling
of either form.

As we showed in Sec. A 1 that the k-dependence of
the characteristic polynomial |H − ε| = 0 is entirely in
a simple cosine dependence of constant term χ0 = |H|.
A consequence of this is that each band εα(k) has two
stationary points, which lie at k = 0, π/q, with εα(k)

changing monotonically between them. Thus it follows
∑

α

Wα =
∑

α

|εα(π/q)− εα(0)|

=
∑

α

∣

∣

∣

∣

∣

∫ π/q

0

k. ∂kεα

∣

∣

∣

∣

∣

=
∑

α

∫ π/q

0

k. |∂kεα| .

(B2)

From first order perturbation theory ∂kεα = 〈εα|∂kH|εα〉.
Which yields

∑

α

Wα =
∑

α

∫ π/q

0

k. |〈εα|∂kH|εα〉|

≤
∫ π/q

0

k. |∂kH|1

(B3)

where |A|1 = tr
(√

AA†
)

denotes the Ky Fan norm. The

equality in (B3) follows from the fact that |εα〉 forms a
complete basis. This can be seen explicitly by using the
eigen-decomposition ∂kH =

∑

λ |λ〉λ〈λ|.
∑

α

|〈εα|∂kH|εα〉| =
∑

α

∣

∣

∣

∣

∣

∑

λ

|〈λ|εα〉|2 λ
∣

∣

∣

∣

∣

.

≤
∑

α,λ

|〈λ|εα〉|2|λ|

=
∑

λ

|λ|

= |∂kH|1.

(B4)

The final step is to show

|∂kH|1 = 2qmin
i
(|Ji|, |hi|). (B5)

This follows from our gauge choice, in which we put
the phase exclusively on the smallest coupling Jmin =
mini(|Ji|, |hi|). Thus ∂kH is a q × q matrix with two
non-zero elements, one, iqJmine

ikq, on the first-diagonal,
and its conjugate −iqJmine

−ikq on the first-sub-diagonal.
This matrix has two eigenvalues ±qJmin, and so its Ky
Fan norm is |∂kH|1 = 2qJmin for all k, so (B5) and
hence (B1) follows via (B3).

Appendix C: Numerically extracted z for smooth
modulation with Q/2π a metallic mean

Fig. 12 shows additional data for the integrated den-
sity of states for sinusoidal modulation (5) from the lower
critical line BC, for different values of Q. We study
Q/2π =Mn, where

Mn ≡ n+
√
n2 + 4

2

= n+
1

n+ 1
n+ 1

n+...

,
(C1)
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