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The interplay of correlated spatial modulation and symmetry breaking leads to quantum critical
phenomena intermediate between those of the clean and randomly disordered cases. By performing
a detailed analytic and numerical case study of the quasi-periodically (QP) modulated transverse
field Ising chain, we provide evidence for the conjectures of Ref. [1] regarding the QP-Ising univer-
sality class. In the generic case, we confirm that the logarithmic wandering coefficient w governs
both the macroscopic critical exponents and the energy-dependent localisation length of the crit-
ical excitations. However, for special values of the phase difference A between the exchange and
transverse field couplings, the QP-Ising transition has different properties. For A = 0, a generalised
Aubry-André duality prevents the finite energy excitations from localising despite the presence of
logarithmic wandering. For A such that the fields and couplings are related by a lattice shift,
the wandering coefficient w vanishes. Nonetheless, the presence of small couplings leads to non-
trivial exponents and localised excitations. Our results add to the rich menagerie of quantum Ising
transitions in the presence of spatial modulation.

PACS numbers:

I. INTRODUCTION

In the vicinity of a quantum Ising phase transition in
a spatially homogeneous (clean) system, the magnetisa-
tion (the order parameter) fluctuates on the respective
macroscopic length and time scales,

gt ~ 527 (1)

where v and z are the correlation length and dynamic
exponent respectively, and J is the control parameter
which measures the deviation from the transition [2].
These fluctuations of the order parameter are mediated
by long wavelength, low energy excitation modes. In
the clean transverse field Ising model (TFIM) the transi-
tion is in the celebrated Onsager universality class with
v=z=1][3,4].

Spatial modulation of the couplings can change the
universality class of a quantum phase transition. One fea-
ture of this is that locally different regions of the system
may be closer to, further from, or even on different sides
of, the critical point § = 0. This is quantified by §;, the
local deviation from the transition point at the spatial po-
sition ¢. If the fluctuations of the spatially averaged § in
a region of size [ grow sufficiently quickly with [/, then the
clean transition is perturbatively unstable by the Harris-
Luck criterion [5-7]. Accordingly, random modulation
destabilises the clean Ising transition and ultimately the
system flows to an infinite-randomness critical point [8—
14]. Both quasi-periodic and hyper-uniform modulation
allow the fluctuations of § to be tuned, and can send the
system to new fixed points [1, 6, 15-25].

For sufficiently strong smooth quasi-periodic (QP)
modulation of the couplings in the TFIM, Ref. [1] showed
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Case w v oz 21
0. Ising (Weak modulation) 0|1 1 7/4|-
1. QP-Ising (Generic A) 1211t 1.9 2.67|1.9
2. Zero-wandering (A € Q(N+ 1))|/0 |1 3/2 2.2 |3/2
3. Aubry-André (A =0) 151t 2.0 270 |-

TABLE I: Summary of critical exponents for smooth quasi-
periodic Ising transitions: The logarithmic wandering coeffi-
cient w, correlation length exponent v, dynamical exponent z,
susceptibility exponent v and localisation length exponent z,
for the model in Eq. (3) in various regimes. All data presented
for @ = (14++/5)/2 the golden mean. The exponents for cases
2 & 3 are obtained here for the first time. (Case 0) Weak QP
modulation is irrelevant to the clean Ising transition. (Case
1) Strong QP modulation is generically relevant due to the
logarithmic wandering w > 0; this enhances v logarithmically
(indicated by superscript ), modifies z and +, and induces
localisation of the finite energy modes. (Case 2) For special
relative phases A = Q(N + 1), w vanishes but the weak cou-
plings nonetheless induce localisation. This case violates the
conjecture that w controls the macroscopic critical exponents.
(Case 3) For A = 0, a generalised Aubry-André-type duality
prevents localisation of the finite energy modes. Nonetheless,
the wandering modifies equilibrium exponents.

that the fluctuations of S;(j) = Zf:jl_l d;, the wander-

ing, grow logarithmically with region size [:
a?(S1) ~ wlog(l). (2)

The logarithmic growth violates the Harris-Luck crite-
rion but not strongly enough to drive the system to infi-
nite randomness. Ref. [1] argued that the resulting QP-
Ising transitions belonged to a new line of intermediate
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FIG. 1:  Quasi-periodically modulated transverse field Ising
model: a) In the spin chain the exchange couplings J; and the
fields h; are QP modulated (5). b) The Jordan Wigner trans-
formation maps the spin chain to a chain of non-interacting
Majorana fermions.

fixed points parameterised by w. At the QP-Ising tran-
sitions, macroscopic observables obey power-law scaling
(as in the clean Ising transition but with distinct scaling
data), while the finite energy excitations are localised (as
in the disordered Ising transition). Table II summarises
the critical behaviours of the clean, QP modulated and
disordered Ising transitions which have been studied in
the literature. Case 1 in Table I provides representative
values of the critical exponents for the QP-Ising transi-
tion with a specific w.

In this article, we extend the study of Ref. [1] and
provide evidence in support of two conjectures:

(A) The logarithmic wandering coeflicient w captures
the microscopic detail necessary to determine the
macroscopic critical exponents of the QP-Ising
transition. That is, w parameterises a line of criti-
cal fixed points.

(B) The finite energy excitations are localised with a lo-
calisation length ((¢) which diverges as ¢ — 0 with
the same dynamical exponent 21, as that governing
the equilibrium correlations. Thus, z;, = z up to
logarithmic corrections.

While the two conjectures are generically true at the QP-
Ising transition, fine tuning can violate either of them.
The Zero-Wandering case and Aubry-André case (Cases
2 and 3 in Table I) provide examples of finely tuned mod-
els that violate the first and second conjecture respec-
tively.

A challenge in the study of QP models is to separate
physically robust observables from the mathematically
intriguing tower of multi-fractal turtles on which they
ride. Our approach is to focus on the macroscopic expo-
nents which govern spatially averaged response and ne-
glect the highly structured scale-dependent fluctuations
about the mean trends in any given correlator. Thus,
we supplement a calculation of ¥ with measurements of
the dynamical exponent z and susceptibility exponent
~. z sets the low temperature behaviour of the specific
heat ¢ ~ TV/# and is extracted from the global density
of states p ~ €/*~1 while v controls the divergence of

the susceptibility to a longitudinal field x ~ =7, and is
extracted from spatially averaged two-point correlation
functions using scaling relations.

The paper is structured as follows. We first review
the QP-TFIM (Sec. II) and its equilibrium properties
(Sec. III). We then calculate the logarithmic wander-
ing w for different values of A and show that strong-
smooth modulation violates the Harris-Luck criterion
(Sec. IV). In Sec. V, we compute v, z and v for the QP-
Ising transition and provide evidence in support of con-
jecture A in smooth and square-wave modulated TFIMs.
We also compute the critical exponents for the Zero-
wandering and Aubry-André transitions, and show that
conjecture A is violated for the zero-wandering transi-
tion. In Sec. VI, we turn to the localisation properties
of the Fermionic excitations. We show that the excita-
tions are localised with 21, = z at the zero-wandering and
the QP-Ising transitions, but are critically delocalised at
the Aubry-André transition. The Aubry-André transi-
tion therefore violates conjecture B. We end in Sec. VIE
with striking dynamical consequences of the localisation
for wave-packet spreading.

II. PRELIMINARIES

A. Model

The Hamiltonian of the one-dimensional QP-TFIM |1,
31] is

L—-1 L L
1 X T 4 T
H=-3 Y Jiojosi+ ) hoi | =B of. (3)
j=1 Jj=1 Jj=1

Here of are the usual Pauli matrices, B represents a
longitudinal field which we henceforth set B = 0, and
the couplings J; = J(Qj) and h; = h(Qj) are obtained
from sampling 2m-periodic functions J(0) and h(#) with
wave-number ). Quasi-periodicity requires that the ratio
of the wavelength 27/Q to the lattice length a = 1 is
irrational:

Q ¢ 2mQ. (4)
Our analysis focuses on pure tone sinusoidal modulation:

J(O)=J+ Ajcos(0+Q/2+ ¢)
h(0) = h+ Ap cos(0 + ¢ + A). (5)

where J,h, Ay, Ay, > 0 without loss of generality. This
model is depicted in Fig. la. The results for the single
tone case easily generalise to generic continuous J(6),
h(6). In Tab. IT and generally, if either of J(6), h(f) has
zeroes, the modulation is termed strong-QP; whereas if
either has discontinuities it is termed discontinuous-QP.

The QP-TFIM (with B = 0) is Ising-symmetric. That
is, H= PHP for P =[], 07. The ground state phases



Delocalised

Spatial structure of low energy excitations

Localised

Clean or periodic modulation [3, 26|
Weak-continuous-QP modulation [6]

Ising Fine-tuned discontinuous-QP [6, 16, 17, 20-24, 27-30] Strongly hyper-uniform random disorder [25]
Aubry-André strong-continuous-QP
modulation (A =0) Generic strong-continuous-QP modulation
QP-Ising Generic-discontinuous-QP modulation (A #0), (See also [1, 31])
Infinite Independent random disorder [11-13]
randomness — Weakly hyper-uniform random disorder [25]

TABLE II: Symmetry breaking fized points of modulated Ising Chains: Different modulation organised by universality (rows),
and the localisation of low energy excitations (columns). QP modulation is Ising relevant if it is either strong or discontinuous
(J(0),h(0) have zeros or jump discontinuities respectively). In this manuscript we focus on the role of A for strong and smooth

QP modulation (bold).

are classified according to this symmetry: the paramag-
netic (PM) phase is Ising symmetric, while in the fer-
romagnetic (FM) phase the symmetry is spontaneously
broken.

The QP-TFIM satisfies Ising duality. Under the trans-
formation:

(6)

the QP-TFIM with couplings h;, J; maps to another QP-
TFIM with couplings h, = J;_1, J/ = h;. Thus any self
dual points coincide with phase transitions.

(0F 01, 07) = (T, 7' Ti%)

B. Commensurate approximation

We may approach the limit of QP (i.e. incommensu-
rate) modulation through a series of commensurate ap-
proximations @) = 27p;/q;, where the co-prime integers
pi, q; constitute the ith best rational approximation to the
irrational @Q/2m. The best rational approximations p/q
to an irrational z are those which minimise |z —p/q| over
all rationals with a denominator no larger than ¢q. The
incommensurate limit is obtained on taking ¢; — oco.

As per the elementary results of Diophantine approxi-
mation [32], the best approximations p;/¢; are given by
truncating the continued fraction expansion,

N 1
— —=q _—
2 0 aq L

(7)

azt ot

at the ith level. For specificity, we focus on the Golden
Ratio Q/27 = 7 = (1 +/5)/2, for which the best ratio-
nal approximations are p;/q; = F;12/F;11 where F; are
the Fibonacci numbers. However, our results are read-
ily generalisable to /27 equal to any badly approximable
number. Badly approximable numbers are defined by the
property that max; a; is finite.

In the commensurate approximation, the QP-
TFIM (3) is invariant under translations by ¢; lattice
sites. The modes of the system are Bloch waves which can
be calculated exactly in the infinite system limit L — oo.
On length scales ¢ < g;, the scaling properties of corre-
lation functions is controlled by the critical properties of
QP-Ising universality class, whereas on scales £ > ¢; the
periodicity is apparent, and the scaling of correlations
is correspondingly dictated by the Onsager universality
class. Thus ¢; plays the role of a finite size cut-off to the
QP-Ising transition.

C. Jordan-Wigner transformation to Majorana
fermions

Using the Jordan-Wigner transformation

Yoi—1 = O—f e 0;710.$
s v (8)

_ oz
Y2i = 010,105,

the QP-TFIM (3) maps to a quadratic Hamiltonian (see
Fig 1b):

. L—1 L
1
H=3 Y Jiveivagen+ Y hivzi-1e;

j=1 j=1
J J (9)

1 2L

=1 Z Hijvivvs-
Q=1

where ~; are Majorana fermions satisfying {v;,v;} =
20;;. The antisymmetric-Hermitian matrix H has non-
zero elements H;; only for |i — j| = 1. The eigenvalues of
‘H come in * pairs €, = —eg, whose corresponding eigen-

vectors are related by complex conjugation ¢ = w]@ . Let
« = 1...L label the L positive eigenvalues. Define the



Majorana fermions:

20— 17\[ZR8 Dalk Uza*\lem (W5 ).

(10)
where {14,718} = 2048. Re-writing H in terms of these
Majorana fermions

L L

i 1
=3 Z €all2a—1M20 = Z €a (cha - 2) (11)

a=1 a=1

Above, the complex fermions ¢, = (20—1 + i724)/2 en-
code the excitations of the TFIM.

D. Spatial structure of excitation modes

Transport properties, such as the thermal conductivity,
are dictated by the spatial structure of excitations above
the ground state.

In the clean TFIM, H is translationally invariant, and
the ¥% are delocalised Bloch waves. This give rise to bal-
listic spreading of energy which is locally injected into
the system. In non-interacting one-dimensional models,
random modulation leads to exponentially localised exci-
tations ¢ ~ exp (—[j — Jjioc.|/(¢) each with some locali-
sation centre jjo.. and localisation length ¢ [33].

Similar localisation of all excitations is seen in the equi-
librium phases of randomly modulated [34], or strongly
QP modulated Ising chains [1, 31]. At the transition,
the modulation-induced localisation competes with the
development of long-range order, which necessitates an
extended soft mode at zero energy. This forces (¢ to di-
verge as a function of energy

e—0

1/¢ —0. (12)
In mesoscopic systems, this produces a vanishing frac-
tion of delocalised low energy states with ¢ 2 L. Certain
QP-modulation leads to excitations with fractal struc-
ture [35-41]. Wavepackets formed from fractal modes

spread sub-ballistically but without bound [42], so they
are delocalised.

E. Scaling limit and scaling content

At a phase transition, correlation functions become
scale free [2]. In the vicinity of the transition, single
parameter scaling posits that correlation functions are
controlled by a single length scale £ and time scale &;
which both diverge at the transition:

E~107" &~ ¢& (13)

Above, [§] = [log(J;/h;)] is the average deviation from
the transition, and v and z are respectively the correla-
tion length and dynamic critical exponents. Here, and

4

throughout the manuscript, [-] denotes spatial averaging
(averaging over the site index). The dynamic critical ex-
ponent also controls the long-wavelength features of the
dispersion € ~ |k|* and the low energy features of the
density of states p(e) ~ '/~ 1.

In a homogeneous system (A; = 0, A, = 0), the scales
&, & determine the correlations in the vicinity of the tran-
sition

z(f)o? o Lo (rt
OO0 O ~ s Cor (Fog ). (1)

where A, is the spin scaling dimension and (-). denotes
the connected part of the ground state correlator. In a
spatially inhomogeneous systems, (o7 (t)o7,,.(0)). varies
with the position ¢. One can define mean and typical cor-
relators by taking either the spatial arithmetic-mean or
the spatial geometric-mean respectively, and these may
display different scaling behaviour [11-14, 25].

In this manuscript, we focus on the mean correlators,
as these determine macroscopic physical quantities via
linear response. These mean correlators similarly define

scaling functions
1 r q t)
——C - == . 15
|28 75 <§ £ & (15)

where we have included the dependence on the period of
commensurate modulation ¢ (see Sec. IIB), which func-
tions much like a finite size cut-off. The critical data
Cya, Ay, v, z of the inhomogeneous case may be altered
from the homogeneous case.

(o7 (1)o7 (0))e] ~

The susceptibility x to a longitudinal field B is an ex-
ample of a physical quantity controlled by a mean cor-
relator. This diverges at the critical point x ~ [6]77.

Differentiating the free energy density f we find

82
oB? B=0

B/2
=% [ et et innd.

-B/2
ﬂ/Q AT
d - — .
~for [t (E)- 00

The dependence on &, &; can be scaled out of the above
integral, yielding the relation

X ~ fté-l—QA(,- ~ [6]—V(1+Z—2Aa) —

o1 (17)
This provides a means to access susceptibility exponent
~ from the scaling of spatially averaged correlation func-
tions. The clean TFIM is a well-known example of the

Onsager universality class [3] with exponents z = 1,
v=1,v=7/4and A, =1/8.
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FIG. 2:  Phase diagram for sinusoidal couplings (5). The

hatched region defines the weakly modulated regime where
there are no weak couplings (J(Qi),I'(Qi) > 0 Vi). In this
region we find the usual gapped ferromagnetic (blue) and
paramagnetic (green) phases. These are separated by a con-
tinuous transition in the clean Ising class (segment AB). In
the strong modulation (unhatched region) excitations are lo-
calised. Within the strong modulation region we find two new
modulated gapless phases: the QP-PM (yellow), and the QP-
FM (red). The continuous transitions between (double line)
and out of these phases (dashed lines) are in the new QP Ising
class.

III. PHASE DIAGRAM OF THE QP-TFIM
A. Magnetic ordering of the phases

We highlight an interesting slice, J = h, of the ground
state phase diagram of the QP-TFIM Eq. (3) in Fig. 2.
There are four phases. When typical exchange coupling
is larger than the typical field the system magnetically
orders [34]. In the magnetically ordered phases if the
couplings J; are weakly modulated, J > A, the phase
is the usual gapped FM phase of the clean TFIM, and
neighbouring spins align. However, if the couplings J; are
strongly modulated, J < Ay, the system is in the gapless
QP-FM phase in which spins either align or anti-align
with their neighbours depending on the sign of the Jj.
By duality the analogous statements hold for the PM and
QP-PM phases which occur when the fields are weakly
(h > Ap) or strongly (h < Aj) modulated respectively.

In the FM and PM phases, the local magnetizations
(eg. (o) and (07)) vary smoothly as the global couplings
are tuned. In contrast in the QP-PM and QP-FM phases,
these observables are sensitive to small changes to the
global couplings (i.e. Ay, Ay) as these lead to sign rever-
sals in the local couplings. Nonetheless, suitably spatially
averaged observables vary smoothly within these phases
and can satisfy scaling near the critical boundaries.

Figure 4 shows a density plot of the excitation gap
across the same phase diagram as Fig. 2. As usual, the
FM and PM phases are gapped. The QP-FM phase is
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FIG. 3: Signatures in the magnetisation structure factor:

Upper panel: in the QP-FM limit A; > J > h, A the
structure factor shows a peak at k = +x (black arrows, see
Eq. (19)) data shown for ¢ = 10946, h = Aj, = 0 integrated
over resolution scale dk = 2m/400. Additional subsidiary
peaks are determined by the details of the QP structure of
the couplings. This peak tunes between the x = 0 (ferromag-
netic order) when all the couplings are positive (J > Ay) and
k = m (anti-ferromagnetic order) when all the couplings are
negative (J < —Ay). Lower panel: as the transverse field
strength is increased this peak persists throughout QP-FM
phase before disappearing at the transition.

gapless because of the density of arbitrarily weak bonds
across which the Ising ordering direction can locally flip
at low energy and similarly for the QP-PM phase. We
note that the QP-Ising transition can take place between
gapped QP-modulated phases when the coupling func-
tion J(6), h(6) has jump discontinuities.

B. QP-FM Order parameter and experimental
signatures

It is well known that the FM phase spontaneously
spontaneously breaks the Zs symmetry and selects
one of the two degenerate ground states in which the
spins are either aligned or anti-aligned to the z-axis.
This long-range magnetic order is manifest in the non-
zero value of the symmetry broken order parameter
lim, oo (0707,,) = (07)(0%.,) ~ m? where m = (o%)
is the normalised magnetisation.

Asin the FM, in the QP-FM, the system spontaneously
selects one of the two degenerate ground states related by
the global spin flip. In these ground states neighbouring
spins are aligned or anti-aligned according to the sign of
the couplings J;. The order parameter (o)

The effect of sign structure is easily removed by consid-
ering the absolute value of spin-spin correlations, yielding
the corresponding order parameter for the QP-FM phase

lim, o [(07 07, )| = m2.
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FIG. 4:  Spectral gap: The solid, double-solid and dashed

lines denote the phase transitions of the QP-Ising model (see
Fig 2). In the strongly modulated regime (below the dotted
line) the excitation spectrum is localised. The value of the gap
€min/Ap is denoted by colour (legend inset). The PM and
FM phases (above dashed line) are gapped, whereas in the
QP-FM and QP-PM phases the gap goes to zero as ¢ — oo.
Parameters: ¢ = v/3,A =+/2,q = 144.

Formally [Uj] is

For condensed matter realisations of the QP-Ising
model, as with the anti-ferromagnet, experimental sig-
natures of the order are evident in neutron scattering
experiments which probe the structure factor

s°8(k) =Y e (o0l )] (18)

In the QP-FM limit, Ay > J > h, A}, the ground state
correlations are given by (0i07,,) = (0jo?,,) = 0 and
(0f0%,,) = 1(—1) where there are an even (odd) number
of negative spin couplings in region J;, Jjt1, - Jj4r—1.
Thus as r is varied the value of (0507, ) flips sign on
average every p~ ! sites, where p is the fraction of negative
couplings. This order persists over long distances and

leads to a peak in S**(k) at k = £x, where

2m T
K=2Tp= / df sign.J () = arccos <i) . (19)
0 Ay

This peak is visible in Fig. 3, upper panel. This peak in
S7%(k) at non-trivial k is a clear signature of the quasi-
periodic order and is not seen in the random Ising model
which exhibits a single peak at k¥ = 0 when the J; are
predominantly positive, and k = 7 when they are pre-
dominantly negative.

For non-zero h, Aj,, the ground state correlations are
accessible only numerically, we see the peak in the struc-
ture factor persists throughout the QP-FM phases, be-
fore decreasing and disappearing at the transition (Fig.3,
lower panel).

C. Majorana 0-modes and phase boundaries

The precise phase boundaries can be identified most
easily by analysing the Majorana edge modes. In the
thermodynamic limit of the FM and QP-FM phases, two
of the Majorana eigen-modes 7y, and ng have zero energy,

[H,n] = [H,nr] = 0. (20)

In the fermionic language, n;, and ngr are the unpaired
topological edge modes of the Kitaev chain [43], whereas
in the TFIM, they encode the two symmetry breaking
ground states.

Expanding Eq. (20) in the basis of local fermions ~;,

the coefficients 1!1;“/ R satisfy the two recursion relations

LR hi LR L/R hi LR
¢2z/+1 = 141/’21'/71’ 21'/72 = .Z Zi/ : (21)
Jz Jz—l

Any linear combination of w}, ij yields a valid zero
mode. Choosing 71, and nr to be localised at opposite
ends of the chain, one finds that 7y, has support only on
odd sites, and nr has support only on even sites: w%i =0,
,(/)2Ri+l = 0.

The localisation length (y controls the decay of
the edge modes into the bulk of the chain szL/f‘l ~

z/J{“/ Re—1/¢0. Solving for the localisation length of the left
mode one finds

l
1 .1 U1 1 J;
— = lim = lo = lim — log | 2| = [0;].
CO =0 & 20+1 I—o0 | jZ::l & hj [ J]
(22)
Here the local reduced coupling is
§; =log|J;| — log |h;]|. (23)

At the transition out of the symmetry breaking phase,
the zero modes mix into bulk modes and cease to exist.
For the edge modes to mix with bulk modes their locali-
sation length must diverge. This gives the condition for
criticality

[9;] = 0. (24)

Eq. (24) corresponds to the familiar condition [log |J;|] =
[log |h;|] for the critical point of the random TFIM [34].

As the sequence 5 mod 27 is equi-distributed on the
interval [0, 27], we may re-cast the sum in Eq. (24) into
an integral:

(6]

Ji
h;

l
i 1
Jim 7 Z log

/Q’Td_@1 J+ Ajcos(0+Q/2)
0 27 h+ Apcos(0+A) |

(25)

The zeros of this integral may be obtained analyti-

cally [31]. In the h = J plane, this yields the phase



boundaries
Ah:AJ7 (263‘)
J=h) 14 (As/A,)?
(JAh ) _ 1+ ( é’/ n) for Ay < Ay, (26D)
J=h As /AN + A /A
(JAh ):( 7/An) 2+ s/An for Ay > Ap. (26¢)

These lines are shown in Fig. 2. They meet at the bi-
critical point J = h = Ay = Ap,. Under the action of
the duality transformation (6) the line (26a) is self dual,
whereas (26b) and (26¢) are interchanged.

Note that the phase boundaries depend only on the
energetic scales J, h, Aj, Ay of the model, and are inde-
pendent of the wave vector ) and the phases ¢ and A.

IV. WANDERING OF QP MODULATION

The primary effect of quasi-periodic modulation on the
critical TFIM is captured by the its wandering. In this
section, we define and analyse the wandering itself and in
Sec. V we consider the implications for the critical data.

The wandering records the variation of the reduced
coupling J; when summed over regions of finite length /.
The Onsager universality of the clean TFIM may persist
in the presence of modulation only if a criterion due to
Harris [5] and Luck [6, 7] is satisfied. We find generic
strong continuous and discontinuous QP modulation vi-
olates this criterion, albeit much more weakly than ran-
dom modulation, and thus leads to universality which is
intermediate to the clean and random cases.

A. Distinct cases analysed

Up to this point, our analysis has applied to the QP-
TFIM irrespective of the value of the phase difference A.
However, on the self-dual critical boundary A; = Ay,
when the value A/Q takes special rational values lead
to fine tuned critical behaviour, distinct from the generic
case. Thus, we separate our discussion into the following
cases (cf. Table I):

0. Ising: When A; < J, A, < h the modulation is
weak and irrelevant to the clean Ising transition |6,
7], independent of A.

1. QP Ising: For strong modulation (A; > J or
Ap > h) with generic A on the critical lines DB,
BE, BC, the universality class of the transition is
QP-Ising, with universal content completely deter-
mined by the wandering coefficient w [1].

2. Zero-Wandering: For strong modulation on the
self-dual boundary (BC') with A = Q(d + 1/2) for
d € N, the wandering coefficient vanishes due to
fine tuning and the Harris-Luck criterion is satis-
fied by the clean Ising transition. However, we find

that the critical data are nonetheless modified and
the system behaves as if in the QP-Ising class but
with a broken relationship between wandering w
and critical exponents.

3. Aubry-André: Strong modulation with A = 0 on
the self-dual boundary BC, the wandering coefli-
cient is again finite and we find the equilibrium
scaling content is described by the generic QP-Ising
transition (Case 1). However, the excitations are
de-localised at all energies due to an Aubry-André
type symmetry.

B. Harris-Luck Criterion

The Harris-Luck criterion concerns the behaviour of
the wandering, which is defined as the sum of reduced
couplings over a region of length [

JHI—1

Si(J) = Z 0;. (27)

This quantity characterises the local deviation from crit-
icality over the region, dioca1(l) = Si(J)/l. Olocar(l) has
mean value [0;] and typical fluctuations of scale o(S;)/!,
with

o($1) = /19:6)7 - [S.G)P- (28)

We decompose the local averaged reduced coupling into
its mean value, and fluctuations about the mean

6local(l) ~ [5J] + ¢; O'(Sl)/l (29)

where c¢; is some O(I°) number dependent on microscopic
details. It is clear that djocai(l) cannot converge to its
mean value in the limit of large [ if the fluctuations are
asymptotically larger than mean. This imposes the con-
sistency condition

Jim o(81)/(1][55]]) < o0 (30

To see how this condition bounds the critical exponents,
set [ to &, the length-scale up to which the critical point
controls the ground state correlations. This recasts (30)
as the Harris-Luck criterion for the stability of the tran-
sition to spatial modulation:

Jim o (S¢) /€71 < oo (31)

Random modulation provides a useful example. In this
case 0(S¢) ~ /€ whilst in the clean TFIM v = 1. These
quantities violate (31), indicating that in the vicinity of
the transition, the fluctuations in [4] on the length scale
¢ ~ [6]7! are too large to determine the phase of the
system. Random modulation is therefore a relevant per-
turbation to the clean Ising transition. The random Ising
chain flows to an infinite-randomness critical point with
v = 2 [11-13], the minimal value which satisfies (31).



C. Case 0: Ising

In the QP-TFIM, we use the equivalence of spatial av-
erages [], and phase averages [-], to recast a%(S)) in a
simple form:

5 B < osin?(Qkl/2)
0= Srr

Above, the Fourier coefficient S is defined as:

5(0) = log “ZLEZ;‘ = ope’. (33)
k

The values of %(S;) in the weakly modulated regime
(J > Ay, h > Ay,) are depicted in Fig. 5 (upper panel,
grey dots). We see that 02(.S;) is a non monotonic func-
tion, bounded by its asymptotically separated infimum
and supremum

172 <o?(S) < 1. (34)

Here A; < By is equivalent to A; < ¢B; for some finite ¢
and all sufficiently large [. Certain sub-series saturate the
lower scaling bound, for example in Fig. 5 (upper panel)
02(S;) scales as its infimum when [ is a Fibonacci (gold
line) or Lucas (green line) number.

As the infimum and supremum are asymptotically sep-
arated, we characterise the scaling behaviour by the
Cesaro mean

l
(S0 e = 7 220N (39)

I'=1

In the weakly modulated regime

2
[U (Sl)] Cesaro ¢ (36)
for some constant c¢. At the clean Ising transition v = 1
and the Harris-Luck criterion (31) is not violated either
by the supremum or the Cesiaro mean. The clean Ising

transition is therefore stable to the introduction of weak
QP modulation [6, 7].

D. Case 1: QP-Ising

In the strongly modulated regime, ¢2(S;) is a non-
monotonic function with an asymptotically separated in-
fimum and supremum (Fig 5, second panel, grey)

1 < 0%(Se) S logl. (37)

As in the weakly modulated case, the Fibonacci (gold
line) and Lucas (green line) numbers follow the infimum.
The Cesaro mean scales logarithmically

[UQ(Sl)] Cesaro ~w log ! (38)

where w is the logarithmic wandering coefficient. The
Harris-Luck criterion (31) is violated and the critical lines
BC, and the parabolic phase boundaries DB and BE
shown in Fig. 2 all have critical behaviour distinct from
the clean model.
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FIG. 5: Logarithmic wandering of 0>(Se): o>(Se) (grey dots)
has diverging infimum and supremum. The Césaro mean is
shown (blue), as are sub-series with | = Fibonacci (gold) and
Lucas numbers (green). Ising case: the supremum is bounded
by a constant, and the infimum decreases exponentially. QP
Ising case: The supremum and Césaro mean increase loga-
rithmically. The analytic prediction of Sec. IV D 2 is shown in
red. Zero wandering case: A € Q(N+1/2), the wandering has
the same qualitative behaviour as Case 0. Aubry-André case:
A = 0 shows the same qualitative behaviour as Case 1, with
slightly larger w. Parameters (J = h)/(Ay = An) = 2,1/2,
and Q/27 = 7 the Golden ratio.



1. Intuition for log-wandering

The log-wandering originate from the logarithmic di-
vergence in §(6) (33). In a region of size [ running over
sites site @ < j < i+, the values of the reduced coupling
are set by §(0) evaluated at § = Qj mod 27. These val-
ues are sufficiently uniformly distributed over the interval
[0, 27] that we can gain intuition from considering S; as
analogous to the Riemann sum

l

> 6(2mj/l) mz/o Wd95(9) ~ O(l) (39)

Jj=1

Shifting the region of interest by varying ¢ moves this
roughly uniformly lattice of # values around, and induces
fluctuations on this Riemann sum, these fluctuations are
analogous to quantity o(S;). When §(6) is bounded and
continuous, these fluctuations are O(1), whereas when
0(0) has a logarithmic divergence, the fluctuations are
dominated by how close one samples to the divergence
and one finds o(S;) ~ log! [1].

2. The logarithmic wandering coefficient w

The logarithmic wandering coeflicient w controls the
strength of the violation of the Harris-Luck criterion. As
w determines the universal content of the QP-Ising tran-
sition [1], we derive its precise value below. From the def-
inition of w (38), the Cesaro mean (35) and 02(.5;) (32)

l .2
) 1 5 sin®(Qkl'/2)
= lim — or|? — . 40
v lggologlkzﬂ)| ¢l N;lsinQ(Qk/Q) (40)

For strongly modulated smooth couplings, the zeros in
J(0), h(0), imply that

1 2T

b= L

J(G)’ 1
o

k0 Jog | L ~ 41
dfe Og‘h(@) : (41)

The logarithmic growth of the sum (41) with [ is due to
exponentially spaced O(1) terms, which appear when the
denominator sin?(Qk/2) takes an O(1/k?) small value.

Eq. (40) can be simplified. We note first that the series
fr. = k?|6x|? is a quasi-periodic in k and has the following
values on the different critical lines

fie = K210 ?
T2(J/Ay) for BE
=< 4sin® [(A/2 — Q/4)k| TZ(J/A;) for BC
4sin® [(A/2 — Q/4)k] for B
(42)

where T}, (z) = cos(k arccos z) is the kth Chebyshev poly-
nomial of the first kind. The properties of the line DB
follow by duality from BE. In all cases of (42), if @
is rationally independent of A, and arccos(.J/A;), then

the O(1) terms of the sum in (40) uniformly sample the
values of fi, and (40) factorises as

w = [f]Ceséro wQ- (43)

The Cesaro mean of fj can be evaluated on the various
critical lines,

1

1 - /

[f]Cesaro kinolo k kZ:_l fk
1/2  for DB and BE (44)

=<1 for BC
2 for B
The second factor,
sin?(QkI' /2)
wQ = (45)
l~>oo logl kZ;éolle k2lsin?(Qk/2)

Refs. [1, 44] showed that this limit converges to a finite

value for Q/27 equal to any badly approximable number.

For example, in the case Q/27 = 7 = (1 +/5)/2, wg
may be exactly evaluated [1, 44]

272

wg=-——=—=122.... 46

@ 15\/510g7 (46)

This calculation of wg is readily generalised to other

quadratic numbers. Putting it all together for Q /27w = 7,

0.61... for DB and BE
w=1<1.22... for BC (47)
244 ... for B

E. Case 2: Zero wandering

For A = (Qd+ Q/2) mod 27 with d € N the wander-
ing coefficient is zero due to an exact cancellation. As the
exchange and field couplings are related by a lattice shift
Jj+a = hj, the sum S)(j) separates into two boundary
pieces for [ > d,

j+d—1 jHl-1

= > loglZi|— D loglhl.  (48)
i=j i=j+1—d

As a result, 0(S;) = 0(Sg) for all [ > d and the Harris-

Luck bound (31) is not violated. Nevertheless, we will

see later that this zero-wandering transition is not in the

clean Ising universality class, due to the presence of small

couplings.

F. Case 3: Aubry-André

For A = 0 on the line BC, the calculation proceeds
similarly the QP-Ising case (Sec. IVD), and the wander-
ing grows logarithmically as in Eq. (38), with a slightly
enhanced value of w.



The calculation of w is distinct only in technical de-
tails. Specifically,

Bl = 2 sin® (Qk/4) TH(T/A,) (19)

The factor sin?(Qk/4) is always O(1) for Qk/27 close
to an odd integer, and always small for Qk/2m close to
an even integer. The largest contribution to the sums in
(40) comes from these terms.

As the factor sin?(Qk/4) is not self-averaging in the
manner that allowed the factorisation (43) we must in-
stead absorb this term into the sum wqg.

This results in the factorisation w = [f]cearo W (28
before in (43)) for f = 2T7(J/Ay) (for which [f]cere =
1), and

_ 4 2SID (Qk/4)sin (lel/2)
wg = lim Z Z k21sin®(Qk/2)

=154.... (50)

V. EQUILIBRIUM CRITICAL EXPONENTS

We now discuss the consequences of the wandering
analysis for the equilibrium critical exponents. The QP
Ising and Aubry-André cases have logarithmic wander-
ing and are in the QP Ising universality class of Ref. [1].
Remarkably, the zero-wandering transition also has mod-
ified critical data. We support the analysis in this section
with numerical measurements.

A. Correlation length exponent v

We saw in section IV B that the Harris-Luck criterion
sets a condition which must be satisfied for the phase
transition to be stable to additional spatial modulation.
Consistent with the finding in the randomly modulated
TFIM [11-13, 25|, we conjecture that, as in the randomly
disordered case, the correlation length exponent is altered
so that the Harris-Luck criterion is saturated

-1 (51)

Applying (51) to the generic QP-Ising and Aubry-André
transitions we find

5~ log€/¢. (52)

That is v = 11, when v is defined as § ~ £ 1/¥ and
T denotes a logarithmic correction. In contrast, for the
zero-wandering transition, the correlation length of the
clean Ising transition satisfies (51) and v = 1.
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FIG. 6: Integrated density of states: In all cases the integrated
density of states scales as a power law n(e) ~ €/*. (QP
Ising) In agreement with Ref. [1], we obtain z =~ 1.9 (red,
dashed). This deviates from the naive estimate z = 1 4+ w =
2.22 (green, dashed). (Zero wandering) We obtain z = 3/2
in agreement with calculations in Sec. VB2 (black, dashed).
(Aubry-André) The wandering w is slightly enhanced and we
find an enhanced value of z & 2.0 (blue dashed). Estimates
of z were obtained by linear fit. Parameters: ¢ = 1346 269
with n(e) evaluated at energies e = 7" for n € N.

B. Specific heat and dynamical exponent z

In the vicinity of the transition, the integrated density
of states obeys the following scaling

n(e) = /OE dé'p(e') ~ et/? (53)

We use this relationship to estimate z analytically by ex-
tracting the low energy integrated density of states from



a leading order approximation of the secular equation.
A macroscopic way to measure the dynamical exponent
is provided by the low-temperature heat capacity

c= 3—; = % /000 deep(e)ng(e/T). (54)

Here np(e/T) = (14-e/T)~1
tion. For power law density of states p ~ €

is the Fermi-Dirac distribu-
1/z—1

d o0
c= d—TTl/ZH/ dzz'*np(z) ~ TY*  (55)
0

1. QP-Ising (Generic A) and AA (A =0) transition

The following calculation proceeds identically for
generic A and A = 0 because they both have logarithmic
wandering [02(Sl)]Cesé,ro ~ wlogl.

Consider the excitation spectrum of the QP-TFIM. For
finite period ¢, this spectrum consists of states with band
index @« =1...q, momentum k € [—7/q, 7/q| and energy
€a(k). Let €, = maxy €4 (k) be the highest energy of the
ath band, thus

~ (en)7. (56)

Thus the top of the lowest band lies at an energy € ~
g~ *. We note €y(k) is the root of smallest magnitude of
the characteristic polynomial x(eg, k) = 0, where

q
ZinG

(57)

X(e.k) = [H(k) — e = T] (&

a=1

This allows us to estimate €y by truncating x(e, k) to
quadratic order

0 = x(eo)

From the form of H(k) the coefficients xo, x2 are found
to be

X2 €0 + Xo- (58)

2
xo= (=D |[[ri —e ™[] (59a)
q—1qg—1 [fi+l—1 i+q—1
_1)q_1 ( H ‘Jn|2 H |hn|2> :
i=0 (=0 \ n=i n=i+0+1
(59b)
At the transition, P = |[], Ji| = |[[; hi|]. We therefore
find
xo = (—1)92(1 — o cos kq) P> (60a)
Lo — L [e25:(9)
)I= P 60b
Z |:|hz+l } ( )
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where o = sign([[, J;h;) and S;(¢) is given by (27). As we
are interested in the maximum energy of the Oth band,
we set cos(kq) = —o. This yields

a-1 e25:(%)
X2 q
. 61
ZLMPL (6D

To make progress it is necessary to approximate fur-
ther. We: (i) neglect the correlations between the nu-
merator and the denominator of the summand, (ii) re-
place the denominator h;;, with a single characteristic
energy scale h, and (iii) treat the Sy(i) as Gaussian inde-
pendently distributed variables with mean [S¢] = 0 and
variance 02(S;) = wlog¢. This neglects correlations be-
tween Sy(¢) for different ¢, and non-Gaussianity of each
Se(#). Making this approximation yields

qg—1
[ QSz(i)} _ 7 Zg%
e = — ~
. 2
: i 4h s

By (58) this estimate implies that € ~ /—xo/x2 ~

¢ '™ and hence z ~ 1 4 w. Using the results of

Sec. IVD2 for Q/27 = 7 = (1 4+ +/5)/2, we obtain
zal4w=222.... (63)

[u

Q

X2

_ =

q 242w
T q . (62)

Il
=

for the QP-Ising transition on the critical line BC'

In Fig. 6 this prediction is compared with numerics.
The data is compared with extracted values for z indi-
cated by the dashed lines. Specifically, in each case we
extract values of 27! by a least squares fit to the rela-
tionship

log[n(e)]s = 2~ 'e + cons.. (64)

The values of n(e) are computed exactly using the
method of Refs. [45, 46], for ¢ = 1346269. The nu-
merics confirms the power law behaviour with an ex-
ponent z ~ 1.9, giving some discrepancy with the es-
timate (63). The power law behaviour of the integrated
DOS n(e) ~ €/# is additionally confirmed numerically
for other choices of () in the supplementary material.

2. Zero-wandering transition (A € Q(N+1/2) mod 2r)

When A = ()/2, we have the relation J; = h;. Equa-
tion (60) simplifies to

Xo = (—1)92(1 — o cos kq) (H Jf)
14

Assuming that the sum is dominated by the minimal cou-
pling Jimin ~ 1/¢, we obtain

(65a)

X2 = q(— (65b)

min |J;| 32

— o = ~ (66)
X2 a2 % V4
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FIG. 7:  Variation of z with w: Estimates of z extracted

from the data shown in Fig. 6 (sine modulation, Q/27 = 7),
Supp Mat. App. C (sine modulation, Q/27 = M, = (n +
vn?2+4)/2 for n =1...5) and Supp. Mat. App. D (square
waves Q/2m = M, M>). This plot confirms the approximate
relationship z = 14w (black dashed) over intermediate values
of w. All of the data for sine modulation fall is a small region
(red-dashed box), which is enlarged in the inset.

Thus, z = 3/2. In Fig. 6, we see that this agrees well
with numerics.

The argument presented here is easily generalised to
A = (Qd+ Q/2) mod 27 for generic d € N and predicts
z = 3/2 provided ¢ > d. The estimate z = 3/2 agrees
well with numerics for general d (data not shown).

3. Variation of the dynamical exponent z with logarithmic
wandering coefficient w

The QP-Ising case describes the transition for generic
A. Ref. [1] conjectured that the QP-Ising critical expo-
nents are a function of the logarithmic wandering coef-
ficient w alone. This conjecture is confirmed by Fig. 7.
Fig. 7 includes data for sine wave modulation (5) with
Q/2m = M, the nth metallic mean (blue) forn=1...5
(data in Fig. 11 in Supp. Mat.) [90]; sine wave modula-
tion with A = 0, Q/27 = 7 (gold) (data in Fig 6); and
square wave modulation with Q/2m = 7 = M (green)
and Q/2m = My (red), (data in Fig. 12 in Supp. Mat.).

The extracted values of (w, z) support the conjecture
that z is a function of w alone across a variety of QP-
modulated models. Furthermore, the analytical estimate
z ~ 1+ w (black dotted line) is a good approximation to
z over intermediate values of w. The deviation at low w
is a finite size effect, while at large w, the crudeness of
the approximation becomes apparent.

The square wave data in Fig. 7 is calculated from sys-
tems in which the couplings and fields take two values
Jie{J,J+ A}, hi € {h,h+ A} according to a QP se-
quence. This sequence is constructed in exactly the same
way as the sinusoidal case: J; = J(Qj), h; = h(Qj) but

12

with J(6),h(0) chosen to be 2m-periodic square waves.
The square wave wandering analysis (see Supp. Mat.) is
a simple extension of the sinusoidal case (Sec. IV), and
similarly yields logarithmic wandering. The key differ-
ence from the sinusoidal case is that the square wave
logarithmic wandering coefficient w has continuous para-
metric dependence on the ratios A;/J, An/h (see Supp.
Mat.). Thus for square waves w may be continuously
tuned to zero by taking A;, A, — 0 without leaving the
QP-Ising universality class. The ability to continuously
tune w allows a more extensive exploration of the rela-
tionship z(w).

The square wave wandering analysis generalises mu-
tatis mutandis to the case of any QP sequence in which
the couplings take values drawn from a finite alpha-
bet J; € {Jo,Jp,Je...}s hj € {hq,hp,he...}. Thus
generically such sequences have logarithmic wandering.
However, we note that there are fine tuned sequences
which also have no wandering (see Supp. Mat. App.
D1b) [6, 16, 17, 2024, 27-30], analogous to the fine tuned
Zero-wandering case. The methodology we present allows
the study of TFIMs modulated by generic QP sequences
whereas previous analyses have been restricted to special
sequences which satisfy an inflation rule [6, 15-24, 27—
30, 47, 48|.

C. Magnetic susceptibility and the scaling
dimension A,

We turn to the value of the scaling dimension A, in the
different cases. In terms of macroscopic properties of the
system, A, controls the divergence with § of the magnetic
susceptibility to a longitudinal field xy = %\ B—0. Near
the critical point y ~ [§]~7 with an exponent

vy=v(l+z—-2A,) (67)

The relationship (67) is Fishers scaling law in d = z + 1
dimensions. The relation follows directly from the free
energy in Egs. (16) and (17).

We extract A, by minimising the mean deviation of
(0%0%, Jr*Ae over r = 1...q for ¢ = 21 to 987. We
also verify data collapse for the extracted values of A,
in Fig. 8. In the QP-Ising and Zero wandering cases
we find A, =~ 0.16, consistent with Ref. [1] which stud-
ied only the QP-Ising case. The Aubry-André case has
slightly enhanced wandering coefficient as compared to
the QP-Ising value and consequently a slightly enhanced
scaling dimension A, =~ 0.17. The extracted values of
A, and z yield the values v = 2.6%,2.2 and 2.77 in
the QP-Ising, Zero-wandering and Aubry-André cases re-
spectively. These are are larger than the Onsager value
of v = 1.75 at the clean Ising transition (see Tab. I).
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FIG. 8  Spin-spin correlations:  Spin-spin correlations
(ofaiﬂr)q_zA" vs r/q collapses for a range of ¢ for A, = 0.16

(QP-Ising and Zero wandering cases) and A, = 0.17 (Aubry-
André case). The solid line shows pure power law decay
~ 77280 This shows good fit for the QP-Ising and Zero
wandering cases, indicating a simple scaling function, whereas
the Aubry-André case shows short range deviation from this
form. The clean Ising decay with ~ =%/ is shown (dotted)
for comparison.

VI. LOCALISATION OF EXCITATIONS

On the critical boundary, the TFIM possesses an ex-
tended zero energy mode. The zero mode is described
by Eq. (21), which has infinite localisation length at the
critical point (cf. Eq. (22))

1
) = =0 (69)
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In the unmodulated TFIM, the zero mode is uniform,;
it arises as the zero energy and momentum limit of lin-
early dispersing fermionic low energy excitations. With
QP modulation, the mode need not be spatially uniform.
Nevertheless, it cannot be localised. There are accord-
ingly several scenarios for the structure of the low energy
excitations:

e The modes may remain ballistic, in which case the
total bandwidth W of the Bloch bands remains fi-
nite as the incommensurate limit is taken. The
wavefunctions are uniformly extended with small
spatial fluctuations.

e The modes may become multifractal; W vanishes
as a non-trivial power law in the incommensu-
rate limit, but the finite energy inverse localisation
length remains zero 1/¢(e) = 0.

e The finite energy modes may localise, so long as
the localisation length diverges as ¢ — 0:

C(e) ~ e 1/ (69)

In this case, the total bandwidth W in any small
energy window at finite energy e decays exponen-

tially with exp(—q/((¢)).

We find that all three of these scenarios are realised.
When the QP modulation is irrelevant to the clean Ising
transition (Ising case), the low energy excitations are bal-
listic. With strong modulation, the excitations generi-
cally localise with a localisation exponent 21, = z which
coincides with that extracted from the equilibrium den-
sity of states (QP-Ising and Zero-wandering cases). This
agrees with the behaviour found in previous QP [1, 31|
and random [11-13, 25] Ising chains. On the other hand,
in the Aubry-André case, the model possesses enhanced
Aubry-André-type symmetry which requires that the lo-
calisation length be energy independent — since it must
be infinite at ¢ = 0, none of the excitation modes can
localise. In this case, the dynamical exponents decouple
in the sense that z remains non-trivial while zp, is not
defined.

In the following, we first provide an elementary upper
bound on the total bandwidth W of the TFIM in terms
of the couplings in the chain and then use that as a tool
to investigate excitations in each of the cases.

A. Bandwidth bounds

In the strongly modulated regime, A; > J or Ay, > h,
there are arbitrarily small couplings in the chain. These
small couplings force W — 0 as ¢ — oo. Thus, the tran-
sition in the strongly modulated regime cannot support
ballistic excitations.

At finite ¢, the spectrum contains ¢ bands with energies
eo(k) for a = 1...q and Bloch momenta k € [—7/q,7/q].



If there is a finite density of ballistic modes, then the
mean (absolute) group velocity v is finite. Explicitly,

T/q
0= kel =3 0 [ STl (70

[e3
Since the Bloch bands €, (k) have only two turning points
as a function of &k (see Supp. Mat.),

W =nv (71)

where W = %" W, and W, = max, €,(k) — miny e, (k)
is the width of the ath band.

In the supplemental material, we prove the elementary
result that the smallest coupling bounds the total band-
width:

W < 27 min(|J;], |hil) (72)

Here, the minimum runs over the couplings in the period
q. Since the smallest coupling in the strong modulation
regime is typically 1/¢, we find

W<qgt—=0 (73)

Outside of the hatched region in Fig. 2, Eq. (73) proves
the density of ballistically propagating excitations at any
energy vanishes. The inequality is not strong enough
to distinguish localisation from multifractality. Numer-
ically, we observe that all excitations are exponentially
localised away from the phase boundaries. The behav-
ior on the critical line is more complicated and discussed
case by case below.

B. Ising case: Ballistic excitations

For weak amplitude modulation (A; < J and Ay < h),
all of the couplings in Eq. (3) are finitely bounded away
from zero and the bandwidth bound Eq. (72) is finite.
We find numerically that the critical excitations up to a
finite mobility edge propagate ballistically as in the clean
Ising model. This is consistent with the irrelevance of
weak quasi-periodic modulation at the clean Ising critical
point.

C. QP-Ising and Zero wandering cases: localised
excitations

Numerically, the arbitrarily weak couplings in the
strongly modulated regime are sufficient to localise the
finite energy excitations (QP-Ising and Zero-wandering
cases). The data in Fig. 9 confirms that the relationship

1/¢(€) ~ n(e) (74)

holds for the envelope of the inverse localisation length
data and thus that z;, = z. The visible substructure in
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FIG. 9: Localisation length ((e): The inverse localisation
length [1/{(€)] versus the integrated density of states n(e)
at several points on the BC' critical line. The dashed line
indicates the relationship n(e) ~ [1/¢(€)]. In the QP-Ising
and Zero-wandering cases, the inverse localisation length is
bounded by an envelope ~ €'/% ~ n(e). In the Aubry-André
case, the localisation length is 1/{(¢) = 0 for all € as confirmed
by the scaling [1/{(€)]_ ~ 1/q (inset). Parameters: ¢ = 6 765.

the data is controlled by the fractal properties of the spec-
tra and states of QP models and we do not investigate it
further here.

The data for 1/((e) is extracted from a least squares
fit to the relationship

log [[fd . |] = — + const (75)

((ea)

where 9 is the eigenmode of # at energy €,. For Fig. 9
we have further used that n(ey) = a/q.



D. Aubry-André case: Multifractal excitations

At the special point A = 0, the critical delocalisation
1/¢(0) = 0 extends to the whole spectrum 1/¢(e) =

This is enforced by a special duality which gener-
alises the well known Aubry-Andre duality [49-52]. The
Aubry-Andre model is dual to itself under the Fourier
transform. Many properties follow from this duality. For
example, if H has finite bandwidth, and hence extended
modes, then its dual model has a pure point spectrum
and localised modes, and wice versa [40, 53]. A corre-
sponding duality which applies to a wider class of single
particle quasi-periodic models is obtained if one consid-
ers the class of 1D short range hopping models which are
dual to 1D short range hopping models [31, 40].

Consider a single particle Hamiltonian of the form

- Y

j=—00a=—00

a(Q5/2)17 + @) (] (76)

where the QP modulated a-site hops and on-site po-
tentials are set by the 27 periodic functions ¢,(6) and
to(#), respectively. Hermiticity, H = HT, requires
that t_,(0) = t:(0 — Qa/2). The unitary V =
\/iﬁ S €92 |n) (m| Fourier transforms H to a dual
model of the same class

> Y

j=—00 a=—00

H=VHV = a(Q7/2)7 +a)(Gl  (77)

where the dual hops are defined by

-3 %

As the high order Fourier components of ¢,(6) contribute
to long range hops in the dual basis, generic modulated
nearest-neighbor hopping models are dual to models with
long-range hopping. However, for special models the hop-
ping is local in both bases.

On the vertical critical line at A = 0 the single particle
Hamiltonian H in Eq. (9), and its corresponding dual H
are nearest neighbour hopping models. H is a tridiago-
nal matrix with on-site potentials and nearest neighbour
hops set by,

L(ba afd’ )t (9) (78)

to(Q4/2) =0 (79)
t1(Qj/2) = ie™? [J + Ay cos (Qj/2 + ¢)]
whilst H has corresponding elements,
70(Qj/2) = 27 sin(Qj/2 — k/2) 0

1(Qj/2) = 0=V A sin(Qj /2 + Q/4 — k/2).

The amplitude of all longer range (¢ > 1) hops vanishes,
ta,tq =0 [91].
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A relation due to Thouless [54] states that for tridiag-
onal model H, the localisation length ¢ and density of
states are related by

% - /de’p(e’)log e — €| = [log[t1(O)[]p-  (81)

As M and H are unitarily related, they have the same
density of states. Applying (81) to both H and H, we
find that the difference of the inverse localisation lengths,

1

1
¢@ (o)
is set by an energy independent constant. It is further
known that lattice model wave-functions cannot be lo-
calised in both real and reciprocal space [40, 53], i.e.
1/¢(e) > 0 implies 1/((€) = 0 and wvice versa. Thus
critical delocalistion 1/¢(0) = 0 implies the RHS of (82)
is non-positive: i.e. [logl|ti(0)[], < [log|t:(0)]],. Hence
1/¢(e) = 0 for all e.

The critical delocalisation of the excitations at all ener-
gies is verified in Fig. 9. The numerically extracted 1/¢(e)
are found to be independent of energy (up to finite size
fluctuations) and tend to zero as ¢ — oo (Fig./ 9, lower
panel, inset).

= [log [t1(0)[], — [log |51(0)|]9, (82)

E. Dynamics of wavepackets

The localisation properties of the modes can also be
seen in the asymptotic spreading of wavepackets. The
spreading of a fermionic wavepacket created at site ¢
is captured by the time-evolved Majorana operators ex-
panded in the initial basis

efth'yl-eth = uij (t)"}/] (83)

where

q
=2Re Y ofypfeicor, (84)

a=1

Uij(t) = (e_th)ij

The probability of a transition from site ¢ to j in time ¢
is P;;(t) = |U;;(t)]?, and we denote its spatial average by

P(rt) = [Puar (0], = (Wi OF] . (85)
This can be used as a proxy for a broad class of dynam-
ical correlation functions (O;4,(t)O;(0)) as the action of
any local parity-symmetric observable (ie. not involv-
ing Jordan-Wigner strings) is simply to create or destroy
local Majorana excitations.

Density plots of log P(r,t) are shown in Fig. 10. In
each case we see the wave-packet spreading to be consis-
tent with 7 ~ ¢!/# spreading of excitations (black dashed
lines).

In the Ising case of weak modulation, excitations below
a finite mobility edge are delocalised and ballistic. The
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FIG. 10: Wavepacket spreading: Density plots of log P(r,t) are shown for the four cases of Sec. IV A, in each case, and
r=tY* are plotted as guides (dashed) using the respective values z = 1,1.89, 1.5, 2 consistent with Fig. 6. For the Ising case
(weak modulation, left), a ballistic front r ~ ¢ is evident. This carries the weight in the delocalised low energy excitations.
The localisation of high energy excitations above a cut-off appears as weight trapped near r = 0. For the QP-Ising case
(centre-left) and Zero-wandering case (centre-right) all but a vanishing fraction of excitations are localised. At distance r the

fraction of excitations with localisation length ¢ > r participate in the wave-front. This fraction vanishes as r increases and

P(r,t) ~
The saturatlon to a limiting form P(r t) ~r
(J=h)/(A; = A) = 1.05 (left), 0.5 (otherwise), ¢ = 2 584.

delocalized excitations spread without bound, forming a
clearly visible ballistically propagating wavefront (z = 1)
(Fig 10, left). The excitations above the mobility edge
leave behind the localised remnant in the vicinity of r = 0
(red vertical stripes).

In the QP-Ising and Zero-wandering cases, all ex-
citations are localized, but with a diverging localiza-
tion length as ¢ — 0. The wavefront propagates
sub-ballistically to infinity with non-trivial exponent z
(dashed line), but the weight at the front decays asymp-
totically with t. More precisely, at a distance r only
excitation modes with a localisation length ((e) > r
can participate in the wavefront. Thus, the weight de-
cays with a power law and P(r,t) saturates to a form
lim; o P(r,t) ~ r=2. This is seen in (Fig 10, centre
panels). The limiting form is obtained as

lim P;;(t) ~ lim —/ dt P;;(t)

t—o00 T—oo T
=23 el ug [’
«
- /dro/dﬁ63/2—16—2@1/2(|ro—i|+|ro—j|>
1
i — I
(86)
where we have used the ansatz [¢|? ~
e 2r=rol/c(ea) /¢ (e,,), with  localisation  length

1/¢(e) = ce'/#, localisation centres ro uniformly
distributed over the sample, and density of state
p(e) ~ el/z—1

2 at large t. For the Aubry-André case (right) all excitations are delocalised, and a diffusive wave-front is observed.
~5 at late times is a finite size effect (see main text and Fig. 11).

Parameters:

In the Aubry-André case the excitations are delocalised
and spread asymptotically without bound. The wave-
front spreading is consistent with r ~ ¢/2. However fi-
nite size effects also cause P;;(t) to saturate to an infinite
time form which decays as a power law lim;_, P(r, t) ~
7B, similar to the QP-Ising and Zero-wandering cases.
The asymptotically spreading Aubry-André cases can
be distinguished from the localised QP-Ising and Zero-
wandering cases by verifying that the finite-g, infinite
time form of lim, o, P;;(t) is increasingly delocalised as
the finite size length scale ¢ is increased, and hence there
is unbounded wave-packet spreading in the ¢ — oo limit.

We verify that the power law decay of lim;_, o P;;(t) is
genuine for the Zero-wandering and QP-Ising cases, but is
a finite size effect in the Aubry-André case by considering
the behaviour of the von-Neumann entropy S; and 2nd
Renyi entropy S, as ¢ is increased where

= [Sramri]
- i
S2= - lim [IOgZ it (88)
7

The behaviours of S; and Sy with increasing ¢ allow us
to distinguish three cases

e Delocalised spectrum: If the entire spectrum is de-
localised, lim;_, o P;;(t) is spread over increasingly
many sites and both S; and Ss grow asymptotically
without bound. This is seen for both the Aubry-
André case (Fig 11, lower panel, blue data) and
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FIG. 11: Entropy of P; i+r at finite size saturation: the sat-
uration of Sy (Sz) with increasing ¢ indicate that all (some)
of the weight of P; ;y, does not spread. Data is from the
lower critical line BC' (blue) and the upper critical line AB
(gold). (QP-Ising and Zero-wandering cases) S1 and S» satu-
rate indicating bounded spreading of correlations on the lower
critical line BC'. On the upper critical line AB, S; is un-
bounded but S: saturates, due to the presence of localised
and diffusive modes. (Aubry-André case) Neither S; or So
saturates, indicating unbounded operator of P; 4+, due to
the fully delocalised spectrum. Parameters: (J = h)/(A; =
Ap) = 0.5 (blue) ,1.05 (gold) , A = Q/2 (upper plot) A =0
(lower plot).

for the Ising case when there is no mobility edge
(Fig 11, lower panel, gold data).

e Localised spectrum: If there are no more than a van-
ishing fraction of delocalised states lim; o, P;;(t)
saturates to a limiting form, and hence both S; and
Sy saturate to a finite value, this is seen both for
the Zero wandering case (Fig 11, upper panel, blue
data) and for the QP-Ising case (data not shown).

e Finite mobility edge For a spectrum with a fi-
nite localised fraction and finite delocalised frac-
tion, lim; ,. P;;(t) has a component that satu-
rates, and a component that spreads, hence Sy sat-
urates whereas S7 grows without bound. This is
seen for the Ising case when there is a mobility edge
(Fig 11, upper panel, gold data).
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VII. DISCUSSION

Weak quasi-periodic modulation is perturbatively ir-
relevant at the clean Ising transition [6]. However, suffi-
ciently strong QP modulation, or QP sequences destabi-
lize this transition and drive the TFIM to a new QP Ising
fixed point. The critical properties of this fixed point are
found to be intermediate to the clean and randomly disor-
dered cases. We have focussed on two specific conjectures
of Ref [1], detailed in Sec. I, and have presented evidence
that they generically hold. We have additionally shown
that with fine tuning either of these conjectures may be
violated.

The second conjecture posited the equality of the dy-
namical exponent and the localisation exponent z =
zr,. In randomly modulated, and generic QP modulated
transitions the localisation of excitations and change to
universality class are concomitant [1, 11-13], and sup-
ports the idea that they are necessarily related. How-
ever, as we show modulation can induce modified criti-
cal scaling without localising excitations (as for A = 0),
while Ref. [25] shows correlated modulation may localise
excitations without altering critical scaling, it follows
that these two phenomena may be fully decoupled (see
Tab. II). This has consequences for the dynamics of corre-
lation functions, as the delocalisation of excitations in the
Aubry-André case (A = 0) allows the operator spreading
to continue without bound.

It is straightforward to realize QP modulation in op-
tical experiments by introducing multiple lasers with
incommensurate wavelengths [55-64]. The harder ex-
perimental element in such contexts is the preserva-
tion of an effective Ising symmetry. Possible host sys-
tems include: chains of trapped ions with hyperfine de-
grees of freedom [65, 66]; Rydberg ions trapped in op-
tical tweezers [67, 68]; the staggering transition of ul-
tracold atoms [69]; or the zig-zag transition in trapped
ions [70, 71].

Though the aforementioned technological develop-
ments in optical experiments have driven a recent interest
in smooth QP modulation [1, 31, 72-77], there is a more
longstanding interest in QP models [78-86| originally mo-
tivated the discovery and growth of quasicrystals [87—
89]. These systems do not naturally realise smooth QP
modulation, but rather QP sequences, as described in
Sec. VB 3. These are captured in our analysis by choos-
ing J; = J(Qj), hj = h(Qj) with J(8), h(0) as piece-wise
constant 27 periodic functions. Ising chains modulated
by QP sequences have logarithmic wandering, and hence
(by the conjectures of Ref. [1] confirmed here) critical
scaling described by the QP-Ising universality. However,
as these Ising chains have no small couplings we expect
them to have fully delocalised spectra formed of multi-
fractal excitations. This is consistent with our observa-
tions, and the findings of previous studies in free particle
models modulated by QP sequences [37, 39, 42|. Thus,
we refine the conjecture of Ref. [1] in the case of mod-
ualtion with QP sequences. At the Ising transition we



conjecture these models to have the same critical proper-
ties and phenomenology as the Aubry-André case studied
in this manuscript, that is, critical exponents set by the
wandering coefficient w only, with delocalised excitations
and hence no localisation length exponent z1,. We lastly
note that the discussion here includes the full class of QP
sequences, and furthermore any modulation generated by
discontinuous J (@), h(#), which are all captured using our
methodology. This extends previous work [6, 15-24, 27—
30, 47, 48] which has been restricted to QP sequences
satisfying an inflation rule.
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Appendix A: Relation of group velocity to
bandwidth

In this section we show the result that
W =mv (A1)

where v is the mean absolute group velocity, and W the
total bandwidth, these are given respectively by

1 ™1k
=2 / gl a8 (A2)
w=>" <m]3x € (k) — min ea(k)> (A3)

We show below (Sec. A 1) that each band has exactly one
maximum and one minumum, from this it follows that

/W/q dk|Okea (k)| = 2 <m]§xea(k) — min ea(k)> (A4)

—/q

and (A1) follows.



1. Band extrema
The excitation mode energies €, (k) are the roots of the
characteristic polynomial x(e,, k) = 0, where

q

X(e. k) = [H(k) — el = [T (2(k) =) =D xane™
a=1 n=1 (A5)

All coefficients x2, are independent of k for n > 0. Thus
all the dependency on k comes from x

2
Xo = (—1)*

H hi — eiikq H Jz

= (-1)¢ [P,% + Pf — 2P, Py cos(kq)]

(A6)

for P, = [[; hi, Py = I[;Ji- Thus xo has extrema at
kg = 0,7 and changes monotonically between them. As

dea(k) — Ox

ok Oe

X0
Ik (A7)

e=€q (k)
we see that Oge, (k) changes sign only where d xo changes

sign, and hence each band has exactly two extrema. Here
we have used that O.x does not change sign as k is varied

sign (gx ) = (-1
€ e=e€q (k)

where v = 1. .. g indexes the positive roots from smallest
to largest.

(A8)

Appendix B: Spectral measure of tri-diagonal
matrices

We prove the bound

W =23 Wa < 2rmin(|Ji], [hif) ~ ¢~ (B1)

where W, = maxy €,(k) — ming €, (k) is the width of
the ath band. is the total width of the ath band of H.
This bound is trivially generalisable to any tri-diagonal
matrix.

The momentum appears as a phase e**¢ gained on
hopping a distance gq. Without loss of generality we
choose a gauge in which the phase appears entirely on
Jmin = min(|J;],|h;]), the smallest magnitude coupling
of either form.

As we showed in Sec. A1 that the k-dependence of
the characteristic polynomial |H — €| = 0 is entirely in
a simple cosine dependence of constant term xo = |H|.
A consequence of this is that each band e, (k) has two
stationary points, which lie at &k = 0,7/q, with €, (k)
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changing monotonically between them. Thus it follows

S Wa =3 lealn/a) — ea(0)
7/q

=X ko
T/q

=3 [k ioneal.

From first order perturbation theory dxe, = (€4 |0k H|€a)-
Which yields

T/q
S5 [ ot

T/q
< / KOuH
0

where |A|; = tr (\/ AAT> denotes the Ky Fan norm. The

equality in (B3) follows from the fact that |e,) forms a
complete basis. This can be seen explicitly by using the
eigen-decomposition O H = >, |[A)A(A[.

> HealdrHtlead =Y 1D 1(Aea)” A
A

(e [e3%

<Y [Alea)PIA]
a,

(B2)

(B3)

(B4)
=> A
A
= |0k H|1.
The final step is to show
|0k H |1 :2qmiin(|<]i|,|hi\)- (B5)

This follows from our gauge choice, in which we put
the phase exclusively on the smallest coupling Jyi, =
min; (| J;],|hi]). Thus OpH is a ¢ X ¢ matrix with two
non-zero elements, one, igJyine’*9, on the first-diagonal,
and its conjugate —ig.Jmine "7 on the first-sub-diagonal.
This matrix has two eigenvalues +qJnin, and so its Ky
Fan norm is |0y H|1 = 2¢Jmin for all k, so (B5) and
hence (B1) follows via (B3).

Appendix C: Numerically extracted z for smooth
modulation with Q/27 a metallic mean

Fig. 12 shows additional data for the integrated den-
sity of states for sinusoidal modulation (5) from the lower
critical line BC, for different values of Q. We study
Q/27 = M,,, where

anin—&— 2712—1—4
1 (C1)
:n+ 1 5
n +
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FIG. 12: DOS for Smooth modulation with different Q:

Data is shown (solid colours) for the integrated DOS n(e)
for Q/2m = M,, for n =1...5 (see Eq. (C1)). Couplings (5)
used with values of (J = h)/(As; = Ap) shown in legend,
value of ¢ and Q inset. Fit line n(e) ~ €'/* (dotted black)
with value of z inset. Data is averaged over ¢, A, statistical
error on the mean is smaller than point size.
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are the ‘metallic means’, and M; = 7 is the golden ratio.
The values of z extracted from this data are shown in
Fig. 7. As in the main text, we calculate n(e) using the
method of Refs. [45, 46].

Appendix D: Wandering analysis for square waves

In this appendix we calculate the logarithmic wander-
ing coefficient w for square wave modulation, comment
on some previous results, and compare calculations with
the estimate z =~ 1 + w.

We consider the square wave modulation J; = J(Qj),

hj = h(Qj)

J(O) =J+ A;p(0+Q/2+ ¢)

h(0) =h+ A Ip(0+ ¢+ A) (D1)

where ITp () is a 27 periodic square wave with duty cycle
0<D<1

Ip(0) = (D2)

1 0<6<2nxD
0 27D <6 <2,

This yields couplings which are drawn from the two
value alphabets J; € {J,J + Ay} and h; € {h,h + Ap}.
The results of this analysis similarly will generalise to
general discontinuous J(#), h(f). We note that the
previously studied cases of generalised Fibonacci se-
quences [15, 17, 20-24] are special cases of (D1). We
take J, h, Ay, Ay, > 0 without loss of generality.

1. Square wave wandering coefficient w

For continuous J (), h(), w is independent of the en-
ergetic scales of the model. In contrast for J(8),h(9)
with jump discontinuities, one finds w depends explicitly
on the modulation amplitude. Repeating the calculation
of wg for square wave modulation one finds

ikmD o
Sp = o™ sin(rkD) e Q2 1og |1 + Ay
wk J
- A
—e 2 og 1 + Th > (D3)
which yields
1 F
eessro = Jim T 3 K76 (D1)
k=1
1 A A
=53 (log2 1+Th + log? 1—|—7J>.
(D5)

This quantity appears in Eq. (43), and otherwise the cal-
culations proceed as in the the main text. The key differ-
ence being that [f]ogo ad W = [f]cesaro Wo NOW have
parameteric dependence on the energy scales J, h, Ay, Ap,.
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FIG. 13: Square wave density of states: The integrated DOS
n(e) is plotted for square wave modulation D1 various values
of (J =h)/(A; = Ap). n(e) is averaged over ¢ and A. Each
line is coloured according to the value of w (legend inset).
Q/2m = My = (1++/5)/2 (upper plot), Q/2m = Mz = 1++/2
(lower plot). Error bars not shown; as with the sinusoidal
case, fluctuations are deterministic and do not average out.
Parameters: D = 1/e, and ¢ = 1,346,269 (upper plot), ¢ =
1,136,689 (lower plot).
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a. Special case: A =Q(N+1/2)

In this case the wandering is zero w = 0. This follows
from the same arguments as the sinusoidal case in the
main text, and was previously noted for A = @Q/2 in
Ref. [28].

In the sinusoidal case, which is similarly Harris-Luck
marginal, the presence of small couplings nonetheless
leads to an altered dynamical exponent. Here in the
corresponding square wave case, there are no small cou-
plings. That is, min J;, min h; do not scale with the finite
size length scale ¢ and the modulation is Ising irrelevant.

b.  Special case: 2rD = Q(N+1/2)

We note there is a corresponding dependence on special
values of D, analogous to the special values of A. E.g.
we notice if D = Q /27 that

~  sin(kQ/2) Ay
= —n-2t 2 Jog |1 + —=
1) — og|l+ 7
ik(Q/2—A) Ap,
—e log |1 + s (D6)

leading to an exact cancellation with the denominator
of (40) and hence w = 0. Such an exact cancellation oc-
curs for all D = nQ/27 +mm for n,m € N. A previously
studied instance of this exact cancellation is if the h; and
J; follow the Fibonacci word, which is known to be Ising
irrelevant [6, 16, 17, 20-24, 27-30].

c¢.  Numerically extracted z for square waves

Fig. (13) shows numerically values of z for Square wave
modulation with @Q/2r = M, My (see. (C1)). As in
the main text, we calculate n(e) using the method of
Refs. [45, 46].
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