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ABSTRACT

Machine Learning (ML) is a key part of modern malware detection
pipelines, but its application is not straightforward. It involves mul-
tiple practical challenges that are frequently unaddressed by the
literature works. A key challenge is the heterogeneity of scenar-
ios. Antivirus (AV) companies for instance operate under different
performance constraints in the backend and in the endpoint, and
with a diversity of datasets according to the country they operate
in. In this paper, we evaluate the impact of these heterogeneous
aspects by developing a classification pipeline for 3 datasets of 10K
malware samples each collected by an AV company in the USA,
Brazil, and Japan in the same period. We characterize the different
requirements for these datasets and we show that a different num-
ber of features is required to reach the optimal detection rate in
each scenario. We show that a global model combining the three
datasets increases the detection of the three individual datasets. We
propose using Federated Learning (FL) to build the global model
and a distilling process to generate the local versions. We order the
samples temporally to show that although retraining on concept
drift detection helps recover the detection rate, only a FL approach
can increase the detection rate.

Note: This is the author’s public version of the paper.
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1 INTRODUCTION

Malware attacks are on the rise, and so is the use of Machine Learn-
ing (ML) to counter them [1]. Thus, developing ML pipelines to
detect malware becomes key, as they are the basis of many security
solutions, such as AntiViruses (AVs) [10]. However, these pipelines
must be realistic [14, 31] to actually protect the users. This work is
an effort to evaluate the realistic constraints of ML AVs.

Previous pipelines published in the literature presented twomain
assumptions that do not hold in reality: (1) the bigger the model,
the better [9]. They assume that models can grow indefinitely to
achieve greater accuracy, with no performance constraint. In prac-
tice, security solutions should be fast to not disrupt the regular
system operation; and (2) One size fits all [7]. They assume that
threats are global, with no localized threats to be handled particu-
larly. This is not the case for AV companies that operate in multiple
different countries all around the world.

We demonstrate how these assumptions fail by simulating an
AV company operating in different regions of the world and try-
ing to develop models that achieve the best performance in them,
both in accuracy as well as in execution time and storage require-
ments. To that, we partnered with an AV company that provided
us with 30K malware samples (10K for each country) collected in
the same period (2017) in the United States (US), Brazil (BR), and
Japan (JP). We used this data to explore the best strategies to build
detection models and we hope this information might inform future
developments in the field.

We first demonstrate that the size of the best feature set for each
scenario varies, such that adopting a uniform, large model imposes
unnecessary extra performance costs. Further, we also demonstrate
that the knowledge learned by classifiers in each scenario is actually
different, such that a global model does not naturally exist, except
by intentional construction.

Our goal to move forward is to answer the question What is
the best way to build detection models for heterogeneous threat
scenarios like this? To do so, we evaluate how to achieve two
competing goals: (i) making models smaller to achieve execution
performance requirements; and (2) making models larger to create
a global knowledge that generalizes. To conciliate that, we propose
splitting the scenarios in two: (1) a local model that is responsible
for achieving high execution performance in the specific country;
and (2) a large global model responsible for transferring knowledge
between multiple countries.

We propose AV companies use Federated Learning (FL) [25]
to build the global model. Unlike previous proposals, we do not
propose that AV users (clients) run training routines on their ma-
chines [25, 28]. Instead, we propose the AV subsidiaries in each
country train local models that are at the same time deployed in
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Whereas required to share knowledge, the models should still
be optimized for their local scenarios. Thus, a key challenge of this
architecture is to allow the easy distilling of models with different
settings.We overcome this challenge by proposing a modification in
the Random Forest (RF) algorithm to make it handle heterogeneous
trees, as shown in Figure 4. In the new version, each tree in the
ensemble has a different number of features, such that the distilling
process becomes a matter of collecting an increasing number of
trees of increasing feature set size until reaching the target accuracy
rate. After the regional and local models are derived from the global
knowledge, the model is converted into rules by the AVs. The rules
are distributed to the clients to be matched in the endpoints. This
work will discuss in the following the best strategies to implement
and deploy this architecture.

3 METHODOLOGY

ClassificationModel. This work’s approach is to start from where
the others stopped. Thus, we build on top of previous constructions.
We adopted a previously-published, open-source PE-based classi-
fier [13] to handle our dataset of Windows malware. This model
is composed of categorical features extracted from the PE header
and textual features derived from function imports embedded via
TF-IDF. We modified the model to consider a minimum number of
features to minimize the impact of model size. We implemented a
feature selection mechanism (SelectKBest [35] with F-score) to
consider the most representative features for this model (Sec. 4).
Implementation. We took the original scikit-learn [34] imple-
mentation of the model as a reference. We kept the original feature
extractor implemented in Python and integrated to it the classifier
implementation from the MOA [5] framework for increased analysis
throughput. We adopted the AdaptiveRandomForest [30] classi-
fier for all experiments due to its ability to integrate new training
data without the need for retraining the entire model. Whereas
this classifier was originally designed to be used in stream learning,
we here benefit from this classifier to build the federated learning
component. The proposed algorithm modifications were performed
by training each tree separately as a new decision tree and then
merging them into a new ensemble.
Security Evaluation Metrics. Our goal in this work is not to
present a newMLmodel with incrementally higher accuracy.Model-
specific accuracy improvements have already been presented by
multiple related works. In turn, we assume that the base model has
a high base accuracy. Our research interest is to evaluate how to
make this accuracy sustainable over time and how to generalize
it for multiple scenarios. Therefore, whenever we train a new ML
model, we target the 99% accuracy level for the binary classifica-
tion problem (malware vs goodware). Since our datasets are fully
balanced, accuracy correctly describes the results.
Target Performance. In this work, we target not only to sustain a
high detection rate but also to cause the minor performance impact
possible. We evaluate performance impact via the size of the model,
as the bigger the model, the greater the storage requirements it
imposes and the longer it takes to traverse it. More specifically, we
aim to select the minimum number of features and the minimum
number of RF trees in the ensemble that allows us to still achieve
the previously specified accuracy rate. We measured model size

as the total number of tree nodes in the RF ensemble. It is key to
highlight that there is a difference between counting the number
of tree nodes and the actual amount of memory allocated to the
tree. Many libraries, such as scikit-learn, allocate memory in
batches, such that the actual storage does not grow linearly with
the tree size. We opted to measure the number of tree nodes to
remain agnostic to the memory allocator.
Results correction. By construction, the RF algorithm presents dif-
ferent results at different training runs. This characteristic provides
it good generalization ability, but it might also bias the results if
we report only an eventually over-positive, single case. To mitigate
this possibility, all results presented in this paper are an average of
10 different runs. Training accuracy is reported as the outcome of
the 10-folding process.
Dataset. In this work, we address the malware detection problem
as a binary classification problem (malware vs. goodware). The
malware dataset is split according to three different scenarios. The
goodware dataset is a generalization of software most users have
on their machines. The goodware samples were retrieved from a
fresh Windows installation and from the crawling of the most pop-
ular applications in Internet software repositories. We ensured all
files were labeled as clean by all VirusTotal engines. We used as
many goodware samples as needed to provide a 50%-50% balance
in the training sets, depending on the availability of malware for
each tested scenario. For each tested scenario, we trained the differ-
ent models with the same incremental set of goodware files, thus
ensuring that any observed difference is due to only the different
malware files for each scenario.

The malware dataset aims to represent the realistic scenario in
which an AV company operates in multiple countries. We consid-
ered three datasets of 10K malware samples each, with no overlaps
or duplicates (The duplicated rate was 33% for each dataset be-
fore we filtered them out). The datasets were collected by an AV
company from infected user machines in the United States (US),
Brazil (BR), and Japan (JP) during the entire year of 2017 and made
exclusively available to us. These datasets were characterized in
previous studies [6, 7]. The BR dataset is composed of 3 types of PE
files (typical EXEs, DLLs, and CPLs) whereas the US and JP datasets
are composed only of EXEs and DLLs, as CPL files were only ob-
served in Brazil. The 3 datasets present more than 100 families, but
the BR dataset has a prevalence (53%) of Password Stealers (PSW)
and Downloaders whereas US and JP have a prevalence (40%) of
Ransomware samples. We consider these datasets a coherent view
of the threat landscape since they were collected by the same com-
pany, in the same period, from the same type of users, and using
the same technique.

Table 1: Dataset Differences. Dynamic analysis events for the

US, Brazil, and Japan datasets.

Behavior US BR JP

Hosts file modification 0.04% 1.09% 0.92%
File creation 64% 24% 70%
File deletion 34% 12% 34%
File modification 63% 16% 46%
Browser modification 0% 1.03% 0.59%
Network traffic 53% 96% 52%
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future, it is key to conduct a large-scale study to answer the ques-
tions derived from our observations and their generalization for
multiple datasets over time. At the present, we evaluate the gener-
alization of our claim that heterogeneous datasets inherently cause
classification impact via the experiments presented in Appendix B.

7 RELATED WORK

Realistic Malware Detection Pipelines. Recent works point out
that ML-based detectors need to be more practical [14] and present
more realistic assumptions in their evaluations [1]. Previous work
addressed issues such as improper dataset imbalances [31]. We
complement them by considering performance requirements.
Concept Drift issues have been addressed in multiple works [4,
12, 22, 32]. However, none of them considered the effect of simulta-
neous heterogeneous datasets, as in this work.
Model Distillation.Whereas the distill of Random Forest (RF) has
been proposed in the past in the literature [23], our contribution
here is to build the ensemble tree in a way that favors direct distil-
lation. Previous distillation works focused on creating models that
are stronger against adversaries [21], but not necessarily suitable
for easy distillation. Also, whereas previous works observed that
distilled models might have a mix of characteristics [33], they did
not explore it to handle the differences in regional datasets.
Federated Learning. Whereas previous works suggested that AV
companies could benefit from FL [18], this idea was never com-
pletely developed. Also, their focus is often on keeping users’ data
external to some company environment, whereas our scenario is
internal to the AV company. A key difference from previous works
is that whereas most literature works propose models to be run in
the edge devices [25, 28], we take the performance constraints into
consideration and propose the FL to be run inside the AV company
infrastructure. The agents of the FL process are the AV company
subsidiaries, not the users. This solves this risk of poisoning asso-
ciated with FL [17, 37]. Whereas in client-side FL the dataset can
be poisoned by a set of malicious actors, in our scenario the clients
are trusted because they are internal to the AV company.
Combining FL and Distilling. Whereas combining the two tech-
niques has been proposed for other domains [24], this is the first
use for malware detection. Whereas previous works distilled an
ensemble into another [26], we propose building a heterogeneous
ensemble to facilitate single-tree distillation.
Adaptive Classifiers. Random Forest modifications have been
proposed in the past [19], but only a few works modified RF for
easing model distilling. The closest proposal to it was the creation of
heterogenous RF with different features per tree [2]. We here sorrt
the RF trees by an incremental number of features (with overlap
with the previous ones) which allows easy model distills steps.
Classification Performance Trade-Offs. This work sheds light
on ML performance. Although large models tend to present greater
detection rates, they also tend to be too big to run in edge de-
vices [40]. Thus, finding a good trade-off between model size and
accuracy is key. A typical strategy for that is to partition the models
into cloud and edge versions [36], a strategy also leveraged in this
work. However, whereas the typical trade-off is in the number of
trees [16], we here approached it also in the number of features.

8 CONCLUSION

We investigated how malware detection pipelines proposed in the
literature often do not consider the challenges involved in the actual
operation in heterogeneous scenarios, such as that: (i) the MLmodel
that runs in a client machine is different from the model that runs
in an AV company backend; and (ii) datasets of malware samples
collected in different regions of the world present different detec-
tion requirements in terms of model complexity. We evaluate the
impact of overlooking these aspects by modeling a ML-based mal-
ware detection pipeline to be applied to 3 datasets of 10K malware
samples each collected in the same period of time in three different
countries: USA, Brazil, and Japan. We show that (i) the ideal model
for each scenario requires a different number of features; (ii) in-
creasing the model size does not lead to significant detection gains;
and (iii) integrating data from all the scenarios in a global model
indeed raises the detection rates for all datasets. We proposed the
use of FL in combination with model distilling to build the global
dataset. Unlike previous proposals, our FL approach is run inside
the AV company, and not on the endpoints. Also, we modified the
RF algorithm to use a heterogeneous number of features in its en-
semble, thus favoring the distillation of different models. We expect
this work to foster further research on cross-regional malware.
Reproducibility. All developed codes for this research is available
at: https://github.com/marcusbotacin/Malware.Federated.Distill
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A DERIVING YARA RULES FROM ML MODELS

Most works in the literature tend to complete their evaluations at
the ML model level. However, in practice, AV companies do not
use the models directly in the end users’ machines, but to derive
rules that will be deployed in the endpoints. There are important
differences between ML models and the rules and there are phe-
nomenons that can only be observed at the rule level. Therefore,
we took a step further and generated the rules from the model for
evaluation purposes. We here characterize the derived rules and
point out important facts about their nature to bridge the gap in the
literature about the application of rules derived from ML models.
YARA rules. Rules can be derived from a tree-based model (e.g.,
RF or DT) by traversing all paths of the tree and aggregating the
node conditions. If all conditions are satisfied (logic AND), the rule
matches. The paths can be represented via multiple frameworks. In
this work, we chose YARA, for two reasons. First, because it is the
de-facto standard, used by many security products, which gives us
realistic results. Second, it natively supports the PE format. Since
our features are PE entities, they can be directly mapped to YARA
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other popular classifiers implemented in the scikit-learn frame-
work (RF, SGD, AdaBoost, and SVM). Once again, we hypothesize
that there is an inherent phenomenon originating from dataset
characteristics that is independent of classifier architecture.

Table 4: Classifier Influence on the detection of different

regional malware datasets. Feature set sizes.

95% 99%

US BR JP US BR JP

RF 35 40 45 290 340 800
SGD 35 40 45 292 342 805
AdaBoost 35 40 45 292 342 805
SVM 36 41 46 295 345 813

Table 4 shows the number of features required for each dataset
detection converge to 95% and 99% respectively when using differ-
ent classifiers. Whereas the RF classifier’s performance is slightly
superior to its counterparts, as hypothesized, the results for all
classifiers are overall similar, thus reinforcing the hypothesis that
the datasets have unique characteristics that should be handled.
The Pareto characteristic of the classification problem is present in
all classifiers, with much fewer features being required to achieve
95% than the 99% detection rate.

B.3 Varying Distillation Techniques

As for the feature selection and classifiers, we also evaluated the
impact of different distillation strategies on the datasets. We com-
plemented the experiments with the Teacher-Student (TS) strategy
presented in the main text with experiments leveraging the closest

distillation proposal to ours: Federated Model Fusion (FMF) [27].
This approach proposes combining the outputs of multiple models
in a global knowledge database, as we propose to combine region-
specific models into a global one. Whereas originally evaluated
with images, we here extend it to work with malware. To that, we
adapted the proposed algorithm to work in the same conditions as
ours. For instance, instead of operating with N clients, we limited
it to operating with a single one, as each regional model is stored
only in one node (the regional server), not on multiple endpoint
nodes. Similarly, we limited the number of rounds to one, as for
experimental purposes, we can add all the data at once, without
the need of querying individual nodes. With that, the proposed
algorithm is reduced to a version of the TS strategy.

Table 5: Distillation Technique Influence on the detection of

different regional malware datasets. Feature set sizes.

US BR JP

TS [20, 23] 300 (+3%) 400 (+17%) 900 (+12.5%)
FMF [27] 299 (+3%) 402 (+18%) 902 (+12.5%)

Table 5 shows the number of features required for each dataset
detection converge to the 99% detection rate when using differ-
ent distillation techniques and its increase in comparison to the
base models. As hypothesized, the performance of FMF is very
close to the TS, as their operation became very similar under these
conditions. Therefore, we reinforce the claim that the differences
observed in the required number of features are due to the dataset’s
inherent characteristics and that we need to add this work; ’s pre-
sented flexibility to handle it.
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