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Abstract

Central in the study of population codes, coordinated ensemble spiking activity is
widely observable in neural recordings with hypothesized roles in robust stimulus
representation, interareal communication, and learning and memory formation.
Model-free measures of synchrony characterize coherent pairwise activity but not
higher-order interactions, a limitation transcended by statistical models of ensemble
spiking activity. However, existing model-based analyses often impose assumptions
about the relevance of higher-order interactions and require repeated trials to
characterize dynamics in the correlational structure of ensemble activity. To address
these shortcomings, we propose an adaptive greedy filtering algorithm based on a
discretized mark point-process model of ensemble spiking and a corresponding
statistical inference framework to identify significant higher-order coordination. In the
course of developing a precise statistical test, we show that confidence intervals can be
constructed for greedily estimated parameters. We demonstrate the utility of our
proposed methods on simulated neuronal assemblies. Applied to multi-electrode
recordings from human and rat cortical assemblies, our proposed methods provide new
insights into the dynamics underlying localized population activity during transitions
between brain states.

Author summary

Simultaneous ensemble spiking is hypothesized to have important roles in neural
encoding; however, neurons can also spike simultaneously by chance. In order to
characterize the potentially time-varying higher-order correlational structure of
ensemble spiking, we propose an adaptive greedy filtering algorithm that estimates the
rate of all reliably-occurring simultaneous ensemble spiking events. Moreover, we
propose an accompanying statistical inference framework to distinguish the chance
occurrence of simultaneous spiking events from coordinated higher-order spiking. We
demonstrate the proposed methods accurately differentiate coordinated simultaneous
spiking from chance occurrences in simulated data. In application to human and rat
cortical data, the proposed methods reveal time-varying dynamics in higher-order
coordination that coincide with changing brain states.
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Introduction 1

Synchronous neuronal ensemble activity is central in the study of neural population 2

codes. Coordinated ensemble spiking has been observed in a variety of brain areas, 3

prompting a variety of hypotheses about its role in cognitive function. For instance, 4

studies have documented synchronous spiking at all levels of the mammalian visual 5

pathway [1–3]. Synchronized thalamic population activity has also been widely observed, 6

a phenomenon to which visual cortical neurons have been found sensitive, suggesting the 7

importance of synchronized neuronal activity in thalamocortical communication [4, 5]. 8

Synchronized spiking has, more broadly, been hypothesized to influence inter-areal 9

communication and the flow of neural information [6–10]. The study of coordinated 10

neural activity is also closely tied to oscillatory activity and memory. Synchronized 11

hippocampal and hippocampal-cortical activity are thought to have significant roles in 12

memory formation, working memory tasks, and encoding information for spatial 13

navigation [11–13]. Coordinated ensemble spiking has additionally been postulated to 14

be mediated by oscillations in local field potentials [14–16]. 15

The prevalence of coordinated spiking and its functional implications for a range of 16

neural processes have motivated both model-free and model-based approaches to 17

quantifying spiking synchrony. Perhaps the most intuitive model-free metric is the 18

pairwise correlations of spike trains smoothed by a Gaussian (or exponential) 19

kernel [17,18]. Other model-free measures include a range of spike train distance 20

metrics that also perform pairwise comparisons [19]. Though the coherence of pairwise 21

activity can be described, such measures do not capture higher-order coordination, and 22

are limited in the ability to model dynamics in or determine the significance of pairwise 23

coherence without repeated trials. More recently, model-free approaches based on 24

continuous-time transfer entropy formulations have been introduced that avoid 25

smoothing or binning spike trains [20–23]; however these are still limited to pairwise 26

measures of synchrony. 27

Statistical models of neuronal ensemble activity transcend the limitation of 28

model-free metrics to pairwise comparisons. Two widely used approaches are the 29

maximum entropy models and point process generalized linear models (GLM) [24,25]. 30

Maximum entropy models describe the state of the neural population only in terms of 31

its instantaneous correlational structure [26,27]. Models are estimated to match 32

observed firing rates and all pairwise (and potentially higher order) correlations 33

simultaneously. The suitability of the maximum entropy model formulation for 34

analyzing coordinated spiking has motivated several extensions. For instance, Bayesian 35

state-space filtering algorithms have been developed to capture dynamics in the strength 36

of higher-order spiking interactions [28,29]. A stimulus-dependent maximum entropy 37

model has also been proposed to address potential synchrony-modulating factors [30]. 38

Extensions also include efforts to address the computational complexity associated with 39

analyzing higher-order interactions amongst large neuronal assemblies [31,32]. 40

Point process GLMs are a common alternative to maximum entropy models for 41

ensemble spiking [33,34] that can characterize the influence of past population activity 42

and other relevant covariates. Though useful in estimating functional 43

connectivity [35,36], each neuron must be assumed conditional independent due to 44

regularity conditions that prohibit simultaneous spiking events [37–39]. This can be 45

circumvented by using an equivalent marked point processes (MkPP) representation 46

that explicitly models each disjoint simultaneous spiking event [38]. MkPP 47

representations of ensemble activity have also been utilized to analyze neuronal 48

population coding in unsorted spiking data [40, 41]. A related approach models disjoint 49

simultaneous spiking events as log-linear combinations of point process models that 50

permits an intuitive representation of excess or suppressed synchrony [15,39]. 51

The aforementioned statistical models enable the analysis of higher-order 52
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coordination in ensemble spiking, though each with their respective limitations. 53

Dynamics in the correlational structure of maximum entropy models may be tracked 54

with state-space filtering algorithms and credible intervals can be constructed to assess 55

the statistical significance of correlations; however, the influence of past population 56

activity on the ensemble state is neglected, and assumptions on the relevance of 57

higher-order interactions are typically imposed for tractability of model estimation. 58

Log-linear point process models can track dynamics in coherent spiking while 59

incorporating the effects of temporal dynamics of population activity, and confidence 60

intervals may be approximated for statistical inference; the necessity of a priori 61

assumptions on the relevance of higher-order interactions still, however, remains. 62

Additionally, both approaches require multiple repeated trials to capture dynamics in 63

correlational structure with statistical confidence, thus limiting their applicability to 64

spiking data without trial structure. A discretized MkPP model is capable of capturing 65

greater detail in the effects of past population activity on coordinated spiking, though 66

these effects are assumed to be static. To our knowledge, the tractability of the MkPP 67

model for ensemble spiking has not been addressed, and a corresponding statistical 68

inference framework is lacking. 69

We address these gaps by proposing an adaptive greedy filtering algorithm based on 70

the discretized MkPP formulation in [38] to model dynamics in higher-order spiking 71

coordination in single-trial recordings while capturing the influence of past ensemble 72

activity. Incorporating similar data-driven restrictions on modeled interactions as 73

in [31], we also address the question of tractability of the discretized MkPP formulation. 74

Furthermore, we build on recent theoretical results related to Adaptive Granger 75

Causality (AGC) analysis [35] to provide a precise statistical framework to detect 76

significant coordinated spiking activity of arbitrary order. We demonstrate our 77

proposed method’s utility in tracking dynamics in synchronous activity with statistical 78

confidence on simulated ensemble spiking. Applying our method to continuous 79

multi-electrode recordings of human cortical assemblies during anesthesia and to rat 80

cortical assemblies during sleep provides novel insights into coordinated spiking 81

dynamics that underlie transitions between brain states. 82

Materials and methods 83

In the following, we first highlight the limitations of existing approaches in application 84

to neuronal spiking data without trial structure in order to motivate and highlight the 85

contributions of this work, namely a framework for the dynamic and statistically precise 86

inference of latent coordinated spiking in neuronal assemblies using their simultaneous 87

spiking representation (Fig 1, bottom panel). We summarize essential components of 88

the proposed methods subsequently. Key notation used throughout the remainder of the 89

paper is summarized in Table 1. Problem formulation, algorithm development, and 90

theoretical results are comprehensively addressed in supporting information (S1 91

Appendix). Software implementations in MATLAB v2017b of the algorithms discussed 92

here are available at https://github.com/ShoutikM/AdaptiveHigherOrderCoordination 93

and https://www.doi.org/10.5281/zenodo.10009981. 94

Related work 95

In the context of existing approaches to the analysis of correlational structure 96

underlying ensemble spiking activity, the methods proposed in this work address two 97

key limitations. The first is the consideration of simultaneous spiking between more 98

than 2 neurons. Existing model-free approaches are largely restricted to pairwise 99

evaluations of synchrony. Intuitive metrics like correlations or other similarity measures 100
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Spiking Data Simultaneous Spiking Events as a Marked Point ProcessLatent Higher-Order
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Fig 1. In order to characterize latent higher-order spiking coordination in a group of C neurons, the observed spiking
event at every time frame t, denoted nt, is mapped to a categorical vector n∗

t that indicates which of 2C − 1 possible
simultaneous spiking events occurred. The mapping of one spiking outcome to its categorical representation is circled in
green. The disjointness of the categorical representation means that the spiking activity of a neuron can be recovered as
the sum of outcomes in which that neuron spiked (as indicated in teal for neuron 5). In the proposed methods (grey
box), this disjoint representation of spiking outcomes is modeled as a marked point process (MkPP). A time-varying
categorical distribution describing the probability of each category (simultaneous spiking event) is fit by adaptively

estimating each’s base-rate parameter
(
µ
(m)
t

)
, and possibly the influence of the recent ensemble spiking history

(
θ
(m)
t

)
.

To determine if rth-order events (simultaneous spiking of exactly r neurons) occur at rates differing significantly from
the rate of chance rth-order events, the estimated base-rate parameters of all rth-order events are compared to values of
base-rate parameters expected if the neurons were independent. Significant rth-order coordination is indicated by
rejecting a null hypothesis that such events occur by chance in favor of the alternative that they occur at a significantly
different rate using a statistical test with precisely characterized distributions for the test statistic under both
hypotheses. This framework enables the statistical confidence of rth-order coordination detected at a false discovery
rate, α, to be summarized in terms of type I and type II errors using Youden’s J -statistic, Jα.

compare pairs of smoothed spike trains [17–19]. Recently, model-free analyses based on 101

continuous-time formulations of transfer entropy have been proposed to evaluate causal 102

history-dependent interactions and synchronization [20–23]. While not reliant on 103

binning or smoothing spiking data, the tests of conditional independence in [20,21] 104

examine the relationship between the history of one point process and the updates of 105

another, thus resembling Granger causality analysis [35,36] more closely than a measure 106

of synchrony. Alternatively, the transfer entropy-based approach in [22,23] computes 107

the mutual information rate as the sum of transfer entropy rates between two point 108

process in both direction. Though this symmetric notion of connectivity quantifies 109

synchronization, it remains limited to pairwise interactions. 110

Principal component analysis (PCA) and independent component analysis (ICA) 111

have also been used to identify groups of synchronously spiking neurons [42–45], using 112

multiple trials to form empirical covariance matrices and thereby discover a 113

low-dimensional set of activity sources. Noting that PCA uses the covariance matrix to 114

identify the low-dimensional components, it shares the same limitations with other 115

pairwise measures, when the latent correlational structure is of higher order. While ICA 116

can identify sources that account for higher-order correlations [43,45], neither of these 117

methods is well-suited to single-trial spike trains or when the underlying data structure 118
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Table 1. Summary of key notation

Notation Definition

nt =
[
n
(1)
t , . . . , n

(C)
t

]>
Ensemble spiking observation at time bin t of C neurons

λ
(c)
t ∆ = P[n

(c)
t = 1|Ht] Conditional Intensity Function (CIF) of cth neuron

n∗t =
[
n∗

(1)
t , . . . , n∗

(C∗)
t

]>
Marked observations at time bin t of C∗ = 2C − 1 marks

λ∗t
(m)∆ = P[n∗t

(m) = 1|Ht] CIF of mth mark

n
(g)
t Ground process,

∑C∗

m=1 n
∗(m)
t

λ∗
(g)
t ∆ CIF of the ground process,

∑C∗

m=1 λ
∗(m)
t ∆

ωt =
[
ω

(1)>

t ,ω
(2)>

t , . . . ,ω
(C∗)>

t

]>
Model parameters of history-dependent model

µt =
[
µ
(1)
t , . . . , µ

(C∗)
t

]>
Base rate parameters of marks

θ
(m)
t History-dependence coefficients of the mth mark

u
(m)
t Log-odds of mth mark vs. no spiking

u
(m)
0,t Log-odds of mth mark vs. no spiking (reduced model)

γ
(m)
t = u

(m)
t − u(m)

0,t Exogenous factor for mth mark
β Forgetting factor, 0 < β < 1
W Window length

is not low-dimensional or stationary. 119

While model-based approaches can circumvent the limitation to pairwise
synchronization, in the same fashion as ICA, they are ill-suited to capturing dynamics
in spiking data absent trial structure with statistical confidence. In the cases of two
approaches closely related to the proposed methods, we examine this limitation more
closely. We first consider the approach in [28], which utilizes a maximum entropy model
of ensemble spiking whose dynamics are captured using Bayesian state-space filtering.
The method, tailored for multi-trial data, assumes stationarity across trials but
non-stationarity within so that the likelihood of the spiking observations nt is expressed
as

p(nt=1:T,l=1:L) =
∏
t,l exp

(∑
i θ

(i)
t n

(i)
t,l +

∑
i<j θ

(i,j)
t n

(i)
t,ln

(j)
t,l + · · ·+ θ

(1,...,C)
t n

(1)
t,l . . . n

(C)
t,l − ψ(θt)

)
,

with T time bins and L trials, and parameters evolving according to the linear-Gaussian 120

state transition θt = Fθt−1 + φt. The Bayesian state-space filter utilizes an 121

expectation-maximization algorithm that requires evaluating the posterior density 122

p(θt=1:T |nt=1:T,l=1:L). Assuming non-stationarity in the trial-free case, the posterior, 123

which is also used to construct credible intervals, is poorly estimated. 124

Next, we examine the log-linear point process model approach in [39]. Here, the
log-probability of a simultaneous spiking event is modeled as the sum of log-probabilities
of conditionally independent neurons and an additional term that captures excess
synchrony. As an example, the joint probability for a pair of neurons modeled as

logP
[
n
(1)
t , n

(2)
t

]
= n

(1)
t log λ

(1)
t + n

(2)
t log λ

(2)
t + n

(1)
t n

(2)
t ξ

(1,2)
t .

Significant synchronization is detected if the null hypothesis that ξ
(1,2)
t = 0 can be 125

rejected. However, doing so requires a bootstrap distribution for ξ
(1,2)
t , an ill-posed 126

proposition in the trial-free case if the term is allowed to be time-varying. 127

The proposed method uses a discretized marked point process model (MkPP) of 128

ensemble spiking activity [38] to capture higher-order interactions. The contributions of 129

this work are the development of a greedy approach to adaptively fit the MkPP model 130

to capture dynamics in spiking data without trial structure and a statistical inference 131
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framework with precisely characterized distributions for the test statistic, thus 132

circumventing the need for bootstrapping or estimating a posterior distribution, both of 133

which are better suited to multi-trial data when time-varying higher-order coordination 134

is considered. 135

Discretized marked point process likelihood model 136

To characterize coordinated spiking, it is necessary to use an appropriate representation 137

of neuronal ensemble spiking. Because multivariate point processes as defined in 138

literature [37] do not permit simultaneous events at arbitrarily small time scales, point 139

process models of ensemble spiking treat neurons as conditionally independent elements 140

of a multivariate process. Instead, we use a discrete-time marked point process (MkPP) 141

model to avoid assuming conditional independence, disjointly representing all 142

simultaneous spiking outcomes [38,39,46]. 143

For an assembly of C neurons, the C-variate spiking process, binned with small bin 144

size ∆, at time bin index t is denoted by nt. Rather than treating its components as 145

conditionally independent, nt is viewed as a multivariate observation that we map to a 146

C∗-variate process, a MkPP whose marks count exactly on of C∗ := 2C − 1 possible 147

non-zero spiking events. That is, at each time tj such that ntj 6= 0, the sole non-zero 148

element of n∗tj indicates which mark (ensemble spiking outcome) has occurred. We also 149

define the binned ground process n
(g)
t :=

∑C∗

m=1 n
∗
t
(m) that indicates the occurrence of 150

any spiking event [37]. The mark space K := {1, . . . , C∗} indexes the non-zero spiking 151

outcomes [37]. For example, Fig 1 shows the activity of C = 5 neurons mapped to a 152

marked process with C∗ = 31 marks; the event that neurons 1–3 spike together while 4 153

and 5 do not maps to the mark index 7 (circled in green). Because the marked 154

representation is disjoint, the spiking observations of neuron c can be recovered by 155

adding the observations of all marks corresponding to events including neuron c spiking. 156

For instance, in Fig 1, the spiking activity of neuron 5 is the sum of simultaneous 157

spiking events indexed 16–31 (both indicated in teal). 158

The conditional intensity functions (CIFs) of nt and n∗t are approximated by the 159

probabilities of observing an event at time bin t given ensemble spiking history; they are 160

denoted λ
(c)
t ∆ and λ∗t

(m)∆ for c = 1, . . . , C and m = 1, . . . , C∗, respectively. We can 161

relate λ
(c)
t ∆ to λ∗t

(m)∆ in the same manner as n
(c)
t to n∗t

(m), and obtain the CIF of the 162

ground process λ∗t
(g)∆ =

∑C∗

m=1 λ
∗
t
(m)∆. 163

The joint distribution of the MkPP is expressed as a multinomial generalized linear 164

model (mGLM) with multinomial logistic link function, two versions of which are 165

considered here. The first, more general version utilizes the ensemble history as 166

covariates in the mGLM. Here, the log-odds of the mth mark occurring, i.e. the 167

probability of observing the mth simultaneous spiking outcome λ∗t
(m)∆, versus no 168

spiking event occurring are: 169

x>t ω
(m)
t = log

(
λ∗t

(m)∆

1− λ∗t
(g)∆

)
. (1)

The log-odds of the mth mark are parameterized by ω(m)
t :=

[
µ
(m)
t ,θ

(m)>

t

]>, consisting of 170

an ensemble history-modulation vector θ(m)
t and the baseline firing parameter, µ(m)

t ; xt 171

denotes the recent ensemble spiking history. 172

The second version of the mGLM makes the simplifying assumption that there is no 173

history dependence. Consequently, the history-independent model is parameterized only 174

by the baseline firing parameters µt = [µ
(1)
t , µ

(2)
t , . . . , µ

(C∗)
t ]>. Here, the log-odds of the 175
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mth mark occurring versus no spiking event occurring are: 176

µ
(m)
t = log

(
λ∗t

(m)∆

1− λ∗t
(g)∆

)
. (2)

Summarily, the discretized MkPP model represents ensemble spiking activity 177

explicitly in terms of all possible outcomes to model their likelihoods jointly. Hence, the 178

MkPP model is essentially a time-varying categorical distribution where the categories 179

are the simultaneous spiking outcomes; the instantaneous odds of these outcomes are 180

non-stationary and possibly dependent on recent ensemble activity history. 181

Adaptive estimation of marked point process models 182

Since the parameters of the MkPP mGLM are assumed to be time-varying, we use 183

adaptive algorithms to capture the dynamics of the history-dependent and 184

history-independent models. However, analyzing large neuronal assemblies raises the 185

issue of tractability since the number of parameters to be estimated scales exponentially 186

with C. Since it is likely that some marks will not contain any events, we employ a 187

thresholding rule similar to [31], considering only “reliable interactions”, i.e. the subset 188

of the mark space K̄ = {m ∈ K :
∑
t n
∗
t
(m) > Nthr} for some pre-defined constant 189

Nthr > 0, and treating the rates of the remaining marked processes as negligible due to 190

their infrequency. That is, the time-varying categorical distribution assumes the 191

probabilities of categories that occur with negligible frequency are zero so that we only 192

fit parameters for the non-negligible categories. For generality and clarity in notation, 193

subsequent discussions are in terms of the full mark space K. 194

The history-dependent discretized MkPP model is fit by solving a sequence of 195

maximum likelihood problems. We assume that its parameters ωt admit piece-wise 196

constant dynamics and are constant over consecutive windows of length W , where the 197

log-likelihood of the ith window is denoted `i(ωi). To encourage smoothly adapting 198

parameter estimates, we use a forgetting factor mechanism [47] to adaptively weight the 199

window log-likelihoods up to the kth window. For a forgetting factor 0 ≤ β < 1, the 200

adaptively-weighted log-likelihood at window k is thus defined as: 201

`βk(ωk) := (1− β)

k∑
i=1

βk−i`i(ωk). (3)

Parameter estimation is hence performed by solving the sequence of maximum 202

likelihood problems: 203

ω̂k := arg max
ωk

`βk(ωk), k = 1, 2, · · · ,K. (4)

To efficiently solve the sequence of problems in Eq. (4) in an online fashion, we use 204

the Adaptive Orthogonal Matching Pursuit (AdOMP) [48], an adaptive version of the 205

Orthogonal Matching Pursuit (OMP) [49] [50]. The AdOMP, which fits an iteratively 206

selected subset of model parameters, captures inherent sparsity of network interactions 207

based on past ensemble activity [51–53] while also mitigating complexity. The 208

implementation of AdOMP is addressed in detail in supporting information (S1 209

Appendix). 210

The sequence of maximum likelihood problems that must be solved to obtain the 211

history-independent model takes a similar form as in Eq. (4) under the same assumption 212

of piece-wise constant dynamics of µt. The sequence of maximum likelihood estimates 213

µ̂k = arg max
µk

`βk(µk), k = 1, 2, · · · ,K (5)
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are obtained by gradient descent, where the gradient of the history-independent 214

log-likelihood can be computed directly. The procedure for computing the 215

maximum-likelihood estimates of the history-independent model is detailed in 216

supporting information (S1 Appendix). 217

Statistical inference of higher-order coordination 218

Coordinated spiking can indicate relationships between components of a neuronal 219

assembly and, potentially, effects of unobserved processes. However, independent 220

neurons can also spike concurrently by chance, necessitating statistical inference to 221

distinguish between excessive (or suppressed) and chance simultaneous spiking. To this 222

end, we quantify the two alternatives as nested hypotheses and prove that an adaptive 223

de-biased deviance test used for identifying significant Granger-causal influences [35] is 224

applicable to our setting, thus establishing a precise statistical inference framework. 225

Here, we focused on characterizing the significance of rth-order simultaneous spiking 226

and have formulated the hypothesis test accordingly; however, similarly constructed null 227

hypotheses can be used to test the significance of any set of simultaneous spiking events 228

using the same inference procedure (see supporting information in S1 Appendix). For 229

cogency, we focus on the statistical inference procedure for history-dependent MkPP 230

models; differences for the history-independent model are addressed in supporting 231

information (S1 Appendix). However, the complementary nature of the two models is 232

summarized here. Theoretical results pertaining to the precise inference framework are 233

summarized here, and comprehensively described in supporting information (S1 234

Appendix). 235

Formulating nested hypotheses to test for rth-order coordination 236

The significance of r-wise simultaneous spiking for r ≥ 2 is tested by considering the 237

two alternatives: 238

H0 : rth-order simultaneous spikes occur as frequently as they would between
independent units, given ensemble spiking history

H1 : rth-order simultaneous spikes occur at a significantly different rate than
they would between independent units, given ensemble spiking history

(6)
A similar formulation was used in [39] to determine whether one mark occurs at a 239

significantly different rate than expected. The likelihood of the mark was modeled as 240

the product of marginal likelihoods and an additional multiplicative factor. Noting that 241

the additional factor takes value 1 if the neurons are truly independent, the null 242

hypothesis was quantified accordingly. Instead, we estimate a reduced model that 243

assumes rth-order interactions are chance occurrences by constraining the base rate 244

parameters for each rth-order mark. 245

The base rate parameter is decomposed as 246

µ
(m)
k = µ

(m)
0,k + γ

(m)
k , (7)

where µ
(m)
0,k is the base rate under the null hypothesis and γ

(m)
k is analogous to the 247

additional multiplicative factor in [39] that captures potential exogenous effects after 248

conditioning on ensemble spiking history. The reduced model thus constrains 249

µ
(m)
0,k = µ̂

(m)
k − γ̂(m)

k for all rth-order marks, denoted Kr, and solves the sequence of 250

maximum likelihood problems ω̂(R)
k := arg max

ω
(R)
k

`βk(ω
(R)
k ). 251

The estimated exogenous factor at the kth window, γ̂
(m)
k , is obtained as the average 252

difference of the log-odds of the mth event under the null hypothesis, u
(m)
0,t , and under 253
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the alternative, u
(m)
t . That is, 254

γ̂
(m)
k =

1

W

kW∑
t=(k−1)W+1

(
u
(m)
t − u(m)

0,t

)
. (8)

Precise statistical inference using deviance differences 255

The use of the deviance difference test statistic has been established in classical 256

statistical methodology [54,55] as a common procedure for likelihood ratio tests between 257

two nested hypotheses. However, such a test is ill-suited to our setting due to the 258

highly-dependent covariates and forgetting-factor mechanism in the data log-likelihood. 259

These issues were addressed in a related context [35] for the inference of Granger-causal 260

links by defining the adaptive de-biased deviance difference and characterizing its 261

limiting distribution under presence and absence of Granger-causal links. We similarly 262

utilize the adaptive de-biased deviance difference, 263

D
(r)
k,β

(
ω̂

(F )
k , ω̂

(R)
k

)
:=

(
1 + β

1− β

)[
2
(
`βk(ω̂

(F )
k )− `βk(ω̂

(R)
k )

)
−
(
B

(F )
k −B

(R)
k

)]
, (9)

as the test statistic, where B
(F )
k and B

(R)
k are the respective biases of the full and 264

reduced models. The full and reduced model log-likelihoods can be efficiently computed 265

online (see supporting information in S1 Appendix). 266

We precisely characterize the limiting behavior of the deviance difference in Eq. (9) 267

under both the null and alternative hypotheses, showing that as β → 1: 268

i) if rth-order coordination matches independent rth-order interactions given ensemble 269

spiking history, then D
(r)
k,β

(
ω̂

(F )
k , ω̂

(R)
k

) d−→ χ2(M (r)), i.e. chi-square, and 270

ii) if rth-order coordination diverges from independent rth-order interactions given 271

ensemble spiking history, and assuming the base rate parameters of rth-order 272

interactions scale at least as O
(√

1−β
1+β

)
, then D

(r)
k,β

(
ω̂

(F )
k , ω̂

(R)
k

) d−→ χ2(M (r), ν
(r)
k ), 273

i.e. non-central chi-square, 274

where ν
(r)
k is the non-centrality parameter at time k that depends only on the true 275

parameters, and M (r) = |Kr| is the difference in the cardinalities of the full and reduced 276

support sets. Our theoretical results are comprehensively discussed in supporting 277

information (S1 Appendix). 278

In order to fully characterize the limiting distribution of D
(r)
k,β under H1, we must 279

estimate the non-centrality parameter for each window. Assuming it evolves smoothly 280

in time, we use a state-space smoothing algorithm [35] to estimate ν
(r)
k from the 281

observed D
(r)
k,β values. Thus, in addition to identifying significant coordination, we also 282

quantify the degree of significance using Youden’s J-statistic 283

J
(r)
k := 1− α− F

χ2(M(d),ν̂
(r)
k )

(
F−1
χ2(M(d))

(1− α)
)

(10)

for significance level α, where F (·) denotes the CDF. Values of J
(r)
k close to 1 imply 284

that the rejection of the null is a stronger indication of coordination than for smaller 285

values of J
(r)
k . Thus, the J-statistic characterizes the test in terms of both type I and 286

type II errors. By convention, we take J
(r)
k = 0 when H0 is not rejected at the kth 287

window. Under the alternative, it is possible to observe either significant excess or 288

suppressed coordination; this can be reflected in the J-statistic by incorporating the net 289

exogenous effect on rth-order coordination and using a signed J-statistic 290
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Algorithm 1 Dynamic inference of rth-order spiking coordination

Input: {n∗k}Kk=1, r, β, α

Output: {J (r)
k }Kk=1, {ν̂(r)k }Kk=1, {D(r)

k,β}Kk=1

1: Kr = {m ∈ K :
∑C
c=1mc = r} and M (r) = |Kr|

2: for k = 1 to K do
3: hk = 0
4: Estimate ω̂

(F )
k using AdOMP; evaluate `βk(ω̂

(F )
k ) and B

(F )
k

5: for m ∈ Kr do
6: Evaluate {u(m)

t }kWt=(k−1)W+1 and {u(m)
0,t }kWt=(k−1)W+1

7: Set γ̂
(m)
k = 1

W

∑kW
t=(k−1)W+1

(
u
(m)
t − u(m)

0,t

)
and µ

(m)
0,k = µ̂

(m)
k − γ̂(m)

k

8: end for
9: Estimate ω̂

(R)
k using AdOMP with constraint µ

(m)
k = µ

(m)
0,k for m ∈ Kr

10: Evaluate `βk(ω̂
(R)
k ), B

(R)
k , and D

(r)
k,β(ω̂

(F )
k , ω̂

(R)
k )

11: if F−1
χ2(M(r))

(1− α) < D
(r)
k,β(ω̂

(F )
k , ω̂

(R)
k ) then

12: hk = sgn
(∑

m∈Kr
γ̂
(m)
k

)
13: end if
14: end for
15: Estimate {ν̂(r)k }Kk=1 via non-central χ2 filtering/smoothing

16: J
(r)
k = hk × (1− α− Fχ2(M(r),ν̂k)(F

−1
χ2(M(r))

(1− α)))

17: return {J (r)
k }Kk=1, {ν̂(r)k }Kk=1, {D(r)

k,β}Kk=1

J
(r)
k · sgn

(∑
m∈Kr

γ̂
(m)
k

)
. The full procedure for identifying significant rth-order 291

coordinated spiking is summarized by Algorithm 1. 292

In establishing the limiting behavior of D
(r)
k,β , we also proved a result of independent 293

interest; namely, we generalized asymptotic properties of de-sparsified `1-regularized 294

estimates [56] to de-sparsified greedy estimates by showing that the de-sparsified 295

AdOMP estimate behaves asymptotically like the maximum likelihood estimate. 296

Crucially, this allows for the construction of confidence intervals around greedily 297

estimated parameters, thus enabling precise statistical inference. 298

Complementary characterizations of higher-order coordination by 299

history-independent and history-dependent models 300

The history-independent model is a special case of the history-dependent model; hence, 301

the statistical inference procedure summarized by Algorithm 1 can be appropriately 302

modified. This specialization is expounded in supporting information (S1 Appendix). 303

However, the interpretation of statistically significant results obtained using 304

history-independent analysis is distinct from but complementary to the interpretation of 305

statistically significant results obtained using history-dependent model. Let the base 306

rate parameter and exogenous effect for the history-independent model be denoted by 307

µk and γk, respectively; and the same for the history-dependent model by µk,H and 308

γk,H, with history-modulation parameter θk. Then, the reduced model constraints 309

imply γk = γk,H + x̄>t θk. If the observed rate of higher-order events is equal to that of 310

independent neurons, γk = 0; however, higher-order interactions may still be 311

coordinated, i.e. γk,H = −x̄>t θk 6= 0. Conversely, the observed rate of higher-order 312

events may differ from that of independent neurons, i.e., γk 6= 0. If γk,H = 0, observed 313

coordination can be attributed to the effects of ensemble history; otherwise, observed 314

coordination was driven by an unobserved process. Thus, history-independent analysis 315
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reveals if the observed rate of simultaneous spiking events deviates from the expected 316

rate in a group in independent neurons, while history-dependent analysis reveals if the 317

observed rate of simultaneous events cannot be attributed to endogenous network 318

effects. 319

Results 320

The proposed methods for analyzing higher-order spiking coordination were validated 321

through simulations. First, we empirically verified our theoretical results, characterizing 322

the limiting behavior of the adaptive debiased deviance difference on simulated spiking. 323

Next, we demonstrated the utility of the analyses on simulated ensemble spiking data, 324

showing that the ground-truth latent dynamics in higher-order coordinated spiking can 325

be recovered with statistical confidence and with greater accuracy than existing 326

single-trial metrics. Then, the proposed methods were applied to continuous 327

multi-electrode recordings of human cortical assemblies during anesthesia and to rat 328

cortical assemblies during sleep in order to infer latent dynamics in coordinated spiking 329

during transitions between brain states. 330

Crucial hyperparameters that affect the estimation of MkPP models are the choice 331

of bin size ∆ (in physiological data); the window size W over which parameters are 332

assumed constant and the forgetting factor β, which define the effective integration 333

window Neff = O( W
1−β ) [57]; and the ensemble history integration window, i.e. the 334

number of past samples spanned by the history coefficients θk. Justifications for 335

hyperparameter selection are summarized in the following, while a detailed examination 336

of their effects on MkPP model estimation is provided in supporting information (S2 337

Appendix). 338

Empirical Validation of the Limiting Behavior of Deviance 339

Differences 340

We first validated the proposed statistical test for rth-order coordinated spiking by 341

empirically verifying the limiting distributions of the adaptive debiased deviance 342

difference derived under the null and alternative hypotheses. We simulated and 343

analyzed 50 realizations of a 5-neuron ensemble spiking process. Each realization was 344

4000 samples long with dynamics in 3rd-order spiking coordination. Namely, a step 345

function was used to exogenously facilitate 3rd-order spiking during the second half of 346

each realization. 347

The simulated spiking data were analyzed by applying Algorithm 1 to each 348

realization; restricted models were only computed for 3rd-order spiking coordination. A 349

threshold of Nthr = 1 was used to pruned marked events that occurred no more than 350

once per realization; this excluded 5th order events from the estimated model. The 351

window size over which parameters were assumed constant was set to W = 10 in order 352

to enable stable estimation at each window while still allowing for fast changes. The 353

forgetting factor was set to β = 0.99. For the purpose of validating the limiting 354

distributions, a forgetting factor close to 1 was desirable; however, β = 0.99 is also a 355

practical choice for the forgetting factor that serves to illustrate the utility of the 356

limiting distributions when analyzing physiological data. Indeed, the hyperparameter 357

choices (W,β) = (10, 0.99) were used in the applications to physiological data presented 358

later. Hyperparameter choices for analysis are discussed in the context of two additional 359

simulations. 360

The limiting distribution under the null hypothesis was validated by compiling 361

adaptive de-biased deviance differences that were computed during the first half of each 362

realization and corresponded to small estimated non-centrality parameter values. Their 363
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distribution, depicted by the blue histogram in Fig 2, closely matched the theoretical 364

distribution of deviance differences under the null hypothesis, i.e. a χ2 distribution with 365

M = 10 degrees of freedom. 366
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Theoretical vs. Empirical Deviance Difference Distribution

Fig 2. Theoretical versus empirical distributions of the adaptive de-biased deviance difference
under the null (blue) and alternative (red) hypotheses. Empirical distributions of adaptive
de-biased deviance differences were compiled from history-dependent analyses of 50 realizations
of a discretized marked point process simulating the ensemble spiking of 5 neurons with
exogenously induced 3rd-order spiking dynamics. The distributions were compared to the
probability distribution functions (PDF) of a χ2 distribution with M = 10 degrees of freedom
(left), and a non-central χ2 distribution with M = 10 degrees of freedom and non-centrality
parameter ν = 327 (right), corresponding respectively to the limiting distribution under the
null and alternative hypotheses.

The limiting distribution under the alternative hypothesis was validated by 367

compiling adaptive de-biased deviance differences that were computed during the 368

second half of one particular realization and hence corresponded to similar estimated 369

non-centrality parameter values. Their distribution, depicted by the red histogram in 370

Fig 2, closely matched the theoretical distribution of deviance differences under the 371

alternative hypothesis, a non-central χ2 distribution with M = 10 degrees of freedom 372

and non-centrality parameter ν = 327. The non-centrality parameter of the theoretical 373

distribution was determined by computing the median of the aforementioned estimates. 374

Simulated Ensemble Spiking: Example 1 375

We next demonstrated the utility of the proposed methods in application to two sets of 376

simulated ensemble spiking data with dynamic latent higher-order coordination. An 377

additional simulation addressing the utility of the proposed methods in analyzing large 378

neuronal assemblies is included in supporting information (S2 Appendix). In the first 379

example, spiking activity of 5 neurons was simulated for 16000 samples. Spiking activity 380

(Fig 3A) included 3rd-order events exogenously facilitated and suppressed in alternation 381

by a square wave and 4th-order events induced through endogenous effects of ensemble 382

spiking history throughout the simulated duration. The latent spiking coordination was 383

evident when visualizing the sums of all rth-order events in Fig 3B. Four epochs of the 384

simulation were defined by the periods of 3rd-order facilitation and suppression, shown 385

in Fig 3C, and are indicated by vertical dashed lines common across all panels. 386

History-independent and history-dependent analyses of higher-order coordination 387

were applied to the simulated spiking data using the same set of hyperparameters. A 388

conservative threshold of Nthr = 1 was chosen to prune marked events that occurred 389

unreliably over the simulated duration. The window size over which parameters were 390

assumed constant was set to W = 10 in order to enable stable estimation at each 391

window while still allowing for fast changes. Fixing W , several candidate values for the 392

forgetting factor were considered to obtain the most appropriate effective integration 393

window, Neff = O( W
1−β ) [57], and was set to β = 0.975. For simulations the best choice 394

of β corresponded to Neff ≈ τ
10 , where τ denotes the duration of the shortest latent 395
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Fig 3. Analysis of ensemble spiking with 3rd-order coordination induced exogenously by a
square wave. A. Simulated ensemble spiking of five neurons. B. Sum of the rth-order
simultaneous spiking events for r = 2, 3, 4, 5. C. Spiking coordination varies across 4 epochs
defined by the exogenous process that alternatingly facilitated and suppressed 3rd-order events.
These are demarcated by vertical dashed lines. D. Significant rth-order coordination neglecting
ensemble history. E. Significant rth-order coordination based on history-dependent ensemble
spiking model. Statistical testing in D–E performed at level α = 0.01. F. Average Pearson
correlation with 95% confidence interval. G. Average spiking regularity: coefficient of variation
±2 SEM. H. Average mark CIF differences of 3rd-order (green) spiking interactions ±2 SEM.

state; this heuristic is validated in supporting information (S2 Appendix). For the 396

present simulation, τ = 4000, the half-period of the square wave that defined alternating 397

states of 3rd-order facilitation and suppression; hence, Neff = 400. Statistical tests were 398

performed at level α = 0.01. 399

History-independent inference of higher-order synchrony (Fig 3D) accurately 400

characterized the periods of facilitated 3rd-order coordinated spiking and correctly 401

assessed the rates of 4th-order spiking events to be significantly higher than expected 402

amongst independent neurons, indicated by J-statistic values close to +1. However, 403

3rd-order suppression was not detected as a statistically significant, likely reflecting that 404
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the expected rate of 3rd-order was low to begin with and therefore difficult to 405

distinguish. In complement, history-dependent inference of higher-order coordination 406

(Fig 3E) correctly attributed 4th-order spiking, which occurred at a statistically 407

significantly high rate, to endogenous network effects captured by ensemble spiking 408

history regressors while detecting that 3rd-order spiking was exogenously facilitated. 409

For comparison, three single-trial measures of coordinated spiking were utilized. The 410

first is the average Pearson correlation between smoothed spiking responses. The second 411

is the spiking regularity, quantified by the average coefficient of variation (ratio of the 412

standard deviation to the mean inter-spike interval) [58]. A ratio close to 1 indicates 413

Poisson spiking statistics; larger ratios indicate greater variability due to self-exciting 414

dynamics while smaller ratios indicate regularity in spiking (i.e. globally coordinated 415

spiking). Both measures were computed over non-overlapping windows of 200 samples 416

to track dynamics, which while not identical are of a similar order of magnitude as Neff. 417

The third measure is the average difference between rth-order mark CIFs and 418

probabilities of rth-order independent interactions, generalizing the measure employed 419

in [38] to higher-order simultaneous spiking. Other existing model-based analyses 420

require multiple trial repetitions and were thus unsuited to the single-trial simulation 421

setting. 422

In application to simulated ensemble spiking data, the three control measures were 423

unable to capture the latent dynamics in spiking coordination. Significant pairwise 424

correlations (Fig 3F) were detected throughout the simulated duration, indicating only 425

that several pairs of neurons were spiking concurrently, but were insensitive to the 426

changes between facilitative and suppressive states of the exogenous process. Similarly, 427

the spiking variability measure (Fig 3G) indicated Poisson-like spiking statistics 428

throughout the simulation without reflecting any latent dynamics. The average mark 429

CIF differences of 3rd-order events (Fig 3H) weakly reflected the dynamics of the 430

exogenous process, but closer inspection (Fig 3H inset) reveals the oscillatory nature 431

and wide confidence intervals of this sample-by-sample measure which pose challenges in 432

interpreting the analysis. 433

Simulated Ensemble Spiking: Example 2 434

The second simulated example utilized an autoregressive process instead of a square 435

wave to induce exogenous 3rd-order coordinated spiking in a 5-neuron assembly. 436

Ensemble spiking was simulated for 12000 samples (Fig 4A) with 3rd-order events 437

exogenously induced by one realization of an autoregressive process. Additionally, 438

4th-order events were induced through endogenous effects for the first and last 439

4000-samples periods of the simulated duration, but occurred with chance-level 440

probability otherwise. The sums of all rth-order events (Fig 4B) reflected the latent 441

spiking coordination. Coordinated 3rd-order spiking was most evidently facilitated 442

during an interval when the exogenous variable had value greater than 2 (Fig 4C); the 443

interval is indicated by vertical dashed lines common across all panels. 444

Both history-independent and history-dependent analyses were applied to the second 445

simulated spiking data set using the same hyperparameters. The mark space was again 446

pruned to include only events that occurred more than Nthr = 1 times; parameters were 447

assumed constant over windows of W = 10 samples; and statistical tests were performed 448

at level α = 0.01. The forgetting factor was set to β = 0.95, which corresponded to an 449

effective integration window Neff = 200. We noted that the exogenous autoregressive 450

process most persistently facilitated 3rd-order coordinated spiking for a duration of 451

∼ 4000 samples; and within that duration, two subintervals of ∼ 2000 samples separated 452

at time index ∼ 8000 can be discerned upon visual inspection (Fig 4C). Hence, taking 453

τ = 2000, the choice of β = 0.95 satisfies the criterion that Neff ≈ τ
10 . 454

The history-independent analysis of higher-order coordination correctly detected 455
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Fig 4. Analysis of ensemble spiking with 3rd-order coordination induced exogenously by an
autoregressive process. A. Simulated ensemble spiking of five neurons. B. Sum of the rth-order
simultaneous spiking events for r = 2, 3, 4, 5. C. An autoregressive process was used to
exogenously induce 3rd-order spiking coordination. The effect was most evident when the
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Average spiking regularity: coefficient of variation ±2 SEM. H. Average mark CIF differences
of 3rd- (green) and 4th-order (teal) spiking interactions ±2 SEM.

statistically significant 3rd-order coordination during the interval in which the exogenous 456

variable was greater than 2 and 4th-order coordination when they were induced by 457
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ensemble spiking history (Fig 4D). The history-dependent analysis also correctly 458

identified the exogenous facilitation of 3rd-order events while attributing 4th-order 459

coordination to endogenous effects (Fig 4E). For comparison, the average Pearson 460

correlation, average spiking regularity, and average mark CIF differences were computed 461

in identical fashion as for the first simulation. The average Pearson correlation exhibited 462

indicated significant pairwise correlations concurrently with both exogenously induced 463

3rd-order events and endogenously induced 4th-order events (Fig 4F); however, these two 464

facets of latent higher-order coordination could not be disambiguated. In contrast, the 465

average spiking regularity did not exhibit any dynamics; Poisson-like spiking statistics 466

were indicated throughout the simulated duration (Fig 4G). The average mark CIF 467

differences for 3rd- and 4th-order marks both weakly indicated the latent higher-order 468

coordination (Fig 4H). In addition to previously issues concerning large confidence 469

intervals and oscillatory nature, deviant average mark CIF differences for 3rd- and 470

4th-order events appear identical despite being induced in different manners. This 471

illustrates that the average mark CIF differences only indicate when rates of rth-order 472

events deviate from the expected rate and cannot further address latent structure. 473

Ensemble Spiking in Anesthetized Humans 474

In the first application to recorded spiking data, we analyzed microelectrode recordings 475

of human cortical neurons during the transition into propofol-induced general 476

anesthesia. Commonly used in surgical procedures, general anesthesia is a drug-induced 477

neurophysiological state of sedation and unconsciousness. In a study of the transition 478

into unconsciousness, simultaneous recordings of single-neurons, LFP, and 479

electrocorticograms were acquired to analyze changes to neural activity and functional 480

connectivity over multiple spatial scales (full details of the experimental procedure are 481

described in [59]). To complement previous analysis of pairwise spiking correlations, we 482

employed the proposed methods for characterizing higher-order coordinated spiking. 483

Spiking data from the microelectrode recordings of one subject were analyzed, 484

focusing specifically on the 8 neurons with the highest average firing rate over the 1000 485

second recording. Multi-unit spike recordings were originally oversampled at 1kHz, but 486

downsampled by a factor of 50 to reduce computational complexity. Hence, the 487

definition of simultaneous spiking in this analysis was taken to be the occurrence of 488

spiking events across multiple neurons within at most 50ms of each other. This bin size 489

selection was verified to minimize the coassignment of multiple spikes to the same bin in 490

each of the 8 neurons’ spike trains. Ensemble spiking activity is shown in Fig 5A, 491

aligned to the loss of consciousness (LOC) at 0s when propofol was first administered; 492

the effect was evident from the rapid decrease in spiking. Spiking activity recovered and 493

after 250s propofol was administered again. In order to analyze higher-order 494

coordination with the proposed methods, the mark space of C∗ = 28 − 1 possible 495

simultaneous spiking events, K, was pruned to the set of reliable interactions K̄ that 496

occurred more than Nthr = 15 times; that is, simultaneous spiking events with average 497

rates less than 0.015Hz were treated as negligible. The cardinality of the set of reliable 498

interactions, defined with a conservative threshold, was |K̄| ≈ 0.16 · C∗. The sums of all 499

rth-order events (Fig 5B) show that up to 4th-order coordinated spiking occurred 500

reliably, though less frequently after LOC. 501

History-independent and history-dependent analyses were performed using the same 502

hyperparameters. The window over which parameters were assumed constant was set to 503

W = 10. The forgetting factor, β = 0.99, was selected so that Neff ≈ τ
5 ; here, we used 504

τ = 5000, the approximate number of samples between the two administrations of 505

propofol. For applications to recorded data, choosing β such that Neff ≈ τ
10 (as was 506

done for simulated data) yielded inferred higher-order coordination that was statistically 507

weak (as quantified by J-statistics) and transient, resembling simulated examples where 508
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Neff was mismatched to the duration of latent states (supporting information in S1 509

Appendix). We speculate that a shorter effective integration was appropriate in 510

simulations because the assemblies were comprised of 5 neurons with similar firing rates, 511

which facilitated tracking latent dynamics. This contrasts with the variability in firing 512

rates that can be observed in Fig 5A. Finally, statistical inference was performed at 513

level α = 0.01. 514

Applying history-independent higher-order coordination analysis revealed sustained 515

significantly high rates of 2nd-, 3rd-, and 4th-order events prior to LOC (Fig 5C). 516

Moreover, conditioning on ensemble spiking history indicated that 3rd- and 4th-order 517

events were exogenously facilitated, while 2nd-order events were exogenously suppressed 518

(Fig 5D). This latent structure was disrupted immediately following LOC; as spiking 519

activity diminished, no higher-order coordination was detected. However, as spiking 520

activity recovered, 3rd- and 4th-order events (but not 2nd-order events) occurred at 521

significantly high rates. As the second administration of propofol again diminished 522

spiking activity, the rate of 4th-order events became insignificantly different from the 523

expect rate amongst independent neurons and did not recover. However, transient 524

3rd-order spiking after the second administration continued that the history-independent 525

analysis detected as statistically significant. Third-order spiking was sustained at a 526

significantly high rate once ensemble spiking activity recovered. Notably, none of the 527

higher-order coordinated spiking after LOC was exogenously induced. 528
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The dynamics in higher-order spiking coordination described by the proposed 529

methods were poorly reflected by the average Pearson correlation and average spiking 530

regularity. Both measures were computed over windows of 200 samples in order to track 531

changes during the transition into anesthesia. Average correlations seemed to be 532

significantly greater than zero for longer intervals after LOC than during consciousness, 533

but trends in the average correlation were difficult to distinguish (Fig 5E). The average 534

spiking regularity measure indicated Poisson-like spiking statistics throughout, 535

contrasting the dynamics of higher-order coordination described by the proposed 536

analyses. Average spiking regularity was ill-suited to analyzing dynamics after LOC due 537

to the reduced spiking activity; this was reflected by abrupt changes and wide 538

confidence intervals (Fig 5E). 539

In summary, history-independent and history-dependent analyses of ensemble 540

spiking during the transition into anesthesia revealed the rapid onset of differences in 541

latent higher-order coordination that distinguished consciousness from anesthesia. 542

Specifically, comparisons between the history-independent and history-dependent results 543

suggest that exogenous influences on the higher-order interactions of small neuronal 544

assemblies during consciousness are disrupted during anesthesia. These results are 545

corroborated by previous analyses of these data [59] that indicated a rapid state change 546

in which local network interactions were preserve but spatially distant network 547

interactions were disrupted during anesthesia. Previous studies have shown that 548

propofol acts by enhancing GABAergic circuits whose recurrent dynamics contribute to 549

inducing synchronized slow-wave oscillatory activity [59–63]. Ensemble spiking history 550

regressors likely accounted for these recurrent dynamics in the history-dependent model 551

so that no exogenous effects were detected. 552

Ensemble Spiking in Sleeping Rats 553

We additionally analyzed ensemble spiking data recorded from rat cortical neurons 554

during sleep. Sleep consists of cyclical transitions between brain states that maintain 555

homeostatic neural activity distinct from waking states; however, both the purpose and 556

mechanisms of these transitions remain unclear. We analyzed large-scale spike 557

recordings from frontal and motor cortices during sleep obtained to study the effects of 558

different sleep stages on the firing rate dynamics of putatively excitatory (pE) 559

pyramidal neurons and putatively inhibitory (pI) interneurons [64,65]. By examining 560

neuronal activity recorded during several instances of rapid eye movement (REM), 561

non-REM (nREM), and microarousal states over multiple sleep cycles, the study sought 562

to address homeostatic effects of sleep. Instead, we sought to use the proposed analyses 563

of higher-order spiking coordination to study the dynamics during transitions into sleep 564

and between REM and nREM states in one sleep cycle. 565

We analyzed spiking data during one 182s long sleep cycle from one animal in which 566

at least 10 pE and pI neurons were identified, selecting the 10 neurons of each class with 567

the highest average firing rate. Recordings were originally oversampled at 20kHz, but 568

downsampled to 200Hz to reduce computational complexity. Simultaneous spiking in 569

this analysis hence equated to the occurrence of spiking events across multiple neurons 570

within at most 5ms of each other. This bin size selection was verified to minimize the 571

coassignment of multiple spikes to the same bin in each of the 10 neurons’ spike trains 572

in both populations. Ensemble spiking activity of pE and pI neurons were analyzed 573

separately; the activity of each population during the sleep cycle is shown in Fig 6A 574

and 6G, respectively, annotated by arousal states. The cycle analyzed consisted of a 66s 575

wake-period, a transient 1s nREM period, a 46s REM period, a 29s nREM period, and 576

finally a 40s wake-period. 577

For tractable analysis, the mark spaces of C∗ = 210 − 1 possible simultaneous 578

spiking events, K, of both populations were pruned to the set of reliable interactions K̄ 579
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Fig 6. Higher-order spiking coordination analysis of excitatory (pE) and inhibitory (pI) rat cortical neurons during one sleep
cycle. Left and right columns show analyses of pE and pI neurons, respectively. A. Ensemble spiking of 10 pE neurons. B. Sum
of the rth-order simultaneous spiking events for r = 2, 3. C. Significant rth-order coordination neglecting ensemble history. D.
Significant rth-order coordination based on history-dependent ensemble spiking model. E. Average Pearson correlation with 95%
confidence interval. F. Average spiking regularity: coefficient of variation ±2 SEM. G. Ensemble spiking of 10 pI neurons. H.
Sum of the rth-order simultaneous spiking events for r = 2, 3. I. Significant rth-order coordination neglecting ensemble history. J.
Significant rth-order coordination based on history-dependent ensemble spiking model. K. Average Pearson correlation with 95%
confidence interval. L. Average spiking regularity: coefficient of variation ±2 SEM. Statistical testing in C–D, I–J performed at
level α = 0.01.

that occurred more than Nthr = 10 times; that is, simultaneous spiking events with 580

average rates less than 0.055Hz were treated as negligible. The cardinality of the set of 581

reliable interactions amongst pE neurons was |K̄pE| ≈ 0.017 · C∗ and amongst pI 582

neurons was |K̄pI| ≈ 0.058 · C∗. The sums of all rth-order events (Fig 6B and 6H) show 583

that up to 3rd-order coordinated spiking occurred reliably amongst pI neurons while 584

only up to 2nd-order interactions occurred reliably amongst pE neurons. The same 585

effective integration windows were used for history-independent and history-dependent 586

analyses of both neuronal populations; with W = 10, the forgetting factor β = 0.99 so 587

that Neff = τ
5 , where τ ≈ 5000 was the duration of the second nREM interval. 588

Statistical inference was performed at level α = 0.01. 589

Applying the history-independent and history-dependent analyses of higher-order 590

coordination to the ensemble spiking of pE neurons in concert identified intervals of 591

significantly higher rates of 2nd-order events that could be attributed to effects of 592

ensemble spiking history (Fig 6C–D). Most of the detected intervals were not sustained 593

during either REM or nREM sleep; rather, they were aligned to the transitions between 594

states. However, pI neurons exhibited more structured higher-order coordination. 595

History-independent analysis of pI neurons revealed that 2nd-order events had 596

significantly higher rates during two intervals; the first was during the wake-period, and 597

the second started at the end of the first wake-period and ending at the transition from 598

REM to nREM sleep (Fig 6I). While during the first of these intervals the facilitation of 599

2nd-order events could largely be attributed to ensemble history effects, there was a shift 600

in the exogenous effects on 2nd-order during the second interval (Fig 6J). That is, after 601

the transition from the wake state to REM sleep, the exogenous suppression of 2nd-order 602
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events gradually shifted to exogenous facilitation by the middle of the REM period that 603

persisted into the nREM period. Exogenous 2nd-order coordination was no longer 604

detected strongly after the first half of the nREM period, but exogenous suppression 605

emerged again in the second wake-period. 606

In addition to dynamics in 2nd-order coordination, pI neurons also exhibited 607

significant 3rd-order coordination. The rate of 3rd-order events was significantly high 608

during the first wake period and REM sleep; though significantly higher at the start of 609

nREM sleep, only statistically weak and transiently high rates were detected during the 610

middle and end of nREM sleep. However, in the second wake period, the rate of 611

3rd-order coordinated events again became significantly high (Fig 6I). Notably, the high 612

rate of 3rd-order events during REM was distinctive because it was exogenously 613

facilitated, whereas 3rd-order events during other periods occurred at significantly high 614

rates because of endogenous effects (Fig 6J). 615

In contrast to the proposed analyses, neither the average Pearson correlation nor 616

average spiking regularity, computed over windows of 200 samples, reflected similar 617

latent dynamics of higher-order coordination amongst pE or pI neurons. For pE 618

neurons, pairwise correlations were close to 0 for much of the sleep cycle with the 619

exception of a few windows (Fig 6E). However, the spiking regularity was significantly 620

less than 1 for much of the sleep cycle (Fig 6F); the implication of globally coordinated 621

ensemble spiking is at odds with the absence of reliably occurring higher-order spiking 622

events amongst pE neurons. For pI neurons, the average correlation was significantly 623

higher than 0 during the first and second wake periods, mirroring the significantly high 624

rates of higher-order events during these intervals; however, excepting a few windows, 625

the average correlation did not significantly differ from 0 during REM sleep (Fig 6K), 626

presenting an inconsistency with the rates of higher-order events. Meanwhile, the 627

average spiking regularity did not differ significantly from 1 for most of the sleep cycle, 628

indicating Poisson-like spiking activity (Fig 6L); this contrasts sharply from the reliable 629

occurrence of higher-order events. 630

Summarily, applying the history-independent and history-dependent analyses of 631

higher-order spiking coordination revealed distinctive latent dynamics amongst pE and 632

pI neurons during the same sleep cycle. Intervals of significant 2nd-order spiking 633

coordination amongst pE neurons were attributable to the effects of ensemble spiking 634

history and occurred around the transitions between arousal states rather than being 635

sustained during the arousal states, possibly relating to a hypothesis that transition 636

periods are themselves distinct states [66]. In contrast, 2nd- and 3rd-order spiking events 637

amongst pI neurons were detected to be exogenously coordinated, especially during 638

sleep states. The observed changes in higher-order coordination of pI neurons during 639

REM sleep are consistent with previous results that have shown excitation of pI 640

neuronal activity and coordination during REM sleep [67,68]. Additionally, the detected 641

exogenous influences on pI neurons may be explained by studies that have indicated 642

signatures of REM sleep can be found in hippocampal neurons prior to cortical 643

neurons [69,70]. 644

Discussion and concluding remarks 645

Relations to other models of coordinated spiking activity 646

The proposed algorithms integrate some notable functionalities of existing maximum 647

entropy model variations with the GLM framework, and are tailored for the analysis of 648

continuously acquired neuronal data. As Truccolo’s comparisons in [24] suggest, GLMs 649

account for temporal dynamics explicitly in modeling ensemble spiking, and thus are 650

arguably more predictive than maximum entropy models. Within the context of the 651
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MkPP mGLM we utilized, temporal dynamics of neuronal spiking were modeled as 652

relevant covariates in the estimation of ensemble spiking events. Such a model can be 653

simplified to exclude spiking history, as demonstrated by the history-independent model; 654

and can be expanded to model the influence of stimuli, as previously addressed for 655

maximum entropy models [30]. 656

Due to the large number of possible interactions, challenges in the tractability of 657

synchrony analyses are inherent, particularly when modeling the effects of relevant 658

covariates. Incorporating the emphasis on reliable interactions, as proposed in [31], 659

model complexity may be managed in a data-driven fashion. The proposed adaptive 660

greedy filtering algorithm for sparse model estimation ensures only the salient effects of 661

covariates are captured. The adaptive filtering algorithm also characterizes dynamics in 662

network correlational structure, analogous to Bayesian state space filtering 663

algorithms [28,29], and is thus applicable in the analysis of non-stationary neuronal 664

processes. In lieu of constructing credible intervals around the aforementioned Bayesian 665

estimates, we utilize a statistical test for which the test statistic’s limiting distribution is 666

precisely characterized. Unlike existing analyses, the proposed statistical tests do not 667

require repeated trials of data to detect coordinated spiking activity, and are thus 668

suitable for the analysis of continuous recordings of ensemble neuronal spiking. 669

Extending previous results in high-dimensional statistics, we have shown in Theorem 670

1 that the elegant procedure of [56] for LASSO estimation may be adapted to 671

de-sparsify OMP estimates, and that de-sparsified estimates are asymptotically normal. 672

In reviewing the existing literature, we noted a paucity in work on variable selection 673

algorithms concerning the construction of confidence intervals. The OMP has been 674

shown to have similar consistency properties as LASSO regression under appropriate 675

conditions [49, 50]; however, in settings with large quantities of data, the latter becomes 676

intractable. The result established by Theorem 1 enables the construction of confidence 677

intervals around OMP-estimated parameters in order to provide analogous methods of 678

statistical inference as LASSO for an algorithm suitable in settings with large data sets, 679

addressing this gap in the high-dimensional statistics literature. 680

Novel insights into coordinated network activity 681

The proposed modeling and statistical inference framework constitute a novel approach 682

to studying coordinated neuronal spiking by enabling the adaptive analysis of 683

continuously acquired or single-trial data. The ability to track dynamics and detect 684

exogenous influences on ensemble spiking with statistical confidence provides a new 685

approach to probing the neural mechanisms underlying transitions between and 686

characteristics of arousal states. 687

Simulated data examples verified the recovery of underlying correlational structure in 688

ensemble spiking. In particular, the simulation results emphasized the distinction that 689

the proposed method makes between synchrony and coordination based on comparisons 690

of the history-independent and history-dependent version of the analysis, respectively. 691

In applications to physiological data, we first analyzed ensemble spiking of human 692

cortical neurons during the transition into anesthesia. Directly comparing our results to 693

previous insights gained from the same data in [59], the proposed method was consistent 694

in indicating the rapid onset of disrupted global connectivity but the preservation of 695

local connectivity during anesthesia. Absent a ground truth, this comparison 696

substantiated insights gained from applying the proposed methods to physiological data. 697

Next, we analyzed the ensemble spiking activity of rat cortical neurons during one 698

sleep cycle. State transitions during sleep have typically been characterized in terms of 699

multiband analysis of electrophysiological recordings [66,67,69,70]; meanwhile, to the 700

best of our knowledge, properties of neuronal spiking in different sleep states have been 701

characterized non-parametrically (e.g. with correlations, mean activity, Fano Factor, 702
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etc.) [64, 67,68]. Hence, spiking dynamics over a single sleep cycle appear not to be 703

well-explored. The novel insights into spiking coordination during fast state transitions 704

over the course of a single sleep cycle provided by the proposed methods serve to 705

motivate future studies of the correlates of state transitions at a fine spatiotemporal 706

resolution. 707

Extensions 708

The proposed statistical inference framework was developed to test for significant 709

coordination of rth-order spiking events, and the presented results demonstrated its 710

efficacy. Specifically, Theorem 2 characterized the limiting distributions for the adaptive 711

de-biased deviance difference test statistic under both outcomes of a nested hypothesis 712

test in which the null hypothesis restricted parameters to impose conditionally 713

independent rth-order spiking. However, a nested null hypothesis can, in principle, be 714

constructed to impose different assumptions. An immediate extension of the proposed 715

analysis could include spatial information, for example, so that a null hypothesis 716

assumes rth-order spiking amongst a spatially localized subset of a recorded neuronal 717

assembly is conditionally independent. The proposed inference framework was hence 718

established to readily extend to any nested hypothesis test in Corollary 2.2. 719

An important consequence of this corollary result is that it provides a theoretical 720

foundation for adaptive Granger causality using greedy algorithms. Since the proposed 721

methods utilize a multinomial extension of generalized linear models, Corollary 2.2 722

establishes the asymptotic result in [35] for greedy parameter estimates in the limiting 723

case of a single-neuron model. Notably though, Corollary 2.2 also implies that a nested 724

hypothesis test can be formulated to determine if exogenous signals, such as sensory 725

stimuli or concurrent activity in other brain regions, have Granger-causal effects on a 726

neuronal network or its subsets. Thus, the methods proposed in the present study can 727

be extended to investigate the local network effects of global neural dynamics. 728
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Supporting information

S1 Appendix. Algorithms, Derivations, and Theoretical Results. In this
appendix, we present supporting information regarding algorithm development and our
theoretical results supporting the proposed statistical inference framework.

S2 Appendix. Supporting Simulations. In this appendix, we present supporting
simulations that first address hyperparameter selection and then the scalability of the
proposed method to large neuronal assemblies.
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