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Abstract

Central in the study of population codes, coordinated ensemble spiking activity is
widely observable in neural recordings with hypothesized roles in robust stimulus
representation, interareal communication, and learning and memory formation.
Model-free measures of synchrony characterize coherent pairwise activity but not
higher-order interactions, a limitation transcended by statistical models of ensemble
spiking activity. However, existing model-based analyses often impose assumptions
about the relevance of higher-order interactions and require repeated trials to
characterize dynamics in the correlational structure of ensemble activity. To address
these shortcomings, we propose an adaptive greedy filtering algorithm based on a
discretized mark point-process model of ensemble spiking and a corresponding
statistical inference framework to identify significant higher-order coordination. In the
course of developing a precise statistical test, we show that confidence intervals can be
constructed for greedily estimated parameters. We demonstrate the utility of our
proposed methods on simulated neuronal assemblies. Applied to multi-electrode
recordings from human and rat cortical assemblies, our proposed methods provide new
insights into the dynamics underlying localized population activity during transitions
between brain states.

Author summary

Simultaneous ensemble spiking is hypothesized to have important roles in neural
encoding; however, neurons can also spike simultaneously by chance. In order to
characterize the potentially time-varying higher-order correlational structure of
ensemble spiking, we propose an adaptive greedy filtering algorithm that estimates the
rate of all reliably-occurring simultaneous ensemble spiking events. Moreover, we
propose an accompanying statistical inference framework to distinguish the chance
occurrence of simultaneous spiking events from coordinated higher-order spiking. We
demonstrate the proposed methods accurately differentiate coordinated simultaneous
spiking from chance occurrences in simulated data. In application to human and rat
cortical data, the proposed methods reveal time-varying dynamics in higher-order
coordination that coincide with changing brain states.
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Introduction

Synchronous neuronal ensemble activity is central in the study of neural population
codes. Coordinated ensemble spiking has been observed in a variety of brain areas,
prompting a variety of hypotheses about its role in cognitive function. For instance,
studies have documented synchronous spiking at all levels of the mammalian visual
pathway [1-3]. Synchronized thalamic population activity has also been widely observed,
a phenomenon to which visual cortical neurons have been found sensitive, suggesting the
importance of synchronized neuronal activity in thalamocortical communication [4,5].
Synchronized spiking has, more broadly, been hypothesized to influence inter-areal
communication and the flow of neural information [6-10]. The study of coordinated
neural activity is also closely tied to oscillatory activity and memory. Synchronized
hippocampal and hippocampal-cortical activity are thought to have significant roles in
memory formation, working memory tasks, and encoding information for spatial
navigation [11-13]. Coordinated ensemble spiking has additionally been postulated to
be mediated by oscillations in local field potentials [14-16].

The prevalence of coordinated spiking and its functional implications for a range of
neural processes have motivated both model-free and model-based approaches to
quantifying spiking synchrony. Perhaps the most intuitive model-free metric is the
pairwise correlations of spike trains smoothed by a Gaussian (or exponential)
kernel [17,18]. Other model-free measures include a range of spike train distance
metrics that also perform pairwise comparisons [19]. Though the coherence of pairwise
activity can be described, such measures do not capture higher-order coordination, and
are limited in the ability to model dynamics in or determine the significance of pairwise
coherence without repeated trials. More recently, model-free approaches based on
continuous-time transfer entropy formulations have been introduced that avoid
smoothing or binning spike trains [20-23]; however these are still limited to pairwise
measures of synchrony.

Statistical models of neuronal ensemble activity transcend the limitation of
model-free metrics to pairwise comparisons. Two widely used approaches are the
maximum entropy models and point process generalized linear models (GLM) [24, 25].
Maximum entropy models describe the state of the neural population only in terms of
its instantaneous correlational structure [26,27]. Models are estimated to match
observed firing rates and all pairwise (and potentially higher order) correlations
simultaneously. The suitability of the maximum entropy model formulation for
analyzing coordinated spiking has motivated several extensions. For instance, Bayesian
state-space filtering algorithms have been developed to capture dynamics in the strength
of higher-order spiking interactions [28,29]. A stimulus-dependent maximum entropy
model has also been proposed to address potential synchrony-modulating factors [30].
Extensions also include efforts to address the computational complexity associated with
analyzing higher-order interactions amongst large neuronal assemblies [31,32].

Point process GLMs are a common alternative to maximum entropy models for
ensemble spiking [33,34] that can characterize the influence of past population activity
and other relevant covariates. Though useful in estimating functional
connectivity [35,36], each neuron must be assumed conditional independent due to
regularity conditions that prohibit simultaneous spiking events [37-39]. This can be
circumvented by using an equivalent marked point processes (MkPP) representation
that explicitly models each disjoint simultaneous spiking event [38]. MkPP
representations of ensemble activity have also been utilized to analyze neuronal
population coding in unsorted spiking data [40,41]. A related approach models disjoint
simultaneous spiking events as log-linear combinations of point process models that
permits an intuitive representation of excess or suppressed synchrony [15,39].

The aforementioned statistical models enable the analysis of higher-order
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coordination in ensemble spiking, though each with their respective limitations.
Dynamics in the correlational structure of maximum entropy models may be tracked
with state-space filtering algorithms and credible intervals can be constructed to assess
the statistical significance of correlations; however, the influence of past population
activity on the ensemble state is neglected, and assumptions on the relevance of
higher-order interactions are typically imposed for tractability of model estimation.
Log-linear point process models can track dynamics in coherent spiking while
incorporating the effects of temporal dynamics of population activity, and confidence
intervals may be approximated for statistical inference; the necessity of a priori
assumptions on the relevance of higher-order interactions still, however, remains.
Additionally, both approaches require multiple repeated trials to capture dynamics in
correlational structure with statistical confidence, thus limiting their applicability to
spiking data without trial structure. A discretized MkPP model is capable of capturing
greater detail in the effects of past population activity on coordinated spiking, though
these effects are assumed to be static. To our knowledge, the tractability of the MkPP
model for ensemble spiking has not been addressed, and a corresponding statistical
inference framework is lacking.

We address these gaps by proposing an adaptive greedy filtering algorithm based on
the discretized MkPP formulation in [38] to model dynamics in higher-order spiking
coordination in single-trial recordings while capturing the influence of past ensemble
activity. Incorporating similar data-driven restrictions on modeled interactions as

in [31], we also address the question of tractability of the discretized MkPP formulation.

Furthermore, we build on recent theoretical results related to Adaptive Granger
Causality (AGC) analysis [35] to provide a precise statistical framework to detect
significant coordinated spiking activity of arbitrary order. We demonstrate our
proposed method’s utility in tracking dynamics in synchronous activity with statistical
confidence on simulated ensemble spiking. Applying our method to continuous
multi-electrode recordings of human cortical assemblies during anesthesia and to rat
cortical assemblies during sleep provides novel insights into coordinated spiking
dynamics that underlie transitions between brain states.

Materials and methods

In the following, we first highlight the limitations of existing approaches in application
to neuronal spiking data without trial structure in order to motivate and highlight the
contributions of this work, namely a framework for the dynamic and statistically precise
inference of latent coordinated spiking in neuronal assemblies using their simultaneous
spiking representation (Fig 1, bottom panel). We summarize essential components of
the proposed methods subsequently. Key notation used throughout the remainder of the
paper is summarized in Table 1. Problem formulation, algorithm development, and
theoretical results are comprehensively addressed in supporting information (S1
Appendix). Software implementations in MATLAB v2017b of the algorithms discussed
here are available at https://github.com/ShoutikM/AdaptiveHigherOrderCoordination
and https://www.doi.org/10.5281/zenodo.10009981.

Related work

In the context of existing approaches to the analysis of correlational structure
underlying ensemble spiking activity, the methods proposed in this work address two
key limitations. The first is the consideration of simultaneous spiking between more
than 2 neurons. Existing model-free approaches are largely restricted to pairwise
evaluations of synchrony. Intuitive metrics like correlations or other similarity measures
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Latent Higher-Order Spiking Data Simultaneous Spiking Events as a Marked Point Process
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Fig 1. In order to characterize latent higher-order spiking coordination in a group of C neurons, the observed spiking
event at every time frame ¢, denoted n:, is mapped to a categorical vector n} that indicates which of 2¢ — 1 possible
simultaneous spiking events occurred. The mapping of one spiking outcome to its categorical representation is circled in
green. The disjointness of the categorical representation means that the spiking activity of a neuron can be recovered as
the sum of outcomes in which that neuron spiked (as indicated in teal for neuron 5). In the proposed methods (grey
box), this disjoint representation of spiking outcomes is modeled as a marked point process (MkPP). A time-varying

categorical distribution describing the probability of each category (simultaneous spiking event) is fit by adaptively
(m)

estimating each’s base-rate parameter (1" ), and possibly the influence of the recent ensemble spiking history (0t<m) ).

To determine if r™-order events (simultaneous spiking of exactly r neurons) occur at rates differing significantly from
the rate of chance rM-order events, the estimated base-rate parameters of all r-order events are compared to values of
base-rate parameters expected if the neurons were independent. Significant r*"-order coordination is indicated by
rejecting a null hypothesis that such events occur by chance in favor of the alternative that they occur at a significantly
different rate using a statistical test with precisely characterized distributions for the test statistic under both
hypotheses. This framework enables the statistical confidence of r*'-order coordination detected at a false discovery
rate, , to be summarized in terms of type I and type II errors using Youden’s J-statistic, Ju.

compare pairs of smoothed spike trains [17-19]. Recently, model-free analyses based on
continuous-time formulations of transfer entropy have been proposed to evaluate causal
history-dependent interactions and synchronization [20-23]. While not reliant on
binning or smoothing spiking data, the tests of conditional independence in [20,21]
examine the relationship between the history of one point process and the updates of
another, thus resembling Granger causality analysis [35,36] more closely than a measure
of synchrony. Alternatively, the transfer entropy-based approach in [22,23] computes
the mutual information rate as the sum of transfer entropy rates between two point
process in both direction. Though this symmetric notion of connectivity quantifies
synchronization, it remains limited to pairwise interactions.

Principal component analysis (PCA) and independent component analysis (ICA)
have also been used to identify groups of synchronously spiking neurons [42-45], using
multiple trials to form empirical covariance matrices and thereby discover a
low-dimensional set of activity sources. Noting that PCA uses the covariance matrix to
identify the low-dimensional components, it shares the same limitations with other
pairwise measures, when the latent correlational structure is of higher order. While ICA
can identify sources that account for higher-order correlations [43,45], neither of these
methods is well-suited to single-trial spike trains or when the underlying data structure
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Table 1. Summary of key notation

Notation Definition
ny = [nﬁl’ ..... n,(CT Ensemble spiking observation at time bin ¢ of C' neurons
MNIA = P{ = 111, Conditional Intensity Function (CIF) of ¢t" neuron

; Marked observations at time bin t of C* = 2¢ — 1 marks
ArMA = Plny™ = 1)3,] CIF of m* mark

. [n*gl),“..n*,(c*)

n® Ground process, ¢~ n*{™

A 9A CIF of the ground process, 25;:1 A mMA

wi = [w W w,@”T]T Model parameters of history-dependent model

e = [,1; - ,LEC”]T Base rate parameters of marks

o™ History-dependence coefficients of the m™ mark

u{™ Log-odds of m" mark vs. no spiking

uf{';) Log-odds of m* mark vs. no spiking (reduced model)
A = () u(()";) Exogenous factor for m™ mark

8 Forgetting factor, 0 < < 1

w Window length

is not low-dimensional or stationary.

While model-based approaches can circumvent the limitation to pairwise
synchronization, in the same fashion as ICA, they are ill-suited to capturing dynamics
in spiking data absent trial structure with statistical confidence. In the cases of two
approaches closely related to the proposed methods, we examine this limitation more
closely. We first consider the approach in [28], which utilizes a maximum entropy model
of ensemble spiking whose dynamics are captured using Bayesian state-space filtering.
The method, tailored for multi-trial data, assumes stationarity across trials but
non-stationarity within so that the likelihood of the spiking observations n; is expressed
as

p(ru=r.ri=1.1) = [T, exp (Ei 0 ) + Yy 08 i) 4 0 Ol - z/)(OL)) ;

with T" time bins and L trials, and parameters evolving according to the linear-Gaussian
state transition 8; = F'@;_1 + ¢;. The Bayesian state-space filter utilizes an
expectation-maximization algorithm that requires evaluating the posterior density
P(Or=1.7|M=1.7,1=1.1,). Assuming non-stationarity in the trial-free case, the posterior,
which is also used to construct credible intervals, is poorly estimated.

Next, we examine the log-linear point process model approach in [39]. Here, the
log-probability of a simultaneous spiking event is modeled as the sum of log-probabilities
of conditionally independent neurons and an additional term that captures excess
synchrony. As an example, the joint probability for a pair of neurons modeled as

tog P [ )] = nV 1og X + ni® 1og A 4 nfVnPef?).

Significant synchronization is detected if the null hypothesis that ft(l’Q) =0 can be
rejected. However, doing so requires a bootstrap distribution for §t1’2), an ill-posed
proposition in the trial-free case if the term is allowed to be time-varying.

The proposed method uses a discretized marked point process model (MkPP) of
ensemble spiking activity [38] to capture higher-order interactions. The contributions of
this work are the development of a greedy approach to adaptively fit the MkPP model
to capture dynamics in spiking data without trial structure and a statistical inference
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framework with precisely characterized distributions for the test statistic, thus
circumventing the need for bootstrapping or estimating a posterior distribution, both of
which are better suited to multi-trial data when time-varying higher-order coordination
is considered.

Discretized marked point process likelihood model

To characterize coordinated spiking, it is necessary to use an appropriate representation
of neuronal ensemble spiking. Because multivariate point processes as defined in
literature [37] do not permit simultaneous events at arbitrarily small time scales, point
process models of ensemble spiking treat neurons as conditionally independent elements
of a multivariate process. Instead, we use a discrete-time marked point process (MkPP)
model to avoid assuming conditional independence, disjointly representing all
simultaneous spiking outcomes [38, 39, 46].

For an assembly of C' neurons, the C-variate spiking process, binned with small bin
size A, at time bin index ¢ is denoted by m;. Rather than treating its components as
conditionally independent, n; is viewed as a multivariate observation that we map to a
C*-variate process, a MkPP whose marks count exactly on of C* := 2¢ — 1 possible
non-zero spiking events. That is, at each time ¢; such that n;, # 0, the sole non-zero
element of n} indicates which mark (ensemble spiking outcome) has occurred. We also

define the binned ground process ngg) = Zgzl nf(m) that indicates the occurrence of
any spiking event [37]. The mark space K := {1,...,C*} indexes the non-zero spiking
outcomes [37]. For example, Fig 1 shows the activity of C' = 5 neurons mapped to a
marked process with C* = 31 marks; the event that neurons 1-3 spike together while 4
and 5 do not maps to the mark index 7 (circled in green). Because the marked

representation is disjoint, the spiking observations of neuron ¢ can be recovered by

adding the observations of all marks corresponding to events including neuron c¢ spiking.

For instance, in Fig 1, the spiking activity of neuron 5 is the sum of simultaneous
spiking events indexed 16-31 (both indicated in teal).

The conditional intensity functions (CIFs) of n, and n} are approximated by the
probabilities of observing an event at time bin ¢ given ensemble spiking history; they are
denoted /\EC)A and )\f(m)A forc=1,...,Cand m=1,...,C*, respectively. We can
relate A{ A to A;™ A in the same manner as n{ to nf ™, and obtain the CIF of the
ground process A\F DA = 22:1 ArMIA

The joint distribution of the MkPP is expressed as a multinomial generalized linear
model (mGLM) with multinomial logistic link function, two versions of which are
considered here. The first, more general version utilizes the ensemble history as
covariates in the mGLM. Here, the log-odds of the m" mark occurring, i.e. the
probability of observing the m" simultaneous spiking outcome )\;‘(m)A, versus no
spiking event occurring are:

. A (m) A
w:wt( ) = log ti(m . (1)
1- @A
The log-odds of the m™ mark are parameterized by w(™ := [{™ 6™ ]", consisting of

an ensemble history-modulation vector 0,2"” and the baseline firing parameter, uim); x;

denotes the recent ensemble spiking history.
The second version of the mGLM makes the simplifying assumption that there is no
history dependence. Consequently, the history-independent model is parameterized only

by the baseline firing parameters p; = [M§1), u§2), e ,,uﬁc*)]—r. Here, the log-odds of the
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mt™" mark occurring versus no spiking event occurring are:

m /\*(m)A
™ = log <t>~ (2)

1-x9A

Summarily, the discretized MkPP model represents ensemble spiking activity
explicitly in terms of all possible outcomes to model their likelihoods jointly. Hence, the
MKPP model is essentially a time-varying categorical distribution where the categories
are the simultaneous spiking outcomes; the instantaneous odds of these outcomes are
non-stationary and possibly dependent on recent ensemble activity history.

Adaptive estimation of marked point process models

Since the parameters of the MkPP mGLM are assumed to be time-varying, we use
adaptive algorithms to capture the dynamics of the history-dependent and
history-independent models. However, analyzing large neuronal assemblies raises the
issue of tractability since the number of parameters to be estimated scales exponentially
with C. Since it is likely that some marks will not contain any events, we employ a
thresholding rule similar to [31], considering only “reliable interactions”, i.e. the subset
of the mark space K ={m € K: >, n} (M) > Ny} for some pre-defined constant

Nip > 0, and treating the rates of the remaining marked processes as negligible due to
their infrequency. That is, the time-varying categorical distribution assumes the
probabilities of categories that occur with negligible frequency are zero so that we only
fit parameters for the non-negligible categories. For generality and clarity in notation,
subsequent discussions are in terms of the full mark space K.

The history-dependent discretized MkPP model is fit by solving a sequence of
maximum likelihood problems. We assume that its parameters w; admit piece-wise
constant dynamics and are constant over consecutive windows of length W, where the
log-likelihood of the i*" window is denoted #;(w;). To encourage smoothly adapting
parameter estimates, we use a forgetting factor mechanism [47] to adaptively weight the
window log-likelihoods up to the k™ window. For a forgetting factor 0 < 8 < 1, the
adaptively-weighted log-likelihood at window k is thus defined as:

k

Cwr) = (1= B) D B ti(w). 3)

i=1

Parameter estimation is hence performed by solving the sequence of maximum
likelihood problems:

Wy, 1= argmax ég(wk), k=1,2,--- K. (4)

Wk

To efficiently solve the sequence of problems in Eq. (4) in an online fashion, we use
the Adaptive Orthogonal Matching Pursuit (AdOMP) [48], an adaptive version of the
Orthogonal Matching Pursuit (OMP) [49] [50]. The AdOMP, which fits an iteratively
selected subset of model parameters, captures inherent sparsity of network interactions
based on past ensemble activity [51-53] while also mitigating complexity. The
implementation of AAOMP is addressed in detail in supporting information (S1
Appendix).

The sequence of maximum likelihood problems that must be solved to obtain the
history-independent model takes a similar form as in Eq. (4) under the same assumption
of piece-wise constant dynamics of p;. The sequence of maximum likelihood estimates

ﬁ'k:argmax gi(u’k)a k= 1a27"' aK (5)
1223
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are obtained by gradient descent, where the gradient of the history-independent
log-likelihood can be computed directly. The procedure for computing the
maximum-likelihood estimates of the history-independent model is detailed in
supporting information (S1 Appendix).

Statistical inference of higher-order coordination

Coordinated spiking can indicate relationships between components of a neuronal
assembly and, potentially, effects of unobserved processes. However, independent
neurons can also spike concurrently by chance, necessitating statistical inference to
distinguish between excessive (or suppressed) and chance simultaneous spiking. To this
end, we quantify the two alternatives as nested hypotheses and prove that an adaptive
de-biased deviance test used for identifying significant Granger-causal influences [35] is
applicable to our setting, thus establishing a precise statistical inference framework.

Here, we focused on characterizing the significance of rt"-order simultaneous spiking
and have formulated the hypothesis test accordingly; however, similarly constructed null
hypotheses can be used to test the significance of any set of simultaneous spiking events
using the same inference procedure (see supporting information in S1 Appendix). For
cogency, we focus on the statistical inference procedure for history-dependent MkPP
models; differences for the history-independent model are addressed in supporting
information (S1 Appendix). However, the complementary nature of the two models is
summarized here. Theoretical results pertaining to the precise inference framework are
summarized here, and comprehensively described in supporting information (S1
Appendix).

Formulating nested hypotheses to test for r"-order coordination

The significance of r-wise simultaneous spiking for r > 2 is tested by considering the
two alternatives:

Hy : rth-order simultaneous spikes occur as frequently as they would between
independent units, given ensemble spiking history
H, : r"-order simultaneous spikes occur at a significantly different rate than

they would between independent units, given ensemble spiking history
(6)
A similar formulation was used in [39] to determine whether one mark occurs at a
significantly different rate than expected. The likelihood of the mark was modeled as
the product of marginal likelihoods and an additional multiplicative factor. Noting that
the additional factor takes value 1 if the neurons are truly independent, the null
hypothesis was quantified accordingly. Instead, we estimate a reduced model that
assumes r"-order interactions are chance occurrences by constraining the base rate
parameters for each r™"-order mark.
The base rate parameter is decomposed as

g™ = )+, (7)

where ué?,z) is the base rate under the null hypothesis and *y,(cm) is analogous to the
additional multiplicative factor in [39] that captures potential exogenous effects after
conditioning on ensemble spiking history. The reduced model thus constrains

(m) ~(m) m

tog =iy — 4 for all r*"-order marks, denoted K, and solves the sequence of
maximum likelihood problems &\ := arg max,,(m o (w,(cR)).

The estimated exogenous factor at the k™ window, ’y,(gm), is obtained as the average

difference of the log-odds of the m!" event under the null hypothesis, ugf;), and under
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the alternative, ugm). That is,

1 kW
W 2 e, (8)
t=(k—1)W+1

Precise statistical inference using deviance differences

The use of the deviance difference test statistic has been established in classical
statistical methodology [54,55] as a common procedure for likelihood ratio tests between
two nested hypotheses. However, such a test is ill-suited to our setting due to the
highly-dependent covariates and forgetting-factor mechanism in the data log-likelihood.
These issues were addressed in a related context [35] for the inference of Granger-causal
links by defining the adaptive de-biased deviance difference and characterizing its
limiting distribution under presence and absence of Granger-causal links. We similarly
utilize the adaptive de-biased deviance difference,

D) (@7.6") 1= (155 [2 (£l - (™) - (27 - 27)]. - )

as the test statistic, where f@,(cF) and %’,ﬁR) are the respective biases of the full and
reduced models. The full and reduced model log-likelihoods can be efficiently computed
online (see supporting information in S1 Appendix).

We precisely characterize the limiting behavior of the deviance difference in Eq. (9)
under both the null and alternative hypotheses, showing that as g — 1:

i) if rth-order coordination matches independent rt"-order interactions given ensemble

spiking history, then D(T) (w,(C ) & (R)) S X2(M™M), d.e. chi-square, and

ii) if rth-order coordination diverges from independent r"-order interactions given
ensemble spiking history, and assuming the base rate pammeters of rt"-order

interactions scale at least as (’)(,/ ) then D(T) (A (F) A (R)) SxA(M, 1/,(;)),

i.e. non-central chi-square,

where u,(:) is the non-centrality parameter at time &k that depends only on the true

parameters, and M) = |ICr-| is the difference in the cardinalities of the full and reduced
support sets. Our theoretical results are comprehensively discussed in supporting
information (S1 Appendix).

In order to fully characterize the limiting distribution of D( k.3 under H;, we must
estimate the non-centrality parameter for each window. Assumlng it evolves smoothly

in time, we use a state-space smoothing algorithm [35] to estimate 1/,(;) from the

observed D,(Crg values. Thus, in addition to identifying significant coordination, we also
quantify the degree of significance using Youden’s J-statistic

ngz1—a—EﬁwwwpﬂﬁaMmﬂ1—@) (10)
for significance level a, where F(-) denotes the CDF. Values of J,ir) close to 1 imply
that the rejection of the null is a stronger indication of coordination than for smaller
values of J,ET). Thus, the J-statistic characterizes the test in terms of both type I and
type II errors. By convention, we take J,gr) = 0 when Hy is not rejected at the k"
window. Under the alternative, it is possible to observe either significant excess or

suppressed coordination; this can be reflected in the J-statistic by incorporating the net
exogenous effect on r*'-order coordination and using a signed J-statistic
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Algorithm 1 Dynamic inference of rt'-order spiking coordination

Input: {nZ}é(:l, r, B, «

Output: {J{"H,, (mH,, (DL,
L K.={mek: Zle me =1} and M) = |,
2: for k=1 to K do

3: hry =0

4:  Estimate GJ,(CF) using AdOMP; evaluate EB( F)) and %(F

5. form € K, do

6: Evaluate {Ut )}f (k DW+1 and {Uot }f (k—1)W+1

no SetAf™ = BT (™ ) and a7 = gl -4
8 end for

9:  Estimate w, (R) using AAOMP with constraint u,(C m) = /,Léiz) for m e K,

10:  Evaluate f( (R)) @(R) and D(’")(A(F) A(R))

1. if F 21(M<7))( a) < )( l(ﬂF), A,(c )) then
12: hi = sgn( mex, A(m))

13:  end if

14: end for

15: Estimate {ﬁ,(:)}i(:l via non-central x? filtering/smoothing

16: J =hpx (1—a—F X2 (M) uk)(F71(M<r>)(1 —a)))

17: return {J,ET)},CKZD{ T)}k 15 {D(T) 7o

J,gr) . sgn( ZmEK ﬁ,(ﬁm)). The full procedure for identifying significant r*"-order
coordinated spiking is summarized by Algorithm 1.

In establishing the limiting behavior of D,(:,;;, we also proved a result of independent
interest; namely, we generalized asymptotic properties of de-sparsified ¢-regularized
estimates [56] to de-sparsified greedy estimates by showing that the de-sparsified
AdOMP estimate behaves asymptotically like the maximum likelihood estimate.
Crucially, this allows for the construction of confidence intervals around greedily

estimated parameters, thus enabling precise statistical inference.

Complementary characterizations of higher-order coordination by
history-independent and history-dependent models

The history-independent model is a special case of the history-dependent model; hence,
the statistical inference procedure summarized by Algorithm 1 can be appropriately
modified. This specialization is expounded in supporting information (S1 Appendix).
However, the interpretation of statistically significant results obtained using
history-independent analysis is distinct from but complementary to the interpretation of
statistically significant results obtained using history-dependent model. Let the base
rate parameter and exogenous effect for the history-independent model be denoted by
(i, and vy, respectively; and the same for the history-dependent model by py 2 and
Yk,1, wWith history-modulation parameter 6j,. Then, the reduced model constraints
imply v& = Vi, + x/ 0;,. If the observed rate of higher-order events is equal to that of
independent neurons, v = 0; however, higher-order interactions may still be
coordinated, i.e. vi» = —&/ ) # 0. Conversely, the observed rate of higher-order
events may differ from that of independent neurons, i.e., v # 0. If v, 5 = 0, observed
coordination can be attributed to the effects of ensemble history; otherwise, observed
coordination was driven by an unobserved process. Thus, history-independent analysis
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reveals if the observed rate of simultaneous spiking events deviates from the expected
rate in a group in independent neurons, while history-dependent analysis reveals if the
observed rate of simultaneous events cannot be attributed to endogenous network
effects.

Results

The proposed methods for analyzing higher-order spiking coordination were validated
through simulations. First, we empirically verified our theoretical results, characterizing

the limiting behavior of the adaptive debiased deviance difference on simulated spiking.

Next, we demonstrated the utility of the analyses on simulated ensemble spiking data,
showing that the ground-truth latent dynamics in higher-order coordinated spiking can
be recovered with statistical confidence and with greater accuracy than existing
single-trial metrics. Then, the proposed methods were applied to continuous
multi-electrode recordings of human cortical assemblies during anesthesia and to rat
cortical assemblies during sleep in order to infer latent dynamics in coordinated spiking
during transitions between brain states.

Crucial hyperparameters that affect the estimation of MkPP models are the choice
of bin size A (in physiological data); the window size W over which parameters are
assumed constant and the forgetting factor [, which define the effective integration
window Negr = O(%) [57]; and the ensemble history integration window, i.e. the
number of past samples spanned by the history coefficients 6. Justifications for
hyperparameter selection are summarized in the following, while a detailed examination
of their effects on MkPP model estimation is provided in supporting information (S2
Appendix).

Empirical Validation of the Limiting Behavior of Deviance
Differences

We first validated the proposed statistical test for rt"-order coordinated spiking by
empirically verifying the limiting distributions of the adaptive debiased deviance
difference derived under the null and alternative hypotheses. We simulated and
analyzed 50 realizations of a 5-neuron ensemble spiking process. Each realization was
4000 samples long with dynamics in 3™-order spiking coordination. Namely, a step
function was used to exogenously facilitate 3™-order spiking during the second half of
each realization.

The simulated spiking data were analyzed by applying Algorithm 1 to each
realization; restricted models were only computed for 3™-order spiking coordination. A
threshold of N, = 1 was used to pruned marked events that occurred no more than
once per realization; this excluded 5™ order events from the estimated model. The
window size over which parameters were assumed constant was set to W = 10 in order
to enable stable estimation at each window while still allowing for fast changes. The
forgetting factor was set to 8 = 0.99. For the purpose of validating the limiting
distributions, a forgetting factor close to 1 was desirable; however, 8 = 0.99 is also a
practical choice for the forgetting factor that serves to illustrate the utility of the
limiting distributions when analyzing physiological data. Indeed, the hyperparameter
choices (W, 8) = (10,0.99) were used in the applications to physiological data presented
later. Hyperparameter choices for analysis are discussed in the context of two additional
simulations.

The limiting distribution under the null hypothesis was validated by compiling
adaptive de-biased deviance differences that were computed during the first half of each
realization and corresponded to small estimated non-centrality parameter values. Their
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distribution, depicted by the blue histogram in Fig 2, closely matched the theoretical
distribution of deviance differences under the null hypothesis, i.e. a x? distribution with
M = 10 degrees of freedom.

Theoretical vs. Empirical Deviance Difference Distribution

Null Distribution Alternative Distribution
0.1 . . . . . . 0.015

0 10 20 3‘0 4‘0 5‘0 6‘0 70 0 llJU ZIUO 3;)0 400 5:)0 6;)0 700
Deviance Difference Deviance Difference
Fig 2. Theoretical versus empirical distributions of the adaptive de-biased deviance difference
under the null (blue) and alternative (red) hypotheses. Empirical distributions of adaptive
de-biased deviance differences were compiled from history-dependent analyses of 50 realizations
of a discretized marked point process simulating the ensemble spiking of 5 neurons with
exogenously induced 3"-order spiking dynamics. The distributions were compared to the
probability distribution functions (PDF) of a x? distribution with M = 10 degrees of freedom
(left), and a non-central x? distribution with M = 10 degrees of freedom and non-centrality
parameter v = 327 (right), corresponding respectively to the limiting distribution under the
null and alternative hypotheses.

The limiting distribution under the alternative hypothesis was validated by
compiling adaptive de-biased deviance differences that were computed during the
second half of one particular realization and hence corresponded to similar estimated
non-centrality parameter values. Their distribution, depicted by the red histogram in
Fig 2, closely matched the theoretical distribution of deviance differences under the
alternative hypothesis, a non-central y? distribution with M = 10 degrees of freedom
and non-centrality parameter v = 327. The non-centrality parameter of the theoretical
distribution was determined by computing the median of the aforementioned estimates.

Simulated Ensemble Spiking: Example 1

We next demonstrated the utility of the proposed methods in application to two sets of
simulated ensemble spiking data with dynamic latent higher-order coordination. An
additional simulation addressing the utility of the proposed methods in analyzing large
neuronal assemblies is included in supporting information (S2 Appendix). In the first
example, spiking activity of 5 neurons was simulated for 16000 samples. Spiking activity
(Fig 3A) included 3™-order events exogenously facilitated and suppressed in alternation
by a square wave and 4*'-order events induced through endogenous effects of ensemble
spiking history throughout the simulated duration. The latent spiking coordination was
evident when visualizing the sums of all rt"-order events in Fig 3B. Four epochs of the
simulation were defined by the periods of 3"-order facilitation and suppression, shown
in Fig 3C, and are indicated by vertical dashed lines common across all panels.
History-independent and history-dependent analyses of higher-order coordination
were applied to the simulated spiking data using the same set of hyperparameters. A
conservative threshold of Ny, = 1 was chosen to prune marked events that occurred
unreliably over the simulated duration. The window size over which parameters were
assumed constant was set to W = 10 in order to enable stable estimation at each
window while still allowing for fast changes. Fixing W, several candidate values for the
forgetting factor were considered to obtain the most appropriate effective integration
window, Negr = O(%) [57], and was set to 8 = 0.975. For simulations the best choice

of B corresponded to Negr ~ 75, where 7 denotes the duration of the shortest latent
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A Simulated Spike Raster
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Fig 3. Analysis of ensemble spiking with 3™-order coordination induced exogenously by a
square wave. A. Simulated ensemble spiking of five neurons. B. Sum of the r-order
simultaneous spiking events for r = 2,3,4,5. C. Spiking coordination varies across 4 epochs

defined by the exogenous process that alternatingly facilitated and suppressed 3™-order events.

These are demarcated by vertical dashed lines. D. Significant r"-order coordination neglecting
ensemble history. E. Significant r-order coordination based on history-dependent ensemble
spiking model. Statistical testing in D—E performed at level a = 0.01. F. Average Pearson
correlation with 95% confidence interval. G. Average spiking regularity: coefficient of variation
+2 SEM. H. Average mark CIF differences of 3™-order (green) spiking interactions +2 SEM.

state; this heuristic is validated in supporting information (S2 Appendix). For the
present simulation, 7 = 4000, the half-period of the square wave that defined alternating
states of 3™-order facilitation and suppression; hence, Neg = 400. Statistical tests were
performed at level a = 0.01.

History-independent inference of higher-order synchrony (Fig 3D) accurately
characterized the periods of facilitated 3™-order coordinated spiking and correctly
assessed the rates of 4™-order spiking events to be significantly higher than expected
amongst independent neurons, indicated by J-statistic values close to +1. However,
3"d-order suppression was not detected as a statistically significant, likely reflecting that
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the expected rate of 3™-order was low to begin with and therefore difficult to
distinguish. In complement, history-dependent inference of higher-order coordination
(Fig 3E) correctly attributed 4-order spiking, which occurred at a statistically
significantly high rate, to endogenous network effects captured by ensemble spiking
history regressors while detecting that 3"-order spiking was exogenously facilitated.
For comparison, three single-trial measures of coordinated spiking were utilized. The
first is the average Pearson correlation between smoothed spiking responses. The second
is the spiking regularity, quantified by the average coefficient of variation (ratio of the
standard deviation to the mean inter-spike interval) [58]. A ratio close to 1 indicates
Poisson spiking statistics; larger ratios indicate greater variability due to self-exciting
dynamics while smaller ratios indicate regularity in spiking (i.e. globally coordinated
spiking). Both measures were computed over non-overlapping windows of 200 samples

to track dynamics, which while not identical are of a similar order of magnitude as Negt.

The third measure is the average difference between rt'-order mark CIFs and
probabilities of r™-order independent interactions, generalizing the measure employed
in [38] to higher-order simultaneous spiking. Other existing model-based analyses
require multiple trial repetitions and were thus unsuited to the single-trial simulation
setting.

In application to simulated ensemble spiking data, the three control measures were
unable to capture the latent dynamics in spiking coordination. Significant pairwise
correlations (Fig 3F) were detected throughout the simulated duration, indicating only
that several pairs of neurons were spiking concurrently, but were insensitive to the
changes between facilitative and suppressive states of the exogenous process. Similarly,
the spiking variability measure (Fig 3G) indicated Poisson-like spiking statistics
throughout the simulation without reflecting any latent dynamics. The average mark
CIF differences of 3"-order events (Fig 3H) weakly reflected the dynamics of the
exogenous process, but closer inspection (Fig 3H inset) reveals the oscillatory nature
and wide confidence intervals of this sample-by-sample measure which pose challenges in
interpreting the analysis.

Simulated Ensemble Spiking: Example 2

The second simulated example utilized an autoregressive process instead of a square
wave to induce exogenous 3™-order coordinated spiking in a 5-neuron assembly.
Ensemble spiking was simulated for 12000 samples (Fig 4A) with 3"-order events
exogenously induced by one realization of an autoregressive process. Additionally,
4*_order events were induced through endogenous effects for the first and last
4000-samples periods of the simulated duration, but occurred with chance-level
probability otherwise. The sums of all rt"-order events (Fig 4B) reflected the latent
spiking coordination. Coordinated 3™-order spiking was most evidently facilitated
during an interval when the exogenous variable had value greater than 2 (Fig 4C); the
interval is indicated by vertical dashed lines common across all panels.

Both history-independent and history-dependent analyses were applied to the second
simulated spiking data set using the same hyperparameters. The mark space was again
pruned to include only events that occurred more than Ny, = 1 times; parameters were
assumed constant over windows of W = 10 samples; and statistical tests were performed
at level a = 0.01. The forgetting factor was set to § = 0.95, which corresponded to an
effective integration window Ngg = 200. We noted that the exogenous autoregressive
process most persistently facilitated 3-order coordinated spiking for a duration of
~ 4000 samples; and within that duration, two subintervals of ~ 2000 samples separated
at time index ~ 8000 can be discerned upon visual inspection (Fig 4C). Hence, taking
7 = 2000, the choice of g = 0.95 satisfies the criterion that Neg ~ 17—0.

The history-independent analysis of higher-order coordination correctly detected
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A Simulated Spike Raster
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Fig 4. Analysis of ensemble spiking with 3"-order coordination induced exogenously by an
autoregressive process. A. Simulated ensemble spiking of five neurons. B. Sum of the r*-order
simultaneous spiking events for » = 2,3,4,5. C. An autoregressive process was used to
exogenously induce 3"-order spiking coordination. The effect was most evident when the
exogenous variable had value larger than 2 over an interval is demarcated by vertical dashed
lines. D. Significant r™-order coordination neglecting ensemble history. E. Significant r*-order
coordination based on history-dependent ensemble spiking model. Statistical testing in D—E

performed at level a = 0.01. F. Average Pearson correlation with 95% confidence interval. G.

Average spiking regularity: coefficient of variation +2 SEM. H. Average mark CIF differences
of 3- (green) and 4™-order (teal) spiking interactions +2 SEM.

statistically significant 3-order coordination during the interval in which the exogenous
variable was greater than 2 and 4t"-order coordination when they were induced by
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ensemble spiking history (Fig 4D). The history-dependent analysis also correctly
identified the exogenous facilitation of 3™-order events while attributing 4*"-order
coordination to endogenous effects (Fig 4E). For comparison, the average Pearson
correlation, average spiking regularity, and average mark CIF differences were computed
in identical fashion as for the first simulation. The average Pearson correlation exhibited
indicated significant pairwise correlations concurrently with both exogenously induced
3"-order events and endogenously induced 4t"-order events (Fig 4F); however, these two
facets of latent higher-order coordination could not be disambiguated. In contrast, the
average spiking regularity did not exhibit any dynamics; Poisson-like spiking statistics
were indicated throughout the simulated duration (Fig 4G). The average mark CIF
differences for 3- and 4*-order marks both weakly indicated the latent higher-order
coordination (Fig 4H). In addition to previously issues concerning large confidence
intervals and oscillatory nature, deviant average mark CIF differences for 3"- and
4t_order events appear identical despite being induced in different manners. This
illustrates that the average mark CIF differences only indicate when rates of r-order
events deviate from the expected rate and cannot further address latent structure.

Ensemble Spiking in Anesthetized Humans

In the first application to recorded spiking data, we analyzed microelectrode recordings
of human cortical neurons during the transition into propofol-induced general
anesthesia. Commonly used in surgical procedures, general anesthesia is a drug-induced
neurophysiological state of sedation and unconsciousness. In a study of the transition
into unconsciousness, simultaneous recordings of single-neurons, LFP, and
electrocorticograms were acquired to analyze changes to neural activity and functional
connectivity over multiple spatial scales (full details of the experimental procedure are
described in [59]). To complement previous analysis of pairwise spiking correlations, we
employed the proposed methods for characterizing higher-order coordinated spiking.

Spiking data from the microelectrode recordings of one subject were analyzed,
focusing specifically on the 8 neurons with the highest average firing rate over the 1000
second recording. Multi-unit spike recordings were originally oversampled at 1kHz, but
downsampled by a factor of 50 to reduce computational complexity. Hence, the
definition of simultaneous spiking in this analysis was taken to be the occurrence of
spiking events across multiple neurons within at most 50ms of each other. This bin size
selection was verified to minimize the coassignment of multiple spikes to the same bin in
each of the 8 neurons’ spike trains. Ensemble spiking activity is shown in Fig 5A,
aligned to the loss of consciousness (LOC) at 0s when propofol was first administered;
the effect was evident from the rapid decrease in spiking. Spiking activity recovered and
after 250s propofol was administered again. In order to analyze higher-order
coordination with the proposed methods, the mark space of C* = 28 — 1 possible
simultaneous spiking events, IC, was pruned to the set of reliable interactions K that
occurred more than N, = 15 times; that is, simultaneous spiking events with average
rates less than 0.015Hz were treated as negligible. The cardinality of the set of reliable
interactions, defined with a conservative threshold, was |K| ~ 0.16 - C*. The sums of all
r*"-order events (Fig 5B) show that up to 4"-order coordinated spiking occurred
reliably, though less frequently after LOC.

History-independent and history-dependent analyses were performed using the same
hyperparameters. The window over which parameters were assumed constant was set to
W = 10. The forgetting factor, 3 = 0.99, was selected so that Negr ~ £; here, we used
7 = 5000, the approximate number of samples between the two administrations of
propofol. For applications to recorded data, choosing 3 such that N ~ {5 (as was
done for simulated data) yielded inferred higher-order coordination that was statistically
weak (as quantified by J-statistics) and transient, resembling simulated examples where
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Fig 5. Higher-order spiking coordination analysis of human cortical neurons during anesthesia.
A. Ensemble spiking of 8 neurons aligned to loss of consciousness (LOC) at Os induced by
administering propofol. A second administration of propofol occurred at ~ 250s. B. Sum of
the r"-order simultaneous spiking events for r = 2,...,8. C. Significant r'-order coordination
neglecting ensemble history. D. Significant r*"-order coordination based on history-dependent
ensemble spiking model. Statistical testing in C—D performed at level o = 0.01. E. Average
Pearson correlation with 95% confidence interval. F. Average spiking regularity: coefficient of
variation +2 SEM.

Negr was mismatched to the duration of latent states (supporting information in S1
Appendix). We speculate that a shorter effective integration was appropriate in
simulations because the assemblies were comprised of 5 neurons with similar firing rates,
which facilitated tracking latent dynamics. This contrasts with the variability in firing
rates that can be observed in Fig 5A. Finally, statistical inference was performed at
level v = 0.01.

Applying history-independent higher-order coordination analysis revealed sustained
significantly high rates of 2"-, 3'9- and 4*'-order events prior to LOC (Fig 5C).
Moreover, conditioning on ensemble spiking history indicated that 3™- and 4tM-order
events were exogenously facilitated, while 2"-order events were exogenously suppressed
(Fig 5D). This latent structure was disrupted immediately following LOC; as spiking
activity diminished, no higher-order coordination was detected. However, as spiking
activity recovered, 3"- and 4*-order events (but not 2"¥-order events) occurred at
significantly high rates. As the second administration of propofol again diminished
spiking activity, the rate of 4"-order events became insignificantly different from the
expect rate amongst independent neurons and did not recover. However, transient
3"d-order spiking after the second administration continued that the history-independent
analysis detected as statistically significant. Third-order spiking was sustained at a
significantly high rate once ensemble spiking activity recovered. Notably, none of the
higher-order coordinated spiking after LOC was exogenously induced.
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The dynamics in higher-order spiking coordination described by the proposed
methods were poorly reflected by the average Pearson correlation and average spiking
regularity. Both measures were computed over windows of 200 samples in order to track
changes during the transition into anesthesia. Average correlations seemed to be
significantly greater than zero for longer intervals after LOC than during consciousness,
but trends in the average correlation were difficult to distinguish (Fig 5E). The average
spiking regularity measure indicated Poisson-like spiking statistics throughout,
contrasting the dynamics of higher-order coordination described by the proposed
analyses. Average spiking regularity was ill-suited to analyzing dynamics after LOC due
to the reduced spiking activity; this was reflected by abrupt changes and wide
confidence intervals (Fig 5E).

In summary, history-independent and history-dependent analyses of ensemble
spiking during the transition into anesthesia revealed the rapid onset of differences in
latent higher-order coordination that distinguished consciousness from anesthesia.
Specifically, comparisons between the history-independent and history-dependent results
suggest that exogenous influences on the higher-order interactions of small neuronal
assemblies during consciousness are disrupted during anesthesia. These results are
corroborated by previous analyses of these data [59] that indicated a rapid state change
in which local network interactions were preserve but spatially distant network
interactions were disrupted during anesthesia. Previous studies have shown that
propofol acts by enhancing GABAergic circuits whose recurrent dynamics contribute to
inducing synchronized slow-wave oscillatory activity [59-63]. Ensemble spiking history
regressors likely accounted for these recurrent dynamics in the history-dependent model
so that no exogenous effects were detected.

Ensemble Spiking in Sleeping Rats

We additionally analyzed ensemble spiking data recorded from rat cortical neurons
during sleep. Sleep consists of cyclical transitions between brain states that maintain
homeostatic neural activity distinct from waking states; however, both the purpose and
mechanisms of these transitions remain unclear. We analyzed large-scale spike
recordings from frontal and motor cortices during sleep obtained to study the effects of
different sleep stages on the firing rate dynamics of putatively excitatory (pE)
pyramidal neurons and putatively inhibitory (pI) interneurons [64,65]. By examining
neuronal activity recorded during several instances of rapid eye movement (REM),
non-REM (nREM), and microarousal states over multiple sleep cycles, the study sought
to address homeostatic effects of sleep. Instead, we sought to use the proposed analyses
of higher-order spiking coordination to study the dynamics during transitions into sleep
and between REM and nREM states in one sleep cycle.

We analyzed spiking data during one 182s long sleep cycle from one animal in which
at least 10 pE and pl neurons were identified, selecting the 10 neurons of each class with
the highest average firing rate. Recordings were originally oversampled at 20kHz, but
downsampled to 200Hz to reduce computational complexity. Simultaneous spiking in
this analysis hence equated to the occurrence of spiking events across multiple neurons
within at most 5ms of each other. This bin size selection was verified to minimize the
coassignment of multiple spikes to the same bin in each of the 10 neurons’ spike trains
in both populations. Ensemble spiking activity of pE and pl neurons were analyzed
separately; the activity of each population during the sleep cycle is shown in Fig 6 A
and 6G, respectively, annotated by arousal states. The cycle analyzed consisted of a 66s
wake-period, a transient 1s nREM period, a 46s REM period, a 29s nREM period, and
finally a 40s wake-period.

For tractable analysis, the mark spaces of C* = 2! — 1 possible simultaneous
spiking events, K, of both populations were pruned to the set of reliable interactions K
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Fig 6. Higher-order spiking coordination analysis of excitatory (pE) and inhibitory (pl) rat cortical neurons during one sleep
cycle. Left and right columns show analyses of pE and pl neurons, respectively. A. Ensemble spiking of 10 pE neurons. B. Sum
of the r*"-order simultaneous spiking events for r = 2,3. C. Significant 7™-order coordination neglecting ensemble history. D.
Significant rM-order coordination based on history-dependent ensemble spiking model. E. Average Pearson correlation with 95%
confidence interval. F. Average spiking regularity: coefficient of variation 2 SEM. G. Ensemble spiking of 10 pl neurons. H.

Sum of the r*"-order simultaneous spiking events for 7 = 2,3. I. Significant r'-order coordination neglecting ensemble history. J.

Significant r-order coordination based on history-dependent ensemble spiking model. K. Average Pearson correlation with 95%
confidence interval. L. Average spiking regularity: coefficient of variation £2 SEM. Statistical testing in C—D, I-J performed at

level

a = 0.01.

that occurred more than Ny, = 10 times; that is, simultaneous spiking events with
average rates less than 0.055Hz were treated as negligible. The cardinality of the set of
reliable interactions amongst pE neurons was |Kpg| ~ 0.017 - C* and amongst pl
neurons was |Kpr| &~ 0.058 - C*. The sums of all 7'-order events (Fig 6B and 6H) show
that up to 3™-order coordinated spiking occurred reliably amongst pI neurons while
only up to 2"9-order interactions occurred reliably amongst pE neurons. The same
effective integration windows were used for history-independent and history-dependent
analyses of both neuronal populations; with W = 10, the forgetting factor 5 = 0.99 so
that Negr = £, where 7 ~ 5000 was the duration of the second nREM interval.
Statistical inference was performed at level o = 0.01.

Applying the history-independent and history-dependent analyses of higher-order
coordination to the ensemble spiking of pE neurons in concert identified intervals of
significantly higher rates of 2"4-order events that could be attributed to effects of
ensemble spiking history (Fig 6C—D). Most of the detected intervals were not sustained
during either REM or nREM sleep; rather, they were aligned to the transitions between
states. However, pl neurons exhibited more structured higher-order coordination.
History-independent analysis of pI neurons revealed that 2"-order events had
significantly higher rates during two intervals; the first was during the wake-period, and
the second started at the end of the first wake-period and ending at the transition from
REM to nREM sleep (Fig 6I). While during the first of these intervals the facilitation of
2M_order events could largely be attributed to ensemble history effects, there was a shift
in the exogenous effects on 2"¥-order during the second interval (Fig 6J). That is, after
the transition from the wake state to REM sleep, the exogenous suppression of 2"4-order
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events gradually shifted to exogenous facilitation by the middle of the REM period that
persisted into the nREM period. Exogenous 2"-order coordination was no longer
detected strongly after the first half of the nREM period, but exogenous suppression
emerged again in the second wake-period.

In addition to dynamics in 2"-order coordination, pI neurons also exhibited
significant 3™-order coordination. The rate of 3™-order events was significantly high
during the first wake period and REM sleep; though significantly higher at the start of
nREM sleep, only statistically weak and transiently high rates were detected during the
middle and end of nREM sleep. However, in the second wake period, the rate of
3"d-order coordinated events again became significantly high (Fig 6I). Notably, the high
rate of 3™-order events during REM was distinctive because it was exogenously
facilitated, whereas 3"-order events during other periods occurred at significantly high
rates because of endogenous effects (Fig 6J).

In contrast to the proposed analyses, neither the average Pearson correlation nor
average spiking regularity, computed over windows of 200 samples, reflected similar
latent dynamics of higher-order coordination amongst pE or pl neurons. For pE
neurons, pairwise correlations were close to 0 for much of the sleep cycle with the
exception of a few windows (Fig 6E). However, the spiking regularity was significantly
less than 1 for much of the sleep cycle (Fig 6F); the implication of globally coordinated
ensemble spiking is at odds with the absence of reliably occurring higher-order spiking
events amongst pE neurons. For pl neurons, the average correlation was significantly
higher than 0 during the first and second wake periods, mirroring the significantly high
rates of higher-order events during these intervals; however, excepting a few windows,
the average correlation did not significantly differ from 0 during REM sleep (Fig 6K),
presenting an inconsistency with the rates of higher-order events. Meanwhile, the
average spiking regularity did not differ significantly from 1 for most of the sleep cycle,
indicating Poisson-like spiking activity (Fig 6L); this contrasts sharply from the reliable
occurrence of higher-order events.

Summarily, applying the history-independent and history-dependent analyses of
higher-order spiking coordination revealed distinctive latent dynamics amongst pE and
pl neurons during the same sleep cycle. Intervals of significant 2"d-order spiking
coordination amongst pE neurons were attributable to the effects of ensemble spiking
history and occurred around the transitions between arousal states rather than being
sustained during the arousal states, possibly relating to a hypothesis that transition
periods are themselves distinct states [66]. In contrast, 2"~ and 3"-order spiking events
amongst pl neurons were detected to be exogenously coordinated, especially during
sleep states. The observed changes in higher-order coordination of pl neurons during
REM sleep are consistent with previous results that have shown excitation of pl
neuronal activity and coordination during REM sleep [67,68]. Additionally, the detected
exogenous influences on pl neurons may be explained by studies that have indicated
signatures of REM sleep can be found in hippocampal neurons prior to cortical
neurons [69, 70].

Discussion and concluding remarks

Relations to other models of coordinated spiking activity

The proposed algorithms integrate some notable functionalities of existing maximum
entropy model variations with the GLM framework, and are tailored for the analysis of
continuously acquired neuronal data. As Truccolo’s comparisons in [24] suggest, GLMs
account for temporal dynamics explicitly in modeling ensemble spiking, and thus are
arguably more predictive than maximum entropy models. Within the context of the
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MKPP mGLM we utilized, temporal dynamics of neuronal spiking were modeled as
relevant covariates in the estimation of ensemble spiking events. Such a model can be
simplified to exclude spiking history, as demonstrated by the history-independent model;
and can be expanded to model the influence of stimuli, as previously addressed for
maximum entropy models [30].

Due to the large number of possible interactions, challenges in the tractability of
synchrony analyses are inherent, particularly when modeling the effects of relevant
covariates. Incorporating the emphasis on reliable interactions, as proposed in [31],
model complexity may be managed in a data-driven fashion. The proposed adaptive
greedy filtering algorithm for sparse model estimation ensures only the salient effects of
covariates are captured. The adaptive filtering algorithm also characterizes dynamics in
network correlational structure, analogous to Bayesian state space filtering
algorithms [28,29], and is thus applicable in the analysis of non-stationary neuronal
processes. In lieu of constructing credible intervals around the aforementioned Bayesian
estimates, we utilize a statistical test for which the test statistic’s limiting distribution is
precisely characterized. Unlike existing analyses, the proposed statistical tests do not
require repeated trials of data to detect coordinated spiking activity, and are thus
suitable for the analysis of continuous recordings of ensemble neuronal spiking.

Extending previous results in high-dimensional statistics, we have shown in Theorem
1 that the elegant procedure of [56] for LASSO estimation may be adapted to

de-sparsify OMP estimates, and that de-sparsified estimates are asymptotically normal.

In reviewing the existing literature, we noted a paucity in work on variable selection
algorithms concerning the construction of confidence intervals. The OMP has been
shown to have similar consistency properties as LASSO regression under appropriate
conditions [49,50]; however, in settings with large quantities of data, the latter becomes
intractable. The result established by Theorem 1 enables the construction of confidence
intervals around OMP-estimated parameters in order to provide analogous methods of
statistical inference as LASSO for an algorithm suitable in settings with large data sets,
addressing this gap in the high-dimensional statistics literature.

Novel insights into coordinated network activity

The proposed modeling and statistical inference framework constitute a novel approach
to studying coordinated neuronal spiking by enabling the adaptive analysis of
continuously acquired or single-trial data. The ability to track dynamics and detect
exogenous influences on ensemble spiking with statistical confidence provides a new
approach to probing the neural mechanisms underlying transitions between and
characteristics of arousal states.

Simulated data examples verified the recovery of underlying correlational structure in
ensemble spiking. In particular, the simulation results emphasized the distinction that
the proposed method makes between synchrony and coordination based on comparisons
of the history-independent and history-dependent version of the analysis, respectively.

In applications to physiological data, we first analyzed ensemble spiking of human
cortical neurons during the transition into anesthesia. Directly comparing our results to
previous insights gained from the same data in [59], the proposed method was consistent
in indicating the rapid onset of disrupted global connectivity but the preservation of
local connectivity during anesthesia. Absent a ground truth, this comparison
substantiated insights gained from applying the proposed methods to physiological data.

Next, we analyzed the ensemble spiking activity of rat cortical neurons during one
sleep cycle. State transitions during sleep have typically been characterized in terms of
multiband analysis of electrophysiological recordings [66,67,69, 70]; meanwhile, to the
best of our knowledge, properties of neuronal spiking in different sleep states have been
characterized non-parametrically (e.g. with correlations, mean activity, Fano Factor,
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etc.) [64,67,68]. Hence, spiking dynamics over a single sleep cycle appear not to be
well-explored. The novel insights into spiking coordination during fast state transitions
over the course of a single sleep cycle provided by the proposed methods serve to
motivate future studies of the correlates of state transitions at a fine spatiotemporal
resolution.

Extensions

The proposed statistical inference framework was developed to test for significant
coordination of rt"-order spiking events, and the presented results demonstrated its
efficacy. Specifically, Theorem 2 characterized the limiting distributions for the adaptive
de-biased deviance difference test statistic under both outcomes of a nested hypothesis
test in which the null hypothesis restricted parameters to impose conditionally
independent rth-order spiking. However, a nested null hypothesis can, in principle, be
constructed to impose different assumptions. An immediate extension of the proposed
analysis could include spatial information, for example, so that a null hypothesis
assumes r"-order spiking amongst a spatially localized subset of a recorded neuronal
assembly is conditionally independent. The proposed inference framework was hence
established to readily extend to any nested hypothesis test in Corollary 2.2.

An important consequence of this corollary result is that it provides a theoretical
foundation for adaptive Granger causality using greedy algorithms. Since the proposed
methods utilize a multinomial extension of generalized linear models, Corollary 2.2
establishes the asymptotic result in [35] for greedy parameter estimates in the limiting
case of a single-neuron model. Notably though, Corollary 2.2 also implies that a nested
hypothesis test can be formulated to determine if exogenous signals, such as sensory
stimuli or concurrent activity in other brain regions, have Granger-causal effects on a
neuronal network or its subsets. Thus, the methods proposed in the present study can
be extended to investigate the local network effects of global neural dynamics.
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Supporting information

S1 Appendix. Algorithms, Derivations, and Theoretical Results. In this
appendix, we present supporting information regarding algorithm development and our
theoretical results supporting the proposed statistical inference framework.

S2 Appendix. Supporting Simulations. In this appendix, we present supporting
simulations that first address hyperparameter selection and then the scalability of the
proposed method to large neuronal assemblies.
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