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ABSTRACT

Optogenetic stimulation has opened up a new avenue to probe neu-
ronal circuitry at high spatiotemporal resolutions. A key challenge in
optogenetic stimulation is deciding which subset out of thousands of
neurons should be stimulated to elicit a desired network activation or
affect behavior. In this work, we introduce a reinforcement learning
approach to adaptively narrow down the multitude of stimulation pos-
sibilities and robustly identify Granger causal networks that underlie
neuronal activity. We use realistic simulations with different underly-
ing circuitry to show the effectiveness of reinforcement learning in
identifying an optimal policy for selecting stimulation targets.

Index Terms— Neuronal Signal Processing, Reinforcement
Learning, Optogenetic Stimulation, Granger Causal Networks

1. INTRODUCTION

The development of optogenetic stimulation paradigms has enabled
neuroscientists to investigate neuronal circuitry at high spatiotemporal
resolutions by perturbing network activity [1, 2, 3]. The applications
of optogenetic stimulation experiments are diverse. For instance,
optogenetic stimuli have been used to investigate principles of neural
coding, such as the role of spike timing in sensory perception in the
visual [4] and olfactory [5, 6] systems. The interrogation of ensemble
neural codes is also possible by stimulating population responses.
Optogenetic stimulation of neurons active during behavior has been
shown to elicit ensemble activity that correlates strongly with natural
stimulus responses, shedding light on latent neural dynamics that
drive behavior [6, 7, 8, 9]. The population-wide effects of individual
neuronal activity in part motivates functional network analysis of
neuronal assemblies, either from responses evoked by sensory stimuli
as in the aforementioned examples or from spontaneous activity.

In the preceding examples, stimulated neurons were known to
be active during behavior; however, selecting stimulation targets is
nontrivial without prior knowledge about the network. Moreover,
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the statistical confidence of functional network estimates from spon-
taneous recordings is encumbered by low population activity that
necessitate longer recordings. Optogenetic stimulation can be used
to induce population activity, but exhaustive stimulation of every
possible target is intractable due to the size of the neuronal assembly.

Viewing the neurons as agents competing for a shared resource
(i.e. to be stimulated), the search for a stimulation target selection
policy lends itself to a multi-agent reinforcement learning (MARL)
paradigm [10, 11, 12]. Reinforcement learning (RL) approaches re-
quire an agent to adapt its actions based on rewards received from
its environment; as the agent accumulates rewards for its actions,
its policy adapts to maximize the cumulative reward [13]. By ex-
tension, MARL considers several agents in the same environment
competing for shared resources, and identifies a policy that satisfies
an equilibrium at which the cumulative reward for any agent cannot
be increased without decreasing that of another. Because MARL
scales poorly with the number of agents, mean-field approximations
to the interactions between agents have been developed to tractably
identify optimal policies [11, 12, 14].

In this work, we adapt the reinforcement-learning mean-field
game (RL-MFG) approach developed in [12] to adaptively identify
optimal policies for selecting stimulation targets. In a realistic simu-
lation setting, we employ this approach to identify optimal policies
for four neuronal networks with differing circuitry, then use Granger
Causality [15, 16] analysis to estimate the network structure from
spiking responses generated by stimulating neurons according to the
optimal policies. Contrasting these networks with those estimated
from spontaneous activity of the same duration, we find that RL-MFG
optimized stimulation enables accurate network discovery with less
data.

Several applications of RL in neuroscience have been explored
recently, including: deep brain stimulation controllers [17, 18]; and
relating neural activity to motor control [19] or cognitive constructs
such as representation and memory [20, 21]. However, to the best
of our knowledge, neither MARL nor its mean-field approximations
have been previously used in neuroscience applications. Thus, while
this work draws on existing work (primarily [12], which relates
closely to [22]), the application considered here constitutes a novel
contribution to current research in network neuroscience.



2. METHODS

2.1. Reinforcement Learning Algorithm Development

To find a policy for selecting optogenetic stimulation targets, we
first formulate the search as a MARL problem where the N neurons
in a network are viewed as Markov agents [10]. Supposing that
spiking activity is observed for T samples, the state of neuron n is
defined as its activity over the observed duration, i.e. its spike train
s(n) = [s

(n)
1 , . . . , s

(n)
T ], with s(n) ∈ S := {0, 1}T . The action of a

neuron is denoted by a(n) ∈ A := {0, 1}, where a(n) = 1 indicates
that neuron n is stimulated. The policy for stimulating neuron n is
defined as π(n) := P[a(n) = 1].

Finding the optimal set of policies {π(n)}n=1:N involves model-
ing interactions between the agents [10, 11]. Not only does this scale
poorly with N , but is limited by the inherent lack of information
about the network structure. Mean-field approximations have been
used to address tractability [11, 12, 14]. With a mild assumption that
only a proportion p of all possible links in a network exist, we employ
a mean-field approximation that also circumvents knowledge of the
latent network structure. We adapt the natural actor-critic (NAC)
algorithm of Mao et al. [12] to identify an optimal policy for this
mean-field game. The following sections recap essential elements of
the method as adapted to the present setting.

2.1.1. Mean-Field Approach Preliminaries

In contrast to the N -agent Markov game considered in MARL, the
mean-field approximation considers an infinite number of identical
agents where the population’s collective behavior is described by the
mean-field state. It suffices to consider one representative agent with
state sk in relation to the mean-field µk, the subscript k denoting the
state of the agent after the kth stimulation pattern. This simplifies a
multi-agent policy optimization problem to a single-agent problem;
i.e., we are now searching for the probability of stimulating one
neuron, and will repeat the forthcoming procedure for all neurons in
the network.

Given a population response µk, an action ak is selected ac-
cording to the stimulation policy. The policy of the agent should be
adjusted based on the population response to stimulation, so a reward
r(ak,µk) is computed, and the states of the agent and mean-field are
updated according to the transition:

P [sk+1,t = 1|ak] = logit−1
(
ν + pω⊤Hµ

t

+U1{ak = 1, t = 1}) ,

µk+1,t = logit−1
(
ν + pω⊤Hµ

t

+UP [ak = 1]1{t = 1}) .

(1)

Note the population response’s effect on the state of the agent, the
cross-history coefficients ω, is weighted by the link probability p,
representing the average network effect on the agent. Here, Hµ

t

denotes the recent history of the mean-field response; for early time
indices, this includes overlap with the previous mean-field state vector
µk.

Additionally, note that µk+1,t = Eak [P [sk+1,t = 1|ak]]. The
action ak = 1 with probability π(µk; θ) = logit−1(θϕk), where
ϕk := Γ⊤µk is a feature measuring the population response that
weights the time indices shortly after potential stimulation. The
response kernel Γ is composed of uniform samples of a Γ-density
whose mode is at time index 4, matching the latency of the cross-
history kernel ω. The reward function is also defined in terms of ϕk:

r(ak,µk) := 1{ak = 1}exp
(
ϕ2
)
. For notational compactness, the

reward will be denoted as rk.

2.1.2. Policy Update via Natural Actor-Critic Algorithm

Policies were updated by maximizing the entropy-regularized value
function [22] with respect to the parameter θ each time after the mean-
field is updated (i.e. after the population response to a stimulation
pattern is observed) using a natural actor-critic (NAC) algorithm
proposed by Mao et al. [12]. Essential details are recapitulated
here. For some initial mean-field ρ, the regularized value function is
defined as

V π,β
µk

(ρ) :=

E

[
∞∑
l=1

γl

(
rk−β

(
alog(πθ) + (1−a)log(1−πθ)

))∣∣∣∣s0∼ρ

]
, (2)

where the first term is the unregularized value function with discount
factor γ, and the second term is the Shannon entropy of the policy
with regularization coefficient β. The maximizing value of parameter
θ can be obtained by natural policy gradient ascent, which rotates and
rescales the gradient∇θV

π,β
µk

(ρ) by the inverse Fisher information
matrix.

Mao et al. [12] and Cayci et al. [22] show that this equates to an
update of the form θ ← θ + η/(1− γ)wθ

β , where

wθ
β = argmin

w:∥w∥2≤R

Ea

[(
w⊤∇θlogπθ −Aπθ,β

µk

)2]
, (3)

for some learning rate η. Here, Aπθ,β
µk is the centered soft Q-function

that essentially quantifies the unreqularized cumulative reward. The
shifted Q-function, i.e. the entropy-regularized cumulative reward,
defined as

qπθ,β
µk

:= rk−β
(
aklog(πθ)+(1−ak)log(1−πθ)

)
+γEs

[
V π,β
µk

(s)
]
,

(4)
allows Aπθ,β

µk to be expressed as

Aπθ,β
µk

= qπθ,β
µk

+ β
(
aklog(πθ) + (1−ak)log(1−πθ)

)
− Ea′

[
qπθ,β
µk

+ β
(
a′log(πθ) + (1−a′)log(1−πθ)

)]
.

(5)

The NAC algorithm proposed by Mao et al. [12] is used to opti-
mize θ in two steps. First, in the policy evaluation step, an estimated
of qπθ,β

µk , denoted by q̂βk , is obtained using a temporal difference learn-
ing algorithm that approximates the shifted Q-function as a linear
function of ϕk (Algorithm 2 in [12]; the “critic”). Then, an estimate
of Aπθ,β

µk using q̂βk , denoted by Âβ
k , is used in a stochastic gradient

descent algorithm to obtain an estimate of the gradient wθ
β , denoted

ŵk (Algorithm 3 in [12]; the “actor”).
The NAC algorithm is applied to each neuron in a network af-

ter observing the network responses to a stimulation pattern. The
probability of stimulating each neuron is updated after each pat-
tern; averaging these updated policies for each neuron gives their
optimal stimulation probability. The complete procedure is sum-
marized in Algorithm 1; the learning rate η was selected so that
η = O

(
K(−2/5)/β

)
[12].

2.2. Simulating Neuronal Activity

To demonstrate the utility of Algorithm 1 and the advantage provided
in Granger causal network inference [15, 16], we simulated neuronal
activity of a network with 4 independent subnetworks of N = 8



Algorithm 1 Optimal Stimulation Policy Discovery

Input: K, β, γ, η, N
Output: {π(n)∗}Nn=1

1: θ(n) = 0, π(n)
1 = 0.5, for n = 1, . . . , N

2: for k = 1 to K do
3: Sample ak from PMF induced by {π(n)

k }
N
n=1

4: a
(n)
k = 1{ak = n} for n = 1, . . . , N

5: Observe spiking responses to stimulation pattern
6: Compute µk, the network average spiking response
7: for n = 1 to N do
8: Estimate q̂βk

(n)
(Algorithm 2 in [12])

9: Calculate ŵ
(n)
k using q̂βk

(n)
(Algorithm 3 in [12])

10: θ(n) ← θ(n) + η(ŵ
(n)
k − βθ(n))

11: end for
12: Compute ϕ

(n)
k

13: π
(n)
k+1 = logit−1(θ(n)ϕ

(n)
k )

14: end for
15: for n = 1 to N do
16: π(n)∗ = 1

K

∑K+1
k=2 π

(n)
k

17: end for
18: return {π(n)∗}Nn=1

neurons each (Fig. 1). The subnetworks had unique structure. The
first subnetwork had one broadcast neuron with degree-out of 6 and
degree-in of 0. The second subnetwork was a chain with source-target
neuron pairs {(n, n+ 1)}n=1:5. The third subnetwork had one sink
neuron with degree-out of 0 and degree-in of 6. The number of links
in each of these subnetworks is approximately p = 0.1 of the total
number of possible links (56). Links between neurons in the fourth
subnetwork were selected randomly with probability p = 0.1; two
neurons had degree-out of 1, and one had degree-out of 3.
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Fig. 1: Simulated Network. The network consisted of 4 independent
subnetworks with varied structure, but the same level of connectivity
(∼ 10% of all possible links). One stimulation target per subnetwork
was chosen according to a learned policy.

For each single-cell stimulation pattern, simulated spiking activ-
ity of each neuron was generated for L = 5 repetitions of duration
T = 60 samples. The spiking activity of neuron n was generated as
a Bernoulli process whose conditionally independent success prob-
abilities are given by the conditional intensity function (CIF) λ(n)

l,t

at time t of trial l. The effect of optogenetic stimulation is to elicit
a spike from the target neuron with high probability. Hence, it was

modeled by an instantaneous increase in a neuron’s CIF; namely,

λ
(n)
l,t = logit−1

(
ν +

N∑
n′=1

ω(n,n′)⊤H(n′)
l,t + U1{a(n)= 1, t = 1}

)
,

(6)
where ν = −3 denotes the base rate parameter of all neurons,
U1{a(n) = 1, t = 1} with U = 6 models the effect of the action to
stimulate neuron n, H(n′)

l,t the recent spiking history of neuron n′, and

ω(n,n′) the cross-history coefficients that characterize the influence
of neuron n′ on neuron n. The cross-history coefficients were chosen
to most likely induce spiking with a latency of 4–5 time bins. For
all source-target pairs (n, n′) for which a link existed in the network
model, the cross-history coefficients were identical (ω(n,n′) = ω),
and were 0 otherwise. Self-history coefficients ω(n,n) = 0.

2.3. Granger Causality Analysis

Granger causality (GC) analysis evaluates the predictive influence
of the recent spiking activity history of one neuron on the present
spiking activity of another. Here, we adapted GC network inference
procedure introduced in [15, 16] for point process models of neuronal
spiking activity that accounts for sparse network interactions and
controls the false discovery rate of GC links. The existence of a
GC link from neuron ñ to n was tested by comparing a full model
of neuron n, parameterized by estimated cross-history coefficients{
ω̂(n,n′)

}N

n′=1
and base rate ν̂(n), to a reduced model that assumed

ω̂(n,ñ) = 0 using the de-biased deviance difference. The strength of
GC links were characterized by Youden’s J-statistic following false
discovery rate control at a rate of 0.01.

3. RESULTS

In a simulation study outlined in Section 2.2, we demonstrate Al-
gorithm 1 and the advantage of optimal stimulation policies for GC
network inference [15, 16]. Algorithm 1 was applied to each indepen-
dent subnetwork to simultaneously evaluate its performance given
different latent network structures. The procedure for one subnetwork
is visualized in Fig. 2A. A small discount factor of γ = 0.1 was used
to prioritize the reward in the temporal difference learning algorithm
used in Step 8 of Algorithm 1. Regularization coefficients of multiple
orders of magnitude were considered, but the results presented here
utilized β = 1000; smaller values were found to be no different than
unregularized policy estimation, and larger values overregularized.
The number of iterations was set to K = 100, and the learning rate
was η ≈ 1.6× 10−4.

The optimal stimulation probabilities (Fig. 2B, top) reflected the
structure of each subnetwork, showing in Fig. 3A. For instance, neu-
ron 5 in subnetwork 1 had the highest probability of stimulation; as it
is the source of 6 links, one could expect its activity to elicit a large
subnetwork-wide response. In contrast, neurons in subnetwork 3 did
not have remarkably higher probabilities than others because each
neuron only linked to one other neuron. Probabilities significantly
smaller than 0.5 (t-test, p < 0.05) were set to 0, and a probabil-
ity mass function (PMF) was formed by normalizing these pruned
probabilities (Fig. 2B, bottom).

This PMF was used to sample stimulation targets; specifically, 20
stimulation patterns were independently drawn (20 sets of 4 neurons,
1 per subnetwork). The first 30 samples of the network responses to
stimulation were used to estimate GC networks [15, 16] with false
discovery rate control [23] (Fig. 3B, top left). Spontaneous spiking
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Fig. 2: Reinforcement Learning of Optimal Stimulation Policies.
A. With probabilities of activating a neuron initialized to 0.5, Algo-
rithm 1, applied iteratively, updated the probability of activating each
neuron B. The optimal probabilities of activation, the average of all
updates, are displayed with error bars corresponding to 2 SEM (top).
Probabilities significantly less than 0.5 (t-test, p < 0.05) are pruned,
and stimulation targets are sampled from the induced PMF (bottom).

of the same duration was similarly analyzed as a control (Fig. 3B,
bottom left). The resulting networks were comparable. Both had
similar hit rates and false discovery rates (Table 1), computed across
the network.

However, when a subset of stimulation data corresponding to 10
patterns and spontaneous activity of the same length were used for
GC analysis, a notable difference was evident (Fig. 3B, right column).
While the network estimated from stimulated data had a hit rate of
100% and false discovery rate of 12%, the spontaneous activity-based
estimate only had a hit rate of 54.5% due to low activity (Table 1),
computed across the network. Subnetwork-specific hit rates differed
notably in subnetwork 1 (100% vs. 16.67% in stimulated vs. sponta-
neous data) and subnetwork 4 (100% vs. 50%), where source neurons
were linked to multiple targets. Thus, the simulated results demon-
strate that stimulation enables recovery of latent network structure
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Fig. 3: Granger Causal Network analysis of network with sparse
activity. GC networks estimated from stimulated spiking (top row)
and spontaneous spiking (bottom row) were comparable when 20
patterns, i.e., 100 trials, were used (left column), but only half the
links were detected when 10 patterns, i.e., 50 trials, were used (right
column).

20 Patterns 10 Patterns

Stimulation Hit Rate 95.5% 100%
FDR 25.0% 12.0%

Spontaneous Hit Rate 100% 54.5%
FDR 15.4% 0.0%

Table 1: Global hit rate and false discovery rate (FDR) of network
inference results from Fig. 3.

from sparse neuronal activity based on parsimonious data acquisition.

4. DISCUSSION

By adapting a reinforcement learning algorithm for single-agent pol-
icy optimization in a mean-field game, we have introduced an adap-
tive approach to guide the selection of optogenetic stimulation targets
while probing neuronal populations. In simulations, we showed that
the algorithm can identify neurons that act as network hubs to elicit
population-wide effects. Moreover, we have shown that stimulating
such neurons indeed enables recovery of latent network structure with
statistical confidence and less data than necessary when examining
spontaneous activity.

In regards to experimental validation of the RL-MFG approach,
implementing optogenetic stimulation is straightforward but requires
real-time analysis, a technical challenge we aim to address in future
work. Additionally, the optimality of stimulation policies warrants
further investigation, though a closer examination of the formation of
PMFs from learned probabilities is first needed. Future work would
also include applications to networks with more complex dynamics,
and extensions for optimal combinations of neuronal stimulation.
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