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Abstract—This study presents a data-driven analysis of a Level-3
EV charging station on a major interstate highway in a northern
rural region of the United States, focusing on adherence to the
National Electric Vehicle Infrastructure (NEVI) formula program.
Utilizing two years of 15-minute smart meter data, this paper
presents the power demand dynamics and characteristics of this
EV charging station. This study investigates charging trends and
behaviors over various time frames, including monthly, seasonal,
and weekday periods. The Charging Behavior (CB) index, a novel
metric, is developed to quantify and compare charging behavior
patterns. Besides, this study investigates the correlation between
the power demand of the charging station and the corresponding
traffic counts. The result shows that the correlation is particularly
relevant in seasonal variations in northern rural areas. The findings
from this comprehensive analysis are vital for stakeholders in the
power sector, aiding in the strategic planning and optimization of
EV charging infrastructure under NEVI compliance, especially
in remote regions that have the four-season climate. The study’s
insights are also crucial for researchers focusing on the sustainable
integration of EV infrastructure into existing power grids, address-
ing both operational planning and demand management.

Index Terms—AMI data, charging behavior, data analysis, EV,
EV charging, highway, level-3 charging, NEVI.
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I. INTRODUCTION

ESPITE challenges such as supply chain disruptions,
D economic uncertainties, and high prices of commodities
and energy, electric car sales reached a record high in 2022,
surpassing 10 million units, marking a 55% increase compared
to the previous year. This growth in electric car sales, including
both battery electric vehicles (BEVs) and plug-in hybrid electric
vehicles (PHEVs), contributed to a 14% share of electric cars
in total car sales, up from 9% in 2021, and brought the total
number of electric cars on the global roads to 26 million, with
BEVs making up over 70% of this growth [1]. In the second
quarter of 2022, the U.S. witnessed a record-breaking 48.4%
increase in sales of full battery-electric vehicles (EVs) [2]. In
February 2022, the U.S. Departments of Transportation and
Energy announced the National Electric Vehicle Infrastructure
(NEVI) Formula Program, allocating $5 billion over a five-year
period to establish a DC-Fast (Level-3) charging station network
along the national interstate highway systems [3], [4], [S].

The NEVI Formula Program aims to mitigate range anxiety
for EV owners during long-distance travel, consequently pro-
moting widespread EV adoption across the country. Currently,
EV chargers are classified into three levels according to their
charging voltages. Level 1 charging utilizes 120V and delivers a
3 to 5 miles range per charging hour. Level 2 charging operates
at voltages between 208 V and 240 V, offering a range of 12 to
80 miles per charging hour. Level 3 charging, the fastest method,
employs voltages ranging from 400 V to 900 V DC, providing
a 100-mile range in just 30 minutes of charging [6]. In contrast
to the most common charging stations, such as Level-1 and
Level-2, found in urban areas, the charging stations along the
highways will be mainly Level-3 charging stations. Since Level
3 charging stations draw considerable energy (kWh) from power
grids within a short period, the power demand (kW) will be in-
creased significantly. It will not only necessitate greater electric
energy consumption but will also exacerbate the complexity of
power system operations and amplify the risks utilities face in
the electricity markets.

Rural electric cooperatives have the expansive service terri-
tories across the United States and power 56% of the nation’s
landmass [7], overlapping a significant intersection with the U.S.
Interstate Highway System. Therefore, it is essential for electric
cooperatives and system operators to have a comprehensive
understanding of the demand characteristics associated with
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NEVI-compliant EV charging stations located along the U.S.
Interstate Highway System, which is crucial for anticipating
and mitigating potential complications in grid operation and
reliability.

Recent literature in the field of EV charging behavior presents
a diverse range of models and algorithms, each contributing
to the understanding and optimization of EV charging and
its impact on power grid management. The literature presents
a range of models and algorithms to optimize EV charging,
addressing issues like congestion, grid management, and user
satisfaction. Papers [8], [9], [10] explore behavioral influences
and game theory models for charging strategies. Papers [11],
[12], [13], [14] focus on location placement, load behavior
modeling, and charging time forecasts. Real-time tracking and
distributed demand response algorithms are discussed in papers
[15], [16], with practical insights from field studies in paper
[17]. Advanced modeling techniques, such as Stackelberg games
and ant colony algorithms, are examined in papers [18], [19],
[20] for predicting charging station loads and load forecasting.
Papers [21], [22], [23], [24] use survey data and probabilistic
methods for optimal charging strategies and station placement.
Papers [25], [26] address stochastic nature of EV charging,
and papers [27], [28] highlight renewable charging stations and
load behavior analysis using smart meter data. The role of Al
and machine learning in this domain is underscored in papers
[29], [30], [31], [32], [33], where various techniques, including
deep reinforcement learning and Long Short-Term Memory
Networks, are employed to predict and optimize EV charging
behaviors.

Besides, traffic flows and driver behavior have also been
incorporated for numerous EV charging load forecasting in
recent studies. In paper [34], the authors developed a proba-
bilistic queuing model to transform traffic flow into charging
load considering the driver behaviors. Paper [35] presents an EV
charging load forecasting technique for households using road
network information. Paper [36] introduces a load forecasting
method based on a decision-making that considers payment cost,
time cost, and route factors. The study [37] investigates the
impact of the attitude of EV drivers. An agent-based model is
developed to simulate the behavior of EV drivers. The paper [38]
proposes a load forecasting method using an affinity propagation
clustering algorithm for urban EV charging stations based on
residents’ travel habits.

However, there are three major research gaps in existing
literature, including:

o Insufficient Insight into NEVI-Compliant Level-3 EV
Charging Station: Existing research primarily focuses on
level-1 and level-2 charging stations, resulting in a gap in
understanding the load characteristics specific to NEVI-
compliant Level-3 EV charging facilities.

¢ Inadequate Research on Seasonal Variations Affecting EV
Owner Travel Habits: Current studies incorporating traffic
or travel data in analyzing EV charging loads tend to
neglect the influence of seasonal changes on the highway
travel patterns of EV owners.

e Overgeneralization from Traffic Data: Research utilizing
traffic data often assumes that the number of EVs on the
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road is proportionate to the overall traffic volume, poten-
tially oversimplifying the relationship.

Moreover, due to commercial constraints and the relatively
scarce presence of NEVI-compliant Level-3 charging stations in
the U.S., existing research does not incorporate actual data from
these types of stations. This paper aims to bridge these research
gaps and facilitate the NEVI formula program’s development by
examining a NEVI-compliant Level-3 DC-fast charging station
located on a major interstate in the Northern High Plains of the
US. Leveraging two years of actual smart meter data, the study
aims to reveal distinct charging patterns and behaviors specific
to NEVI-compliant Level-3 charging stations in rural areas,
thereby offering vital insights into a comparatively unexplored
facet of EV infrastructure.

The key contributions of this paper are as follows:

® Providing a detailed analysis of the charging demand pat-
terns for a NEVI-compliant Level-3 EV charging station
using two years of real-world 15-minute resolution smart
meter data.

e Evaluating the daily, monthly, and seasonal load factors
over a two-year period to assess the efficiency and cost-
effectiveness of a NEVI-compliant Level-3 EV charging
station in the Northern United States.

¢ Investigating the relationship between hourly traffic pat-
terns and load demand, specifically to demonstrate the cor-
relation between traffic volume and Level-3 EV charging
demand in the rural regions of the Northern United States.

The rest of the paper is structured as follows. Section II
introduces this NEVI-compliant EV charging station and the
data used in this study. The charging pattern analysis is presented
in Section III. Section IV analyzes the charging behavior and
load factors. Section V shows the regression analysis between
traffic volume and charging behavior. The conclusion is provided
in Section VI.

II. INTRODUCTION OF THE CHARGING STATION AND DATA

As of now, only 509 EV charging stations in the U.S. meet the
criteria set by the NEVI formula program [39]. The corridors
form an extensive network that facilitates EV transportation
across the nation. Charging stations are widely distributed with
a pronounced presence along these corridors. This widespread
distribution extends beyond urban localities, ensuring that rural
areas are also served, which is crucial for the adoption and
convenience of EV usage in less populated regions. However,
the central parts of the country especially the Northern Great
Plains exhibit a sparser distribution of charging stations. This
study focuses on a NEVI-compliant Level-3 charging station
installed in the Northern High Plains of the U.S., located on
a frequently utilized major interstate, particularly popular with
tourists during the summer. The vicinity is known for various
notable landmarks and attractions that draw visitors in the sum-
mer. The station is in a small rural town with approximately
900 residents, having a minimal direct influence on the charging
demand. Consequently, it is reasonable to infer that most of
the charging station’s usage originates from interstate travelers.
The region experiences four distinct seasons, each with its own
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Fig. 1.  Average daily power demand.

weather and temperature patterns, influencing charging behav-
ior. Equipped with eight charging ports capable of up to 150 kW
at any time, this station is a fitting example of rural charging
stations along major interstates in the Midwest region of the
U.S., providing valuable insights for this specific context. The
local utility provided the smart meter charging data of 2021 and
2022. The regional Department of Transportation supplied 2022
hourly traffic data of the interstate highway. A traffic monitoring
device is installed near this charging station, ensuring that the
data accurately reflects the vehicular volume passing by this
charging facility.

III. CHARGING PATTERN ANALYSIS
A. Average Daily Charging Demand

This section presents a comparative analysis of the average
daily power demand at the Level-3 EV charging station along
an interstate over two years, 2021 and 2022, as illustrated in
Fig. 1. The comparison shows consistent average power demand
patterns for both years. Notably, post-11 AM until 7 PM, the
demand trajectories diverge, with 2022 experiencing higher de-
mand levels than 2021. Specifically, the peak demand in 2022 oc-
curs at 35 kW around 3:30 PM, whereas in 2021, it peaks slightly
later at 4 PM, reaching 29 kW. Despite the similarity in timing
of peak demand, the year 2022 shows an upward trend in power
usage at this EV charging station compared to the previous year.

An abnormal pattern observed in Fig. 1 is the inverse demand
trend between 13:00 and 15:00, where the charging demand
in 2021 was significantly lower than in 2022. This variation is
primarily attributed to the impact of the pandemic. Given the
charging station’s proximity to a gas station and rest area, the
Covid-19 pandemic resulted in a decreased number of people
stopping at this rest area for lunch or coffee breaks during their
road trips in 2021.

B. Daily Charging Consumption of Each Month

The study analyzes and presents the average daily power
consumption per month at an interstate EV charging station for
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Fig. 2. Average daily power consumption per month.

the years 2021 and 2022, with findings depicted in Fig. 2. The
data reveal that, with the exceptions of May and December, each
month in 2022 had a higher average daily power consumption
than in 2021. The yearly consumption pattern forms a bell
curve, peaking in the summer months, a trend that remained
consistent across both years. However, the months recording the
lowest average daily consumption differed yearly, with February
marking the lowest in 2021 at 84.61 kWh, and January being
the lowest in 2022 at 117.58 kWh. The peak consumption was
observed in July, with 660 kWh in 2021 and an increase of
797.03 kWh in 2022, representing the most substantial absolute
growth in average daily consumption of 137.03 kWh year-over-
year. March experienced the highest percentage growth, with a
46.96% increase in average daily power consumption from 2021
to 2022. Fig. 2 clearly indicates that the charging consumption
during the summer months of 2021 was significantly lower than
in 2022, a trend that is consistent with the observations made
in Fig. 1. The Covid-19 pandemic played a major role in this
discrepancy, as many travelers opted not to stop at this location
for lunch or a coffee break. Consequently, the summer charging
consumption in 2021 was markedly less than in 2022.

C. The Lowest Charging Consumption Month

The study sets out to discern the shifts in power demand at an
EV charging station over two years, focusing on the months
with the lowest and highest consumption. Fig. 3 illustrates
the average daily power demand for February 2021 and 2022.
The comparison reveals no distinct pattern in demand between
the two years. Each year exhibits significant spikes in demand
around 9 AM to 10 AM and again at 6:20 PM, accompanied by
smaller, more frequent spikes roughly every hour. Beyond these
coinciding peaks, there is a notable variability in the demand
patterns between the two years. For instance, a peak in demand
at approximately 9:30 AM in 2021 registers at 13 kW, whereas
in 2022, the demand at the same time is significantly lower at just
2.5 kW. Additionally, the demand spikes in 2022 are generally
more significant, in the range of 10-14 kW, contributing to a
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Fig. 3. Average daily power demand for February.
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Fig. 4. Average daily power demand for July.

40% rise in power consumption for February 2022 compared to
February 2021. These observations highlight the unpredictable
nature of power demand at the charging station during the
colder months, which are traditionally associated with lower
consumption despite an overall increased demand.

D. The Highest Charging Consumption Month

Fig. 4 presents the average daily power demand for July
in 2021 and 2022 at the EV charging station, highlighting a
more consistent and coherent pattern of charging demand for
both years. The power demand for both years typically rises
at 8 AM and tapers off around 8 PM, forming a bell curve.
The early morning and late evening demands are similar for
both years. However, the afternoon and early evening hours
of 2022 show notably higher demand, with more pronounced
hourly spikes, echoing the pattern observed in February. The
peak average power demand during a 15-minute interval in
2022 reached 107.5 kW around 3 PM, in stark contrast to the
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corresponding period in 2021, which saw a demand just shy of
40 kW. These significant demand peaks are observed throughout
the day, including 1:30 PM, 3 PM, 5:30 PM, and 7 PM.

Similar to the trends observed in Figs. 1 and 2, the Covid-19
pandemic in 2021 significantly influenced EV travel behaviors.
Many travelers chose not to stop at the rest area for lunch or
a coffee break, leading to a substantial decrease in charging
demand between 13:00 and 15:00 in 2021 compared to 2022.

The fluctuations in tourist activity around multiple attractions,
including National Parks and Historical Sites, significantly in-
fluence the analysis for February and July. The selection of
these months for detailed examination intends to highlight the
variations in charging demand that mirror the annual peaks and
troughs in visitor numbers. Figs. 3 and 4 collectively demon-
strate an increase in average power demand at the Level-3 EV
charging station along an interstate between 2021 and 2022. In
months with traditionally lower consumption, such as February,
there is an overall increase in demand, though the daily demand
patterns remain quite erratic for both years. Conversely, in higher
consumption months like July, there is a noticeable consistency
in demand patterns, with notable increases in average demand
during the afternoon and early evening hours between the two
years. These observations suggest that power companies and
EV charging station operators should carefully consider these
fluctuating demand patterns based on the time of year. Such
insights are crucial for accurately assessing the load and impact
of EV charging stations on interstate systems, aiding in better
resource allocation and infrastructure planning to accommodate
varying demand levels throughout the year.

E. Seasonal Charging Patterns

In this study, a detailed monthly analysis of power consump-
tion and demand at an interstate EV charging station revealed
a distinct correlation with seasonal temperature variations. To
understand the impact of seasonal changes on power consump-
tion and demand, the data was categorized into four distinct
seasons based on the local climate characteristics, which are
Winter (December-February), Spring (March-May), Summer
(June-August), and Fall (September-November). The findings,
detailed in Fig. 5, provide a comparative analysis of the average
daily power consumption for each season at the charging station
across the years 2021 and 2022.

The analysis in Fig. 5 highlights that Summer months ex-
hibit significantly higher power consumption levels compared
to other seasons. The consumption levels in Spring and Fall
are moderately consistent, averaging between 300-400 kWh.
Notably, Fall showed the most pronounced increase in average
daily consumption year-over-year, with a 32% surge, equating to
an additional 91.14 kWh. Similarly, Spring, Summer, and Winter
also experienced increases, albeit with different magnitudes,
ranging from 9-12% and equating to increases of 24.17 kWh,
74.17 kWh, and 11.69 kWh, respectively. To provide a com-
prehensive understanding of these seasonal shifts, the paper
will further analyze the average daily power demand during the
Winter and Summer seasons for both 2021 and 2022.
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Fig. 6illustrates the average 15-minute interval power demand
during the Winter season for the years 2021 and 2022 at the
EV charging station. The data initially appears quite erratic
throughout the day. However, a closer examination reveals sim-
ilar patterns in early morning and late evening demand across
both years. There are noticeable hourly demand spikes during
the daytime, though their intensity varies by year. In 2021, the
most significant spikes occurred at approximately 5 PM (nearly
15 kW) and 12 PM (12.5 kW), with other relatively minor
spikes. In contrast, 2022 doesn’t exhibit spikes as high as 15 kW
but shows several substantial spikes around 10 AM, 11 AM,
2 PM, 5 PM, and 6:30 PM, each close to 12 kW. This pattern
of increased demand spikes contributes to the overall higher
consumption observed in Winter 2022 compared to 2021.

Fig. 7 presents a totally different scenario for the Summer
season’s average daily power demand in 2021 and 2022. The data
reveals a much higher overall demand with more consistent and
less variable patterns compared to Winter. Both years display a
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more pronounced bell curve, with similar early morning and late
evening demands. The demand in both years starts to increase
around 8 AM and begins to decrease after 6:30 PM, lasting
until around midnight. The peak demand period, from 11 AM to
6:30 PM, shows significantly higher demand in 2022 compared
to2021. The highest demand shifts from S8 kW at 11 AM in 2021
to 69 kW at2:30 PM in 2022, with 2022 consistently maintaining
higher demand levels throughout this period, except for a few
brief intervals where 2021 surpasses.

FE. Weekly Charging Patterns

This section of this study examines the influence of the day of
the week on charging consumption at the charging station over
two years. Fig. 8 presents the average daily power consumption
for each weekday at the charging station for 2021 and 2022. The
data indicates that the weekends, encompassing Friday through
Sunday, experience higher average consumption compared to
the weekdays.
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IV. CHARGING BEHAVIOR AND LOAD FACTORS
A. Behavior Difference Index Term

To distinguish the chaotic charging behaviors across 2021
and 2022, the demand data for each month is normalized in this
study. This normalization enables a clearer explanation of the
parallels or discrepancies in charging behaviors across the two
years.

To quantitatively assess the variations in charging behaviors
between the two years, this paper introduces a novel metric
termed the Charging Behavior (CB) Index. The CB Index is pro-
posed to quantify the degree of similarity or disparity between
two datasets, with a value of O indicating identical behavior
and values approaching infinity signifying complete divergence.
This index provides a standardized way to evaluate and compare
charging patterns over different time periods. CB is defined
in (1) as

CB = Z |2021 Data,, — 2022 Data,,| (1)

n=1

where n is the number of data points and 2027/Data and
2022Data are normalized data sets for identical time periods,
such as months, seasons, days, etc. If CB is zero, that means
the demands for both years are identical leading to the same
behavior. The larger the CB is, the more the behaviors deviate
from each other. In Fig. 9, the charging behavior of each month
in 2021 and 2022 are plotted.

The analysis reveals distinct seasonal trends in charging be-
havior at the EV charging station when comparing data from
2021 and 2022. During the colder months, specifically January,
February, and March, the charging behavior exhibits consider-
able inconsistency, as reflected by higher Charging Behavior
(CB) index values. Conversely, the charging patterns tend to
be more aligned in the warmer months of May, June, and July,
indicated by lower CB values. March recorded the highest CB
value at 20.01, signifying a significant disparity in charging
behavior between the two years, while June presented the lowest
CB value at 8.71, indicating greater similarity. To enhance
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the understanding of these variations in charging demand, the
study includes a graphical representation of the normalized
average daily power demand for months exhibiting high, low,
and transitional CB values. This graphical analysis provides a
more detailed perspective on the similarities and differences in
charging patterns at the station between 2021 and 2022 across
different times of the year.

B. Daily Demand of Charging Behaviors Comparison

As shown in Fig. 9, June has the lowest Charging Behavior
(CB) index of 8.71 and exhibits the most significant similarity
in charging patterns between 2021 and 2022, as indicated by
the data. Fig. 10 displays the normalized average power demand
for June in both years, showing high consistency with only a
few notable variances. Key deviations are observed at 10 AM,
11:30 AM, and 6:30 PM. Specifically, at 10 AM, the 15-minute
demand in 2021 surpasses that of 2022, whereas the 11:30 AM
and 6:30 PM intervals show higher demand in 2022 compared
to 2021.

Distinguishing from the low CB value of June and March,
with a high CB of 20.01, exhibits notably less similarity in
charging behaviors between 2021 and 2022, as depicted in
Fig. 11. The demand patterns for this month are characterized by
frequent spikes and rapid decreases, occurring at varying times
and intensities across the two years. During the early hours from
12 AM to 10 AM, the 2022 data reveals four pronounced spikes
in demand at 1:30 AM, 4:30 AM, 6 AM, and 9 AM, which
are not mirrored in the 2021 demand profile. In the daylight
hours, both years demonstrate erratic and inconsistent demand
patterns. A particularly stark instance is observed in 2022, where
the demand sharply transitions from the peak 15-minute interval
to nearly zero between 6 PM and 7 PM.

The reduced consistency and lower base demand during the
winter months, attributed to fewer travelers on the interstates
in the region, contribute to this variability. Such seasonal fluc-
tuations in travel patterns lead to a more unpredictable and
less comparable charging behavior, particularly in months like
March.
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C. Load Factors

To understand the charging load characteristics, the daily load
factor of this charging station is also analyzed and plotted for
2021 and 2022. In power systems, the daily load factor is defined
as follows:

Daily Average Load
Daily Peak Load

Based on the results in Fig. 12, warm months have relatively
larger load factors than cold months. It means that the charging
station is used more consistently during warmer months. This is
mainly due to increased travel and outdoor activities in warmer
weather in the Northern US, leading to a steadier use of EV
charging services.

Daily Load Factor = x 100%

V. TRAFFIC COUNTS AND CHARGING BEHAVIOR REGRESSION
ANALYSIS

The Introduction of this paper highlighted the utilization of
traffic counts for forecasting EV charging load in recent publi-
cations, which assume that EV charging demand is proportional
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to traffic flows. This concept posits that increased road traffic
correlates with more electric vehicles. To examine the validity
of this assumption, the study received hourly traffic data from
the regional Department of Transportation. An analysis was then
conducted to explore the correlation between traffic counts and
EV charging demand, aiming to either substantiate or question
this widely held belief and to enhance the understanding of
the interplay between road traffic patterns and EV charging
activities. In this section, the average daily traffic pattern of each
month in 2022 is plotted in Fig. 13, which shows that August
has the most traffic counts passing through the charging station,
and December 2022 has the least traffic counts. The traffic flow
patterns closely follow the daylight time.

A. Charging Load Consumption and Traffic Counts

Fig. 14 presents a plot of the daily charging power consump-
tion and corresponding traffic volumes for 2022. It shows a
relatively linear regression between daily charging power con-
sumption and daily total traffic volume. To further investigate the
correlation between daily charging power consumption and
daily traffic volumes, the degree of linearity in these relation-
ships is quantitatively assessed by the coefficient of determi-
nation, also known as R?. These R? values are comprehen-
sively detailed in Table I, offering insights into the strength
and consistency of the relationship between traffic volumes and
charging power consumption across different time periods. The
coefficient of determination, denoted as R?, is a pivotal statistical
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TABLE I
R? FOR EACH MONTH OF 2022
Time R? Values
January 0.0617
February 0.1575
March 0.2021
April 0.2108
May 0.2524
June 0.3249
July 0.0943
August 0.0113
September 0.1077
October 0.2822
November 0.0276
December 0.0036
Annual 0.5744
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Fig. 15.  Winter daily charging behavior and traffic volumes.

metric in regression analysis. It evaluates the model’s goodness
of fit, offering a quantifiable measure of the extent to which
the variance in the dependent variable can be predicted from
the independent variable. This coefficient, expressed as a value
ranging between O and 1, essentially captures the proportion
of the total variation in the dependent variable attributable to
the variability in the independent variable, thereby providing
crucial insight into the predictive strength and relevance of the
regression model.

B. Charging Behavior and Hourly Traffic Volume

Table I reveals notable variations in the linear regression
coefficients across different months, indicating a diverse range
of relationships between charging behavior and traffic data. This
section explores the daily correlation between charging patterns
and traffic flow, utilizing hourly data to capture the dynamic
interplay between these variables across different seasons. To
quantitatively assess the disparity between the dynamics of
charging behavior and traffic volumes throughout the day, a
comparative analysis of normalized data points is conducted
for each season. Figs. 15, 16, and 17 present a detailed illus-
tration of this relationship, showcasing the charging behavior
and traffic volume patterns specifically in winter, summer, and
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TABLE II
SEASONAL ABSOLUTE DIFFERENCE
Season AD
Winter 4.7922
Summer 2.6449
Shoulder 2.3346

the shoulder seasons, respectively. These visual representations
provide a deeper understanding of the temporal fluctuations in
EV charging demand relative to traffic trends under varying sea-
sonal conditions. To quantify the difference between charging
behavior and traffic volumes, the absolute difference (AD) is
defined as follows:

24
AD = Z |Normalized Charging Data (t)

t=1

—Normalized Traf fic Data ()]

Table II reveals that the AD exhibits a strong seasonal de-
pendency. In the winter season, particularly in the Northern
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region of the US, the AD is notably higher than during the
summer and shoulder seasons. This trend is primarily attributed
to the reduced proportion of EVs among all traffic during the
colder months compared to warmer seasons. Consequently, this
finding underscores the limitation of relying solely on traffic
counts or data for NEVI-compliant EV charging load forecasting
in Northern regions. It suggests that any charging forecasting
model based on traffic data should be tailored to account for the
seasonal variations in EV percentages.

V. CONCLUSION AND FUTURE WORK

This study provides an analysis of load dynamics at a NEVI-
compliant EV charging station in the Northern High Plains of
the U.S., utilizing two years of actual smart meter data. This
study demonstrates marked seasonal fluctuations in charging
demand, peaking in the warmer months, and identifies a distinct
seasonal relationship between EV charging demand and traffic
volume. Specifically, in the winter, especially in the Northern
US, the AD is significantly greater than in summer and shoulder
seasons. This phenomenon is mainly due to the lower percentage
of EVs used for long-distance travel in the colder months com-
pared to the warmer seasons. This relationship diverges from
the commonly assumed linear regression in previous studies,
suggesting a more complex interplay between these variables
across different seasons. These findings are particularly per-
tinent for the power sector, underscoring the importance of
flexible management strategies for EV charging infrastructure
in rural and seasonally varied regions. The insights gained can
inform resource distribution, policy development, and strategic
planning for upcoming EV charging stations in line with the
NEVI formula program and changing consumer needs. In future
work, as more NEVI-compliant stations are deployed, there is
a need for advanced load forecasting models that incorporate
geographic and traffic data, as well as seasonal influences, to
improve the precision of load predictions for NEVI-compliant
EV charging infrastructure.
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