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Abstract—This study presents a data-driven analysis of a Level-3
EV charging station on a major interstate highway in a northern
rural region of the United States, focusing on adherence to the
National Electric Vehicle Infrastructure (NEVI) formula program.
Utilizing two years of 15-minute smart meter data, this paper
presents the power demand dynamics and characteristics of this
EV charging station. This study investigates charging trends and
behaviors over various time frames, including monthly, seasonal,
and weekday periods. The Charging Behavior (CB) index, a novel
metric, is developed to quantify and compare charging behavior
patterns. Besides, this study investigates the correlation between
the power demand of the charging station and the corresponding
traffic counts. The result shows that the correlation is particularly
relevant in seasonal variations in northern rural areas. The findings
from this comprehensive analysis are vital for stakeholders in the
power sector, aiding in the strategic planning and optimization of
EV charging infrastructure under NEVI compliance, especially
in remote regions that have the four-season climate. The study’s
insights are also crucial for researchers focusing on the sustainable
integration of EV infrastructure into existing power grids, address-
ing both operational planning and demand management.

Index Terms—AMI data, charging behavior, data analysis, EV,
EV charging, highway, level-3 charging, NEVI.

Manuscript received 14 January 2024; revised 17 March 2024; accepted
29 March 2024. Date of publication 7 May 2024; date of current version 22
July 2024. Paper Number 2023-ESC-1666.R1, presented at the 2023 IEEE
Industry Applications Society Annual Meeting (IAS), Nashville, TN, USA,
Oct. 29–Nov. 02, and approved for publication in the IEEE TRANSACTIONS

ON INDUSTRY APPLICATIONS by the Energy Systems Committee of the IEEE
Industry Applications Society [DOI: 10.1109/IAS54024.2023.10406569]. This
work was supported in part by the U.S. National Science Foundation (NSF)
under Grant ECCS-2301411, Grant RISE-2127172, and Grant RISE-2318385,
in part by the South Dakota Board of Regents (SDBoR) Competitive Research
Grant (CRG), and in part by UTC-Pacific Northwest Transportation Consortium
Award Under Research and Technology. (Corresponding author: Long Zhao.)

Anders Stenstadvolden, Owen Stenstadvolden, and Long Zhao are with
the Electrical Engineering and Computer Science Department, South Dakota
School of Mines and Technology, Rapid City, SD 57701 USA (e-mail: anders.
stenstadvolden@mines.sdsmt.edu; owen.stenstadvolden@mines.sdsmt.edu;
long.zhao@sdsmt.edu).

Mohammad Heidari Kapourchali is with the Electrical Engineering Depart-
ment, University of Alaska Anchorage, Anchorage, AK 99508 USA (e-mail:
mhkapourchali@alaska.edu).

Yuhao Zhou and Wei-Jen Lee are with the Electrical Engineering De-
partment, The University of Texas, Arlington, TX 76019 USA (e-mail:
yuhao.zhou@mavs.uta.edu; wlee@uta.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIA.2024.3397641.

Digital Object Identifier 10.1109/TIA.2024.3397641

I. INTRODUCTION

D
ESPITE challenges such as supply chain disruptions,

economic uncertainties, and high prices of commodities

and energy, electric car sales reached a record high in 2022,

surpassing 10 million units, marking a 55% increase compared

to the previous year. This growth in electric car sales, including

both battery electric vehicles (BEVs) and plug-in hybrid electric

vehicles (PHEVs), contributed to a 14% share of electric cars

in total car sales, up from 9% in 2021, and brought the total

number of electric cars on the global roads to 26 million, with

BEVs making up over 70% of this growth [1]. In the second

quarter of 2022, the U.S. witnessed a record-breaking 48.4%

increase in sales of full battery-electric vehicles (EVs) [2]. In

February 2022, the U.S. Departments of Transportation and

Energy announced the National Electric Vehicle Infrastructure

(NEVI) Formula Program, allocating $5 billion over a five-year

period to establish a DC-Fast (Level-3) charging station network

along the national interstate highway systems [3], [4], [5].

The NEVI Formula Program aims to mitigate range anxiety

for EV owners during long-distance travel, consequently pro-

moting widespread EV adoption across the country. Currently,

EV chargers are classified into three levels according to their

charging voltages. Level 1 charging utilizes 120V and delivers a

3 to 5 miles range per charging hour. Level 2 charging operates

at voltages between 208 V and 240 V, offering a range of 12 to

80 miles per charging hour. Level 3 charging, the fastest method,

employs voltages ranging from 400 V to 900 V DC, providing

a 100-mile range in just 30 minutes of charging [6]. In contrast

to the most common charging stations, such as Level-1 and

Level-2, found in urban areas, the charging stations along the

highways will be mainly Level-3 charging stations. Since Level

3 charging stations draw considerable energy (kWh) from power

grids within a short period, the power demand (kW) will be in-

creased significantly. It will not only necessitate greater electric

energy consumption but will also exacerbate the complexity of

power system operations and amplify the risks utilities face in

the electricity markets.

Rural electric cooperatives have the expansive service terri-

tories across the United States and power 56% of the nation’s

landmass [7], overlapping a significant intersection with the U.S.

Interstate Highway System. Therefore, it is essential for electric

cooperatives and system operators to have a comprehensive

understanding of the demand characteristics associated with
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NEVI-compliant EV charging stations located along the U.S.

Interstate Highway System, which is crucial for anticipating

and mitigating potential complications in grid operation and

reliability.

Recent literature in the field of EV charging behavior presents

a diverse range of models and algorithms, each contributing

to the understanding and optimization of EV charging and

its impact on power grid management. The literature presents

a range of models and algorithms to optimize EV charging,

addressing issues like congestion, grid management, and user

satisfaction. Papers [8], [9], [10] explore behavioral influences

and game theory models for charging strategies. Papers [11],

[12], [13], [14] focus on location placement, load behavior

modeling, and charging time forecasts. Real-time tracking and

distributed demand response algorithms are discussed in papers

[15], [16], with practical insights from field studies in paper

[17]. Advanced modeling techniques, such as Stackelberg games

and ant colony algorithms, are examined in papers [18], [19],

[20] for predicting charging station loads and load forecasting.

Papers [21], [22], [23], [24] use survey data and probabilistic

methods for optimal charging strategies and station placement.

Papers [25], [26] address stochastic nature of EV charging,

and papers [27], [28] highlight renewable charging stations and

load behavior analysis using smart meter data. The role of AI

and machine learning in this domain is underscored in papers

[29], [30], [31], [32], [33], where various techniques, including

deep reinforcement learning and Long Short-Term Memory

Networks, are employed to predict and optimize EV charging

behaviors.

Besides, traffic flows and driver behavior have also been

incorporated for numerous EV charging load forecasting in

recent studies. In paper [34], the authors developed a proba-

bilistic queuing model to transform traffic flow into charging

load considering the driver behaviors. Paper [35] presents an EV

charging load forecasting technique for households using road

network information. Paper [36] introduces a load forecasting

method based on a decision-making that considers payment cost,

time cost, and route factors. The study [37] investigates the

impact of the attitude of EV drivers. An agent-based model is

developed to simulate the behavior of EV drivers. The paper [38]

proposes a load forecasting method using an affinity propagation

clustering algorithm for urban EV charging stations based on

residents’ travel habits.

However, there are three major research gaps in existing

literature, including:
� Insufficient Insight into NEVI-Compliant Level-3 EV

Charging Station: Existing research primarily focuses on

level-1 and level-2 charging stations, resulting in a gap in

understanding the load characteristics specific to NEVI-

compliant Level-3 EV charging facilities.
� Inadequate Research on Seasonal Variations Affecting EV

Owner Travel Habits: Current studies incorporating traffic

or travel data in analyzing EV charging loads tend to

neglect the influence of seasonal changes on the highway

travel patterns of EV owners.
� Overgeneralization from Traffic Data: Research utilizing

traffic data often assumes that the number of EVs on the

road is proportionate to the overall traffic volume, poten-

tially oversimplifying the relationship.

Moreover, due to commercial constraints and the relatively

scarce presence of NEVI-compliant Level-3 charging stations in

the U.S., existing research does not incorporate actual data from

these types of stations. This paper aims to bridge these research

gaps and facilitate the NEVI formula program’s development by

examining a NEVI-compliant Level-3 DC-fast charging station

located on a major interstate in the Northern High Plains of the

US. Leveraging two years of actual smart meter data, the study

aims to reveal distinct charging patterns and behaviors specific

to NEVI-compliant Level-3 charging stations in rural areas,

thereby offering vital insights into a comparatively unexplored

facet of EV infrastructure.

The key contributions of this paper are as follows:
� Providing a detailed analysis of the charging demand pat-

terns for a NEVI-compliant Level-3 EV charging station

using two years of real-world 15-minute resolution smart

meter data.
� Evaluating the daily, monthly, and seasonal load factors

over a two-year period to assess the efficiency and cost-

effectiveness of a NEVI-compliant Level-3 EV charging

station in the Northern United States.
� Investigating the relationship between hourly traffic pat-

terns and load demand, specifically to demonstrate the cor-

relation between traffic volume and Level-3 EV charging

demand in the rural regions of the Northern United States.

The rest of the paper is structured as follows. Section II

introduces this NEVI-compliant EV charging station and the

data used in this study. The charging pattern analysis is presented

in Section III. Section IV analyzes the charging behavior and

load factors. Section V shows the regression analysis between

traffic volume and charging behavior. The conclusion is provided

in Section VI.

II. INTRODUCTION OF THE CHARGING STATION AND DATA

As of now, only 509 EV charging stations in the U.S. meet the

criteria set by the NEVI formula program [39]. The corridors

form an extensive network that facilitates EV transportation

across the nation. Charging stations are widely distributed with

a pronounced presence along these corridors. This widespread

distribution extends beyond urban localities, ensuring that rural

areas are also served, which is crucial for the adoption and

convenience of EV usage in less populated regions. However,

the central parts of the country especially the Northern Great

Plains exhibit a sparser distribution of charging stations. This

study focuses on a NEVI-compliant Level-3 charging station

installed in the Northern High Plains of the U.S., located on

a frequently utilized major interstate, particularly popular with

tourists during the summer. The vicinity is known for various

notable landmarks and attractions that draw visitors in the sum-

mer. The station is in a small rural town with approximately

900 residents, having a minimal direct influence on the charging

demand. Consequently, it is reasonable to infer that most of

the charging station’s usage originates from interstate travelers.

The region experiences four distinct seasons, each with its own
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Fig. 1. Average daily power demand.

weather and temperature patterns, influencing charging behav-

ior. Equipped with eight charging ports capable of up to 150 kW

at any time, this station is a fitting example of rural charging

stations along major interstates in the Midwest region of the

U.S., providing valuable insights for this specific context. The

local utility provided the smart meter charging data of 2021 and

2022. The regional Department of Transportation supplied 2022

hourly traffic data of the interstate highway. A traffic monitoring

device is installed near this charging station, ensuring that the

data accurately reflects the vehicular volume passing by this

charging facility.

III. CHARGING PATTERN ANALYSIS

A. Average Daily Charging Demand

This section presents a comparative analysis of the average

daily power demand at the Level-3 EV charging station along

an interstate over two years, 2021 and 2022, as illustrated in

Fig. 1. The comparison shows consistent average power demand

patterns for both years. Notably, post-11 AM until 7 PM, the

demand trajectories diverge, with 2022 experiencing higher de-

mand levels than 2021. Specifically, the peak demand in 2022 oc-

curs at 35 kW around 3:30 PM, whereas in 2021, it peaks slightly

later at 4 PM, reaching 29 kW. Despite the similarity in timing

of peak demand, the year 2022 shows an upward trend in power

usage at this EV charging station compared to the previous year.

An abnormal pattern observed in Fig. 1 is the inverse demand

trend between 13:00 and 15:00, where the charging demand

in 2021 was significantly lower than in 2022. This variation is

primarily attributed to the impact of the pandemic. Given the

charging station’s proximity to a gas station and rest area, the

Covid-19 pandemic resulted in a decreased number of people

stopping at this rest area for lunch or coffee breaks during their

road trips in 2021.

B. Daily Charging Consumption of Each Month

The study analyzes and presents the average daily power

consumption per month at an interstate EV charging station for

Fig. 2. Average daily power consumption per month.

the years 2021 and 2022, with findings depicted in Fig. 2. The

data reveal that, with the exceptions of May and December, each

month in 2022 had a higher average daily power consumption

than in 2021. The yearly consumption pattern forms a bell

curve, peaking in the summer months, a trend that remained

consistent across both years. However, the months recording the

lowest average daily consumption differed yearly, with February

marking the lowest in 2021 at 84.61 kWh, and January being

the lowest in 2022 at 117.58 kWh. The peak consumption was

observed in July, with 660 kWh in 2021 and an increase of

797.03 kWh in 2022, representing the most substantial absolute

growth in average daily consumption of 137.03 kWh year-over-

year. March experienced the highest percentage growth, with a

46.96% increase in average daily power consumption from 2021

to 2022. Fig. 2 clearly indicates that the charging consumption

during the summer months of 2021 was significantly lower than

in 2022, a trend that is consistent with the observations made

in Fig. 1. The Covid-19 pandemic played a major role in this

discrepancy, as many travelers opted not to stop at this location

for lunch or a coffee break. Consequently, the summer charging

consumption in 2021 was markedly less than in 2022.

C. The Lowest Charging Consumption Month

The study sets out to discern the shifts in power demand at an

EV charging station over two years, focusing on the months

with the lowest and highest consumption. Fig. 3 illustrates

the average daily power demand for February 2021 and 2022.

The comparison reveals no distinct pattern in demand between

the two years. Each year exhibits significant spikes in demand

around 9 AM to 10 AM and again at 6:20 PM, accompanied by

smaller, more frequent spikes roughly every hour. Beyond these

coinciding peaks, there is a notable variability in the demand

patterns between the two years. For instance, a peak in demand

at approximately 9:30 AM in 2021 registers at 13 kW, whereas

in 2022, the demand at the same time is significantly lower at just

2.5 kW. Additionally, the demand spikes in 2022 are generally

more significant, in the range of 10–14 kW, contributing to a
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Fig. 3. Average daily power demand for February.

Fig. 4. Average daily power demand for July.

40% rise in power consumption for February 2022 compared to

February 2021. These observations highlight the unpredictable

nature of power demand at the charging station during the

colder months, which are traditionally associated with lower

consumption despite an overall increased demand.

D. The Highest Charging Consumption Month

Fig. 4 presents the average daily power demand for July

in 2021 and 2022 at the EV charging station, highlighting a

more consistent and coherent pattern of charging demand for

both years. The power demand for both years typically rises

at 8 AM and tapers off around 8 PM, forming a bell curve.

The early morning and late evening demands are similar for

both years. However, the afternoon and early evening hours

of 2022 show notably higher demand, with more pronounced

hourly spikes, echoing the pattern observed in February. The

peak average power demand during a 15-minute interval in

2022 reached 107.5 kW around 3 PM, in stark contrast to the

corresponding period in 2021, which saw a demand just shy of

40 kW. These significant demand peaks are observed throughout

the day, including 1:30 PM, 3 PM, 5:30 PM, and 7 PM.

Similar to the trends observed in Figs. 1 and 2, the Covid-19

pandemic in 2021 significantly influenced EV travel behaviors.

Many travelers chose not to stop at the rest area for lunch or

a coffee break, leading to a substantial decrease in charging

demand between 13:00 and 15:00 in 2021 compared to 2022.

The fluctuations in tourist activity around multiple attractions,

including National Parks and Historical Sites, significantly in-

fluence the analysis for February and July. The selection of

these months for detailed examination intends to highlight the

variations in charging demand that mirror the annual peaks and

troughs in visitor numbers. Figs. 3 and 4 collectively demon-

strate an increase in average power demand at the Level-3 EV

charging station along an interstate between 2021 and 2022. In

months with traditionally lower consumption, such as February,

there is an overall increase in demand, though the daily demand

patterns remain quite erratic for both years. Conversely, in higher

consumption months like July, there is a noticeable consistency

in demand patterns, with notable increases in average demand

during the afternoon and early evening hours between the two

years. These observations suggest that power companies and

EV charging station operators should carefully consider these

fluctuating demand patterns based on the time of year. Such

insights are crucial for accurately assessing the load and impact

of EV charging stations on interstate systems, aiding in better

resource allocation and infrastructure planning to accommodate

varying demand levels throughout the year.

E. Seasonal Charging Patterns

In this study, a detailed monthly analysis of power consump-

tion and demand at an interstate EV charging station revealed

a distinct correlation with seasonal temperature variations. To

understand the impact of seasonal changes on power consump-

tion and demand, the data was categorized into four distinct

seasons based on the local climate characteristics, which are

Winter (December-February), Spring (March-May), Summer

(June-August), and Fall (September-November). The findings,

detailed in Fig. 5, provide a comparative analysis of the average

daily power consumption for each season at the charging station

across the years 2021 and 2022.

The analysis in Fig. 5 highlights that Summer months ex-

hibit significantly higher power consumption levels compared

to other seasons. The consumption levels in Spring and Fall

are moderately consistent, averaging between 300–400 kWh.

Notably, Fall showed the most pronounced increase in average

daily consumption year-over-year, with a 32% surge, equating to

an additional 91.14 kWh. Similarly, Spring, Summer, and Winter

also experienced increases, albeit with different magnitudes,

ranging from 9-12% and equating to increases of 24.17 kWh,

74.17 kWh, and 11.69 kWh, respectively. To provide a com-

prehensive understanding of these seasonal shifts, the paper

will further analyze the average daily power demand during the

Winter and Summer seasons for both 2021 and 2022.
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Fig. 5. Average daily charging consumption each season.

Fig. 6. Average daily power demand for Winter.

Fig. 6 illustrates the average 15-minute interval power demand

during the Winter season for the years 2021 and 2022 at the

EV charging station. The data initially appears quite erratic

throughout the day. However, a closer examination reveals sim-

ilar patterns in early morning and late evening demand across

both years. There are noticeable hourly demand spikes during

the daytime, though their intensity varies by year. In 2021, the

most significant spikes occurred at approximately 5 PM (nearly

15 kW) and 12 PM (12.5 kW), with other relatively minor

spikes. In contrast, 2022 doesn’t exhibit spikes as high as 15 kW

but shows several substantial spikes around 10 AM, 11 AM,

2 PM, 5 PM, and 6:30 PM, each close to 12 kW. This pattern

of increased demand spikes contributes to the overall higher

consumption observed in Winter 2022 compared to 2021.

Fig. 7 presents a totally different scenario for the Summer

season’s average daily power demand in 2021 and 2022. The data

reveals a much higher overall demand with more consistent and

less variable patterns compared to Winter. Both years display a

Fig. 7. Average daily power demand for Summer.

Fig. 8. Average daily power consumption per week.

more pronounced bell curve, with similar early morning and late

evening demands. The demand in both years starts to increase

around 8 AM and begins to decrease after 6:30 PM, lasting

until around midnight. The peak demand period, from 11 AM to

6:30 PM, shows significantly higher demand in 2022 compared

to 2021. The highest demand shifts from 58 kW at 11 AM in 2021

to 69 kW at 2:30 PM in 2022, with 2022 consistently maintaining

higher demand levels throughout this period, except for a few

brief intervals where 2021 surpasses.

F. Weekly Charging Patterns

This section of this study examines the influence of the day of

the week on charging consumption at the charging station over

two years. Fig. 8 presents the average daily power consumption

for each weekday at the charging station for 2021 and 2022. The

data indicates that the weekends, encompassing Friday through

Sunday, experience higher average consumption compared to

the weekdays.
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Fig. 9. Charging behavior index for each month.

IV. CHARGING BEHAVIOR AND LOAD FACTORS

A. Behavior Difference Index Term

To distinguish the chaotic charging behaviors across 2021

and 2022, the demand data for each month is normalized in this

study. This normalization enables a clearer explanation of the

parallels or discrepancies in charging behaviors across the two

years.

To quantitatively assess the variations in charging behaviors

between the two years, this paper introduces a novel metric

termed the Charging Behavior (CB) Index. The CB Index is pro-

posed to quantify the degree of similarity or disparity between

two datasets, with a value of 0 indicating identical behavior

and values approaching infinity signifying complete divergence.

This index provides a standardized way to evaluate and compare

charging patterns over different time periods. CB is defined

in (1) as

CB =

n∑

n=1

|2021Datan − 2022Datan| (1)

where n is the number of data points and 2021Data and

2022Data are normalized data sets for identical time periods,

such as months, seasons, days, etc. If CB is zero, that means

the demands for both years are identical leading to the same

behavior. The larger the CB is, the more the behaviors deviate

from each other. In Fig. 9, the charging behavior of each month

in 2021 and 2022 are plotted.

The analysis reveals distinct seasonal trends in charging be-

havior at the EV charging station when comparing data from

2021 and 2022. During the colder months, specifically January,

February, and March, the charging behavior exhibits consider-

able inconsistency, as reflected by higher Charging Behavior

(CB) index values. Conversely, the charging patterns tend to

be more aligned in the warmer months of May, June, and July,

indicated by lower CB values. March recorded the highest CB

value at 20.01, signifying a significant disparity in charging

behavior between the two years, while June presented the lowest

CB value at 8.71, indicating greater similarity. To enhance

Fig. 10. Normalized average daily power demand for June.

the understanding of these variations in charging demand, the

study includes a graphical representation of the normalized

average daily power demand for months exhibiting high, low,

and transitional CB values. This graphical analysis provides a

more detailed perspective on the similarities and differences in

charging patterns at the station between 2021 and 2022 across

different times of the year.

B. Daily Demand of Charging Behaviors Comparison

As shown in Fig. 9, June has the lowest Charging Behavior

(CB) index of 8.71 and exhibits the most significant similarity

in charging patterns between 2021 and 2022, as indicated by

the data. Fig. 10 displays the normalized average power demand

for June in both years, showing high consistency with only a

few notable variances. Key deviations are observed at 10 AM,

11:30 AM, and 6:30 PM. Specifically, at 10 AM, the 15-minute

demand in 2021 surpasses that of 2022, whereas the 11:30 AM

and 6:30 PM intervals show higher demand in 2022 compared

to 2021.

Distinguishing from the low CB value of June and March,

with a high CB of 20.01, exhibits notably less similarity in

charging behaviors between 2021 and 2022, as depicted in

Fig. 11. The demand patterns for this month are characterized by

frequent spikes and rapid decreases, occurring at varying times

and intensities across the two years. During the early hours from

12 AM to 10 AM, the 2022 data reveals four pronounced spikes

in demand at 1:30 AM, 4:30 AM, 6 AM, and 9 AM, which

are not mirrored in the 2021 demand profile. In the daylight

hours, both years demonstrate erratic and inconsistent demand

patterns. A particularly stark instance is observed in 2022, where

the demand sharply transitions from the peak 15-minute interval

to nearly zero between 6 PM and 7 PM.

The reduced consistency and lower base demand during the

winter months, attributed to fewer travelers on the interstates

in the region, contribute to this variability. Such seasonal fluc-

tuations in travel patterns lead to a more unpredictable and

less comparable charging behavior, particularly in months like

March.
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Fig. 11. Normalized average daily power demand for March.

Fig. 12. Monthly load factor of 2021 and 2022.

C. Load Factors

To understand the charging load characteristics, the daily load

factor of this charging station is also analyzed and plotted for

2021 and 2022. In power systems, the daily load factor is defined

as follows:

Daily Load Factor =
Daily Average Load

Daily Peak Load
× 100%

Based on the results in Fig. 12, warm months have relatively

larger load factors than cold months. It means that the charging

station is used more consistently during warmer months. This is

mainly due to increased travel and outdoor activities in warmer

weather in the Northern US, leading to a steadier use of EV

charging services.

V. TRAFFIC COUNTS AND CHARGING BEHAVIOR REGRESSION

ANALYSIS

The Introduction of this paper highlighted the utilization of

traffic counts for forecasting EV charging load in recent publi-

cations, which assume that EV charging demand is proportional

Fig. 13. Average daily traffic number of each month in 2022.

Fig. 14. Daily charging consumption and daily traffic volume of 2022.

to traffic flows. This concept posits that increased road traffic

correlates with more electric vehicles. To examine the validity

of this assumption, the study received hourly traffic data from

the regional Department of Transportation. An analysis was then

conducted to explore the correlation between traffic counts and

EV charging demand, aiming to either substantiate or question

this widely held belief and to enhance the understanding of

the interplay between road traffic patterns and EV charging

activities. In this section, the average daily traffic pattern of each

month in 2022 is plotted in Fig. 13, which shows that August

has the most traffic counts passing through the charging station,

and December 2022 has the least traffic counts. The traffic flow

patterns closely follow the daylight time.

A. Charging Load Consumption and Traffic Counts

Fig. 14 presents a plot of the daily charging power consump-

tion and corresponding traffic volumes for 2022. It shows a

relatively linear regression between daily charging power con-

sumption and daily total traffic volume. To further investigate the

correlation between daily charging power consumption and

daily traffic volumes, the degree of linearity in these relation-

ships is quantitatively assessed by the coefficient of determi-

nation, also known as R2. These R2 values are comprehen-

sively detailed in Table I, offering insights into the strength

and consistency of the relationship between traffic volumes and

charging power consumption across different time periods. The

coefficient of determination, denoted as R2, is a pivotal statistical
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TABLE I
R2 FOR EACH MONTH OF 2022

Fig. 15. Winter daily charging behavior and traffic volumes.

metric in regression analysis. It evaluates the model’s goodness

of fit, offering a quantifiable measure of the extent to which

the variance in the dependent variable can be predicted from

the independent variable. This coefficient, expressed as a value

ranging between 0 and 1, essentially captures the proportion

of the total variation in the dependent variable attributable to

the variability in the independent variable, thereby providing

crucial insight into the predictive strength and relevance of the

regression model.

B. Charging Behavior and Hourly Traffic Volume

Table I reveals notable variations in the linear regression

coefficients across different months, indicating a diverse range

of relationships between charging behavior and traffic data. This

section explores the daily correlation between charging patterns

and traffic flow, utilizing hourly data to capture the dynamic

interplay between these variables across different seasons. To

quantitatively assess the disparity between the dynamics of

charging behavior and traffic volumes throughout the day, a

comparative analysis of normalized data points is conducted

for each season. Figs. 15, 16, and 17 present a detailed illus-

tration of this relationship, showcasing the charging behavior

and traffic volume patterns specifically in winter, summer, and

Fig. 16. Summer daily charging behavior and traffic volumes.

Fig. 17. Shoulder daily charging behavior and traffic volumes.

TABLE II
SEASONAL ABSOLUTE DIFFERENCE

the shoulder seasons, respectively. These visual representations

provide a deeper understanding of the temporal fluctuations in

EV charging demand relative to traffic trends under varying sea-

sonal conditions. To quantify the difference between charging

behavior and traffic volumes, the absolute difference (AD) is

defined as follows:

AD =
24∑

t=1

|Normalized Charging Data (t)

−Normalized Traffic Data (t)|

Table II reveals that the AD exhibits a strong seasonal de-

pendency. In the winter season, particularly in the Northern

Authorized licensed use limited to: South Dakota School of Mines & Technology. Downloaded on October 03,2024 at 17:27:34 UTC from IEEE Xplore.  Restrictions apply. 



5360 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 60, NO. 4, JULY/AUGUST 2024

region of the US, the AD is notably higher than during the

summer and shoulder seasons. This trend is primarily attributed

to the reduced proportion of EVs among all traffic during the

colder months compared to warmer seasons. Consequently, this

finding underscores the limitation of relying solely on traffic

counts or data for NEVI-compliant EV charging load forecasting

in Northern regions. It suggests that any charging forecasting

model based on traffic data should be tailored to account for the

seasonal variations in EV percentages.

V. CONCLUSION AND FUTURE WORK

This study provides an analysis of load dynamics at a NEVI-

compliant EV charging station in the Northern High Plains of

the U.S., utilizing two years of actual smart meter data. This

study demonstrates marked seasonal fluctuations in charging

demand, peaking in the warmer months, and identifies a distinct

seasonal relationship between EV charging demand and traffic

volume. Specifically, in the winter, especially in the Northern

US, the AD is significantly greater than in summer and shoulder

seasons. This phenomenon is mainly due to the lower percentage

of EVs used for long-distance travel in the colder months com-

pared to the warmer seasons. This relationship diverges from

the commonly assumed linear regression in previous studies,

suggesting a more complex interplay between these variables

across different seasons. These findings are particularly per-

tinent for the power sector, underscoring the importance of

flexible management strategies for EV charging infrastructure

in rural and seasonally varied regions. The insights gained can

inform resource distribution, policy development, and strategic

planning for upcoming EV charging stations in line with the

NEVI formula program and changing consumer needs. In future

work, as more NEVI-compliant stations are deployed, there is

a need for advanced load forecasting models that incorporate

geographic and traffic data, as well as seasonal influences, to

improve the precision of load predictions for NEVI-compliant

EV charging infrastructure.
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