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Abstract— In this paper, we ask how a system designer should
endow autonomous vehicles with general routing policies that
are guaranteed to prove beneficial in a wide variety of networks
and adoption rates. Previous work has found that programming
autonomous vehicles to be altruistic (i.e., choosing routes in
consideration of their impact on aggregate congestion) can
guarantee improvements in traffic congestion, provided that
enough of the vehicles are autonomous. On the other hand,
it is known that if not all vehicles are autonomous, altruistic
autonomous vehicles can actually cause significant increases
in traffic congestion. Moreover, the benefits of altruistic au-
tonomous vehicles depend in complex ways on the fraction
of vehicles that are autonomous, complicating the designer’s
decision. In this paper, we derive the optimal altruism levels
for autonomous vehicles which obtain significant benefits while
limiting the perverse effects of partial adoption, all without
requiring the designer to know the fraction of vehicles that
are autonomous. We demonstrate that our proposed altruism
levels ensure significant improvements in routing efficiency with
respect to previously-known worst-case guarantees.

I. INTRODUCTION

As society and technology continue to become more
intertwined, there is a growing need to comprehend and
enhance the coordination between human social conduct
and the technological functionality within these systems [1].
Optimally routing traffic in transportation networks is a
canonical problem to study this interplay; it has been well-
established that if individuals select routes to minimize their
own travel time, suboptimal congestion can occur [2].

A popular way to measure the proximity between a given
traffic flow and that of optimal traffic is the ratio between
their total latencies. This concept is known as the price of
anarchy and is defined as the ratio between the total latency
in a system when agents act selfishly (modeled by a Nash
equilibrium) with the total latency that can be achieved if a
system designer coordinates all agents’ routing for the overall
benefit of the system [3]. The price of anarchy is used to bet-
ter understand the degree to which selfish routing undermines
network efficiency. In a given network, the price of anarchy is
an upper bound on how much a system designer can improve
traffic if she is able to implement a centralized routing policy
that considers aggregate total latency, compared to the total
latency that arises from a selfishly routed scheme. Because
centralized routing control is typically not feasible, many
studies have aimed to improve the price of anarchy in a less-
centralized way, employing various techniques such as direct
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fleet routing strategies [4], information dissemination [5], and
monetary rewards or penalties [6].

One promising possibility is to design autonomous ve-
hicles to be altruistic, choosing routes in consideration of
their impact on aggregate road congestion [7], [8]. It is
known that if the system designer could make all vehicles
altruistic, all inefficiencies would be eliminated. However,
it has recently been shown that if the system designer can
make only a fraction of traffic altruistic (as would be the
case with partial autonomous vehicle adoption) and the
autonomous fraction can access only a subset of routes
available, this heterogeneous altruism can paradoxically have
a negative effect on congestion [9]. The potential harm
stemming from altruism in a heterogeneous population can
be modelled similarly to the price of anarchy. Here we take
the ratio between the total latency of congestion resulting
from a heterogeneous population, where a fraction of agents
route altruistically, with that of the total latency stemming
from a homogeneous selfish population; this ratio is known
as the perversity index [9]. If the perversity index is 1,
heterogeneous partial altruism never causes any harm relative
to homogeneous selfishness. However, as the perversity index
exceeds 1 for a class of networks, the total latency of
heterogeneous populations can exceed their homogeneous
analogs.

Thus, the key motivation for our work is that when a
designer is able to centrally design the routing objectives
of all agents in a network, purely altruistic latency functions
always optimize aggregate congestion [7]. However when
the designer can design only a fraction of agents’ latency
functions in the network, and if those agents have only partial
network routing access, altruism can lead to significantly
worsened overall congestion [10]. It remains an open ques-
tion as to whether perversity arises when all traffic has access
to all paths, but only a portion of agents’ latency functions
are designed.

In this paper, we ask the following question: suppose
a fleet of autonomous traffic has access to a subset of
a transportation network, and suppose a system designer
were able to assign partially-altruistic routing policies to the
autonomous agents, then how altruistic should the routing
policies be? Can she select an altruism level to improve
overall congestion without any risk of harm? Our model
considers the impact of imbuing autonomous traffic with
a level of altruism that improves congestion relative to
all-selfish traffic while minimizing the risk of increasing
congestion. This is done by supplying autonomous agents
with altruistic latency functions that consider the impact their
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Fig. 1: The solid plot shows the perversity from seeking only to limit
anarchy. The dashed plot represents the anarchy that arises when the only
concern is to cause no harm. The dotted plot presents the main result of this
paper, showing a marked decrease in network inefficiency when a tradeoff
is sought between anarchy and perversity.

routing choices have on other agents in the network, but
remain cognizant of their potential harm. A summary of our
contributions is as follows:

1) Theorem 3.1 provides the unique altruism level that
optimally balances between reducing anarchy and lim-
iting perversity (given modest restrictions on network
structure). The bound on worst-case congestion that re-
sults from this tradeoff between perversity and anarchy
is presented relative to related work in Figure 1; note
that our improved bound is far lower than previous
guarantees.

2) Lemmas 3.2 and 3.3 provide a tight upper bound on
the perversity index when the autonomous population
is less than half the total population.

II. MODEL AND RELATED WORK
A. Routing Problem

We consider a routing problem for network (V, E), con-
sisting of vertex set V' and edge set E. We write P C 2 to
denote the set of paths accessible to agents, where each path
p € P comprises a set of edges connecting common origin
o to common destination ¢. We restrict network topology to
series-parallel; a network is series-parallel if it is

1) a single edge,

2) two series-parallel networks connected in series, or

3) two series-parallel networks connected in parallel [11].

A unit mass of traffic is routed from o to ¢ and is composed
of two types, those belonging to an autonomous fleet and
the remaining uninfluenced traffic is referred to as selfish.
Autonomous agents comprise mass r?, and selfish users
make up mass 7°, such that r* 4+ r° = 1. Autonomous traffic
can access an arbitrary subset of paths P* C P, and selfish
traffic can access the entire path set P; for convenience, we
denote P° = P to refer to the selfish path set.

For each type 6 € {a,s}, :cg denotes the flow of agents of
type 0 using path p € P?. A feasible flow for type 6 is an
assignmer})t of r? mass of traffic to paths in Y, denoted by
= R‘EPO | such that e af = 1% A network flow is a
combined allocation of autonomous agents and selfish users

to paths, denoted x € Rl;%', such that z, = Yy po ad,

where the flows 27 are feasible for their respective types.

Provided a network flow z, the flow on edge e € E
is given by z. = Zp:eep Zp, and we denote the flow of
type & = {a,s} on edge e by z¢. For each edge ¢ € F,
commute time is expressed as a function of traffic flow and
is associated with a latency function £, : [0,1] — [0, 00),
where (.(x.) is the cost experienced by agents on edge e
with edge flow x.. We assume the latency function for each
edge is a non-decreasing, convex posynomial. For clarity, a
posynomial is defined to be a polynomial with non-negative
coefficients. So, for every e € F,

d
Ze(xe) = Zae,ix; (1)
=0

where d € N, and a.; € R>g.
We measure the cost of a flow by the fotal latency, given

by
L(z) = Z Tele(ze) = Z zply(), 2)

ecE pEP

where we define the latency of path p, given flow x, as
bp(z) =3 cp le(Te).

An instance of a routing problem is fully specified by the
tuple G = (V, E, {{.},P*,P*,r?), and we write G(d,r?)
to denote the set of all routing problems on series-parallel
networks with posynomial latency functions of degree at
most d and autonomous population 2.

B. Heterogeneous Routing Game

In order to understand how autonomous vehicles can
affect congestion within the context of a heterogeneous
population, we model the routing problem as a nonatomic
congestion game. That is, each type of traffic is composed
of infinitely many infinitesimal agents, where the cost selfish
users experience and autonomous agents are programmed to
interpret are determined by their type. Given a flow z, the
cost a selfish user experiences for using path p € P is the
latency of the path:

ly(z) = Zﬁe(xe), 3)

ecp

Intuitively, (3) assumes selfish users are uniform with regard
to their routing policy.

To quantify how the system designer would influence an
autonomous fleet to improve overall congestion, we intro-
duce an altruism design parameter, o € [0, 1] that the system
designer uses to modulate the autonomous agents’ interest in
the impact their routing choices have on others. The altruism
parameter is used in concert with the well known marginal-
cost function [12], so that autonomous traffic is programmed
to interpret the a-marginal cost function. For a given edge,
the a-marginal cost function, denoted ¢2*°>, is given by

églca (xe) = ée(xe) =+ azeﬂle(xe), €]



where ¢ denotes the derivative of ¢. Thus, autonomous traffic
is programmed to interpret the cost of using path p € P? as
the a-marginal cost of the path:

£y (z) = Z 05 (). (%)

ecp

This path cost can be interpreted as the sum of the latency of
the path, and the agent’s sensitivity to their marginal effect
on other agents on the path. An altruistic agent accounts
for the negative congestion they impose on others relative
to their altruism level. Note that altruistic latency functions
of this type are essential in the use of taxation to influence
behavior in congestion games [9]. When o = 0, autonomous
latency functions resolve to the cost selfish users experience.
When o = 1, autonomous agents fully account for their
negative congestion [10], and (5) resolves to the well-known
marginal-cost function for a path:

6 (x) = Z [le(ze) + well ()] (6)

ecp

We assume each agent travels from origin o to destination
t using the minimum-cost path from those available in their
path set. We call a flow = a Nash flow if all agents are
individually using minimum-cost paths relative to the choices
of others. That is, there exists a feasible x® such that the
following condition is satisfied for autonomous traffic:

Vp,p' € P2l > 0 == 0 () < (5% (z),  (7)

and there exists a feasible z°® such that the following condi-
tion is satisfied for selfish traffic:

Vp,p' € PPal > 0= £y(x) < by (). )

Further, the existence of a Nash flow for any nonatomic
congestion game of the aforementioned structure is well
known [13]. An instance of a heterogeneous routing game
with routing problem G and altruism level « is fully specified
by the tuple (G, ).

C. Performance Metrics: Price of Anarchy and Perversity
Index

A system designer may wish to select altruism levels that
suppress the total latency of routing relative to optimal traffic
routing. We write £ (G, «) to denote the total latency of a
worst-case Nash flow for heterogeneous routing problem G
and altruism parameter «, and let £*(G) denote the optimal
flow on G. Then we define the price of anarchy of a class
of games G(d, r*) as the worst-case ratio of the total latency
of a heterogeneous Nash flow with the total latency of an
optimal flow:

L(G, o)

PoA(d,r®, ) = - (G)

sup
Geg(d,ra)

(€))

Given a heterogeneous routing game (G, ), we write
(G,0) to denote the homogeneous version of the routing
game, where all agents in traffic behave selfishly. (G, 0) is
identical to (G, o) with the exception that autonomous traffic

is now programmed with the selfish latency function (3); path
sets and network topology remain the same.

The system designer will seek altruism levels that limit
the worst-case total latency relative to uninfluenced traffic
routing. We write £*(G,0) to denote the total latency of
a Nash flow for (G,0). To capture this worst-case harm,
we study the perversity index to characterize the worst-case
effects of partial altruism in heterogeneous networks [10].
The perversity index captures the potential harm caused
when autonomous traffic is partially altruistic relative to
when the entire population is completely selfish. Thus, it
is similar to the deviation ratio of [14] and the price of risk
aversion of [15]. The perversity index is defined as the worst-
case ratio of the total latency of a heterogeneous Nash flow
with the total latency of a homogeneous selfish Nash flow:

nf
PI(d,r*, ) = LG, )

sup (10)

Geg(dre) L7(G,0)
Intuitively, if G has a large perversity index, there exist
networks in that class of games for which heterogeneous
Nash flows are much worse than the corresponding homoge-
neous Nash flows. In the case that ® = 0, it trivially holds
that since no traffic is autonomous, no harm can be done,
so that PI(d,0,a) = 1. Furthermore, the perversity index
is bounded above by the price of anarchy: PI(d,r? «a) <
PoA(d, r*, ) since £*(G) < L™(G,0) for any G.

For o« = 1, it is known that when all agents are au-
tonomous, the price of anarchy is minimized; likewise, it
is known that when exactly half of traffic is autonomous,
the perversity index is maximized. The aim of this paper
is to use the known results on anarchy and perversity to
find an altruism level that minimizes the price of anarchy
while not allowing the perversity index to become too high.
That is, we use the parameters that characterize best-case
anarchy (r* = 1) and worst-case perversity (r* = 1/2),
to find the level of altruism that best balances the tradeoff
between anarchy and perversity, given that 7* may not be
known to the system designer a priori and may change over
time. To be precise, for any posynomial of degree at most
d, we define the robust altruism level o*(d) as one which
satisfies the following:

1

a*(d) € arginf max {POA (d,1,a),PI (d7 -, a)} . (1D
a€[0,1] 2

That is, a*(d) minimizes the maximum between the price of

anarchy where all traffic is autonomous, and the perversity

index when exactly half of traffic is autonomous.

D. Related Work

1) Altruism and Alternate Experienced Costs in Conges-
tion Games: It is known that in series-parallel networks with
affine latency functions and r* = 1, the total latency in the
presence of altruism is always less than the total latency
when the population is all-selfish [16]. Further, it is known
that in parallel networks, altruism can produce unbounded
improvements over selfishness [17]. In parallel networks
when P? = P® = P, the price of anarchy is improved under



heterogeneous altruism compared to homogeneous selfish-
ness; additionally, the perversity index in these networks is
unity [7], [18]. However, in series-parallel networks with
general latency functions and altruistic fraction r* € (0,1)
where P* # P, perversity is unbounded as the degree of
latency functions d — oo [10]. The worst-case perversity
outside these networks is an open question.

The concept of perversity has been studied as a measure of
how alterations in experienced latency affects total conges-
tion compared to uninfluenced Nash flows; these works study
“deviation ratio” [14] and the “price of risk aversion” [19]
as analogs to the perversity index here. Other works study
the effects altered payoff biases such as pessimism [20] and
uncertainty [16] have on the price of anarchy.

2) Marginal-Cost Pricing: If for each edge e, all users
are homogeneously charged a price of

T () = xegle(xe)v

Nash flows preferable to those when users are charged no toll
are produced regardless of network topology [16], [21]. How-
ever, these guarantees vanish if traffic is heterogeneous in its
toll-sensitivity [9]. The results of this paper regarding the
negative impacts resulting from the design of heterogeneous
partially altruistic systems imply analogous outcomes in
terms of the potential harm caused by sub-optimal marginal-
cost pricing.

(12)

III. CONTRIBUTION: AN OPTIMAL ALTRUISM
PARAMETER FOR SYSTEM DESIGN

A system designer that creates the latency functions
informing the routing policies of an autonomous fraction
of traffic will likely be concerned with how to reduce
overall congestion. However, it is known that heterogeneous
altruistic traffic can be perverse. Thus, a tradeoff must be
sought that balances the goal of reducing congestion with the
risk of harm, especially when a system designer may have
no prior knowledge of the magnitude of 7*. Our main result
optimizes this tradeoff (presented graphically in Figure 2),
and is proven in the following theorem.

Theorem 3.1: Consider the «class of series-parallel
nonatomic congestion games with posynomial path latencies
of degree at most d. Then, the robust altruism level «*(d)
as defined by (11) is the unique solution o € [0,1] of the
following equation:

ad 1
1+ 5 =

—. 13
141
1+ad—d(11+ﬁi‘i)( ¥

The proof of Theorem 3.1 is presented in detail at the end
of this section; all Lemma proofs appear in the Appendix.
We first offer a brief outline of the proof, and discuss the
required lemmas. The proof is completed in three steps:
1) Lemmas 3.2 and 3.3 provide a tight bound for the
perversity index when r* = 1/2.

2) Lemma 3.4 is derived from [7, Theorem 6.7], and
provides a tight bound on the price of anarchy for
rd =1,

a”(d) €arginfmax{PoA(d, 1, a), PI(d,, a)}
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Fig. 2: Price of anarchy (decreasing) plotted with respect to r® = 1, and
perversity index (increasing) plotted with respect to r® = 1/2, each for
« € [0, 1] with posynomial latency functions of degree d € {1,...,4}.

3) The proof is completed by showing PoA (d,1,«) and
PI (d, %, a) intersect at a unique .

We begin with Lemma 3.2, which provides an upper bound
on the perversity index for any r?. Intuitively, it demonstrates
that as the fraction of autonomous traffic grows smaller,
the heterogeneous Nash flow is increasingly similar to a
homogeneous selfish Nash flow.

Lemma 3.2: Let G(d,r®) be the class of series-parallel
nonatomic congestion games with posynomial path latencies
of degree at most d and autonomous population r®. Assume
G € G(d,r*), and let = be a heterogeneous Nash flow
for (G, ) and T be a Nash flow for homogenized network
(G,0). Then the following holds:

L(z) < (1+ adr*)L(Z). (14)
Next, Lemma 3.3 shows that the bound in (14) is in fact tight
for 7* € [0, 3]. Thus, for any posynomial degree d, we can
construct a network that has a worst-case perversity index.

Lemma 3.3: For any d, and any r* € [0, 1], there exists
a nonatomic congestion game G € G(d,r?*) such that the
following holds:

L(x) > (1+ adr*)L(T), (15)
where z is a heterogeneous Nash flow for (G,«) and Z is a
Nash flow for homogenized network (G, 0).

Our final lemma is borrowed from [7, Theorem 6.7] and
modified specifically for our context. It furnishes a tight
bound on the price of anarchy for any « and any d, provided
all traffic is autonomous.

Lemma 3.4 (Chen et al., 2014): Let G(d, 1) be the class
of series-parallel nonatomic congestion games with posyno-
mial path latencies of degree at most d, where all traffic is
autonomous. Assume G € G(d, 1), then the price of anarchy
is given by

1

14+ad—d (ﬁ—“j)Oﬁ).

PoA (d,1,a) = (16)



With the necessary lemmas in hand, we proceed with the
proof of our main result.

Proof of Theorem 3.1: Lemma 3.2 shows that
PI(d,r*,a) < 1 4 adr® for all +* € [0,1], and
Lemma 3.3 provides a set of problem instances where
PI(d,7*, &) > 1+ adr® for any r* € [0, 3]. Thus we can
see that for r® = %, the perversity index has a tight bound:

1 ad
PI — =1+ —.
(50) =145

Similarly, given 7* = 1, Lemma 3.4 provides a tight bound
for the price of anarchy (16), for any «. It is trivial to show
that (17) is increasing as a function of «. To show that (16)
is decreasing as a function of «, it can be demonstrated that
the partial derivative of PoA(d, 1, «) with respect to « is
negative. To complete the proof, we must show that for any
d, there exists an « such that PI (d, 3,a) = PoA (d, 1, ) is
guaranteed. We make use of the following facts: it is clear

that PI(d, £,0) =1, and

A7)

1
PoA (d, 1,0) = >1

1—d< 1)@+ﬂ'_’

1+d

(18)

where (18) follows from the fact that the denominator
is not greater than 1. Also, PI(d,$,1) = 1 + g, and
PoA (d,1,1) = 1 Hence, we have that PoA (d,1,0) >
PI (d, 2,0), and PoA (d,1,1) < PI (d7 ;1), it was also
shown that PoA (d,1,a) is decreasing as a function of
o, and PI(d,%,a) is increasing as a function of «.
Thus, it is guaranteed that a unique o exists such that
PI (d,%, ) PoA (d, 1, «); that is, the robust altruism level

a*(d) defined by (11) is the unique solution to (13). [ ]

IV. CONCLUSIONS

We have shown that a system designer is guaranteed a
unique level of altruism exists and can be found that enables
an autonomous fraction of traffic to maximize the benefit
to society, while minimizing the potential negative impacts
that altruism can produce on series-parallel networks with
posynomial latency functions. Future work will focus on
extending these results to populations without topological re-
strictions, wide-ranging altruism levels, and arbitrary latency
functions; future work will also investigate fully bounding
the perversity that arises from partial altruism with respect
to any fraction of altruistic traffic.

APPENDIX

Here we include the proofs of all supporting lemmas. We
often write A,(Z) to denote the common latency selfish users
experience given homogeneous Nash flow z.

Our final lemma presents an upper bound on the latency
autonomous traffic experiences in a heterogeneous Nash flow.

Lemma 4.1: Let G be a series-parallel nonatomic con-
gestion game with posynomial latencies of degree at most
d. Assume x is a heterogeneous Nash flow for (G,a), T
is a Nash flow for homogenized network (G,0), and that

PI(d,r* &) > 1. For any p € P2, if xy > 0, then we have
the following:

£y (z) < (14 ad)As(T). (19)
Proof of Lemma 4.1: To prove the bound in (19), we will
show the following:

Eg‘c“ () < (1 + ad)As(Z),

where p = arg max{{™¢ (z);p € P*, xj > 0}.

We first show it is without loss of generality that p
exists. Assume first that p does not exist. Then denote
8p = p — Tp; for type 0 € {a,s}, denote 09 = zf — z,
and define P¢ =

Ps \ P2. By convexity of E we have
L(x) = L(T) <) L5 ()

(20)

pEP
= &)+ Y Se(x
pePa pEPE

= > [ere(a) + o50rc(x)] +> 550 (x)

peEP? peEPZ
< Z 55€mc Z 5b€mc Q1)
peEP? peEPE

where (21) follows from the fact that, for any paths p,q,
if 5; > 0 and 5; > 0 (5;l < 0, respectively), it
holds that ()¢ = £7¢ (£, < (¢, respectively) so that
> pepa 056y °(x) < 0. Since p is assumed to not exist for
the moment, it should be clear that for each p € P?, 5; <0;
so that D pa 0p05(z) < 0.

For any path p, define 05" = &5 if 65 > 0, and §5F = 0
otherwise, so that }- cp. 5S€mc(x) < Zpepg 5S+€mc( ),
and 3° cp. o5 tne(x) > 0. Now, for each p € P2 such that
&y > 0, notice that £,,(x) = £,(), thus £, is constant. So,
(21) continues as

Do) + Y () < > Sr@) + Y 55T ee(x)
peEP? peEPZ peP? peEPE
= > S+ 55T
pEP? pEPE
<0, (22)

where (22) follows from the fact that for any p € P2 and
any g € P*, Ly(z) < £y(x) < £7°°(x). Thus we have that
L(z) — L(Z) <0, and thus the perversity index is less than
1 when p does not exist.

Hence we may assume p exists, and continue by supposing
that the bound in (20) is false, then we have:

(1+ ad)Ay(7) < 12 ()

(23)

d
e o+ (14 ad) Z aeﬂvxé] .



It is clear that 1 4+ ad > 0, so we have that

(%) <Z 1(—1:24d +Za“xe
<Z aeo—&-ZaHx
ecp
:gﬁ(x)v

contradicting [16, Proposition 2]. Hence we have obt
the bound in (20), and Nash flow conditions give u
bound in (19) by extension.

Proof of Lemma 3.2: We first derive an upper bour
the cost of autonomous traffic in z. Here, let path p d
x5 > 0, that is, p is any path used by altruistic traffic
so that for any p € P2, if £ (z) > £7°*(z), then z},

Z rily(z) < Z wo by (x)
pEP peEP
ZDIL

pEP
r*(1 4 ad)As(Z),

— fMCa

(25)

where (25) follows from Lemma 4.1. Now, we are ready to
compute the bound in (14):
)+ Y ity (x

x) = Z zyly(z

peEP pEP
< (L=7r")A(Z) +r*(1 + ad)As(Z)  (26)
< (1+ adr*)L(Z), (27

where (26) follows from [16, Proposition 2], and (27) follows
from z being an all-selfish Nash flow. |

Proof of Lemma 3.3: We proceed by construction (depicted
in Figure 3): consider a parallel network consisting of 3
edges, so that £ = {1,2,3}, P* = {1,2} and
Ps =P. Let the latency functions for P be ¢1(z1) = 1+ad,
Uy (xzq) = W’ and ¢3(x3) = 1, respectively.

Now, z = {0,1 —7r?,r*} is a Nash flow for (G, 0), where
all autonomous traffic routes on path 2, the mass of selfish
traffic routing on path 3 is equal to the autonomous fraction
of traffic, and the remaining selfish traffic routes on path 2.
This flow is feasible, since r* < r®, and Nash conditions
are satisfied as ¢5(1 —r®) = £3(r®) < ¢1(0). Next, we show
that z = {r®,1 — r*,0} is a Nash flow for (G,a). It is
feasible since 1 —7* < 75, and the latency autonomous traffic
experiences is a Nash flow as £ (r®) < £5°°>(1 — r2).
Now, selfish traffic will never use path 1 in any Nash flow,
since ¢1(0) = 1 4+ ad > 1 = £o(r®). Finally, straightforward
computation shows that £(Z) = 1, and L(z) = 1 + adr® =
(1 + adr®)L(z). Thus, the bound in (15) is obtained. N
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