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Abstract— Vehicle-to-Vehicle (V2V) communication is in-
tended to improve road safety through distributed information
sharing; however, it is difficult to predict and optimize how
human agents will respond to this information. In a Bayesian
game, agents probabilistically adopt various types from a
fixed, exogenous distribution. Agents in such models ostensibly
perform Bayesian inference, which may not be a reasonable
cognitive demand for most humans. To complicate matters, real-
world information provided to agents is often implicitly depen-
dent on agent behavior, meaning that the distribution of agent
types is a function of the behavior of agents (i.e., the type distri-
bution is endogenous). In this paper, we study an existing model
of V2V communication, but relax it along two dimensions:
first, we pose a behavior model which does not require human
agents to perform Bayesian inference; second, an equilibrium
model which avoids the challenging endogenous recursion.
Surprisingly, we show that the simplified non-Bayesian behavior
model yields the exact same equilibrium behavior as the original
Bayesian model, which may lend credibility to Bayesian models.
However, we also show that the endogenous type model is neces-
sary to obtain certain informational paradoxes; these paradoxes
do not appear in the simpler exogenous model. This suggests
that standard Bayesian game models with fixed type distribu-
tions are not sufficient to express certain important phenomena.

I. INTRODUCTION

As technology becomes more omnipresent in today’s soci-
ety, technological solutions are being developed for a broad
range of applications. These applications increasingly include
areas that have complex interactions with human society,
such as the Internet of Things (IoT) and smart infrastruc-
ture concepts like vehicle-to-vehicle (V2V) communication.
These interactions present a unique challenge to engineers,
as prior work has shown that naively implemented solutions
can unintentionally worsen the problems they were designed
to solve [1], [2]. In particular, we consider the context of a
traffic congestion game, where it is commonly known that
selfish individual behavior is not socially optimal [3]–[5].

Prior work has considered various mechanisms to influ-
ence agents to choose socially optimal behaviors, such as
financial incentives [6], [7]. Bayesian persuasion does this
through information design, by strategically revealing or con-
cealing information to change the posterior beliefs of these
agents [8]–[10]. For example, one goal of V2V technology
is to improve driver safety by broadcasting warning signals
about road hazards. When a driver receives such a warning
(even if it may be incorrect), they have a stronger belief that
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the road is unsafe, and are more likely to drive carefully.
However, there are many limitations to information design.

First, Bayesian persuasion requires agents to be highly
rational, but experiments have shown this may not be the
case [11]–[17]. Furthermore, formal statistical statements,
Bayes’ Theorem in particular, are often misunderstood [18].
Assuming that human agents can quickly and accurately
perform this calculation is likely unrealistic. Second, the
optimal information sharing policy is often non-trivial. Prior
work has shown that full information sharing may be sub-
optimal, or even worse than no information sharing [3],
[9], [19]–[21]. Additionally, in many applications, the shared
information is implicitly a function of agent behavior; adding
complexity to the optimization problem.

Our work addresses both of these issues, using a con-
gestion game where V2V cars can share information about
accidents, introduced in [1]. We begin by posing a novel
model of agent decision-making which does not require
agents to perform Bayesian inference, re-framing the original
Bayesian, incomplete information game to a non-Bayesian,
imperfect information game. Surprisingly, we show that non-
Bayesian equilibrium behavior exactly matches that of the
original Bayesian model. This relaxes rationality expecta-
tions on human drivers, potentially improving the credibility
of the Bayesian model. This is reminiscent of Harsanyi’s
classic work, but we believe that our characterization is not a
direct consequence of [22] due to the addition of non-atomic
agents and endogenous distribution of agent types.

Next, we investigate the relationship between model com-
plexity and expressiveness by considering two classes of
models. The simpler approach assumes that the probability
of an accident (and thus the distribution of which agents
receive which types of signals) is a constant model parameter,
unaffected by emergent behavior (i.e. it is exogenous). Note
that this is the standard approach in information design
problems in the literature; road hazards or highway delay
characteristics are almost universally assumed to be drawn
from some fixed, known distribution [3]–[5], [23], [24].

However, our recent work [1] has considered models
with an endogenous accident probability, expressing it as a
function of equilibrium behavior. In this paper, we show that
though the simpler exogenous models are easier to analyze,
they are qualitatively different from the endogenous models.
In particular, in endogenous models, a paradox can occur
where information sharing worsens social cost. By contrast,
this can never occur in the simpler (more standard) exoge-
nous model, suggesting that the popular modeling framework
of Bayesian games with fixed agent type distributions may
sometimes be insufficient to express important phenomena.



II. MODEL

A. General Setup

Our model consists of a non-atomic, unit mass of agents
(drivers) interacting on a single road. On this road, traffic
accidents either occur (A) or do not occur (¬A). Throughout,
we use P(E) to represent the probability of event E.

Drivers are able to choose to drive carefully (C) or reck-
lessly (R). Careful drivers consistently choose slower, safer
driving behaviors while reckless drivers choose faster, riskier
behaviors. Reckless drivers “pile on” to existing accidents
and experience an expected cost of r > 1; however, careful
drivers regret their caution if an accident is not present and
feel a regret cost of 1. These costs are collected in this matrix:

Accident (A) No Accident (¬A)
Careful (C) 0 1

Reckless (R) r 0

Each driver has type τ ∈ T , and strategies Sτ . A strategy
s ∈ Sτ for a driver is a procedure to choose which action to
play given the information they know. Let xs

τ be the mass of
drivers of type τ choosing strategy s ∈ Sτ , and describe all
agents’ behavior by the tuple x = (xs

τ )τ∈T ,s∈Sτ
. Let xτ be

the total mass of drivers of type τ , so that
∑

s∈Sτ
xs
τ = xτ .

A fraction y of agents drive cars with V2V technology.
These cars can autonomously detect accidents and broadcast
signals about them. If an accident occurs, a “true positive”
signal is broadcast with probability t(y); otherwise, a “false
positive” is broadcast with probability f(y) < t(y). Any
broadcasted signals are received by all V2V drivers.

Counter-intuitively, sharing perfect information about the
environment can make parts or all of the population worse
off. Accordingly, [1] introduced the parameter β to describe
the information quality of V2V technology. In the event that
a warning signal is broadcast (B), a V2V car may not always
display a warning signal (S) to its driver; it will do so with
probability β = P(S|B) ∈ [0, 1]. Therefore, we have that

P(S) = β(P(A)t(y) + (1− P(A))f(y)). (1)

The system planner performs information design on the value
of β to minimize accident probability and social cost.

An attractively simple approach to analysis is to let the
probability of an accident be a constant that is unaffected
by social behavior; this approach has been used previously
in related literature [5], [7]. We call this case an exogenous
accident probability, and refer to it as P(A) = P̄ ∈ [0, 1].

However, we expect that reckless driving habits would
lead to more frequent accidents. Therefore, we allow accident
probability to be endogenously affected by driver behavior.
Write d ∈ [0, 1] for the overall fraction of reckless drivers,
and p(d) for the resulting probability of an accident. We
assume that p is a continuous, strictly increasing function,
so more reckless drivers cause accidents to be more likely.

Intuitively, strategies where drivers are more reckless
should cause more accidents; to measure this, let ρ(τ, s, P )
be the probability that a driver of type τ ∈ T choosing
strategy s ∈ Sτ is reckless given accident probability P .

The endogenous accident probability resulting from a
behavior tuple x for driver types T is described implicitly
as a solution to the recursive relationship:

PT (x) = p

(∑
τ∈T

∑
s∈Sτ

ρ(τ, s, PT (x))x
s
τ

)
. (2)

By [1, Proposition 2.1], this relation always has a solution.
We consider two classes of games, distinguished by either

exogenous or endogenous accident probabilities. We write
the former as the tuple Ḡ = (β, y, r, P̄ ), and the latter as G =
(β, y, r). For both types of games, equilibrium conditions
come from the standard Nash idea: a behavior tuple x is an
equilibrium of G if for any type τ and any strategy s ∈ Sτ ,

xs
τ > 0 =⇒ Jτ (s;x) = min

s∈Sτ

Jτ (s;x). (3)

That is, if an agent is choosing a strategy, its cost to them
is minimal.

Finally, we define social cost as the expected cost incurred
by the entire population:

JT (x) =
∑
τ∈T

∑
s∈Sτ

Jτ (s, x)x
s
τ . (4)

We abuse notation and write PT (G) to mean PT (x) and
JT (G) (or JT (Ḡ)) to mean JT (x) where x is an equilib-
rium of the game G (or Ḡ).1

B. Driver Decision Models

We consider two interpretations for the effect of V2V
technology on the behavior of V2V drivers.

1) Bayesian Agents: The traditional approach for a
Bayesian game is studied in Section IV (generalizing the
specific case considered in [1]). There are three types of
agents: non-V2V drivers, V2V drivers who receive a signal,
and V2V drivers who do not receive a signal. Non-V2V
drivers must use the prior probability of an accident to
calculate their expected costs, but V2V drivers can use the
posterior probability after the signal realization.

We call this the Bayesian set of types, and write it TB =
{n, vu, vs} for non-V2V, unsignaled V2V, and signaled V2V
drivers respectively. It can be quickly seen that the mass of
drivers in each group is xn = 1 − y, xvu = P(¬S)y, and
xvs = P(S)y. Each type has the strategies Sn = Svu =
Svs = {C,R}, with the accompanying cost functions:

Jn(s;x) =

{
1− P(A) if s = C,

rP(A) if s = R,
(5)

Jvu(s;x) =

{
1− P(A|¬S) if s = C,

rP(A|¬S) if s = R,
(6)

Jvs(s;x) =

{
1− P(A|S) if s = C,

rP(A|S) if s = R.
(7)

1It can be shown that any two equilibria of the same game have equal
accident probability and social cost. See the proof of Lemma 4.2 for a
formal treatment of this idea in exogenous games, and Lemma 5.4 for the
same in endogenous games.



2) Non-Bayesian Agents: Alternatively, Section V models
V2V drivers who do not perform Bayesian updates. There are
non-V2V and V2V drivers (TI = {n, v}), with xn = 1 − y
and xv = y. Instead of calculating a posterior, V2V drivers
choose between trusting (T) the signal completely (assuming
that the presence of a signal implies the existence of an
accident, and vice versa), or ignoring it completely, using the
prior to calculate an “assumed” cost. Drivers have strategies
Sn = {C,R} and Sv = {T,C,R}, with cost functions:

Jn(s;x) =

{
1− P(A) if s = C,

rP(A) if s = R.
(8)

Jv(s;x) =


P(¬A ∩ S) + rP(A ∩ ¬S) if s = T,

1− P(A) if s = C,

rP(A) if s = R.

(9)

The timeline of non-Bayesian games is shown in
Figure 1. Note its differences from [1, Figure 1] (describing
the behavior of Bayesian agents). Non-Bayesian V2V agents
must choose a strategy before the signal realization, and can
only use the signal if they commit to trusting it completely.

III. MAIN RESULTS

Our first result is that Bayesian games of incomplete infor-
mation can be reinterpreted as imperfect information games,
reminiscent of [22]. This allows us to remove the heavy
cognitive burden of Bayes’ Theorem from agent calculations,
producing a more credible model of human behavior.

Theorem 3.1: Let G = (β, y, r) be a game with en-
dogenous accident probability, and Ḡ = (β, y, r, P̄ ) be an
exogenous game. Then,

JTB
(Ḡ) = JTI

(Ḡ), (10)

and

PTB
(G) = PTI

(G), (11)
JTB

(G) = JTI
(G). (12)

Proof: Equation (10), concerning the social cost of
exogenous games, is proven by Lemma 5.3 in section V-
B. Equations (11) and (12), analogous statements for en-
dogenous games, are proven by Lemma 5.6 and Lemma 5.7
respectively in section V-C.

Theorem 3.1 shows that any outcome of a Bayesian signal-
ing game can be captured by a decision model where drivers
completely trust or ignore the signal’s information. This gives
us freedom to analyze assuming Bayesian or non-Bayesian
drivers, whichever is more convenient. Additionally, since
the social costs induced by both models are equivalent, we
now write simply J (G) for the social cost of G, where G can
be interpreted as either a Bayesian or non-Bayesian game.

Our second result concerns the modeling of accidents.
Using an endogenous accident probability complicates model
analysis, so it is natural to ask whether the same character-
istics can be captured by an exogenous model. However,
this is not the case. In particular, equilibrium social cost can
paradoxically be increasing with information quality [1], but
only when accident probability is endogenous.

Theorem 3.2: Fix y ∈ [0, 1], r > 1, and P̄ ∈ [p(0), p(1)].
Consider β1, β2 ∈ [0, 1] with β1 < β2. Let Ḡ1 =
(β1, y, r, P̄ ) and Ḡ2 = (β2, y, r, P̄ ) be signaling games with
exogenous accident probability. Then, it is always true that

J (Ḡ1) ≥ J (Ḡ2). (13)

Similarly, Let G1 = (β1, y, r) and G2 = (β2, y, r) be sig-
naling games with endogenous accident probability. Counter-
intuitively, there exist parameter combinations where

J (G1) < J (G2). (14)
Proof: In games between Bayesian drivers, Lemma 4.2

proves (13), and Lemma 4.3 shows that (14) can be satisfied.
Then, by Theorem 3.1, these results also hold for games
between non-Bayesian drivers. This completes the proof.

IV. BAYESIAN AGENTS

We first consider a scenario where V2V drivers perform
Bayesian updates on the probability of an accident using
the warning signal realization. Analysis proceeds as fol-
lows: Lemma 4.1 establishes necessary conditions of any
equilibrium (with either exogenous or endogenous accident
probability) by describing behavior when drivers have a
strict preference for one strategy. This result is sufficient to
prove (13), which we do in section IV-B, Lemma 4.2. Finally,
in section IV-C, Lemma 4.3 gives the counter-intuitive result
that social cost may be increasing with information quality,
but only if accident probability is endogenous.

A. Necessary Equilibrium Conditions

We divide V2V drivers by whether or not they have
seen a warning signal, giving the set of driver types TB =
{n, vu, vs}. Using the calculated posterior probability, V2V
drivers choose between the pure strategies of always driving
carefully or always driving recklessly.

The following thresholds are useful in our analysis:

Pvs :=
f(y)

rt(y) + f(y)
, (15)

Pn :=
1

1 + r
, (16)

Pvu :=
1− βf(y)

1 + r(1− βt(y))− βf(y)
, (17)

where it holds that:

Pvs < Pn ≤ Pvu. (18)

Note that (by Bayes’ Theorem and (5)-(7)):

Jvu(R;x)
<
=
>

Jvu(C;x) ⇐⇒ P(A)
<
=
>

Pvu, (19)

Jvs(R;x)
<
=
>

Jvs(C;x) ⇐⇒ P(A)
<
=
>

Pvs (20)

We use this notation to mean that an ordering on the first
expressions is equivalent to the same ordering on the later
expressions. Equality and both inequalities are preserved.

Using (5)-(7), we are now equipped to state the necessary
conditions of any equilibrium:
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Fig. 1. Timeline of decisions and events for non-Bayesian drivers.

Lemma 4.1: If x is a Bayesian signaling equilibrium, then

xR
n =

{
0 if P(A) > Pn,

1− y if P(A) < Pn,
(21)

xR
vu =

{
0 if P(A) > Pvu,

P(¬S)y if P(A) < Pvu,
(22)

xR
vs =

{
0 if P(A) > Pvs,

P(S)y if P(A) < Pvs.
(23)

Proof: These all follow from (3), (5)-(7), and (19)-(20).
Assume by way of contradiction that P(A) > Pvu, but

xR
vu > 0. By (19), P(A|¬S) > 1

1+r . Then, (6) gives that

Jvu(R, x) = rP(A|¬S) > 1− P(A|¬S) = Jvu(C, x).

But this clearly contradicts (3), since xR
vu > 0. The proof of

the remaining cases is similar.

B. Exogenous Crash Probability
Let accident probability be an exogenous constant P̄ .

Then, social cost is decreasing with information quality β.
Lemma 4.2: Let β1 < β2 ∈ [0, 1], and Ḡ1 = (β1, y, r, P̄ )

and Ḡ2 = (β2, y, r, P̄ ) between exogenous, Bayesian signal-
ing games. Then, JTB

(Ḡ1) ≥ JTB
(Ḡ2).

Proof: Let Pvu1, Pvu2 be the threshold Pvu for β1 and
β2, respectively. Note that Pvu1 < Pvu2 since f(y) < t(y).

First, assume that P̄ > Pvu2 > Pvu1. By (18) and
Lemma 4.1, P̄ > Pn > Pvs so xR

n = 0, xR
vu = 0, and

xR
vs = 0 for any equilibrium of Ḡ1 or Ḡ2. Thus, (4)-(7) give

JTB
(Ḡ1) = 1− P̄ ≥ JTB

(Ḡ2),

and we are finished in this case.
Now, assume P̄ = Pvu2 (implying P̄ > Pvu1). By (18),

Pvs < Pn < P̄ , so by Lemma 4.1, xR
n = 0 and xR

vs = 0 in
any equilibrium of Ḡ1 or Ḡ2. Let x1 be an equilibrium of Ḡ1

and x2 one of Ḡ2. By the above, JTB
(Ḡ1) = 1− P̄ . By (7),

Jvu(C, x2) = Jvu(R, x2). Thus,
∑

s∈Svu
Jvu(s, x2)x

s
vu2 =

Jvu(R, x)P(¬S)y, so (4) simplifies to

JTB
(Ḡ1) = 1− P̄ ≥ 1− Pvu2 = JTB

(Ḡ2),

and we are again finished. A similar technique is used when
Pvu1 = P̄ < Pvu2, Pn < P̄ < Pvu1, P̄ = Pn, Pvs < P̄ <
Pn, P̄ = Pvs, or P̄ < Pvs, completing the proof.

Lemma 4.2 shows that higher quality information will
never increase social cost for exogenous accident probabil-
ities, which is perhaps the expected result. However, this is
not necessarily true for endogenous accident probabilities.

C. Endogenous Crash Probability

Now consider Bayesian signaling games with endoge-
nous accident probability. Recall the agent types: non-V2V
drivers, unsignaled V2V drivers, and signaled V2V drivers.
Drivers of each type τ ∈ TB have only the pure strategies of
driving carefully or recklessly, where ρ(τ,R, PTB

(x)) = 1
and ρ(τ,C, PTB

(x)) = 0. Therefore, (2) simplifies to

P(A) = PTB
(x) = p

(
xR
n + xR

vu + xR
vs

)
. (24)

In this case, the model is identical to the one described in
[1]; we simply reference the previous result.

Lemma 4.3 ([1, Proposition 3.8]): There exist games be-
tween Bayesian drivers with endogenous accident probability
such that social cost at equilibrium is increasing with β.

V. NON-BAYESIAN AGENTS

We now discuss games with agents who do not perform
explicit Bayesian updates. Analysis generally follows the
same path as section IV. Lemma 5.1 describes the behavior
of agents who strictly prefer one strategy, giving necessary
conditions for an equilibrium of any such game.

We then characterize the equilibria of these games.
Lemma 5.2 describes social cost with exogenous accident
probability, and Lemmas 5.4 and 5.5 relate an endogenous
accident probability to game parameters. Finally, we compare
these quantities to those induced by Bayesian agents, and
show they are identical (Lemmas 5.3, 5.6, and 5.7).

A. Necessary Equilibrium Conditions

To model the behavior of non-Bayesian agents, we use
the set of driver types TI = {n, v}, representing non-V2V
drivers and V2V drivers, respectively. All drivers have the
pure strategies of always being careful or always being reck-
less (using the prior probability of an accident to compute
expected cost), but V2V drivers additionally have the option
to fully “trust” the signal, believing the presence of a warning
light implies the existence of an accident and the inverse.



Again, we use thresholds to describe behavior. By (9),

Jv(T;x)
<
=
>

Jv(C;x) ⇐⇒ P(A)
<
=
>

Pvu, (25)

Jv(R;x)
<
=
>

Jv(T;x) ⇐⇒ P(A)
<
=
>

Pvs (26)

Crucially, Bayes’ Theorem was never necessary for these
calculations, yet they give the same behavior thresholds
as (19) and (20). This gives a compelling argument that
Bayesian and non-Bayesian behaviors are equivalent. Since
both models are making the same decisions, it is unsurprising
that the resulting equilibria are identical. We now make an
analogous statement to Lemma 4.1 using (25) and (26).

Lemma 5.1: For any equilibrium of x of a signaling game,

xR
n =

{
0 if P(A) > Pn,

1− y if P(A) < Pn,
(27)

xR
v =

{
0 if P(A) > Pvs,

y if P(A) < Pvs,
(28)

xT
v =


0 if P(A) < Pvs,

y if Pvs < P(A) < Pvu,

0 if P(A) > Pvu

(29)

Proof: This follows directly from (3), (8)-(9), and (25)-
(26). Assume by way of contradiction that Pvs < P(A) <
Pvu, but xT

v < y. By (25), Jv(T;x) < Jv(C;x), and by
(26), Jv(T;x) < Jv(R;x). Therefore, by (3), xC

v = xR
v = 0.

But since xv = y, this implies xT
v = y, a contradiction. The

proof of the remaining cases is similar.

B. Exogenous Crash Probability

We again begin by assuming an exogenous accident prob-
ability P̄ . Again, we see that models with this assumption
are qualitatively different from those assuming an interde-
pendence between driver behavior and accident probability.

Lemma 5.2: Let β1 < β2 ∈ [0, 1], and Ḡ1 = (β1, y, r, P̄ )
and Ḡ2 = (β2, y, r, P̄ ) be exogenous, non-Bayesian signal-
ing games. Then, JTI

(Ḡ1) ≥ JTI
(Ḡ2).

Proof: This can be shown using a technique identical
to that of the proof of Lemma 4.2.

That is, social cost is non-increasing with information
quality β for these types of games. Furthermore, that social
cost is unaffected by the change in agent decision model:

Lemma 5.3: For any game Ḡ = (β, y, r, P̄ ) with exoge-
nous accident probability P̄ ,

JTB
(Ḡ) = JTI

(Ḡ). (30)
Proof: We again prove this in cases. First, assume that

Pn < P̄ < Pvu. By Lemma 4.1, xR
n = 0, xR

vu = P(¬S)y,
and xR

vs = 0. Similarly by Lemma 5.1, xR
n = 0, xR

v = 0, and
xT
v = y. Then, (4) simplifies to give

JTB
(Ḡ) = JTI

(Ḡ) =

(1− P̄ )(1− y) + rP̄ (1− βt(y))y + ((1− P̄ )βf(y))y,

completing this case. The same technique gives the desired
result if P̄ < Pvs, Pvs < P̄ < Pn, or Pvu < P̄ .

Now, assume P̄ = Pn. By Lemma 4.1, xR
vs = 0, and by

Lemma 5.1, xR
v = 0. By (5) (or equivalently (8)), Jn(R;x) =

Jn(C;x), so
∑

s∈Sn
Jn(s, x)x

s
n = Jn(R, x)(1− y).

If P̄ = Pvu, then a very similar argument implies
that

∑
s∈Svu

Jvu(s, x)x
s
vu = Jvu(R, x)(1 − P(S))y, and∑

s∈Sv
Jv(s, x)x

s
v = Jv(T, x)y. Otherwise, by (18), Pvs <

P̄ < Pvu, meaning xR
vu = (1 − P(S))y by Lemma 4.1 and

xT
v = y by Lemma 5.1. In any case, (4) again simplifies to

JTB
(Ḡ) = JTI

(Ḡ) =

(1− P̄ )(1− y) + rP̄ (1− βt(y))y + ((1− P̄ )βf(y))y,

the desired result. This idea suffices in every case.

C. Endogenous Crash Probability
Finally, we use the non-Bayesian decision model with

an endogenous accident probability. This creates the strat-
egy spaces Sn = {C,R} and Sv = {T,C,R}, where
ρ(τ,R, PTI

(x)) = 1 and ρ(τ,C, PTI
(x)) = 0 for each

τ ∈ TI , and ρ(xv,T, PTI
(x)) = P(¬S). Then, (2) gives

P(A) = PTI
(x) = p(xR

n + xR
v + P(¬S)xT

v ). (31)

Recall that Lemma 5.1 gives equilibrium behavior when
agents strictly prefer one strategy. We now complete this
result for agents who are indifferent between two strategies.

Lemma 5.4: For any game G = (β, y, r), a non-Bayesian
behavior tuple x is a signaling equilibrium if it satisfies
Lemma 5.1 and the following hold:

P(A) = Pn =⇒ xR
n = p−1(Pn)− P(¬S)y (32)

P(A) = Pvs =⇒ xR
v = y (33)

P(A) = Pvs =⇒ xT
v = 0 (34)

P(A) = Pvu =⇒ xT
v =

p−1(Pvu)

P(¬S)
(35)

Furthermore, the behavior tuple x satisfying the above
conditions is essentially unique for G, that is, any equilibrium
x′ satisfies the above conditions or has PTI

(x′) = PTI
(x).

For brevity, the proof is omitted, but largely follows from
algebra and (8)–(9). A complete proof can be found in [25].

Parameter space is partitioned by the following thresholds:

E1U := p(0), (36)
E2U := p(y − (Pvu(t(y)− f(y))β + f(y)β)y), (37)
E3U := p(y − (Pn(t(y)− f(y))β + f(y)β)y), (38)
E4U := p(1− (Pn(t(y)− f(y))β + f(y)β)y), (39)
E5U := p(1− (Pvs(t(y)− f(y))β + f(y)β)y), (40)
E6U := p(1), (41)

and partitions:

E1 := {(β, y, r) : Pvu < E1U}, (42)
E2 := {(β, y, r) : E1U ≤ Pvu ≤ E2U , (43)
E3 := {(β, y, r) : E2U < Pvu ∧ Pn < E3U , (44)
E4 := {(β, y, r) : E3U ≤ Pn ≤ E4U , (45)
E5 := {(β, y, r) : E4U < Pn ∧ Pvs < E5U , (46)
E6 := {(β, y, r) : E5U ≤ Pvs ≤ E6U )}, (47)
E7 := {(β, y, r) : E6U < Pvs}. (48)



These partitions allow us to describe equilibrium accident
probability with finer granularity.

Lemma 5.5: For any non-Bayesian game G = (β, y, r),
G ∈ ∪7

i=1Ei, and

G ∈ E1 =⇒ PTI
(G) = p(0) (49)

G ∈ E2 =⇒ PTI
(G) = Pvu (50)

G ∈ E3 =⇒ Pn < PTI
(G) < Pvu (51)

G ∈ E4 =⇒ PTI
(G) = Pn (52)

G ∈ E5 =⇒ Pvs < PTI
(G) < Pn (53)

G ∈ E6 =⇒ PTI
(G) = Pvs (54)

G ∈ E7 =⇒ PTI
(G) = p(1) (55)

This is proved by a technique similar to that of Lemma 4.1
in [1]. The only difference comes from using the endogenous
accident probability defined by (31) rather than (24). For
brevity, the full proof is omitted, but can be found in [25].

We can now characterize any game G; Lemma 5.5 gives
a restriction on equilibrium accident probability, and Lem-
mas 5.1 and 5.4 yield driver behavior under this restriction.
This behavior shows that Bayesian and non-Bayesian drivers
induce the same accident probability and social cost.

Lemma 5.6: For any endogenous game G = (β, y, r),

PTB
(G) = PTI

(G). (56)
Proof: By Lemma 5.5, G belongs to one of the

equilibrium families E1–E7, so we can show this by cases.
Equilibrium accident probability is restricted as a function

of game parameters by Lemma 5.5 for non-Bayesian agents
and by [1, Lemma 4.1] for Bayesian agents. This gives the
desired result immediately unless G ∈ E3 or G ∈ E5. In the
first case, note that Bayesian agents choose xR

n = 0, xR
vs = 0,

and xR
vu = P(¬S)y as a consequence of [1, Lemma 4.2].

Similarly, non-Bayesian agents choose xR
n = 0, xR

v = 0, and
xT
v = y by Lemma 5.5. Then, by (24) and (31),

PTB
(G) = p(P(¬S)y) = PTI

(G),

which is the desired result.
The proof is similar if G ∈ E5, so we are finished.
Lemma 5.7: For any endogenous game G = (β, y, r),

JTB
(G) = JTI

(G). (57)
Proof: Equilibrium behavior is given by [1, Lemma

4.2]) for Bayesian agents, and by 5.5 for non-Bayesian
agents. Expanding (4) and applying algebra with this be-
havior gives the desired result.

VI. CONCLUSION

This work considered a class of models describing how
human agents respond to road hazard information sharing.
We first showed that games of this kind with incomplete in-
formation can be equivalently interpreted as imperfect infor-
mation games, removing an assumption on human rationality.
We used this fact to prove that models with an endogenous
accident probability can describe scenarios that those with an
exogenous accident probability cannot; namely, that social
cost can be increasing with information quality. Future work
could consider additional alternative descriptions of human
behavior, and possibly use a heterogeneous population.
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sian signaling games in noncooperative communication and control
systems,” Automatica, vol. 107, pp. 9–20, Sept. 2019.

[21] H. Tavafoghi and D. Teneketzis, “Informational incentives for conges-
tion games,” in 55th Annual Allerton Conference on Communication,
Control, and Computing, (Allerton), p. 35, 2017.

[22] J. C. Harsanyi, “Games with Incomplete Information Played by
"Bayesian" Players, I-Iii,” Management Science, vol. 14, pp. 159–182,
Nov. 1967.

[23] Y. Zhu and K. Savla, “Information Design in Nonatomic Routing
Games With Partial Participation: Computation and Properties,” IEEE
Transactions on Control of Network Systems, vol. 9, pp. 613–624, jun
2022.

[24] B. L. Ferguson, P. N. Brown, and J. R. Marden, “Avoiding Unin-
tended Consequences: How Incentives Aid Information Provisioning
in Bayesian Congestion Games,” in 61st IEEE Conference on Decision
and Control, apr 2022.

[25] B. Gould and P. Brown, “Rationality and Behavior Feedback in a
Model of Vehicle-to-Vehicle Communication,” arXiv:2307.03382 [cs],
July 2023.


