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1 Abstract

12 The diffusive tortuosity factor of a porous media quantifies the material’s
13 resistance to diffusion, an important component of modeling flows in porous
14 structures at the macroscale. Advances in X-ray micro-computed tomogra-
15 phy (u-CT) imaging provide the geometry of the material at the microscale
16 (microstructure) thus enabling direct numerical simulation (DNS) of trans-
17 port at the microscale. The data from these DNS are then used to close ma-
18 terial’s macroscale transport models, which rely on effective material prop-
19 erties. In this work, we present numerical methods suitable for large scale
20 simulations of diffusive transport through complex microstructures for the
21 full range of Knudsen regimes. These numerical methods include a finite-
2 volume method for continuum conditions, a random walk method for all
23 regimes from continuum to rarefied, and the direct simulation Monte Carlo
22 method. We show that for particle methods, the surface representation sig-
» nificantly affects the accuracy of the simulation for high Knudsen numbers,
26 but not for continuum conditions. We discuss the upscaling of pore-resolved
27 simulations to single species and multi-species volume-averaged models. Fi-
28 nally, diffusive tortuosities of a fibrous material are computed by applying
20 the discussed numerical methods to 3D images of the actual microstructure
30 obtained from X-ray computed micro-tomography.

31 Keywords: microtomography, tortuosity, microscale modeling, rarefied,
32 diffusion

3 1. Introduction

3 Modeling flow in porous materials is of importance in many research ar-
35 eas, including porous thermal protection systems, energy storage systems,
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porous evaporators, filtration systems, to name a few. Deriving the govern-
ing equations of porous materials at the macroscale often relies on volume-
averaged techniques, in which control volumes with effective material prop-
erties are treated as unit cells of the bulk material. The flow characteristics
of a volume-averaged porous material are often defined by quantities related
to the material micro-structure including the permeability and the diffusive
tortuosity factor. The permeability of a material quantifies the wall drag
resistance to a mean pressure gradient, while the tortuosity characterizes a
material’s effective resistance to diffusion.

The determination of effective transport properties in porous materials
often relies on experimental methods. However, advances in computational
methods enable predicting these properties numerically on realistic complex
microstructures and non-trivial domain sizes [1-3]. These computational
advances have been complemented by advances in X-ray microtomography,
a technique that provides a high-resolution 3D representation of the actual
microstructure of the material[l, 4]. Modern pu-CT technology can provide
3D-images with resolution from centimeter to micron scale. These images
have become a powerful platform on which to numerically compute material
properties [3, 5-7].

Before further discussing the diffusive tortuosity factor, it is worth not-
ing that in the porous media literature, there are three distinct material
properties that are described by the term tortuosity:

1. Hydraulic tortuosity: describes the length of flux streamlines compared
to the straight-line path in a pressure driven flow [8, 9]. The value in
this case is used to express the permeability in terms of parameters
that reflect the geometry of porous materials [8].

2. Geometric tortuosity: ratio between the shortest path through a porous
media and the straight-line path [10].

3. Diffusive/electrical /conductive tortuosity: impeding factor that quan-
tifies a materials resistance to diffusion/conduction

Each of these definitions represent a distinct property (and concept) and
cannot be used interchangeably. The distinctions and appropriate usage of
each have been discussed in a number of review articles [11, 12] and in studies
directly comparing the quantities [13]. In this paper, we focus exclusively
on the diffusive tortuosity for gases. A simple model [14], inspired from
the binary mixtures theory, is used as a first approximation to the apparent
impeding diffusion in porous medium,

oy _ € pa 207 _ po 2(67)
<‘F >z - 777Z']"D1ref a$]’ - Deff,ij 8.73j (1)
where (F?), is the apparent diffusion flux of species « in the i—direction due
to macroscale gradient of the species in the j—direction (summation over j
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is implied), € is the porosity of the medium, 7;; the directional-tortuosity,
D¢, is the reference diffusion coefficient of species a, Dgﬂ,ij is the reference
anisotropic diffusion coefficient of species @. When modeling diffusion in
porous media, the Knudsen number, typically defined as the ratio of the flow
mean free path length to a selected length scale of the porous domain, must
be considered in order to determine whether the continuum assumption is
valid at the length scales of interest. Since micro-scale and volume-averaged
modeling of porous materials have very different length scales, it is often
the case that for a set of conditions, continuum modeling is appropriate at
the macro-scale, but may be inappropriate for micro-scale (or pore-resolved)
modeling.

Under continuum conditions at the micro-scale, classical numerical meth-
ods such as finite-difference, finite-volume, or finite-element can be used to
solve the diffusion equation in the porous material. However, as the Knudsen
number increases, the continuum equations are no longer valid for the phys-
ical system, for example in the case of high temperature, low pressure gases
diffusing in fibrous media [15]. In such instances, particle methods such as
random walks [16, 17] or the direct simulation Monte Carlo (DSMC) method
[18] are used. For the purposes of this paper, we use Kn < 0.01 as contin-
uum conditions, 0.01 < Kn < 0.1 as the slip regime, 0.1 < Kn < 10 as the
transitional regime, and Kn > 10 as the rarefied regime [19].

At non-continuum conditions, the definition of tortuosity factor needs
an associated length scale for reasons that will be described in Sec. 2. In
most of the literature, the tortuosity factor has been defined as a function of
the Knudsen number [15-17, 20, 21|, while Zalc et al. [22] argues that this
relationship only arises from an improper definition of the characteristic
length scale.

In this paper, we discuss the physical model and numerical methods ap-
propriate for the computation of the diffusive tortuosity factor of a porous
material based on large X-ray micro-tomography images. In Sec. 2, we dis-
cuss a model that defines the tortuosity factor as a material property that
exclusively depends on the geometry of its microstructure and is indepen-
dent of the Knudsen number. Under this model, the non-continuum effects
are captured in the definition of the length scale. Here, we also present the
upscaling to macroscale simulations, including for multi-species diffusion.
Sec. 3 presents the computational representation of materials in this study,
with a focus on X-ray microtomography datasets. Sec. 4 presents the nu-
merical methods used for solving diffusion in porous media, as well as the
particular considerations necessary when computing the tortuosity factors in
the three Knudsen regimes. Finally, in Sec. 5 we present direct comparisons
between the numerical methods, and results for the tortuosity factors based
on the X-ray microtomography of a highly porous carbon fiber material.
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2. Physical Model

In this section, we present the physical model for the tortuosity factors
and how to apply simulation results at the microscale to volume-averaged
modeling tools. We begin with the definition of the tortuosity.

Dref
=€e— 2
=D (2)

where 7 is the tortuosity factor, D, is the reference diffusion coefficient,
D.g is the effective diffusion coefficient in the porous material, and € is
the porosity. Since the materials are not necessarily isotropic, we define the
tortuosity in each direction using subscripts i and j. In the tortuosity tensor,

M1 M2 73
M= |M21 Moz 123 (3)
n31 7M32 733

the diagonal terms are typically the most relevant, with very large off di-
agonal terms (meaning very high resistance to diffusion). An exception is
for materials with anisotropic microstructures that are not aligned with the
Cartesian axes.

2.1. Definition of the reference diffusion coefficient

Continuum regime
In the continuum regime, the reference diffusion coefficient can be simply
defined as the single-species bulk diffusion coefficient [23]:

1 -
Dref = Dbulk ~ gv/\ (4)

where ¥ and \ are the mean thermal velocity and mean free path length of
the gas particles, respectively.

Since both the mean thermal velocity and the mean free path are not
directional, the reference diffusion coefficient in continuum conditions is also
not directional.

Non-continuum regimes

In non-continuum regimes, however, the continuum regime definition of
bulk diffusion begins to break down. The flow regime is quantified by the
Knudsen number

Kn = (5)
where [lp is defined as the length scale of interest. In general, the length
scale cannot be assumed equal in all directions; therefore, we denote the
directional length scale as Ip ;.

S| >
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In the fully rarefied regime, limky, oo Dpux = 00. However, the Deg in
Eq. 2 remains bounded, and plateaus for high Knudsen numbers. Thus,
direct application of Eq. 2 for Dot = Dpux would lead to a tortuosity that
tends towards infinity with the Knudsen number.

It is therefore necessary to define a reference diffusion coefficient that
remains bounded for free-molecular (Kn — 0o0) conditions. A common ap-
proach is to define D, as diffusion through a capillary of diameter [p. Using
this definition, the continuum reference diffusion remains unchanged, since
Dot = Dy for diffusion through the capillary. In the fully rarefied regime,
the reference diffusion coefficient becomes D, = Dy = vlp/3. As we will
get to later, the choice of length scale can be a function of direction, so we
define the fully rarefied reference diffusion coefficient as

1
Dyeti = Dknji = §WD,1 (6)

For Knudsen numbers that are outside of the fully continuum or fully
rarefied regimes, (transitional or slip regimes), the Bosanquet approxima-
tion [24] is used to estimate a diffusion coefficient based on its bulk and
Knudsen components [20], Dy and Dgy, respectively.

1 1 1
= + 7
Dt Dpux  Dxn 0

Applying the Bosanquet approximation to single-species diffusion in a
capillary in direction i, Dy; is estimated to be

1 j\lDi
Diegi= =0 = ’ 8
of, 3U</\+ZD71> ( )

The capillary model is convenient because the reference diffusion co-
efficient can be computed analytically from @, A, and Ip, and because D,ef
converges to Dy at low Knudsen numbers and Dk, at high Knudsen num-
bers. In later sections we show that this model for estimating transitional
or slip regime diffusion coefficients based on the bulk and rarefied extremes
works well even for complex 3D geometries.

2.2. Definition of the characteristic length

From the capillary model, a characteristic length scale of diffusion, Ip,
must be selected. In the surveyed literature related to diffusion in porous
media, there have been a number of methods used to determine a charac-
teristic length:

a. Ip is defined using an expression for estimating the mean pore diameter
of a 3D media, such as 4¢/S where € is the porosity and S is the specific
surface area. [15-17, 20, 21].
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b. lp is defined based on a numerical approximation for the mean pore
diameter, such as the mean intercept length [25].

c. lp is defined such that the tortuosity factor is the same for the con-
tinuum and rarefied extremes [22].

Assuming that the Bosanquet approximation is used to estimate transi-
tional and slip regime diffusion coefficients, each of these methods require
simulations to determine the effective diffusion coefficient at two different
Knudsen numbers. Used properly, each method will also produce the same
result when applying the computed tortuosity factors to determine an ef-
fective diffusion coefficient of a unit cell in a volume-averaged simulation.
Comparing the options, the main difference lies in the definition of the tor-
tuosity as a unique value or as a function of the Knudsen number.

An analysis of the three options led us to identify several advantages in
using a definition of the tortuosity factor as a single geometry-dependent
parameter [22], rather than as a function of the Knudsen number. One
reason for this is simplicity: using the single value definition, given by length
scale option (c), the tortuosity factor in a given direction is defined by two
numbers, a single tortuosity factor value and a characteristic length. By
contrast, in length scale options (a) and (b), the tortuosity factor in each
direction is defined by three numbers, a bulk tortuosity factor, a Knudsen
tortuosity factor, and a characteristic length. In addition, the definition of
both a bulk and Knudsen tortuosity factor can arguably lead to confusion
and misapplication, since the Knudsen tortuosity factor has no physical
meaning without the characteristic length. Moreover, at certain conditions,
some geometries yield unintuitive results of a tortuosity factor of less than
one [17]. In summary, we chose length scale option (c), and we consistently
do so in the remainder of this paper, unless explicitly specified.

Using length scale option (c), the length scale of diffusion is computed
as .

s = gnbulk-l_)éff’}(n )
€v
where 71k is the bulk tortuosity factor computed using continuum assump-
tions, and Deg kn is the computed effective diffusion coefficient of the high
Knudsen number simulation (see Sec. 4.2), and v is the mean thermal ve-
locity.

2.8. Applying the tortuosity factor for multi-species diffusion

Once the tortuosity factors and the length scale have been computed for
a given microstructure (detailed in Sec. 4), they can be applied to compute
the effective diffusion coefficient of a species in a material, in each of the
three directions. In order to compute this value, one must first compute
the bulk diffusion coefficient (not within the porous material) for species «
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into the mixture, D) at a given pressure and temperature, as well as the

mean thermal velocity, v“. The reference diffusion coefficient for species «
in the material, for a given direction i, is then computed as an algebraic
manipulation of the Bosanquet approximation:

w1 vip; DO
e (1)
pute T30 D

Once the reference diffusion coefficient is defined for a specific species and
direction, the corresponding effective diffusion coefficient inside the porous
material can be computed by as a manipulation of equation 2:

o € am
D (11)

effi — E ref,i

This is most often used in the context of macro-scale modeling efforts [26],
where diffusion is solved in a volume-averaged porous material. The pre-
sented model is valid for local thermal equilibrium applications. The appli-
cation to local thermal non-equilibrium formulations, and possible correction
terms to account for the thermal effects on diffusion, requires further study.

An example of a full workflow is presented in Appendix A1, which uses
numerical methods presented later in this paper to calculate the tortuosity
factors and length scales of a fibrous material. The effective diffusion coef-
ficients for a Xenon-Argon mixture are then calculated using Egs. 10 and
11 and compared to direct numerical simulation of the diffusion inside the
porous media using Direct Simulation Monte Carlo.

3. Computational Representation of Arbitrary Porous Media

In this work, computational domains of porous media are either com-
putationally generated using the Porous Microstructure Analysis (PuMA)
software [27] or obtained from synchrotron X-ray micro-tomography. Syn-
thetically (computationally) generated domains allow us to perform verifi-
cation on simple structures, or perform analysis on structures with varying
porosity, and to tailor certain features of interest such as fiber orientation,
fiber diameter, etc., as well as to easily evaluate both fibrous structures
and packed beds. On the other hand, computationally generated domains
miss micro-scale features and variability of actual materials, which are cap-
tured by X-ray micro-tomography. The computational generation of simple
materials is discussed in Appendix A2.

We store the material on a uniform 3D Cartesian grid, where each node,
separated by unit length, is given a numerical value, as this is the typical
format of microtomographic data. In a discrete representation, nodes are
assigned a value of either 0 or 1, indicating whether the node is material or
void. In a continuous representation instead, each node has a value within a
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continuous range, and cutoff values are used to separate the material phases
from one another. The 3D box defined by £1/2 unit in each direction
corresponds to a voxel. A physical length is ascribed to the voxel, called
the voxel length. For typical micro-structural applications, this length may
range between 10~ and 10~* meters.

For use in the particle simulations, discussed in Secs. 4.2 and 4.3, trian-
gulation techniques, such as the marching cubes algorithm [28-30], can be
used to approximate the interface between void and material as a collection
of triangles. The marching cubes algorithm is well suited for simulations
based on X-ray microtomography, since the iso-surface is triangulated di-
rectly on the 3D Cartesian grid. This triangulation can be performed on
either a discrete or continuous grid. If performed on a discrete grid, triangles
are limited to angles at 45° intervals, whereas on a continuous grid, triangles
can be placed at any angle. This is visualized in Fig. 1, which shows a sphere
of radius 6 voxels, visualized with a) no triangulation, b) with triangulation
on a discrete grid, and c) with triangulation on a continuous grid.

a) b) c)

Figure 1: Visualization in ParaView [31] of a sphere of radius 6 voxels as an (a) voxel
surface and (b) marching cubes triangulation on a discrete grid and (¢) marching cubes
triangulation on a continuous grid

Use of the original marching cubes algorithm results in an iso-surface
that may not be water tight, as ambiguities in the algorithm can result in
the formation of small holes. For particle-based simulations, this can result
in particles entering and getting trapped in the solid material, potentially
impacting the simulation results. This can be avoided by using modified
marching cubes algorithms that guarantee a topologically correct surface [32,
33]. The marching cubes variant of Lewiner et al. is available in a number
of free software packages, including PuMA [27] and scikit-image [34]

3.1. X-ray microtomography

X-ray microtomography measurements provide resolution of material
structures at scales from micrometer to centimeter in a non-destructive fash-
ion. The structure is resolved into a 3D voxelized grid where each voxel has
a grayscale intensity proportional to the local X-ray attenuation.
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The past two decades have witnessed a rapid development of compu-
tational methods and numerical tools based on 3D images. Applications
to the direct computation of material properties have been demonstrated
in structural analysis [35-37], prediction of thermal transport [38-42], and
calculations of mass and momentum transport properties [43-46]. As ap-
plied to diffusive processes, Cooper et al. [47] and Tranter et al. [48] have
developed tools for computations of tortuosity factors based on 3D images.
Numerous applications exist in the field of woven materials [49], and many
recent investigations have been dedicated to detailed tortuosity studies in
electrochemistry [50, 51] and biology [52].

Today, X-ray micro-tomography is largely accessible through laboratory-
scale scanners, which match synchrotron light sources in attainable spatial
resolutions. Synchrotron tomography remains the primary choice for fast
acquisition times and in-situ experimentation, providing wider flexibility in
sample size, and experimental configurations. Our tomography work for this
study was conducted at the beamline 8.3.2 of the Advanced Light Source
at the Lawrence Berkeley National Lab [53, 54]. We used an X-ray energy
of 14 keV to image a highly porous carbon fiber material called FiberForm,
used as preform for lightweight ablative thermal protection systems [40].
For each scan we captured 1024 radiographs over a 180° arc, using a 10x
magnification lens that provided a voxel size of ~1.3 um. Because the
material has variability in local porosity, density and fiber arrangement [40,
55], we collected a total of fifteen tomographic scans of the material from
different regions of the same manufactured billet. In this work, we do not
discuss large scale variabilities that the material features as a result of the
manufacturing process.

Tomography datasets were reconstructed using TomoPy [56, 57], filtered
and de-noised in fiji [58] when necessary and imported in PuMA as 8bit
Tiff stacks. Because the acquired scans had satisfactory phase contrast,
resulting in a distinct bi-modal grayscale distribution, a histogram shape-
based segmentation was performed directly in PuMA to identify fibers and
pore space. A visualization of the segmented tomography is shown in Fig. 2
for the FiberForm material. The smallest inset shows a high magnification
of a fiber section, where the surface is triangulated using the marching cubes
algorithm introduces in section 3.
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Figure 2: Surface rendering of 1 mm?® sample of FiberForm, taken at three resolutions and
visualized in PuMA V2.1 [27].

4. Numerical Methods for Pore Resolved Diffusion Simulations

In this section, we present numerical methods suitable for direct nu-
merical simulation of diffusive transport in porous media. While there are
many numerical methods available, the presented numerical methods strike
what we believe to be an appropriate balance between convenience and ac-
curacy for large scale simulations based on X-ray microtomography images.
In particular, the numerical method choices entirely avoid the generation of
unstructured meshes, often a difficult and labor intensive process for com-
plex microstructures.

4.1. Continuum methods

In the continuum, Kn < 0.01 at the pore scale, typical numerical meth-
ods such as finite-difference, finite-volume, or finite-element can be used to
determine the tortuosity factor of a porous material. From Eq. 2, we need

10
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the porosity, €, and the ratio of the reference and effective diffusion coeffi-
cients, Dief/ Desr. To compute Deg inside the porous material, the diffusion
equation

V- (Drefv¢) =0 (12)

is solved with an imposed concentration gradient at the boundaries in the
direction of interest, where ¢ is the local concentration and D, is used as
the local diffusion coefficient at all points in the void region. The result
is the local concentration, ¢ at every cell in the computational domain, as
shown in Fig. 3.

Figure 3: Steady state concentration profile for 2D diffusion through intersecting parallel
cylinders. Simulation was run in the PuMA software on a carteesian grid [27, 59], and the
visualization was generated in ParaView [31].

The average diffusive flux can then be determined, and used with Fick’s
first law of diffusion, F = —D.gV (¢), to compute the effective diffusion
coefficient, where F is the diffusive flux.

The tortuosity factor is then found in the direction of interest using Eq. 2.
For the 3D tensor, a simulation must be run with imposed gradients in each
of the three directions. For isotropic materials, three directions should yield
approximately the same tortuosity factor.

In this work, a finite-volume solver implemented on a Cartesian grid was
used. The finite-volume solver implements Dirichlet boundary conditions in
the direction of interest and reflective boundary conditions in the side direc-
tions. The linear system is solved using the conjugate gradient method [60].
The solution is initialized with a linear concentration profile in the simula-
tion direction. A residual tolerance of 10~ is used. The conjugate gradient

11
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solver typically convergences in a few thousand iterations for the fibrous
microstructures of 8003 voxels used in this study.

The solver was implemented into the Porous Microstructure Analysis
(PuMA) software [27, 61] and parallelized using OpenMP [62].

The choice of solving the diffusion equation directly on a Cartesian grid,
using a voxel representation of the surface, comes with significant compu-
tational advantages at the expense of a low order surface representation. A
structured Cartesian grid allows large simulations to be performed, with do-
main sizes of 1000? elements or more on a large workstation. Alternatively,
an unstructured mesh could be generated from the tomographic data with
a higher order representation of the surface. Such an approach would pay a
heavy cost both in terms of the generation of such meshes (often an arduous
and manual process) and in computing the converged solution. The results
shown in Fig. 7 and associated discussion provide an estimate to the error
that can be expected for given feature sizes and porosities when computed
on a voxel grid.

4.2. Random walk method

In non-continuum conditions, beginning around Kn > 0.01, the contin-
uum equations presented in section 4.1 are no longer valid for the physical
system. For simulations of single-spieces diffusion at all Knudsen regimes
a random walk method has been implemented in PuMA [27] following past
works of Tomadakis & Sotirchos [16, 17], Vignoles [20], and Becker et al. [63].
The random walk method simulates diffusion through the use of indepen-
dently marching particles, that randomly move through the void space of
a porous medium and collide with the pore walls. Particle-particle colli-
sions are not directly simulated, but rather are assumed to occur once the
particle has traveled a certain distance, based on the imposed mean free
path length. For each simulation, the total number of particles, total walk
time, mean thermal velocity, and mean free path length are imposed. The
details of the random walk method are provided below, and available in the
documentation of the PuMA source code [27].

Particle properties and placement

Particles are randomly placed in the pore space of the domain, and
assigned a random unit direction vector. Each particle is given the same
thermal velocity, input for the simulation. A random free path length is
assigned to each particle, based on an exponential distribution:

A= —log(R)A (13)

where R is a uniform random number, R € (0,1), and \ is the mean free
path length, imposed for the simulation.

12



374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

Particle movement

As each particle moves through a voxel, one of the following three con-
ditions occurs (see Fig. 4): (a) the particle continues to the next voxel inter-
section, (b) the walk distance exceeds the free path length of the particle,
or (¢) a collision occurs with the material.

In case (a), the particle continues to the next voxel. In case (b), a
particle-particle collision is simulated (though no actual collision occurred
since the particles walk independently). A new random unit direction vec-
tor is given to the particle, and a new free path length is picked from the
exponential distribution in Eq. 13. In case (c), a particle-surface collision
occurs, and the particle is given a new direction vector based on a diffuse
reflection with the surface. The particle is also given a new free path length
from the exponential distribution in Eq. 13.

Collision
location
Would-be

collision
location

p
Particle-particle
collision location

T Next |
position

Figure 4: Schematic of random walk particle traversing a voxel, showing the three possible
cases: (a) no collision, (b) particle-particle collision, (c¢) particle-wall collision.

Surface collision detection

Particle-surface collisions were tested based on two surface representa-
tions, a voxel grid and an iso-surface approximation based on marching
cubes. In section 3 we discuss the use of the two methods in determining
surface collisions and scattering when simulating diffusion.

Boundary conditions

Reflective (symmetric) boundary conditions are used for the computa-
tional domain. In our implementation, the particles are not bounded to the
domain, but rather the domain is infinitely reflected and every possible voxel
is associated with a specific voxel in the domain, as shown in Fig. 5. If the
number of reflections is odd, the triangles contained in the voxel must also
be reflected. The choice of reflective rather than periodic boundary condi-
tions was made in order to preserve the average tortuosity at the boundary.
If periodic boundary conditions are used on a non periodic material, then at
the boundary the diffusion is impeded by the extra material reflected from
the opposite side of the domain, with an effect size inversely proportional to
the material porosity.
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Figure 5: 2D Visualization of reflective boundary condition used for the random walk
diffusion solver

Determination of the effective diffusion coefficient
Once the simulation has converged, the effective diffusion coefficient, in
direction i, is determined as [64]

(€%);
2t
where (£2), is the mean square displacement of the particles in the direction
i, and t is the simulation time. In the typical process for determining the
tortuosity factor, described in section 2, the computed value for Deg, and
the mean free path length, A would be used in Eq. 9 to determine the

characteristic length of diffusion.

Deg; = (14)

Parallelization of the algorithm

Because the walkers operate independently, the algorithm is easily paral-
lelized for shared memory or distributed memory systems. Our OpenMP [62]
parallelization scheme, which simply uses a parallel for-loop over the par-
ticles, obtains near perfect scaling when tested on a 44-core machine with
approximately 2300 particles per processor.

Computing the tortuosity factors from random walk simulations

Assuming the use of Bosanquet’s approximation to estimate the transi-
tional and slip regime diffusion coefficients, the diffusive tortuosity factors
of a material are defined in each relevant direction by the tortuosity factor,
71, and the length scale of diffusion, ip. Using the random walk solver, they
are computed as follows:

1. Select a mean free path length and mean thermal velocity in continuum
conditions, and compute D, using Eq. 4.

2. Using the selected conditions, run a continuum random walk simula-
tion to determine D.g in a material.

3. Use Deg and Dy from steps 1 & 2 to compute the tortuosity factor,
7, from Eq. 2.
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430 4. Select a new mean free path length in the transitional /rarefied regime.

431 Using these conditions, run a random walk simulation and compute
432 Deg inside the porous material.
433 5. Use Eq. 9 with the transitional /rarefied conditions to compute Ip.

aa 4.8, Direct Simulation Monte Carlo

435 Although the random walk method detailed above is capable of solving
436 for the tortuosity factors and length scales, simulations using Direct Simu-
s37 lation Monte Carlo (DSMC) were also conducted. The DSMC simulations
438 were used as a verification tool for the random walk algorithm, and to per-
439 form direct numerical simulation of multi-species diffusion in porous media
w0 to compare with our presented model (see Appendix A2). In a typical work-
41 flow, however, the computational expense of DSMC simulations, particularly
42 in the continuum regime, make DSMC an impractical choice.

443 DSMC is a stochastic method that solves the time-dependent nonlinear
44 Boltzmann equation. It is a probabilistic simulation of molecular processes
ws  based on the kinetic theory of dilute gases [18]. DSMC is often used for the
46 simulations of fluid flows in non-continuum conditions; though valid in the
47 continuum regime, the high particle density requires at this regime results in
48 high computational cost. In the DSMC algorithm, the Boltzmann equation
a9 is decoupled into two parts: molecular advection and collisions.

450 Particles are tracked in the domain based on their position in virtual
a1 cells. Each particle represents an Fy number of real molecules. The cell
42 length has to be carefully chosen such that it is smaller than the mean free
453 path length. The time step is chosen such that it is smaller than the mean
a4 collision frequency. At each time step, following their advection, a number
455 of binary pairs of particles are selected for collisions in each grid cell. In
ass  the collision procedure, we follow the no-time-counter (NTC) procedure of
w57 Bird [18] for the selection of collision pairs. Quantities such as velocity,
458 translational and internal energy of particles can be computed by sampling
49 the flow field. Therefore, macroparameters such as temperature, pressure
460 and number density can be computed in each grid cell. In order to reduce
461 statistical scatter and ensure that collisions are performed accurately, it is
462 generally recommended that a minimum of 10 to 20 particles per computa-
a3 tional cell be used [65].

464 The Stochastic PArallel Rarefied-gas Time-accurate Analyzer (SPARTA) [66,
a5 67] DSMC code developed at Sandia National Laboratories was used in the
466 current work. The grid was used to group particles by grid cell for pur-
467 poses of performing collisions and chemistry, as well as efficiently find par-
s ticle/surface collisions. As in the random walk solver, the marching cubes
a0 algorithm [28, 29] was also implemented in SPARTA [45] to approximate
470 the iso-surface of the digitized geometry from either micro-tomography or
411 artificially generated, given a grayscale threshold. The algorithm represents
a2 the surface of the fibers as a collection of triangles. These were used to
473 locate surface collisions with particles during the DSMC simulation.
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Argon was initially chosen as the carrier gas. SPARTA uses the Vari-
able Hard Sphere (VHS) model to simulate particle interactions [18]. The
particle-surface collisions were modeled using a diffuse reflection model.

Computing the tortuosity factors from DSMC simulations

From the quantities computed in a DSMC simulation, the tortuosity
factor of a material is computed as follows:

1. Perform DSMC simulations in a periodic box with no surface elements
1

to compute the bulk diffusion coefficient Dy for the simulation .
2. Run a free molecular simulation (inter-particle collisions turned off)
to determine Deg ky in a material.

2

3. Run a simulation in the continuum or slip/transitional regime “, and

compute Dqg inside the porous material using Eq. 14.
4. Compute 7 from 1 = Dyyix - (1/Det — 1/ Degr kn)-

5. Compute Ip from Eq. 9 with 1/\ = 0.

5. Application of Numerical Methods

5.1. Consideration 1: Surface Representation

For each of the numerical techniques used to simulate diffusion in porous
media, a method was needed to represent the boundary between void and
material. For particle simulations, the surface can be represented as either
a voxel grid, as shown in Fig.la, or as a triangulated iso-surface, as shown
in Fig.1b and c.

A study was performed to assess how the collision detection based on
the two surface discretizations affects the computed effective diffusion co-
efficient. Figure 6 shows the percent difference between effective diffusion
coefficient D;’%ﬁ and Dz‘}of computed on the voxel grid and the triangulated
iso-surface of a continuous grid for Knudsen numbers from the continuum
to the rarefied regime. In the continuum regime, where the mean free path
length is small compared to the characteristic length of the geometry, the
two collision methods yield results within 1% of each other. However, sig-
nificant differences are noted at high Knudsen numbers. This effect exists

!simulations were performed for argon at 273.15 K and various pressures and con-
firmed that all computed quantities are within 2% of the value of the diffusion coefficient
calculated from the Chapman-Enskog first order approximation[18, 68]

2 Although a continuum simulation in step 3 would produce the most accurate results,
such simulations may not be feasible depending on the domain size and computational
resources available.
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independently of grid refinement and is due to an increased number of sur-
face collisions that occur on a voxel grid. Take, for example, free molecular
simulations ® on the geometries shown in Fig. la and c, in which particles
are randomly placed in the domain, directed towards the sphere. With the
triangulated iso-surface, as shown in Fig. 1c, each particle will collide with
the geometry exactly once before exiting the domain. However, for the voxel
representation (Fig. 1a), our simulations showed that each particle collided
with the surface an average of ~ 1.54 times. This result was consistent for
all domain and sphere sizes tested.
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Figure 6: Percent difference in effective diffusion coefficient between simulations using a
voxel or iso-surface collision method. Results are shown for a 1D capillary, a 3D random
intersecting packed sphere bed, and 3D random intersecting isotropic fibers.

A similar effect was noted by Vignoles [20], where differences were stud-
ied in the computed mean intercept length, d, in a cylindrical capillary
using a voxel surface or a triangulation based on a discrete grid (rather than
a continuous grid). Vignoles showed that for a triangulated surface, the
mean intercept length converged to reasonable agreement with the physical
diameter of the capillary. However, for a voxel surface representation, the
mean intercept length was underestimated by around 20%. Simulations in
PuMA corroborate these results.

As shown in Fig. 6, though the surface representation in the case of
1D diffusion in a capillary will affect the computed mean intercept length,
it does not affect the value for the effective diffusion coefficient. This is
explained by the fact that, for a cylindrical capillary, regardless of whether
a voxel or triangulated surface is used, the surface normals will always be
orthogonal to the capillary direction. For simulations in a capillary, using

3In a free molecular simulation, there are no particle-particle collisions, and each par-
ticle travels on an uninterrupted trajectory between particle-surface collisions.
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the mean intercept length to define the characteristic length, as is the case
with length scale option (b) (cf. Sec. 2.2) this result will have an effect
on the computed tortuosity factor in the Knudsen regime, proportional to
the difference in computed mean intercept length. The net effect, however,
for the specific case of simulating diffusion in a capillary, is that both the
voxel and triangulated surfaces yield good results for computing the effective
diffusion coefficient and tortuosity factors, so long as the length scale method
chosen is applied consistently.

For complex 3D structures, as shown in Fig. 6, the effect of using a voxel
surface representation exists both for calculations of the mean intercept
length and the effective diffusion coefficient, demonstrating that the differ-
ences between surface representation methods are significant and cannot be
ignored.

As the iso-surface is a higher-fidelity representation of the real surface
at the scale considered, we interpret this to suggest that a voxel surface
is not adequate for simulations in the transitional and rarefied regimes. It
is noted, however, that for simulations on actual materials, the iso-surface
representation smooths effects that are due to roughness scales below the
resolution of the imaging technique.

5.2. Consideration 2: Feature Resolution

For each of our numerical methods, the accuracy of the solution will de-
pend on the discretization size. This effect is most significant in the case of
voxelized surface representation, as used in the finite volume method, and
the random walk with voxel surfaces. A parametric study was conducted on
the random sphere and cylinder structures to estimate the error introduced
by under-resolved features. Figure 7 presents results from the tortuosity
computations on a 10243 grid (chosen large enough to be a representative
volume) with shape primitives of varying radii at four porosity values. An
approximate converged value for the tortuosity, n*, was defined as an av-
erage of the tortuosity values for the four largest radii. As expected, the
tortuosity value converges as the radius of the primitive shape increases.
The convergence is also strongly related to the porosity, indicating that the
mean pore diameter is a relevant factor.

Based on this parametric study, for the comparison between the ran-
dom walk and finite-volume methods, for the comparison between numerical
methods, presented in Sec. 6, radius values of 32 and 28 voxels were taken
for the sphere and cylinder primitives, respectively. Since the random walk
algorithm determines particle-surface collisions based on a marching cubes
triangulation, it is an immersed boundary rather than a voxel-based solver.
Thus, the solution converges at much smaller primitive shape radii values.
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Figure 7: The convergence of tortuosity values as a function of shape primitive radius size
for (a) packed sphere beds, and (b) random fiber structures, presented at four porosity
values.

5.8. Consideration 3: Representative Elementary Volume

Another important parameter is the representative elementary volume
(REV) at the selected resolution values. The REV defines the size at which
the domain becomes statistically representative. The size of the REV varies
for the property of interest [27], and is strongly dependent on the particular
material. As such, the REV of artificially generated fibrous materials should
not be extrapolated to that of real fibrous materials.

For our artificially generated materials, Fig. 8 shows the standard de-
viation of tortuosity values as a function of domain size for the random
sphere and cylinder structures. The primitive shape radii were set to be 32
and 28 voxels, for the spheres and cylinders, respectively, and an additional
parametric analysis was run at four porosity values.

Based on the results shown in Fig 8, a domain size of 10243 voxels was
selected for the comparison between the finite-volume and random walk
methods, presented in Sec. 6, such that the relative standard deviation would
remain below 2% for both structures.
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Figure 8: Relative standard deviation for (a) packed sphere beds and (b) randomly ori-
ented fibers at varying domain sizes and porosities.

6. Direct Comparison of Numerical Methods

6.1. Continuum Tortuosity Factors

Figure 9 shows comparison between random walk and finite-volume meth-
ods, simulated on 3D fiber structures and a packed sphere beds of varying
porosities. For continuum conditions, DSMC becomes prohibitively expen-
sive. As such, DSMC results are not presented in this section. The random
walk simulations were performed with 100,000 particles for a total walk
length of 1000 times the domain size. A mean free path length of 0.5 voxels
was chosen, ensuring the simulation occurs in the continuum regime. Simu-
lations were performed on a 44-core (two Intel Xeon E5-2699 v4 processors)
workstation, with simulation times of approximately 20 minutes each for
both random walk and finite-volume simulations. The finite-volume and
random walk simulations required approximately 50gb and 20gb of ram,
respectively, for an 800 domain size.
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Figure 9: Comparison in computed tortuosity factors for (a) packed sphere beds and (b)
randomly oriented 3D fibers, computed at multiple porosity values.

As shown in Fig. 9, the random walk and finite-volume methods showed
excellent agreement for each material tested at all porosity values, with an
average percent difference of 0.9% and a maximum percent difference of 1.7%
between the two methods. As detailed in Sec. 5.1, in continuum conditions
the choice of the surface representation for the random walk method becomes
negligible. These results demonstrate the ability of the random walk method
to accurately compute diffusion in the continuum regime on arbitrary 3D
geometries.

6.2. Non-continuum Tortuosity Factors

In this section we compute diffusion coefficients and tortuosity factors
at Knudsen numbers above 0.01. Random Walk simulation results are com-
pared to the solutions obtained from DSMC, which is considered the accu-
rate standard for computing transport in the transitional and rarefied flows.

Effective diffusion coefficients were computed with DSMC at discrete
values of the Knudsen number. To this end, we fixed the gas and surface
temperatures at 273.15 K for all cases (we start from a thermal equilibrium),
and set the average pressures in the sample such that the mean free path
length would be at least twice the cell size. The time step was chosen as
1 ns for all simulations, ensuring that it was at most 1/10 of the mean
collision time. At least 12 particles were present on average in each cell of
the domain for all simulations, in order to reduce statistical scatter. For
the presented cases, this resulted in between 65 and 410 million particles for
each simulation. The simulation was allowed to reach steady state for 5,000
timesteps, followed by an additional 40,000 timesteps for computation of the
effective diffusion coefficient. A gas phase collision free molecular simulation
was also performed in order to compute the exact value of Deg ky.

Simulations were performed on 1,200 Intel Haswell cores of the NASA
Ames’ Pleiades supercomputer, and the total simulations length varied be-
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tween 30 minutes and 2 hours depending on the Knudsen number and ge-
ometry considered.

For the random walk results presented, 100,000 particles were used for
a total walk length of 1000 times the domain length to ensure convergence.
The mean free path length was adjusted to vary the Knudsen number of
the simulation. As detailed in Sec. 5.1, triangulated surfaces are used for
all simulations in non-continuum conditions. Simulations were performed
on a 44-core workstation, with simulation times between 2 minutes and 20
minutes each depending on the Knudsen number.
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Figure 10: DSMC and random walk comparison in normalized effective diffusion coefficient
as a function of Knudsen Number for randomly oriented transverse isotropic 3D cylinders
at a) 0.6 and b) 0.9 porosity.
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Figure 11: DSMC and random walk comparison in normalized effective diffusion coefficient
as a function of Knudsen Number, computed on an X-ray microtomography image of
FiberForm with side length 0.5mm and a porosity of 0.846.

Figure 10 shows the normalized effective diffusion coefficient, Deg =
Deg/v, computed on transverse isotropic random 3D fiber structures, with
+ 15 degree pitch with respect to the through thickness plane, at two poros-
ity values (0.6 and 0.9) and at Knudsen numbers varying between 0.01 and
10,000. For the random walk simulations, the mean thermal velocity, v is a
simulation input; for the DSMC simulations, v is a function of the input sys-
tem temperature and gas species. The Bosanquet approximation for the slip
and transitional regimes are plotted, based on Eq. 10, for the PuMA simu-
lation results. Figure 11 shows the comparison on X-ray microtomography
image of FiberForm, with 0.5mm side lengths, 400° voxels, and a porosity of
0.846., see Fig. 2. Note that given the inhomogeneity of FiberForm, this is
not a sufficient size to be a representative volume. The size was limited be-
cause of the high computational cost of DSMC simulations, however it still
serves as a good case for comparison between the numerical methods. It can
be seen that the random walk and DSMC results show excellent agreement
for complex 3D geometries at all Knudsen numbers.

6.3. Comparison with literature

Simulations using the random walk and DSMC methods were compared
to results from the classical work of Tomadakis and Sotirchos [17] on 1D
and 3D fiber structures. Tomadakis and Sotirchos used a tortuosity factor
nomenclature which defines the characteristic length as an approximation
of the mean pore diameter, Ip = 4e¢ - S. As explained in section 2, in
this formulation, the tortuosity factor becomes a function of the Knudsen
number. For this comparison, we have adopted their formulation. Results
are presented in Figs. 12 and 13, for 1D and 3D fiber structures, respectively.
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Figure 12: Simulation results from random walk and DSMC solvers on a 1D fiber structure
with a porosity of 0.7 compared to results from Tomadakis and Sotirchos [17].

The dashed lines show the approximation of the tortuosity factor values
in the slip and transitional regimes, given by

M+ NKn - Kn

~ 1+Kn
where 7, is the bulk tortuosity factor as Kn — 0 and 7k, is the rarefied tor-
tuosity factor as Kn — oco. While the random walk and DSMC results show
excellent agreement, small differences exist in comparison to the Tomadakis
and Sotirchos results. Statistical fluctuations, owing to the computational
limitations in 1993 could account for the differences, as the simulations of
Tomadakis and Sotirchos were performed with only 200 particles.
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Figure 13: Simulation results from random walk and DSMC solvers on a 3D fiber structure
with a porosity of 0.6 compared to results from Tomadakis and Sotirchos [17].

Another possible source of error is the geometry itself, as slight differ-
ences in geometry generation techniques could alter the results. This is
supported by the similarity in results on 1D fibers in the parallel direc-
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tion, which should be independent of the cylinder placement as long as the
porosity and surface area are consistent.

6.4. Application to X-ray microtomography

Simulations were performed to determine the tortuosity factors of a ma-
terial, FiberForm, based on X-ray microtomography images. Results from
sections 4.1 - 6.3 demonstrated that the results of the random walk are con-
sistent with other numerical methods at all Knudsen numbers. Therefore,
the random walk methods is used, following the procedure in section 4.2 to
compute the tortuosity factors of the material.

Fifteen different X-ray microtomography datasets of FiberForm were
used, each of side length 1.04mm, with 8003 voxels of length 1.3 pm. The
datasets were each acquired as described in section 3.1 and down sampled by
a factor of 2. In order to reduce noise and improve segmentation a bilateral
filter with a radius of 3 and a range of 50 was applied to each image using
Fiji [69], along with a despeckle operation. The X-ray microtomography
datasets had a mean porosity of 0.887 with a standard deviation of 0.007.

For each tomography, a continuum simulation was carried out to com-
pute the bulk tortuosity factor and a high-Knudsen number simulation was
performed to determine the characteristic length of diffusion, Ip. All simu-
lations used 100,000 particles and a 1000 times the domain length total walk
path; continuum simulations were given a mean free path length of 0.5um,
while rarefied simulations were given a mean free path length of 0.5 m.

As FiberForm is a transverse isotropic material [40], simulations were
performed for both the “through-thickness” (z) and “in-plane” (x — y) di-
rection. Results are shown for each of the 15 FiberForm samples in table 1,
with averages and standard deviations shown.
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Sample Porosity  nrp nrr lDIP lDTT

1 0.893 1.158 1.257 7.509e—5 5.267e—5
2 0.884 1.173 1.354 7.946e—5 4.341e—>
3 0.901 1.137 1.223 8.623e—5 6.128e—5
4 0.884 1.173 1.312 7.146e—5 4.853e—5
) 0.877 1.195 1.355 6.632e—5 4.366e—5
6 0.883 1.165 1.302 7.090e—5 4.965e—5
7 0.885 1.175 1.326 7.390e—5 4.75le—5
8 0.888 1.162 1.299 7.624e—5 5.170e—5
9 0.881 1.178 1.339 6.938e—5 4.434e—5
10 0.883 1.171 1.335 7.355e—5 4.514e—5
11 0.890 1.155 1.277 8.089e—5 5.299e—5
12 0.876 1.186 1.357 6.455e—5 4.25le—5
13 0.894 1.164 1.220 7.673e—5 6.251le—5
14 0.895 1.137 1.242 8.517e—5 5.745e—5
15 0.892 1.141 1.241 8.795e—5 5.520e—5
Average 0.887 1.165 1.296 7.585e—5 5.5056e—5

Std. Deviation 0.007 0.017 0.049 7.042e—6 6.470e—6

Table 1: Diffusive tortuosity factors of FiberForm, computed in the through-thickness and
in-plane directions, for 15 X-ray microtomography scans.

These results show the expected difference in tortuosity factors in the
through thickness and in plane directions. They also show that the relative
standard deviation between samples is significantly higher for simulations
of rarefied diffusion than in continuum diffusion, as seen by the larger rela-
tive standard deviations in the characteristic length than in the tortuosity
factors.

7. Conclusions

A physical model for the diffusive tortuosity factors is presented, in which
the tortuosity factors of a material are independent of the Knudsen num-
ber. The random walk model is tested against a finite-volume method in
the continuum regime, showing excellent agreement for simple and com-
plex geometries at multiple porosities. It was shown that for low-resolution
material domains, the voxel-based finite-volume method produces signifi-
cant error at low porosity values, and a more refined voxel grid must be
used. It was also shown that in the transitional and rarefied regimes, there
are large differences in simulations on triangulated iso-surfaces and voxel
grids, regardless of domain size. We interpret these differences to indicate
that for particle-surface collision detection and reflections at high Knudsen
numbers, an iso-surface representation should be used, although this claim
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needs experimental validation. A DSMC solver was used to compute tortu-
osity factors in non-continuum conditions. DSMC results were compared to
the random walk solver results, showing excellent agreement at all Knud-
sen numbers. The comparisons with the finite-volume and DSMC solvers
show that the random walk method is suitable for computing the diffu-
sive tortuosity factors of an arbitrary 3D porous material at all Knudsen
numbers. Finally, the random walk method is applied to X-ray microto-
mography datasets in order to compute the tortuosity of fibrous materials
used for spacecraft heatshields.
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Appendix Al: Calculation of effective diffusion coefficients

In this example, we calculate the effective diffusion coefficient inside
of a porous material based on the materials tortuosity, length scale, and
bulk transport properties of the gas. This example is relevant to a volume-
averaged simulation of mass transfer in porous media, where the user knows
the tortuosity and length scale of the porous material from micro-scale sim-
ulations, but needs to compute the effective diffusion coefficient of each
species in the mixture for a given set of conditions (temperature, pressure,
composition).

The first step, which need only be performed once for each material, is
to compute the diffusive tortuosity factor and length scale of the porous ma-
terial from direct simulation on the materials micro-structure (see Sec. 4).
These simulations can be performed in the PuMA software [27]. For this
example, we will use a material microstrucutre generated from PuMA: ran-
domly oriented intersecting cylinders. The material, shown in Fig. 14, is
transverse isotropic, meaning that the material properties are isotropic in
the XY plane, but variable between the XY and Z directions. A 3D tiff
of the microstructure is included in the supplemental materials. The void
phase is contained in the grayscale values of 0 to 127, and the solid phase is
contained within values 128 to 255. The material porosity is 0.875.

Figure 14: Computationally generated transverse isotropic microstructure of intersecting
cylinders

The tortuosity factors were calculated in PuMA using the random walk
method for both the continuum and rarefied simulations. For both sim-
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ulations, 100,000 particles were used for a total walk distance of 100,000
voxels per particle. The tortuosity and length scales were calculated follow-
ing the procedure at the end of Sec. 4.2. The X and Y values were averaged,
resulting in the following values for the tortuosity and the length scale:

Direction n Ip(m)
XY 1.0727 6.292-107°
7 1.1319 4.678-107°

Now that the material tortuosity and length scale has been determined,
we will pick an example set of conditions to calculate the effective diffusion
coefficient within the porous material. For this example, we will use an
equimolar Argon-Xenon mixture at 0.001 atm and 273.15K. Within your
volume averaged simulation tool, the bulk properties (independent of the
porous media) for the mixture need to be computed. These properties should
require little computational time to determine, and can be computed using a
number of tools, such as mutation++ [70, 71]. In this example, we calculate
the bulk properties using the DSMC tool SPARTA [67]. The properties of
interest are the mean thermal velocity, and the bulk diffusion coefficient of
the species into the mixture:

Species v (m/s) Dy ™ (m?/s)
Ar 380.241 1.174 - 1072
Xe 209.315  6.334-1073

Now, we use Eq. 10 and 11 to determine the reference and effective
diffusion coefficients in the material, in m?/s:

Species DXY DXY DZ, DZ,

Ar — mix 4.749-1073 3.873-107% 3.939-107% 3.045.107°

Xe — mix 2.593-107% 2.115-107% 2.154-1073 1.665-1073

Finally, we compare the above results to direct numerical simulation of
an Argon-Xenon mixture in the porous media, simulated using the SPARTA
DSMC solver, in m?/s:

Species Dfﬂ}f DeZff
Ar 3.9195-10~2% 3.081-103
Xe 2.138-1073  1.684-1073

Comparing our model results to the direct numerical simulation, we have
excellent agreement with an average percent difference of 1.14%.
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Appendix A2: Computationally generated microstructures

We used four types of artificially generated geometries: a capillary tube,
1D cylinders, 3D cylinders, and 3D packed sphere beds. These geometries
are used in classical studies of tortuosity in porous media [16, 17, 22] and
allow us to compare with the literature. The same geometry storage method
is used for the computationally generated materials as was used for the X-
ray microtomography datasets: a 3D matrix of grayscale values at each
voxel, with a threshold value used to segment void from material. These
four geometries consist of two primitive shapes - cylinders and spheres.

a)

Figure 15: Example computationally generated materials used in this work: (a) a capillary,
(b) 1D cylinders, (c) 3D cylinders, and (d) a packed sphere bed. Visualizations performed
in ParaView [31] with the OSPRay ray-tracer [72, 73].

To generate a sphere on a continuous Cartesian grid, a centerpoint and
radius is chosen, and each voxel in the vicinity is assigned a grayscale value
between 0 and 255 based on its distance to the centerpoint. To generate a
random sphere bed, spheres are generated at random centerpoints until the
desired porosity is met.

To generate a cylinder on a continuous Cartesian grid, a center line
segment and radius is chosen, and each voxel in the vicinity is assigned a
value based on its distance to the line segment. Random 1D structures are
generated by creating parallel cylinders until the desired porosity is reached.
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For a random 3D structure, random positions and angles are assigned to each
generated cylinder, until the desired porosity is reached. Periodic boundary
conditions are used for all random generated structures in the event that a
primitive shape extends past the domain.

An example of each computationally generated structure is shown in
Fig. 15, with each of the random structures having a porosity of 0.7. For fiber
and sphere geometries (Fig. 15(b), (c¢), and (d)) overlap and intersections
are allowed between the elements, though PuMA allows for the generation
of microstructures with non overlapping elements as well.
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