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Abstract11

The di↵usive tortuosity factor of a porous media quantifies the material’s12

resistance to di↵usion, an important component of modeling flows in porous13

structures at the macroscale. Advances in X-ray micro-computed tomogra-14

phy (µ-CT) imaging provide the geometry of the material at the microscale15

(microstructure) thus enabling direct numerical simulation (DNS) of trans-16

port at the microscale. The data from these DNS are then used to close ma-17

terial’s macroscale transport models, which rely on e↵ective material prop-18

erties. In this work, we present numerical methods suitable for large scale19

simulations of di↵usive transport through complex microstructures for the20

full range of Knudsen regimes. These numerical methods include a finite-21

volume method for continuum conditions, a random walk method for all22

regimes from continuum to rarefied, and the direct simulation Monte Carlo23

method. We show that for particle methods, the surface representation sig-24

nificantly a↵ects the accuracy of the simulation for high Knudsen numbers,25

but not for continuum conditions. We discuss the upscaling of pore-resolved26

simulations to single species and multi-species volume-averaged models. Fi-27

nally, di↵usive tortuosities of a fibrous material are computed by applying28

the discussed numerical methods to 3D images of the actual microstructure29

obtained from X-ray computed micro-tomography.30

Keywords: microtomography, tortuosity, microscale modeling, rarefied,31

di↵usion32

1. Introduction33

Modeling flow in porous materials is of importance in many research ar-34

eas, including porous thermal protection systems, energy storage systems,35
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porous evaporators, filtration systems, to name a few. Deriving the govern-36

ing equations of porous materials at the macroscale often relies on volume-37

averaged techniques, in which control volumes with e↵ective material prop-38

erties are treated as unit cells of the bulk material. The flow characteristics39

of a volume-averaged porous material are often defined by quantities related40

to the material micro-structure including the permeability and the di↵usive41

tortuosity factor. The permeability of a material quantifies the wall drag42

resistance to a mean pressure gradient, while the tortuosity characterizes a43

material’s e↵ective resistance to di↵usion.44

The determination of e↵ective transport properties in porous materials45

often relies on experimental methods. However, advances in computational46

methods enable predicting these properties numerically on realistic complex47

microstructures and non-trivial domain sizes [1–3]. These computational48

advances have been complemented by advances in X-ray microtomography,49

a technique that provides a high-resolution 3D representation of the actual50

microstructure of the material[1, 4]. Modern µ-CT technology can provide51

3D-images with resolution from centimeter to micron scale. These images52

have become a powerful platform on which to numerically compute material53

properties [3, 5–7].54

Before further discussing the di↵usive tortuosity factor, it is worth not-55

ing that in the porous media literature, there are three distinct material56

properties that are described by the term tortuosity:57

1. Hydraulic tortuosity: describes the length of flux streamlines compared58

to the straight-line path in a pressure driven flow [8, 9]. The value in59

this case is used to express the permeability in terms of parameters60

that reflect the geometry of porous materials [8].61

2. Geometric tortuosity: ratio between the shortest path through a porous62

media and the straight-line path [10].63

3. Di↵usive/electrical/conductive tortuosity: impeding factor that quan-64

tifies a materials resistance to di↵usion/conduction65

Each of these definitions represent a distinct property (and concept) and
cannot be used interchangeably. The distinctions and appropriate usage of
each have been discussed in a number of review articles [11, 12] and in studies
directly comparing the quantities [13]. In this paper, we focus exclusively
on the di↵usive tortuosity for gases. A simple model [14], inspired from
the binary mixtures theory, is used as a first approximation to the apparent
impeding di↵usion in porous medium,

hF↵ii =
✏

⌘ij
D↵

ref
@ h�↵i
@xj

= D↵
e↵,ij

@ h�↵i
@xj

(1)

where hF↵ii is the apparent di↵usion flux of species ↵ in the i�direction due66

to macroscale gradient of the species in the j�direction (summation over j67
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is implied), ✏ is the porosity of the medium, ⌘ij the directional-tortuosity,68

D↵
ref is the reference di↵usion coe�cient of species ↵, D↵

e↵,ij is the reference69

anisotropic di↵usion coe�cient of species ↵. When modeling di↵usion in70

porous media, the Knudsen number, typically defined as the ratio of the flow71

mean free path length to a selected length scale of the porous domain, must72

be considered in order to determine whether the continuum assumption is73

valid at the length scales of interest. Since micro-scale and volume-averaged74

modeling of porous materials have very di↵erent length scales, it is often75

the case that for a set of conditions, continuum modeling is appropriate at76

the macro-scale, but may be inappropriate for micro-scale (or pore-resolved)77

modeling.78

Under continuum conditions at the micro-scale, classical numerical meth-79

ods such as finite-di↵erence, finite-volume, or finite-element can be used to80

solve the di↵usion equation in the porous material. However, as the Knudsen81

number increases, the continuum equations are no longer valid for the phys-82

ical system, for example in the case of high temperature, low pressure gases83

di↵using in fibrous media [15]. In such instances, particle methods such as84

random walks [16, 17] or the direct simulation Monte Carlo (DSMC) method85

[18] are used. For the purposes of this paper, we use Kn < 0.01 as contin-86

uum conditions, 0.01 < Kn < 0.1 as the slip regime, 0.1 < Kn < 10 as the87

transitional regime, and Kn > 10 as the rarefied regime [19].88

At non-continuum conditions, the definition of tortuosity factor needs89

an associated length scale for reasons that will be described in Sec. 2. In90

most of the literature, the tortuosity factor has been defined as a function of91

the Knudsen number [15–17, 20, 21], while Zalc et al. [22] argues that this92

relationship only arises from an improper definition of the characteristic93

length scale.94

In this paper, we discuss the physical model and numerical methods ap-95

propriate for the computation of the di↵usive tortuosity factor of a porous96

material based on large X-ray micro-tomography images. In Sec. 2, we dis-97

cuss a model that defines the tortuosity factor as a material property that98

exclusively depends on the geometry of its microstructure and is indepen-99

dent of the Knudsen number. Under this model, the non-continuum e↵ects100

are captured in the definition of the length scale. Here, we also present the101

upscaling to macroscale simulations, including for multi-species di↵usion.102

Sec. 3 presents the computational representation of materials in this study,103

with a focus on X-ray microtomography datasets. Sec. 4 presents the nu-104

merical methods used for solving di↵usion in porous media, as well as the105

particular considerations necessary when computing the tortuosity factors in106

the three Knudsen regimes. Finally, in Sec. 5 we present direct comparisons107

between the numerical methods, and results for the tortuosity factors based108

on the X-ray microtomography of a highly porous carbon fiber material.109
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2. Physical Model110

In this section, we present the physical model for the tortuosity factors111

and how to apply simulation results at the microscale to volume-averaged112

modeling tools. We begin with the definition of the tortuosity.113

⌘ = ✏
Dref

De↵
(2)

where ⌘ is the tortuosity factor, Dref is the reference di↵usion coe�cient,
De↵ is the e↵ective di↵usion coe�cient in the porous material, and ✏ is
the porosity. Since the materials are not necessarily isotropic, we define the
tortuosity in each direction using subscripts i and j. In the tortuosity tensor,

⌘ij =

2

4
⌘11 ⌘12 ⌘13
⌘21 ⌘22 ⌘23
⌘31 ⌘32 ⌘33

3

5 (3)

the diagonal terms are typically the most relevant, with very large o↵ di-114

agonal terms (meaning very high resistance to di↵usion). An exception is115

for materials with anisotropic microstructures that are not aligned with the116

Cartesian axes.117

2.1. Definition of the reference di↵usion coe�cient118

Continuum regime119

In the continuum regime, the reference di↵usion coe�cient can be simply120

defined as the single-species bulk di↵usion coe�cient [23]:121

Dref = Dbulk ⇡ 1

3
v̄�̄ (4)

where v̄ and �̄ are the mean thermal velocity and mean free path length of122

the gas particles, respectively.123

Since both the mean thermal velocity and the mean free path are not124

directional, the reference di↵usion coe�cient in continuum conditions is also125

not directional.126

Non-continuum regimes127

In non-continuum regimes, however, the continuum regime definition of128

bulk di↵usion begins to break down. The flow regime is quantified by the129

Knudsen number130

Kn =
�̄

lD
(5)

where lD is defined as the length scale of interest. In general, the length131

scale cannot be assumed equal in all directions; therefore, we denote the132

directional length scale as lD,i.133
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In the fully rarefied regime, limKn!1Dbulk = 1. However, the De↵ in134

Eq. 2 remains bounded, and plateaus for high Knudsen numbers. Thus,135

direct application of Eq. 2 for Dref = Dbulk would lead to a tortuosity that136

tends towards infinity with the Knudsen number.137

It is therefore necessary to define a reference di↵usion coe�cient that138

remains bounded for free-molecular (Kn ! 1) conditions. A common ap-139

proach is to define Dref as di↵usion through a capillary of diameter lD. Using140

this definition, the continuum reference di↵usion remains unchanged, since141

Dref = Dbulk for di↵usion through the capillary. In the fully rarefied regime,142

the reference di↵usion coe�cient becomes Dref = DKn = v̄lD/3. As we will143

get to later, the choice of length scale can be a function of direction, so we144

define the fully rarefied reference di↵usion coe�cient as145

Dref,i = DKn,i =
1

3
v̄lD,i (6)

For Knudsen numbers that are outside of the fully continuum or fully146

rarefied regimes, (transitional or slip regimes), the Bosanquet approxima-147

tion [24] is used to estimate a di↵usion coe�cient based on its bulk and148

Knudsen components [20], Dbulk and DKn, respectively.149

1

Dref
=

1

Dbulk
+

1

DKn
(7)

Applying the Bosanquet approximation to single-species di↵usion in a150

capillary in direction i, Dref,i is estimated to be151

Dref,i =
1

3
v̄

✓
�̄lD,i

�̄+ lD,i

◆
(8)

The capillary model is convenient because the reference di↵usion co-152

e�cient can be computed analytically from v̄, �̄, and lD, and because Dref153

converges to Dbulk at low Knudsen numbers and DKn at high Knudsen num-154

bers. In later sections we show that this model for estimating transitional155

or slip regime di↵usion coe�cients based on the bulk and rarefied extremes156

works well even for complex 3D geometries.157

2.2. Definition of the characteristic length158

From the capillary model, a characteristic length scale of di↵usion, lD,159

must be selected. In the surveyed literature related to di↵usion in porous160

media, there have been a number of methods used to determine a charac-161

teristic length:162

a. lD is defined using an expression for estimating the mean pore diameter163

of a 3D media, such as 4✏/S where ✏ is the porosity and S is the specific164

surface area. [15–17, 20, 21].165
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b. lD is defined based on a numerical approximation for the mean pore166

diameter, such as the mean intercept length [25].167

c. lD is defined such that the tortuosity factor is the same for the con-168

tinuum and rarefied extremes [22].169

Assuming that the Bosanquet approximation is used to estimate transi-170

tional and slip regime di↵usion coe�cients, each of these methods require171

simulations to determine the e↵ective di↵usion coe�cient at two di↵erent172

Knudsen numbers. Used properly, each method will also produce the same173

result when applying the computed tortuosity factors to determine an ef-174

fective di↵usion coe�cient of a unit cell in a volume-averaged simulation.175

Comparing the options, the main di↵erence lies in the definition of the tor-176

tuosity as a unique value or as a function of the Knudsen number.177

An analysis of the three options led us to identify several advantages in178

using a definition of the tortuosity factor as a single geometry-dependent179

parameter [22], rather than as a function of the Knudsen number. One180

reason for this is simplicity: using the single value definition, given by length181

scale option (c), the tortuosity factor in a given direction is defined by two182

numbers, a single tortuosity factor value and a characteristic length. By183

contrast, in length scale options (a) and (b), the tortuosity factor in each184

direction is defined by three numbers, a bulk tortuosity factor, a Knudsen185

tortuosity factor, and a characteristic length. In addition, the definition of186

both a bulk and Knudsen tortuosity factor can arguably lead to confusion187

and misapplication, since the Knudsen tortuosity factor has no physical188

meaning without the characteristic length. Moreover, at certain conditions,189

some geometries yield unintuitive results of a tortuosity factor of less than190

one [17]. In summary, we chose length scale option (c), and we consistently191

do so in the remainder of this paper, unless explicitly specified.192

Using length scale option (c), the length scale of di↵usion is computed
as

lD,i =
3⌘bulkDi

e↵,Kn

✏v̄
(9)

where ⌘bulk is the bulk tortuosity factor computed using continuum assump-193

tions, and De↵,Kn is the computed e↵ective di↵usion coe�cient of the high194

Knudsen number simulation (see Sec. 4.2), and v̄ is the mean thermal ve-195

locity.196

2.3. Applying the tortuosity factor for multi-species di↵usion197

Once the tortuosity factors and the length scale have been computed for198

a given microstructure (detailed in Sec. 4), they can be applied to compute199

the e↵ective di↵usion coe�cient of a species in a material, in each of the200

three directions. In order to compute this value, one must first compute201

the bulk di↵usion coe�cient (not within the porous material) for species ↵202
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into the mixture, D↵,m
bulk at a given pressure and temperature, as well as the203

mean thermal velocity, v̄↵. The reference di↵usion coe�cient for species ↵204

in the material, for a given direction i, is then computed as an algebraic205

manipulation of the Bosanquet approximation:206

D↵,m
ref,i =

1

3

 
v̄↵ lD,i D

↵,m
bulk

D↵,m
bulk +

1
3 v̄

↵ lD,i

!
(10)

Once the reference di↵usion coe�cient is defined for a specific species and207

direction, the corresponding e↵ective di↵usion coe�cient inside the porous208

material can be computed by as a manipulation of equation 2:209

D↵
e↵,i =

✏

⌘i
D↵,m

ref,i (11)

This is most often used in the context of macro-scale modeling e↵orts [26],210

where di↵usion is solved in a volume-averaged porous material. The pre-211

sented model is valid for local thermal equilibrium applications. The appli-212

cation to local thermal non-equilibrium formulations, and possible correction213

terms to account for the thermal e↵ects on di↵usion, requires further study.214

An example of a full workflow is presented in Appendix A1, which uses215

numerical methods presented later in this paper to calculate the tortuosity216

factors and length scales of a fibrous material. The e↵ective di↵usion coef-217

ficients for a Xenon-Argon mixture are then calculated using Eqs. 10 and218

11 and compared to direct numerical simulation of the di↵usion inside the219

porous media using Direct Simulation Monte Carlo.220

3. Computational Representation of Arbitrary Porous Media221

In this work, computational domains of porous media are either com-222

putationally generated using the Porous Microstructure Analysis (PuMA)223

software [27] or obtained from synchrotron X-ray micro-tomography. Syn-224

thetically (computationally) generated domains allow us to perform verifi-225

cation on simple structures, or perform analysis on structures with varying226

porosity, and to tailor certain features of interest such as fiber orientation,227

fiber diameter, etc., as well as to easily evaluate both fibrous structures228

and packed beds. On the other hand, computationally generated domains229

miss micro-scale features and variability of actual materials, which are cap-230

tured by X-ray micro-tomography. The computational generation of simple231

materials is discussed in Appendix A2.232

We store the material on a uniform 3D Cartesian grid, where each node,233

separated by unit length, is given a numerical value, as this is the typical234

format of microtomographic data. In a discrete representation, nodes are235

assigned a value of either 0 or 1, indicating whether the node is material or236

void. In a continuous representation instead, each node has a value within a237
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continuous range, and cuto↵ values are used to separate the material phases238

from one another. The 3D box defined by ±1/2 unit in each direction239

corresponds to a voxel. A physical length is ascribed to the voxel, called240

the voxel length. For typical micro-structural applications, this length may241

range between 10�7 and 10�4 meters.242

For use in the particle simulations, discussed in Secs. 4.2 and 4.3, trian-243

gulation techniques, such as the marching cubes algorithm [28–30], can be244

used to approximate the interface between void and material as a collection245

of triangles. The marching cubes algorithm is well suited for simulations246

based on X-ray microtomography, since the iso-surface is triangulated di-247

rectly on the 3D Cartesian grid. This triangulation can be performed on248

either a discrete or continuous grid. If performed on a discrete grid, triangles249

are limited to angles at 45� intervals, whereas on a continuous grid, triangles250

can be placed at any angle. This is visualized in Fig. 1, which shows a sphere251

of radius 6 voxels, visualized with a) no triangulation, b) with triangulation252

on a discrete grid, and c) with triangulation on a continuous grid.253

a) b) c)

Figure 1: Visualization in ParaView [31] of a sphere of radius 6 voxels as an (a) voxel

surface and (b) marching cubes triangulation on a discrete grid and (c) marching cubes

triangulation on a continuous grid

Use of the original marching cubes algorithm results in an iso-surface254

that may not be water tight, as ambiguities in the algorithm can result in255

the formation of small holes. For particle-based simulations, this can result256

in particles entering and getting trapped in the solid material, potentially257

impacting the simulation results. This can be avoided by using modified258

marching cubes algorithms that guarantee a topologically correct surface [32,259

33]. The marching cubes variant of Lewiner et al. is available in a number260

of free software packages, including PuMA [27] and scikit-image [34]261

3.1. X-ray microtomography262

X-ray microtomography measurements provide resolution of material263

structures at scales from micrometer to centimeter in a non-destructive fash-264

ion. The structure is resolved into a 3D voxelized grid where each voxel has265

a grayscale intensity proportional to the local X-ray attenuation.266
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The past two decades have witnessed a rapid development of compu-267

tational methods and numerical tools based on 3D images. Applications268

to the direct computation of material properties have been demonstrated269

in structural analysis [35–37], prediction of thermal transport [38–42], and270

calculations of mass and momentum transport properties [43–46]. As ap-271

plied to di↵usive processes, Cooper et al. [47] and Tranter et al. [48] have272

developed tools for computations of tortuosity factors based on 3D images.273

Numerous applications exist in the field of woven materials [49], and many274

recent investigations have been dedicated to detailed tortuosity studies in275

electrochemistry [50, 51] and biology [52].276

Today, X-ray micro-tomography is largely accessible through laboratory-277

scale scanners, which match synchrotron light sources in attainable spatial278

resolutions. Synchrotron tomography remains the primary choice for fast279

acquisition times and in-situ experimentation, providing wider flexibility in280

sample size, and experimental configurations. Our tomography work for this281

study was conducted at the beamline 8.3.2 of the Advanced Light Source282

at the Lawrence Berkeley National Lab [53, 54]. We used an X-ray energy283

of 14 keV to image a highly porous carbon fiber material called FiberForm,284

used as preform for lightweight ablative thermal protection systems [40].285

For each scan we captured 1024 radiographs over a 180� arc, using a 10⇥286

magnification lens that provided a voxel size of ⇡1.3 µm. Because the287

material has variability in local porosity, density and fiber arrangement [40,288

55], we collected a total of fifteen tomographic scans of the material from289

di↵erent regions of the same manufactured billet. In this work, we do not290

discuss large scale variabilities that the material features as a result of the291

manufacturing process.292

Tomography datasets were reconstructed using TomoPy [56, 57], filtered293

and de-noised in fiji [58] when necessary and imported in PuMA as 8bit294

Ti↵ stacks. Because the acquired scans had satisfactory phase contrast,295

resulting in a distinct bi-modal grayscale distribution, a histogram shape-296

based segmentation was performed directly in PuMA to identify fibers and297

pore space. A visualization of the segmented tomography is shown in Fig. 2298

for the FiberForm material. The smallest inset shows a high magnification299

of a fiber section, where the surface is triangulated using the marching cubes300

algorithm introduces in section 3.301
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Figure 2: Surface rendering of 1 mm
3
sample of FiberForm, taken at three resolutions and

visualized in PuMA V2.1 [27].

4. Numerical Methods for Pore Resolved Di↵usion Simulations302

In this section, we present numerical methods suitable for direct nu-303

merical simulation of di↵usive transport in porous media. While there are304

many numerical methods available, the presented numerical methods strike305

what we believe to be an appropriate balance between convenience and ac-306

curacy for large scale simulations based on X-ray microtomography images.307

In particular, the numerical method choices entirely avoid the generation of308

unstructured meshes, often a di�cult and labor intensive process for com-309

plex microstructures.310

4.1. Continuum methods311

In the continuum, Kn < 0.01 at the pore scale, typical numerical meth-312

ods such as finite-di↵erence, finite-volume, or finite-element can be used to313

determine the tortuosity factor of a porous material. From Eq. 2, we need314
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the porosity, ✏, and the ratio of the reference and e↵ective di↵usion coe�-315

cients, Dref/De↵. To compute De↵ inside the porous material, the di↵usion316

equation317

r · (Drefr�) = 0 (12)

is solved with an imposed concentration gradient at the boundaries in the318

direction of interest, where � is the local concentration and Dref is used as319

the local di↵usion coe�cient at all points in the void region. The result320

is the local concentration, � at every cell in the computational domain, as321

shown in Fig. 3.322

Figure 3: Steady state concentration profile for 2D di↵usion through intersecting parallel

cylinders. Simulation was run in the PuMA software on a carteesian grid [27, 59], and the

visualization was generated in ParaView [31].

The average di↵usive flux can then be determined, and used with Fick’s323

first law of di↵usion, F = �De↵rh�i, to compute the e↵ective di↵usion324

coe�cient, where F is the di↵usive flux.325

The tortuosity factor is then found in the direction of interest using Eq. 2.326

For the 3D tensor, a simulation must be run with imposed gradients in each327

of the three directions. For isotropic materials, three directions should yield328

approximately the same tortuosity factor.329

In this work, a finite-volume solver implemented on a Cartesian grid was330

used. The finite-volume solver implements Dirichlet boundary conditions in331

the direction of interest and reflective boundary conditions in the side direc-332

tions. The linear system is solved using the conjugate gradient method [60].333

The solution is initialized with a linear concentration profile in the simula-334

tion direction. A residual tolerance of 10�4 is used. The conjugate gradient335
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solver typically convergences in a few thousand iterations for the fibrous336

microstructures of 8003 voxels used in this study.337

The solver was implemented into the Porous Microstructure Analysis338

(PuMA) software [27, 61] and parallelized using OpenMP [62].339

The choice of solving the di↵usion equation directly on a Cartesian grid,340

using a voxel representation of the surface, comes with significant compu-341

tational advantages at the expense of a low order surface representation. A342

structured Cartesian grid allows large simulations to be performed, with do-343

main sizes of 10003 elements or more on a large workstation. Alternatively,344

an unstructured mesh could be generated from the tomographic data with345

a higher order representation of the surface. Such an approach would pay a346

heavy cost both in terms of the generation of such meshes (often an arduous347

and manual process) and in computing the converged solution. The results348

shown in Fig. 7 and associated discussion provide an estimate to the error349

that can be expected for given feature sizes and porosities when computed350

on a voxel grid.351

4.2. Random walk method352

In non-continuum conditions, beginning around Kn > 0.01, the contin-353

uum equations presented in section 4.1 are no longer valid for the physical354

system. For simulations of single-spieces di↵usion at all Knudsen regimes355

a random walk method has been implemented in PuMA [27] following past356

works of Tomadakis & Sotirchos [16, 17], Vignoles [20], and Becker et al. [63].357

The random walk method simulates di↵usion through the use of indepen-358

dently marching particles, that randomly move through the void space of359

a porous medium and collide with the pore walls. Particle-particle colli-360

sions are not directly simulated, but rather are assumed to occur once the361

particle has traveled a certain distance, based on the imposed mean free362

path length. For each simulation, the total number of particles, total walk363

time, mean thermal velocity, and mean free path length are imposed. The364

details of the random walk method are provided below, and available in the365

documentation of the PuMA source code [27].366

Particle properties and placement367

Particles are randomly placed in the pore space of the domain, and368

assigned a random unit direction vector. Each particle is given the same369

thermal velocity, input for the simulation. A random free path length is370

assigned to each particle, based on an exponential distribution:371

� = �log(R)�̄ (13)

where R is a uniform random number, R 2 (0, 1), and �̄ is the mean free372

path length, imposed for the simulation.373
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Particle movement374

As each particle moves through a voxel, one of the following three con-375

ditions occurs (see Fig. 4): (a) the particle continues to the next voxel inter-376

section, (b) the walk distance exceeds the free path length of the particle,377

or (c) a collision occurs with the material.378

In case (a), the particle continues to the next voxel. In case (b), a379

particle-particle collision is simulated (though no actual collision occurred380

since the particles walk independently). A new random unit direction vec-381

tor is given to the particle, and a new free path length is picked from the382

exponential distribution in Eq. 13. In case (c), a particle-surface collision383

occurs, and the particle is given a new direction vector based on a di↵use384

reflection with the surface. The particle is also given a new free path length385

from the exponential distribution in Eq. 13.386
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Current 
position

Would-be 
collision 
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Particle-particle 
collision location

c)
Current 
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Collision 
locationDiffuse 

reflection

Next 
position

Figure 4: Schematic of random walk particle traversing a voxel, showing the three possible

cases: (a) no collision, (b) particle-particle collision, (c) particle-wall collision.

Surface collision detection387

Particle-surface collisions were tested based on two surface representa-388

tions, a voxel grid and an iso-surface approximation based on marching389

cubes. In section 3 we discuss the use of the two methods in determining390

surface collisions and scattering when simulating di↵usion.391

Boundary conditions392

Reflective (symmetric) boundary conditions are used for the computa-393

tional domain. In our implementation, the particles are not bounded to the394

domain, but rather the domain is infinitely reflected and every possible voxel395

is associated with a specific voxel in the domain, as shown in Fig. 5. If the396

number of reflections is odd, the triangles contained in the voxel must also397

be reflected. The choice of reflective rather than periodic boundary condi-398

tions was made in order to preserve the average tortuosity at the boundary.399

If periodic boundary conditions are used on a non periodic material, then at400

the boundary the di↵usion is impeded by the extra material reflected from401

the opposite side of the domain, with an e↵ect size inversely proportional to402

the material porosity.403
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Figure 5: 2D Visualization of reflective boundary condition used for the random walk

di↵usion solver

Determination of the e↵ective di↵usion coe�cient404

Once the simulation has converged, the e↵ective di↵usion coe�cient, in405

direction i, is determined as [64]406

De↵,i =
h⇠2ii
2t

(14)

where h⇠2ii is the mean square displacement of the particles in the direction407

i, and t is the simulation time. In the typical process for determining the408

tortuosity factor, described in section 2, the computed value for De↵, and409

the mean free path length, �̄ would be used in Eq. 9 to determine the410

characteristic length of di↵usion.411

Parallelization of the algorithm412

Because the walkers operate independently, the algorithm is easily paral-413

lelized for shared memory or distributed memory systems. Our OpenMP [62]414

parallelization scheme, which simply uses a parallel for-loop over the par-415

ticles, obtains near perfect scaling when tested on a 44-core machine with416

approximately 2300 particles per processor.417

Computing the tortuosity factors from random walk simulations418

Assuming the use of Bosanquet’s approximation to estimate the transi-419

tional and slip regime di↵usion coe�cients, the di↵usive tortuosity factors420

of a material are defined in each relevant direction by the tortuosity factor,421

⌘, and the length scale of di↵usion, lD. Using the random walk solver, they422

are computed as follows:423

1. Select a mean free path length and mean thermal velocity in continuum424

conditions, and compute Dref using Eq. 4.425

2. Using the selected conditions, run a continuum random walk simula-426

tion to determine De↵ in a material.427

3. Use De↵ and Dref from steps 1 & 2 to compute the tortuosity factor,428

⌘, from Eq. 2.429
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4. Select a new mean free path length in the transitional/rarefied regime.430

Using these conditions, run a random walk simulation and compute431

De↵ inside the porous material.432

5. Use Eq. 9 with the transitional/rarefied conditions to compute lD.433

4.3. Direct Simulation Monte Carlo434

Although the random walk method detailed above is capable of solving435

for the tortuosity factors and length scales, simulations using Direct Simu-436

lation Monte Carlo (DSMC) were also conducted. The DSMC simulations437

were used as a verification tool for the random walk algorithm, and to per-438

form direct numerical simulation of multi-species di↵usion in porous media439

to compare with our presented model (see Appendix A2). In a typical work-440

flow, however, the computational expense of DSMC simulations, particularly441

in the continuum regime, make DSMC an impractical choice.442

DSMC is a stochastic method that solves the time-dependent nonlinear443

Boltzmann equation. It is a probabilistic simulation of molecular processes444

based on the kinetic theory of dilute gases [18]. DSMC is often used for the445

simulations of fluid flows in non-continuum conditions; though valid in the446

continuum regime, the high particle density requires at this regime results in447

high computational cost. In the DSMC algorithm, the Boltzmann equation448

is decoupled into two parts: molecular advection and collisions.449

Particles are tracked in the domain based on their position in virtual450

cells. Each particle represents an FN number of real molecules. The cell451

length has to be carefully chosen such that it is smaller than the mean free452

path length. The time step is chosen such that it is smaller than the mean453

collision frequency. At each time step, following their advection, a number454

of binary pairs of particles are selected for collisions in each grid cell. In455

the collision procedure, we follow the no-time-counter (NTC) procedure of456

Bird [18] for the selection of collision pairs. Quantities such as velocity,457

translational and internal energy of particles can be computed by sampling458

the flow field. Therefore, macroparameters such as temperature, pressure459

and number density can be computed in each grid cell. In order to reduce460

statistical scatter and ensure that collisions are performed accurately, it is461

generally recommended that a minimum of 10 to 20 particles per computa-462

tional cell be used [65].463

The Stochastic PArallel Rarefied-gas Time-accurate Analyzer (SPARTA) [66,464

67] DSMC code developed at Sandia National Laboratories was used in the465

current work. The grid was used to group particles by grid cell for pur-466

poses of performing collisions and chemistry, as well as e�ciently find par-467

ticle/surface collisions. As in the random walk solver, the marching cubes468

algorithm [28, 29] was also implemented in SPARTA [45] to approximate469

the iso-surface of the digitized geometry from either micro-tomography or470

artificially generated, given a grayscale threshold. The algorithm represents471

the surface of the fibers as a collection of triangles. These were used to472

locate surface collisions with particles during the DSMC simulation.473
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Argon was initially chosen as the carrier gas. SPARTA uses the Vari-474

able Hard Sphere (VHS) model to simulate particle interactions [18]. The475

particle-surface collisions were modeled using a di↵use reflection model.476

Computing the tortuosity factors from DSMC simulations477

From the quantities computed in a DSMC simulation, the tortuosity478

factor of a material is computed as follows:479

1. Perform DSMC simulations in a periodic box with no surface elements480

to compute the bulk di↵usion coe�cient Dbulk for the simulation 1.481

2. Run a free molecular simulation (inter-particle collisions turned o↵)482

to determine De↵,Kn in a material.483

3. Run a simulation in the continuum or slip/transitional regime 2, and484

compute De↵ inside the porous material using Eq. 14.485

4. Compute ⌘ from ⌘ = Dbulk · (1/De↵ � 1/De↵,Kn).486

5. Compute lD from Eq. 9 with 1/� = 0.487

5. Application of Numerical Methods488

5.1. Consideration 1: Surface Representation489

For each of the numerical techniques used to simulate di↵usion in porous490

media, a method was needed to represent the boundary between void and491

material. For particle simulations, the surface can be represented as either492

a voxel grid, as shown in Fig.1a, or as a triangulated iso-surface, as shown493

in Fig.1b and c.494

A study was performed to assess how the collision detection based on495

the two surface discretizations a↵ects the computed e↵ective di↵usion co-496

e�cient. Figure 6 shows the percent di↵erence between e↵ective di↵usion497

coe�cient Dvox
eff and Diso

eff computed on the voxel grid and the triangulated498

iso-surface of a continuous grid for Knudsen numbers from the continuum499

to the rarefied regime. In the continuum regime, where the mean free path500

length is small compared to the characteristic length of the geometry, the501

two collision methods yield results within 1% of each other. However, sig-502

nificant di↵erences are noted at high Knudsen numbers. This e↵ect exists503

1
simulations were performed for argon at 273.15 K and various pressures and con-

firmed that all computed quantities are within 2% of the value of the di↵usion coe�cient

calculated from the Chapman-Enskog first order approximation[18, 68]
2
Although a continuum simulation in step 3 would produce the most accurate results,

such simulations may not be feasible depending on the domain size and computational

resources available.
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independently of grid refinement and is due to an increased number of sur-504

face collisions that occur on a voxel grid. Take, for example, free molecular505

simulations 3 on the geometries shown in Fig. 1a and c, in which particles506

are randomly placed in the domain, directed towards the sphere. With the507

triangulated iso-surface, as shown in Fig. 1c, each particle will collide with508

the geometry exactly once before exiting the domain. However, for the voxel509

representation (Fig. 1a), our simulations showed that each particle collided510

with the surface an average of ⇡ 1.54 times. This result was consistent for511

all domain and sphere sizes tested.512
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Figure 6: Percent di↵erence in e↵ective di↵usion coe�cient between simulations using a

voxel or iso-surface collision method. Results are shown for a 1D capillary, a 3D random

intersecting packed sphere bed, and 3D random intersecting isotropic fibers.

A similar e↵ect was noted by Vignoles [20], where di↵erences were stud-513

ied in the computed mean intercept length, d̄, in a cylindrical capillary514

using a voxel surface or a triangulation based on a discrete grid (rather than515

a continuous grid). Vignoles showed that for a triangulated surface, the516

mean intercept length converged to reasonable agreement with the physical517

diameter of the capillary. However, for a voxel surface representation, the518

mean intercept length was underestimated by around 20%. Simulations in519

PuMA corroborate these results.520

As shown in Fig. 6, though the surface representation in the case of521

1D di↵usion in a capillary will a↵ect the computed mean intercept length,522

it does not a↵ect the value for the e↵ective di↵usion coe�cient. This is523

explained by the fact that, for a cylindrical capillary, regardless of whether524

a voxel or triangulated surface is used, the surface normals will always be525

orthogonal to the capillary direction. For simulations in a capillary, using526

3
In a free molecular simulation, there are no particle-particle collisions, and each par-

ticle travels on an uninterrupted trajectory between particle-surface collisions.
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the mean intercept length to define the characteristic length, as is the case527

with length scale option (b) (cf. Sec. 2.2) this result will have an e↵ect528

on the computed tortuosity factor in the Knudsen regime, proportional to529

the di↵erence in computed mean intercept length. The net e↵ect, however,530

for the specific case of simulating di↵usion in a capillary, is that both the531

voxel and triangulated surfaces yield good results for computing the e↵ective532

di↵usion coe�cient and tortuosity factors, so long as the length scale method533

chosen is applied consistently.534

For complex 3D structures, as shown in Fig. 6, the e↵ect of using a voxel535

surface representation exists both for calculations of the mean intercept536

length and the e↵ective di↵usion coe�cient, demonstrating that the di↵er-537

ences between surface representation methods are significant and cannot be538

ignored.539

As the iso-surface is a higher-fidelity representation of the real surface540

at the scale considered, we interpret this to suggest that a voxel surface541

is not adequate for simulations in the transitional and rarefied regimes. It542

is noted, however, that for simulations on actual materials, the iso-surface543

representation smooths e↵ects that are due to roughness scales below the544

resolution of the imaging technique.545

5.2. Consideration 2: Feature Resolution546

For each of our numerical methods, the accuracy of the solution will de-547

pend on the discretization size. This e↵ect is most significant in the case of548

voxelized surface representation, as used in the finite volume method, and549

the random walk with voxel surfaces. A parametric study was conducted on550

the random sphere and cylinder structures to estimate the error introduced551

by under-resolved features. Figure 7 presents results from the tortuosity552

computations on a 10243 grid (chosen large enough to be a representative553

volume) with shape primitives of varying radii at four porosity values. An554

approximate converged value for the tortuosity, ⌘⇤, was defined as an av-555

erage of the tortuosity values for the four largest radii. As expected, the556

tortuosity value converges as the radius of the primitive shape increases.557

The convergence is also strongly related to the porosity, indicating that the558

mean pore diameter is a relevant factor.559

Based on this parametric study, for the comparison between the ran-560

dom walk and finite-volume methods, for the comparison between numerical561

methods, presented in Sec. 6, radius values of 32 and 28 voxels were taken562

for the sphere and cylinder primitives, respectively. Since the random walk563

algorithm determines particle-surface collisions based on a marching cubes564

triangulation, it is an immersed boundary rather than a voxel-based solver.565

Thus, the solution converges at much smaller primitive shape radii values.566

18



η
/η
*

1

1.2

1.4

1.6

1.8

	

rf,	voxel
0 10 20 30 40 50

	

ε	=	0.2
ε	=	0.4
ε	=	0.6
ε	=	0.8

rf*	=	28

η
/η
*

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

	
rs,	voxel

0 10 20 30 40 50

	

ε	=	0.2
ε	=	0.4
ε	=	0.6
ε	=	0.8

rs*	=	32

a) b)

Figure 7: The convergence of tortuosity values as a function of shape primitive radius size

for (a) packed sphere beds, and (b) random fiber structures, presented at four porosity

values.

5.3. Consideration 3: Representative Elementary Volume567

Another important parameter is the representative elementary volume568

(REV) at the selected resolution values. The REV defines the size at which569

the domain becomes statistically representative. The size of the REV varies570

for the property of interest [27], and is strongly dependent on the particular571

material. As such, the REV of artificially generated fibrous materials should572

not be extrapolated to that of real fibrous materials.573

For our artificially generated materials, Fig. 8 shows the standard de-574

viation of tortuosity values as a function of domain size for the random575

sphere and cylinder structures. The primitive shape radii were set to be 32576

and 28 voxels, for the spheres and cylinders, respectively, and an additional577

parametric analysis was run at four porosity values.578

Based on the results shown in Fig 8, a domain size of 10243 voxels was579

selected for the comparison between the finite-volume and random walk580

methods, presented in Sec. 6, such that the relative standard deviation would581

remain below 2% for both structures.582
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Figure 8: Relative standard deviation for (a) packed sphere beds and (b) randomly ori-

ented fibers at varying domain sizes and porosities.

6. Direct Comparison of Numerical Methods583

584

6.1. Continuum Tortuosity Factors585

Figure 9 shows comparison between random walk and finite-volume meth-586

ods, simulated on 3D fiber structures and a packed sphere beds of varying587

porosities. For continuum conditions, DSMC becomes prohibitively expen-588

sive. As such, DSMC results are not presented in this section. The random589

walk simulations were performed with 100,000 particles for a total walk590

length of 1000 times the domain size. A mean free path length of 0.5 voxels591

was chosen, ensuring the simulation occurs in the continuum regime. Simu-592

lations were performed on a 44-core (two Intel Xeon E5-2699 v4 processors)593

workstation, with simulation times of approximately 20 minutes each for594

both random walk and finite-volume simulations. The finite-volume and595

random walk simulations required approximately 50gb and 20gb of ram,596

respectively, for an 8003 domain size.597
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Figure 9: Comparison in computed tortuosity factors for (a) packed sphere beds and (b)

randomly oriented 3D fibers, computed at multiple porosity values.

As shown in Fig. 9, the random walk and finite-volume methods showed598

excellent agreement for each material tested at all porosity values, with an599

average percent di↵erence of 0.9% and a maximum percent di↵erence of 1.7%600

between the two methods. As detailed in Sec. 5.1, in continuum conditions601

the choice of the surface representation for the random walk method becomes602

negligible. These results demonstrate the ability of the random walk method603

to accurately compute di↵usion in the continuum regime on arbitrary 3D604

geometries.605

6.2. Non-continuum Tortuosity Factors606

In this section we compute di↵usion coe�cients and tortuosity factors607

at Knudsen numbers above 0.01. Random Walk simulation results are com-608

pared to the solutions obtained from DSMC, which is considered the accu-609

rate standard for computing transport in the transitional and rarefied flows.610

E↵ective di↵usion coe�cients were computed with DSMC at discrete611

values of the Knudsen number. To this end, we fixed the gas and surface612

temperatures at 273.15 K for all cases (we start from a thermal equilibrium),613

and set the average pressures in the sample such that the mean free path614

length would be at least twice the cell size. The time step was chosen as615

1 ns for all simulations, ensuring that it was at most 1/10 of the mean616

collision time. At least 12 particles were present on average in each cell of617

the domain for all simulations, in order to reduce statistical scatter. For618

the presented cases, this resulted in between 65 and 410 million particles for619

each simulation. The simulation was allowed to reach steady state for 5,000620

timesteps, followed by an additional 40,000 timesteps for computation of the621

e↵ective di↵usion coe�cient. A gas phase collision free molecular simulation622

was also performed in order to compute the exact value of De↵,Kn.623

Simulations were performed on 1,200 Intel Haswell cores of the NASA624

Ames’ Pleiades supercomputer, and the total simulations length varied be-625
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tween 30 minutes and 2 hours depending on the Knudsen number and ge-626

ometry considered.627

For the random walk results presented, 100,000 particles were used for628

a total walk length of 1000 times the domain length to ensure convergence.629

The mean free path length was adjusted to vary the Knudsen number of630

the simulation. As detailed in Sec. 5.1, triangulated surfaces are used for631

all simulations in non-continuum conditions. Simulations were performed632

on a 44-core workstation, with simulation times between 2 minutes and 20633

minutes each depending on the Knudsen number.634
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Figure 10: DSMC and random walk comparison in normalized e↵ective di↵usion coe�cient

as a function of Knudsen Number for randomly oriented transverse isotropic 3D cylinders

at a) 0.6 and b) 0.9 porosity.

22



D
ef
f,	
µm

0

5

10

15

	

Kn
0.01 0.1 1 10 100 1000 10000

	

Through-thickness
In-plane

Lines:	PuMA,	random	walk
Symbols:	SPARTA,	DSMC

Figure 11: DSMC and random walk comparison in normalized e↵ective di↵usion coe�cient

as a function of Knudsen Number, computed on an X-ray microtomography image of

FiberForm with side length 0.5mm and a porosity of 0.846.

Figure 10 shows the normalized e↵ective di↵usion coe�cient, D̄e↵ =635

De↵/v̄, computed on transverse isotropic random 3D fiber structures, with636

± 15 degree pitch with respect to the through thickness plane, at two poros-637

ity values (0.6 and 0.9) and at Knudsen numbers varying between 0.01 and638

10,000. For the random walk simulations, the mean thermal velocity, v̄ is a639

simulation input; for the DSMC simulations, v̄ is a function of the input sys-640

tem temperature and gas species. The Bosanquet approximation for the slip641

and transitional regimes are plotted, based on Eq. 10, for the PuMA simu-642

lation results. Figure 11 shows the comparison on X-ray microtomography643

image of FiberForm, with 0.5mm side lengths, 4003 voxels, and a porosity of644

0.846., see Fig. 2. Note that given the inhomogeneity of FiberForm, this is645

not a su�cient size to be a representative volume. The size was limited be-646

cause of the high computational cost of DSMC simulations, however it still647

serves as a good case for comparison between the numerical methods. It can648

be seen that the random walk and DSMC results show excellent agreement649

for complex 3D geometries at all Knudsen numbers.650

6.3. Comparison with literature651

Simulations using the random walk and DSMC methods were compared652

to results from the classical work of Tomadakis and Sotirchos [17] on 1D653

and 3D fiber structures. Tomadakis and Sotirchos used a tortuosity factor654

nomenclature which defines the characteristic length as an approximation655

of the mean pore diameter, lD = 4✏ · S. As explained in section 2, in656

this formulation, the tortuosity factor becomes a function of the Knudsen657

number. For this comparison, we have adopted their formulation. Results658

are presented in Figs. 12 and 13, for 1D and 3D fiber structures, respectively.659
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Figure 12: Simulation results from random walk and DSMC solvers on a 1D fiber structure

with a porosity of 0.7 compared to results from Tomadakis and Sotirchos [17].

The dashed lines show the approximation of the tortuosity factor values660

in the slip and transitional regimes, given by661

⌘ =
⌘b + ⌘Kn ·Kn

1 + Kn
(15)

where ⌘b is the bulk tortuosity factor as Kn ! 0 and ⌘Kn is the rarefied tor-662

tuosity factor as Kn ! 1. While the random walk and DSMC results show663

excellent agreement, small di↵erences exist in comparison to the Tomadakis664

and Sotirchos results. Statistical fluctuations, owing to the computational665

limitations in 1993 could account for the di↵erences, as the simulations of666

Tomadakis and Sotirchos were performed with only 200 particles.667
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Figure 13: Simulation results from random walk and DSMC solvers on a 3D fiber structure

with a porosity of 0.6 compared to results from Tomadakis and Sotirchos [17].

Another possible source of error is the geometry itself, as slight di↵er-668

ences in geometry generation techniques could alter the results. This is669

supported by the similarity in results on 1D fibers in the parallel direc-670
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tion, which should be independent of the cylinder placement as long as the671

porosity and surface area are consistent.672

6.4. Application to X-ray microtomography673

Simulations were performed to determine the tortuosity factors of a ma-674

terial, FiberForm, based on X-ray microtomography images. Results from675

sections 4.1 - 6.3 demonstrated that the results of the random walk are con-676

sistent with other numerical methods at all Knudsen numbers. Therefore,677

the random walk methods is used, following the procedure in section 4.2 to678

compute the tortuosity factors of the material.679

Fifteen di↵erent X-ray microtomography datasets of FiberForm were680

used, each of side length 1.04mm, with 8003 voxels of length 1.3 µm. The681

datasets were each acquired as described in section 3.1 and down sampled by682

a factor of 2. In order to reduce noise and improve segmentation a bilateral683

filter with a radius of 3 and a range of 50 was applied to each image using684

Fiji [69], along with a despeckle operation. The X-ray microtomography685

datasets had a mean porosity of 0.887 with a standard deviation of 0.007.686

For each tomography, a continuum simulation was carried out to com-687

pute the bulk tortuosity factor and a high-Knudsen number simulation was688

performed to determine the characteristic length of di↵usion, lD. All simu-689

lations used 100,000 particles and a 1000 times the domain length total walk690

path; continuum simulations were given a mean free path length of 0.5µm,691

while rarefied simulations were given a mean free path length of 0.5 m.692

As FiberForm is a transverse isotropic material [40], simulations were693

performed for both the “through-thickness” (z) and “in-plane” (x � y) di-694

rection. Results are shown for each of the 15 FiberForm samples in table 1,695

with averages and standard deviations shown.696
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Sample Porosity ⌘IP ⌘TT lDIP lDTT

1 0.893 1.158 1.257 7.509e�5 5.267e�5
2 0.884 1.173 1.354 7.946e�5 4.341e�5
3 0.901 1.137 1.223 8.623e�5 6.128e�5
4 0.884 1.173 1.312 7.146e�5 4.853e�5
5 0.877 1.195 1.355 6.632e�5 4.366e�5
6 0.883 1.165 1.302 7.090e�5 4.965e�5
7 0.885 1.175 1.326 7.390e�5 4.751e�5
8 0.888 1.162 1.299 7.624e�5 5.170e�5
9 0.881 1.178 1.339 6.938e�5 4.434e�5
10 0.883 1.171 1.335 7.355e�5 4.514e�5
11 0.890 1.155 1.277 8.089e�5 5.299e�5
12 0.876 1.186 1.357 6.455e�5 4.251e�5
13 0.894 1.164 1.220 7.673e�5 6.251e�5
14 0.895 1.137 1.242 8.517e�5 5.745e�5
15 0.892 1.141 1.241 8.795e�5 5.520e�5
Average 0.887 1.165 1.296 7.585e�5 5.5056e�5
Std. Deviation 0.007 0.017 0.049 7.042e�6 6.470e�6

Table 1: Di↵usive tortuosity factors of FiberForm, computed in the through-thickness and

in-plane directions, for 15 X-ray microtomography scans.

697

These results show the expected di↵erence in tortuosity factors in the698

through thickness and in plane directions. They also show that the relative699

standard deviation between samples is significantly higher for simulations700

of rarefied di↵usion than in continuum di↵usion, as seen by the larger rela-701

tive standard deviations in the characteristic length than in the tortuosity702

factors.703

7. Conclusions704

A physical model for the di↵usive tortuosity factors is presented, in which705

the tortuosity factors of a material are independent of the Knudsen num-706

ber. The random walk model is tested against a finite-volume method in707

the continuum regime, showing excellent agreement for simple and com-708

plex geometries at multiple porosities. It was shown that for low-resolution709

material domains, the voxel-based finite-volume method produces signifi-710

cant error at low porosity values, and a more refined voxel grid must be711

used. It was also shown that in the transitional and rarefied regimes, there712

are large di↵erences in simulations on triangulated iso-surfaces and voxel713

grids, regardless of domain size. We interpret these di↵erences to indicate714

that for particle-surface collision detection and reflections at high Knudsen715

numbers, an iso-surface representation should be used, although this claim716
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needs experimental validation. A DSMC solver was used to compute tortu-717

osity factors in non-continuum conditions. DSMC results were compared to718

the random walk solver results, showing excellent agreement at all Knud-719

sen numbers. The comparisons with the finite-volume and DSMC solvers720

show that the random walk method is suitable for computing the di↵u-721

sive tortuosity factors of an arbitrary 3D porous material at all Knudsen722

numbers. Finally, the random walk method is applied to X-ray microto-723

mography datasets in order to compute the tortuosity of fibrous materials724

used for spacecraft heatshields.725
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Appendix A1: Calculation of e↵ective di↵usion coe�cients984

In this example, we calculate the e↵ective di↵usion coe�cient inside985

of a porous material based on the materials tortuosity, length scale, and986

bulk transport properties of the gas. This example is relevant to a volume-987

averaged simulation of mass transfer in porous media, where the user knows988

the tortuosity and length scale of the porous material from micro-scale sim-989

ulations, but needs to compute the e↵ective di↵usion coe�cient of each990

species in the mixture for a given set of conditions (temperature, pressure,991

composition).992

The first step, which need only be performed once for each material, is993

to compute the di↵usive tortuosity factor and length scale of the porous ma-994

terial from direct simulation on the materials micro-structure (see Sec. 4).995

These simulations can be performed in the PuMA software [27]. For this996

example, we will use a material microstrucutre generated from PuMA: ran-997

domly oriented intersecting cylinders. The material, shown in Fig. 14, is998

transverse isotropic, meaning that the material properties are isotropic in999

the XY plane, but variable between the XY and Z directions. A 3D ti↵1000

of the microstructure is included in the supplemental materials. The void1001

phase is contained in the grayscale values of 0 to 127, and the solid phase is1002

contained within values 128 to 255. The material porosity is 0.875.1003

Figure 14: Computationally generated transverse isotropic microstructure of intersecting

cylinders

The tortuosity factors were calculated in PuMA using the random walk1004

method for both the continuum and rarefied simulations. For both sim-1005
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ulations, 100,000 particles were used for a total walk distance of 100,0001006

voxels per particle. The tortuosity and length scales were calculated follow-1007

ing the procedure at the end of Sec. 4.2. The X and Y values were averaged,1008

resulting in the following values for the tortuosity and the length scale:1009

Direction ⌘ lD(m)
XY 1.0727 6.292 · 10�5

Z 1.1319 4.678 · 10�5
1010

Now that the material tortuosity and length scale has been determined,1011

we will pick an example set of conditions to calculate the e↵ective di↵usion1012

coe�cient within the porous material. For this example, we will use an1013

equimolar Argon-Xenon mixture at 0.001 atm and 273.15K. Within your1014

volume averaged simulation tool, the bulk properties (independent of the1015

porous media) for the mixture need to be computed. These properties should1016

require little computational time to determine, and can be computed using a1017

number of tools, such as mutation++ [70, 71]. In this example, we calculate1018

the bulk properties using the DSMC tool SPARTA [67]. The properties of1019

interest are the mean thermal velocity, and the bulk di↵usion coe�cient of1020

the species into the mixture:1021

Species v̄ (m/s) Dj!mix
bulk (m2/s)

Ar 380.241 1.174 · 10�2

Xe 209.315 6.334 · 10�3
1022

Now, we use Eq. 10 and 11 to determine the reference and e↵ective1023

di↵usion coe�cients in the material, in m2/s:1024

Species DXY
ref DXY

e↵ DZ
ref DZ

e↵

Ar ! mix 4.749 · 10�3 3.873 · 10�3 3.939 · 10�3 3.045 · 10�3

Xe ! mix 2.593 · 10�3 2.115 · 10�3 2.154 · 10�3 1.665 · 10�3
1025

Finally, we compare the above results to direct numerical simulation of1026

an Argon-Xenon mixture in the porous media, simulated using the SPARTA1027

DSMC solver, in m2/s:1028

Species DXY
e↵ DZ

e↵

Ar 3.9195 · 10�3 3.081 · 10�3

Xe 2.138 · 10�3 1.684 · 10�3
1029

Comparing our model results to the direct numerical simulation, we have1030

excellent agreement with an average percent di↵erence of 1.14%.1031
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Appendix A2: Computationally generated microstructures1032

We used four types of artificially generated geometries: a capillary tube,1033

1D cylinders, 3D cylinders, and 3D packed sphere beds. These geometries1034

are used in classical studies of tortuosity in porous media [16, 17, 22] and1035

allow us to compare with the literature. The same geometry storage method1036

is used for the computationally generated materials as was used for the X-1037

ray microtomography datasets: a 3D matrix of grayscale values at each1038

voxel, with a threshold value used to segment void from material. These1039

four geometries consist of two primitive shapes - cylinders and spheres.1040

a) b)

c) d)

Figure 15: Example computationally generated materials used in this work: (a) a capillary,

(b) 1D cylinders, (c) 3D cylinders, and (d) a packed sphere bed. Visualizations performed

in ParaView [31] with the OSPRay ray-tracer [72, 73].

To generate a sphere on a continuous Cartesian grid, a centerpoint and1041

radius is chosen, and each voxel in the vicinity is assigned a grayscale value1042

between 0 and 255 based on its distance to the centerpoint. To generate a1043

random sphere bed, spheres are generated at random centerpoints until the1044

desired porosity is met.1045

To generate a cylinder on a continuous Cartesian grid, a center line1046

segment and radius is chosen, and each voxel in the vicinity is assigned a1047

value based on its distance to the line segment. Random 1D structures are1048

generated by creating parallel cylinders until the desired porosity is reached.1049
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For a random 3D structure, random positions and angles are assigned to each1050

generated cylinder, until the desired porosity is reached. Periodic boundary1051

conditions are used for all random generated structures in the event that a1052

primitive shape extends past the domain.1053

An example of each computationally generated structure is shown in1054

Fig. 15, with each of the random structures having a porosity of 0.7. For fiber1055

and sphere geometries (Fig. 15(b), (c), and (d)) overlap and intersections1056

are allowed between the elements, though PuMA allows for the generation1057

of microstructures with non overlapping elements as well.1058
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