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Abstract

The Gromov—Wasserstein distance—a generalization of the usual Wasserstein
distance—permits comparing probability measures defined on possibly different met-
ric spaces. Recently, this notion of distance has found several applications in Data
Science and in Machine Learning. With the goal of aiding both the interpretability
of dissimilarity measures computed through the Gromov—Wasserstein distance and
the assessment of the approximation quality of computational techniques designed
to estimate the Gromov—Wasserstein distance, we determine the precise value of
a certain variant of the Gromov—Wasserstein distance between unit spheres of dif-
ferent dimensions. Indeed, we consider a two-parameter family {dgw P"I};C,)q: , of
Gromov—Wasserstein distances between metric measure spaces. By exploiting a suit-
able interaction between specific values of the parameters p and g and the metric of
the underlying spaces, we are able to determine the exact value of the distance dgwa,2
between all pairs of unit spheres of different dimensions endowed with their Euclidean
distance and their uniform measure.
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1 Introduction

Shape comparison ideas are utilized in a variety of fields with a wide range of appli-
cation domains ranging from phylogenetics [9, 25, 44], medicine [47], neuroscience
[36, 55], oral biology [43], language structure [2], social and biological networks [7,
23], to political science [17, 24] and computer vision [26, 45]. Many context specific
tools have been developed to study the diverse set of problems which appear in these
domains. Classical approaches such as statistical landmark analysis [5] turn physical
shapes into sequences of vectors, allowing for the rotation-dilation based approach
of Procrustes Analysis (see [13, 21, 37]). On the other hand, one can also understand
a shape from the perspective of metric geometry, where the essence of a shape is
captured by its pairwise interpoint distances [29, 33]. Then in order to compare two
shapes, i.e., in order to quantify their failure to be isometric, one compares their metric
information directly. The Gromov—Hausdorff distance (see [6, 22]), dgH, provides a
framework to compare distinct (compact) metric spaces X and Y, where

1
dou(X,Y) := = inf  dis(R
GH ( ) 3 RG%X v is(R)

s

and R(X, Y) denotes the collection of all correspondences between X and Y, that

is, all subsets R € X x Y such that the canonical projections of R onto the first and
Elol:;ﬂ
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second coordinates satisfy 71 (R) = X and m2(R) = Y, and where

dis(R) := sup |dx (x, x") = dy (y, )|
(x,y),(x",y)eR

is the distortion of R. The Gromov—Hausdorff distance has been considered in the
context of shape comparison and shape classification problems [33]. However, it does
not account for the distributional properties of a given data sample. The Gromov—
Wasserstein distance [30] offers a robust alternative by viewing the shapes as metric
measure spaces: triples (X, dx, 1) where dy is the metric on X and px is a fully
supported Borel probability measure on X.

It is natural to consider metric measure spaces in the context of shape and data
comparison, since they allow us to associate to each point in our shape a weight
that represents its relative importance within the dataset. The Gromov—Wasserstein
distance provides a solution to the problem of finding the “best” way to align two
shapes equipped with probability measures, where the best alignment is found by
making use of the notion of coupling, a cognate of the notion of correspondence which
is ubiquitous in the Kantorovich formulation of optimal transport [54]. Given measure
spaces (X, ny), (Y, uy), a coupling between X and Y is a measure y on the product
space X x Y whose marginals over X and Y are jx and sy respectively.! We denote
the space of all such measures by M(uy, py). Intuitively, couplings align points
in X to those in Y. The distortion of a coupling provides insight to how well a given
coupling interacts with the underlying metric structures of X and Y in order to preserve
distances. For p € [1, 00), the p-distortion induced by a coupling y € M(uy, py)
is defined as:

l/p
dis,(y) := </x Y/X . |dx (x, x") — dy (y, Y)|"y (dx x dy) y (dx' x dy’)) .

This distortion is then minimized (see [30]) over all possible couplings to define the
p-Gromov—Wasserstein distance between X and Y:

1
dow,(X,Y) := = inf dis,(y).
r 2 yeM(ux.uy) Pty

In this work, we consider a two parameter family dgwp, 4 (for p,q € [1,o0])
of Gromov—Wasserstein distances. In contrast to the dgw distance recalled above,
we consider the (p, q)-distortion of a coupling y € M(ux, ;uy) defined as (see
Definition 1.15):

1/p
dis g (v) = ( / / 1% Ge, ') — d%y, )Py (dx x dy) v (dx’ x dy’)) ,
XxY JXxY

ey

I More precisely, the pushforwards of y under the canonical projection maps 7 and 7y satisfy (71)gy =
wx and (m2)4y = py-

Eo oy
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which is then minimized over all possible couplings to define the (p, g)-Gromov—
Wasserstein distance between X and Y:

1
dowp.q(X,Y) == = inf dis, 4 ().
P 2 yeMuyuy) 1

The (p, g)-Gromov—Wasserstein distance dgwp,, interpolates between two previ-
ously studied versions of the Gromov—Wasserstein distance: for ¢ = 1, it reduces
to the dgw distance of [30], while for ¢ = o0, it coincides with the p-ultrametric
Gromov—Wasserstein distance defined in [31].

This formulation exhibiting one additional parameter makes the Gromov—Wasserstein
distances more amenable to analysis. Raising the distances to the g-th power allows
for more explicit control of the difference in distances by emphasizing structural prop-
erties of dx and dy. In this sense, of particular interest is the case of the Euclidean
metric, with g = 2, where taking squares of distances allows one to move from norms
to inner products. A construction related to the case of ¢ = 2 and p = 4 was con-
sidered in [12] to determine the value of the Gromov—Wasserstein distances between
arbitrary Gaussian measures. A similar notion of (p, g)-distortion was considered by
Sturm in [48] with the distinction that the difference between the g-th powers of the
distances is raised to the p-th power (as opposed to the (p/q)-th power). This implies
that the dgw .4 distance we consider has absolute homogeneity, while Sturm’s version
does not (see Remark 1.22).

We now connect the (p, g)-Gromov—Wasserstein distance to some existing compu-
tational approaches. Note that the computation of dgwp, 4 (X, Y) involves optimizing
the (p, q)-distortion over the set of all possible couplings y € M(ux, ny). This
reduces to a non-convex quadratic optimization problem [30, Section 7], which is in
general NP-hard (see, e.g., [41, 46]). Nonetheless, there exist numerous computational
approaches to find approximate solutions to the above problem and its variants: see [2,
7,8,41,50-52] and references therein. Perhaps the most standard of these approaches
is the use of gradient descent algorithms. In the absence of an algorithm that prov-
ably finds the global optima of this problem, practitioners often depend on heuristic
initializations and find local optima through these gradient based methods. It is hence
essential to assess the (sub)-optimality of each of these local optima.

A particularly popular approach for assessing sub-optimality is to consider lower
bounds of dgw by using “signatures" or invariants of metric measure spaces (see
[30, 32]). We exhibit three invariant based lower bounds for the (p, ¢)-Gromov—
Wasserstein distance between two arbitrary metric measure spaces. All these three
bounds are constructed from signatures related to particular invariants of and distri-
butions on metric measure spaces. For example, the (p, g)-Second Lower Bound,
denoted SLB, 4, is a counterpart to the Second Lower Bound for dgw  from [30], and
utilizes the global distribution of distances between points of the two metric measure
spaces. In Proposition 3.10 we also establish a hierarchy of poly-time computable
lower bounds for this distance in the spirit of [7, 30-32].

As discussed above, these lower bounds aspire to be useful for determining whether
the output of an algorithm is sufficiently close to the global optimum. Even though the
exact values of the (p, ¢)-Gromov—Wasserstein distances may not always be available,

Elol:;ﬂ
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Fig. 1 A depiction of the equatorial map e j : 82\02,1 — S!. The measure zero set 03,1 consists of the
north and south poles of S2. See Definition 2.1 for the general case

in practice one can compare the objective function, i.e. the (p, g)-distortion, at the
computed (local) optima against our lower bounds to evaluate the performance of
the given algorithm. In the same spirit, lower bounds are useful in accelerating shape
classification, where knowing the relative strengths of the lower bounds allows one
to progressively filter out comparisons of the most distinct examples by comparing
examples with successively stronger lower bounds from the hierarchy (see [30]).

We further compute the precise value of these lower and upper bounds on the
dGwp,q (X, Y) distance in the case where p = 4, ¢ = 2 and the metric measure spaces
X, Y are spheres equipped with geodesic or Euclidean distances, and uniform mea-
sures. Spheres, being canonical spaces, are a natural starting point for understanding
Gromov—Wasserstein distances. These can provide useful benchmarks for assessing
the quality of a given algorithm for estimating Gromov—Wasserstein and related dis-
tances (see, e.g., [27]).

Furthermore, with the goal of providing such benchmarks, in Theorem 1 we deter-
mine, for all non-negative integers m and n, the exact value of dowa4,2 (S, S7%), ie.,
the (4,2)-Gromov—Wasserstein distance between m and n dimensional unit spheres
equipped with the Euclidean metric and uniform measures. Our results imply that,
in this setting, optimal (i.e. (4, 2)-distortion minimizing) couplings exist and, more
importantly, that one distinguished such optimal coupling y,, , is induced by the
Monge map that projects the first m coordinates from the n-dimensional unit sphere
(m < n) to the m-dimensional unit sphere. Inspired by the case of m = 1 andn = 2, we
call this the equatorial map (see Definition 2.1 and Fig. 1) and call y,, ,, the equatorial
coupling.

Theorem 1 (Main Theorem) The equatorial coupling ym ., is an optimal coupling for
dowa,2 (S, S). In particular, forn > m > 0,

FolCT
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1.
dGW4,2(Srg7 S%) = 5 dls4,2(ym,m Sl’g’ S%)

NI (r(%ﬂ)r(ﬁ))z

E m+1+n+1_m+l

Note that when n = m + 2 the expression given in the theorem reduces to

1

1 1 1 4

d YAy — )
Gwa.2(5g, g ) 2‘/4[<m+1)(m+3)+(m+2)2(m+3)}

In particular, this means that dgwa 2(S%, S’EH) = Om~ Y% as m — oo. These
asymptotics do not depend on the fact that n = m + 2. Indeed, as explained in Remark
2.11, dowa (S, S%) = O(m~'/2) when n = m + ko for a fixed ko. A different
interesting regime (see Remark 2.12) is the one when n = m + k for fixed m but
k — o0; in that case we have

| 1/4
dow4.2(SE, S’g*’“) = E |:m—+1:| + 0K

as k — oo. See Sect. 2.2 for additional related results.

Ideas Behind the Proof of Theorem 1 and Related Work

The proof proceeds by first observing that minimizing the (4, 2)-distortion over all
couplings y between the respective uniform measures on S’ and S’ is equivalent to
maximizing the functional

2

J(y) = H / xyT y(dx x dy)
Smxsn F

My

Then, via the singular value decomposition of the matrix M), we identify a change
of coordinates (see Sect. 2.3.2) which allows us to argue that one can restrict attention
to couplings ¥ for which the matrix M; has the form (A, 0gut1)xn—m)) Where A,
is a m x m diagonal matrix containing the singular values of M,—a simplification
which, in turn, implies that one can equivalently restrict attention to maximizing the
(simpler) functional

m+1

2
D(y):=) [/S Sy dx dy)] :

k=1
FolCT
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The final step of the proof can be roughly described as an intricate application of the
Cauchy—Schwarz inequality to a suitably disintegrated expression of the functional
D.

To better describe some of the main ideas behind the proof of Theorem 1 without
these intricacies, we state and prove a subsidiary result (Proposition 2.16, which is
particular case of [12, Proposition 4.1]) about maximizing the functional J in the case
when y ranges over all couplings between standard Gaussian measures. We then show
how to suitably alter the proof of Proposition 2.16 in order to establish Theorem 1.

The functional J (y) appears naturally when considering certain inner product based
variants of the Gromov—Wasserstein distance [12, 15, 51]. The change of coordinates
step appeared in Vayer’s PhD thesis [49, Chapter 4]. It was also used in [15, Theorem
3.2] when studying the existence of Monge maps for the J functional defined above.

There are results in the literature providing a precise description of optimal Monge
maps in the context of Gromov—Wasserstein distances but none of those seems to be
applicable in our setting:

e In [48, Section 9.4] Sturm provides such a characterization result for optimal
couplings under the assumption that both measures are rotationally invariant and
absolutely continuous w.r.t. the Lebesgue measure in the same ambient Euclidean
space. The setting of Theorem 1 does not fit into the one considered by Sturm:
the measures considered therein are not absolutely continuous. One might never-
theless contemplate applying Sturm’s result to suitable smoothings of the uniform
measures on the respective spheres. However, it does not seem possible to guar-
antee the smoothed measure resulting from the lower dimensional sphere to be
rotationally invariant.

e In [15, Theorem 3.2] Dumont et al. give a precise description of optimal Monge
maps for the J functional under the assumption that one of the measures is abso-
lutely continuous w.r.t. Lebesgue measure.” Therefore their results are also not
applicable to our setting.

e In[12, Proposition 4.1] Salmona et al. contend with the case of Gaussian measures
and find the precise structure of an optimal coupling that, in the case of standard
Gaussians, boils down to a coupling between Gaussians with similar structure to
the equatorial coupling. As far as we know, it does not seem possible to apply their
results in our setting (i.e. in order to establish Theorem 1); see Question 3 and also
Sect.2.3.3.

Other Related Work

Finally, this project is related to a recent effort to compute the precise value of the
(closely related) Gromov—Hausdorff distance between spheres [1, 27]. In [27], the
authors provide nontrivial upper and lower bounds for the Gromov—Hausdorff dis-
tance dgy (5™, S™) between spheres S and §” (endowed with the geodesic metric)
for0 < m < n < 0o.Some of these lower bounds were motivated by topological ideas
related to a quantitative version of the Borsuk-Ulam theorem [14]. Through explicit
constructions of (optimal) correspondences it was proved that their lower bounds

2 Their results generalize [49, Theorem 4.2.3]
FolCT
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were tight in the cases of dGH(SO, S"), dgu(S™, S*°), dGH(Sl, Sz), dcH (Sl, S3), and
dgu(S?, S?). Interestingly, the optimal correspondences achieving these distances
are very different in nature from the optimal coupling achieving the exact value of
dcwa,2(S';, S;), in the sense that these optimal correspondences are induced by highly
irregular maps, whereas the optimal coupling described above is induced by certain
natural projection maps.

Organization of the Paper

The rest of the paper is organized as follows.

Section 1.1 introduces notation and terminology that will be used throughout the
paper.

Section 2 is the central section of our paper. There we introduce the requisite
background and supporting results used to prove Theorem 1, which we also do therein.

In Sect. 3 we recall several invariants of metric measure spaces and use them to prove
lower bounds for the (p, ¢)-Gromov—Wasserstein distance. In Sect. 3.6 we evaluate
those lower bounds for spheres with their Euclidean and geodesic distances. For the
former case we compare these lower bounds against the exact value provided by
Theorem 1.

Section 4 contains a description of some experiments illustrating the result from
Theorem 1. In particular, our experiments provide a computational perspective and an
indication of the performance of discrete Gromov—Wasserstein solvers from [18] and
[10] when estimating the Gromov—Wasserstein distance between spheres.

Section 5 provides a discussion and contains several questions (Questions 1, 2, 3,
and 4) that might suggest further research directions.

To enhance readability, the proofs of several results and other details are relegated
to Appendices A, B, and C.

1.1 Notation and Terminology

We now define the main concepts used in the paper.
Given a measurable space (X, Xx), we denote the set of all probability measures
on X by P(X).

Definition 1.1 Let (X, Xx, ux) and (Y, Xy, uy) be measure spaces such that uy €
P(X) and uy € P(Y). A coupling between ny and py is a (probability) measure y
on the product space (X x Y, Xy ® Xy) such that

Y(AxY)=pux(A) and y(X x B)=uy(B)

forall A € ¥y and B € Xy. We denote the set of all couplings between px and
uy by M(ux, uy). Note that M (uyx, ny) is never empty as it always contains the
product measure uy ® py.

Elol:;ﬂ
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Let (X, ¥x,ux) and (Y, Xy, uy) be measure spaces such that ¥ = {yp},
ux € P(X) and uy € P(Y). Then, uy = 8;’0 and M(ux, wy) contains exactly
one coupling. That is, M(ux, ty) = {px ® 8}, } where uy = 8} is a Dirac delta.

Let (X, ¥x) and (Y, Xy) be measurable spaces and T : X — Y a measurable
map. The pushforward of a measure o on (X, Xx) by T, denoted Ty, is the measure

on Y given by
Tya(A) = (T~ (A))

for every A € Xy. We can then describe the set of all couplings between px and py
as

Mux, uy) ={y e P(X xY) | (wx)ay = ux, (@y)sy = uy}

where ry : X XY — X and wy : X x Y — Y are the canonical projections onto the
first and second components respectively.

Given a topological space X, unless indicated otherwise, we will assume all
measures on X to be Borel measures, and will denote the Borel sigma algebra
of X by Xx. Furthermore, in this case, P(X) will denote the set of all Borel
probability measures on X.

Definition 1.2 The support of a Borel measure o on a topological space X is the
smallest closed subset Xo C X so that «(X\Xg) = O, that is, for any A C X, if
AN Xo =0, then ¢(A) = 0. We denote the support of o by supp[a].

Definition 1.3 Let o be a Borel probability measure on R and r € [1, 00). Then the

r-moment of o is
1/r
my (o) = </ xroz(dx)> .
R

Now let (X, dx) be a metric space. We define,
Pr(X) :={u € P(X) | dx(xo, -)#u has finite »-moment for some xg € X}.

In fact, the choice of x( is immaterial — if the moment is finite for one reference point,
it is finite for any reference point.

Definition 1.4 Let (X, dx) be a metric space, r € [1, 0], and o, 8 € P.(X).3 The
r-Wasserstein distance on X between « and S is given by

1/r
d¥ (a,B) ;= inf (/ d%y (x, x') y(dx x dx’)>
Wr yeM,B) \ Jxxx X v

3 We define Poo(X) as the set of those probability measures on X with bounded support.
FolCT
H_h
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for1 <r < oo, and

d¥ (@, p) == inf sup  dx(x,x').
* yeM@.p) (x,x")esupply]

Example 1.5 When «, 8 € P,(R), the r-Wasserstein distance on R (with the usual
metric) can be explicitly computed as follows (see, e.g., [54]):

1 1/r
dy, (@, ) = ( /0 |Fy ) = Fy @l du) )

where Fy (1) := a((—o0,t]) and Fg(t) := B((—00, t]) are the cumulative distribu-
tions of @ and B, respectively, and their generalized inverses are defined as:

F ') :=inf{r e R | Fo(1) > u) 3)
foru € [0, 1].

Example 1.6 For r € [1, 00), the r-Wasserstein distance on the real line between
o € P, (R) and the Dirac delta 8o equals the r-moment of «:

1/r 1/r
dgf,r(oz, 8o) = (/ It —s|" (@ ® 8p)(dt x ds)) = (/ tr()l(dt)) =m,(a).
RxR Ry

Definition 1.7 Foreach g € [1, co], we define A, : Ry x Ry — R in the following
way (cf. [35]):

1
Ay(a,b) :=la% — b7 if g < 0o, and

if
Aoo(a,b) == :g“”‘{“’ b ;Z fllj

Remark 1.8 Note that Aj(a,b) = |a — b| for all a, b > 0. One of the claims of the
following proposition is that A, is a metric on R for each g > 1.

Proposition 1.9 ([35, Lemma 2.2, Example 2.7, Proposition 2.11]) A, defines a metric
onR, foreachq € [1, 00}, i.e., it is symmetric, non-negative, it satisfies Ay(a, b) =0
if and only if a = b, and it satisfies the triangle inequality:

Ay(a,b) < Ay(a,c) + Ay(c,b) foralla, b, c > 0.

Also, if1 <q <q' < oo, then Ay < Ay

The fact that (R4, A,) is a metric space, enables us to consider the p-Wasserstein

. R4, Aq) s R4, A Ry
distance dy, ," " as a generalization of dy, =dy )
FolCTl
(M| o
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Remark 1.10 (Closed-form solution for d\()?} +'A")) For 1 < g < p < 0o, we have the
following equality which generalizes Example 1.5:

1
dy s @, p) = (/0 (g (R ), i @)’ d”)

While the above equality is a special case of [31, Theorem A.4], we include a proof
here for pedagogical reasons:

1/p

(R+ Ag) _ . »
( e, ﬁ)) = ye/gll(fa,ﬁ) AMM (Ag(a,b))” y(da x db)

= inf / 1S, (@) — S, (b)|P/1 y(da x db)
yeM(.p) JR, xR, 7 7

= inf / Is — 1179 ((S,, So)uy)(ds x dt)
yeM@p) Jr, <k, (- Sodev)

inf / Is — 1|79 y(ds x dt)
yeM((Swa.(SuB) Jr, xR,

/ ‘F&l)#a(“) s )#ﬁ(“)‘

_ /0 (Ag(Fy ), Fy )’ d

where S; : Ry — R is the map sending x to x9. The fourth equality holds by [7,
Lemma 3.2], fifth equality holds by Example 1.5, and the last equality holds since
Fishpa = (Fa )Y

The following remark makes the connection between the generalized Wasserstein

(RJr’Aq)

distance dy, » and the Wasserstein distance on R with the usual metric.

Remark 1.11 (Relationship between d\()?,{ ;’A”) and d%%, o/ q) In the previous remark, we
saw that when 1 < ¢ < p < o0,

1 1/p
dy v " . p) = ( /O (Mg (Fy ), Fy'w)” du)

1 / 1/p
pr/q
:(/0 | F 0000 = Fis )] d”) :

The right hand side of the above expression coincides with the p/q-Wasserstein dis-
tance between the measures (S,)#a and (Sy)#B on Ry with the usual metric A; as
follows:

(R+ Ag) 1/q

dy " (e B = (5 s (Spse (548))

FoE'ﬂ
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Definition 1.12 A metric measure space is a triple (X, dx, ux) where (X, dy) is
a compact metric space, and pyx is a Borel probability measure on X such that
supp[ux] = X. We denote the collection of all metric measure spaces by G,,. We
will often abuse notation and write X to represent the triple (X, dx, x) € Gy.

The next example is central to our paper.

Example 1.13 (S'; and S§,) For each integer n > 1, we consider the n-dimensional
unit sphere S” C R"*! as a metric measure space by equipping it with the uniform
measure and the geodesic or Euclidean metric. For example, when endowed with its
geodesic distance, the usual n-dimensional unit sphere gives rise to (S", d,;, ,) € Gy,
where d,, (x, x') := arccos((x, x')) for x, x" € S". We henceforth write S, and S7, to
denote the spheres equipped with the Euclidean and geodesic metrics, respectively, as
metric measure spaces.

We also consider S%, the 0-dimensional sphere consisting of two points at distance
7 and, similarly, S% consists of two points at distance 2. In both cases we view these
0-dimensional spheres as metric measure spaces by endowing them with the uniform
measure (on two points). Note that diam(S’&) = 7 and diam(S7;) = 2 for all integers
n>0.

Definition 1.14 (p-diameter). The diameter diam(A) of bounded subset A of a metric
space (X, dy) is defined as

diam(A) := sup dx(x,x’).

x,x'€A

Let (X, dx, ux) € Gy. The p-diameter of X for p € [1, o0] is:

1/p
diam,(X) := (/ / dy (x, x') px(dx) ;Lx(dx’)> forl <p < oo
xJx

and
diamyo (X) := diam(supp[ux])-
Definition 1.15 ((p, g)-distortion). Let (X, dx, iux) and (Y, dy, wy) be metric mea-

sure spaces and let y € M(ux,uy). Then, for each p,q € [1,00], the
(p, q)-distortion of the coupling y is defined as:

1/p
disp.q () = ( / / (Ag(@x x, ), dy (3, )"y (dxxdy) y(dx’xdy’))
XxY JXxXY
for1 < p < 0o, and

diseo,q(y) == sup Ag(dx(x,x"),dy(y, ¥)).
(x,¥),(x",y")€supply]
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Example 1.16 Consider the coupling y = {ux ®6 o} € M(ux, puy) where Y = {yo}
is the one point metric measure space. Then, for all P, q € [1, 00], one can verify that
dis, 4(y) = diam,(X) as follows:

disp o ({ux ® 8 })

1/p
( / / (Ag(dx (x. XY, dy (0. o))" y(dx x dy) y(dx’ x dy ))
XxY X><Y

1/p
(f f 1% (e, X)IP19 y (dx x dy) y(dx’ x dy ))
XxY JXxY

1/p
( dy(x, x") px(dx) Mx(dx/))
XxX

= diam,(X)

for the p < oo case. The p = oo case can be checked in a similar way.

Example 1.17 Let p =4 and g =2 and y € M(ux, iy), then we have:

: 4 _ 2 N g2 / 2 ’ l
@izt = ([ [ (dhoo ) = dp0,)))” vdxxdy) y @' <y

=/ dé‘((x,x’)ux(dX)Mx(dx’)Jr/ dy (v, y) uy (dy) py(dy')
XxX YxY

—2/ / d%(x, x")d3 (v, ¥ y(dx x dy) y(dx" x dy').
XxY JXxY

Remark 1.18 Note that the marginals uy and puy determine the first two terms in
Example 1.17 (in fact the sum of the first two terms is (diamg (X N* + (diamy(Y))*4)
and thus,

y minimizes diss2(y) <

y maximizes /X(x x)dy(y YY)y (dx x dy)y(dx' x dy).
XxY JXxY

The equivalence above will prove instrumental in Sect. 2 of our paper where we prove
the optimality of a coupling for achieving the (4, 2)-Gromov—Wasserstein distance
between spheres. Passing to the distance squared allows us to unfold Euclidean dis-
tances into expressions that depend solely on inner products. Our proof of the theorem
depends on the favorable interplay between these inner products and linear maps. In
fact, our introduction of the broader family of (p, ¢)-Gromov—Wasserstein distances
was motivated by this ease of analysis in the case p =4, ¢ = 2.

Definition 1.19 ((p, ¢)-Gromov—Wasserstein distance). Let (X, dx, ux)and (Y, dy, uy)
be metric measure spaces. Lety € M(uyx, uy). The (p, ¢)-Gromov—Wasserstein dis-
FoE"ﬂ
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tance between py and py is given by one-half of the infimum of the (p, ¢)-distortion:

dowp,q(X,Y) = inf )disp,q(y).

1
2 yeMux.ny

where p, g € [1, o].

Remark 1.20 In the case ¢ = 1 we recover the p-Gromov—Wasserstein distance dgw p
from [30].

1
dowp1(X,Y) == inf disp 1(y) = dowp(X,Y).
P 2 yeMux,py) P P

In the case ¢ = oo we recover the p-ultrametric Gromov—Wasserstein distance ugw, p
from [31].

1 1
dowp.co(X,Y) = = inf disp 0o(Y) = zucgw.p(X, Y).
pree 2 yeMux.puy) oo 2 P

Example 1.21 Let X, Y € G, where Y = {yg}. It follows from Example 1.16,

1 1
dewp.q(X, Y) = 5 disp ((1nx ®8y)) = = diam,, (X)

forall p,q € [1, oc].

The following theorem shows that the (p, ¢)-Gromov—Wasserstein distance is a
well defined metric on G,,. This is a generalization of both Theorem 5.1 in [30], which
shows that the original p-Gromov—Wasserstein distance dgw, , is a metric on G, and
of Theorem 3.10 in [31], which shows that the ultrametric p-Gromov—Wasserstein
distance ugw, p is a p-metric on the collection of compact ultrametric spaces.*

Theorem 2 The (p, q)-Gromov—Wasserstein distance, dgw p.q, is a metric on the col-
lection of isomorphism classes of Gy, for all p,q € [1, oo]. Furthermore, dgwp,q <
dgw ',q» whenever p < p"and q < q'.

We defer the proof of this theorem to Sect. A.1.

Remark 1.22 1In [48, Section 9] Sturm considers a two parameter family of distances,
A, 4, which is closely related to but differs from dgw p 4. A precise relationship is,

1
380/0.4X, ) = (dawp.q (X, )",
for X,Y € G, and p, g € [1, 00). See Remark A.2.

Also, in contrast with dgwp,q, Ap 4 is not homogeneous: if for A > 0, AX
denotes the metric measure space (X, Adyx, ux) (resp. for AY), A, ,(AX, 1Y) =
AMA, (X, Y) whereas dgwp,q (A X, AY) = Adgwp,q(X, Y).

4 For p > 1l,ap-metricd : X x X — R4 on aset X is any metric on X satisfying the following
strengthened triangle inequality: d” (x, x") < dP (x,x") +dP (x", x") for all x, x’, x" € X.
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2 The (p, q)-Gromov-Wasserstein Distance Between Spheres

Despite the increasing number of applications, the precise value of the Gromov—
Wasserstein distance is only known for a few cases [ 12, 30]. In this section, we compute
the exact value of dgwa, 2 (S, S';) for arbitrary m and n.

2.1 The Equatorial Coupling

In the next two sections, we will consider the equatorial coupling (defined below) and
show that when p = 4 and ¢ = 2, the equatorial coupling is optimal for the case of
spheres with Euclidean distance.

Assuming n > m we will implicitly use the (isometric) embedding R"+! < R"+!
given by

(Xl ooy Xt 1) = (L X1, 0, -, 0).

Definition 2.1 (Projection and Equatorial map). For all n > m, we define the projec-
tion map 711 my1 2 R — R™+1in the following way:

Tntlmil Rn+l — Rm—H

(xl,-~-7xn+l) [ — (x17~-~’xm+l)-

Note that 77,41 41 is a measurable map from R"*+! to R+,
The equatorial map ey pm : S"\On.m — S™ is defined in the following way:

. n m
enm - S"\Opm — S

Tt 1m+1 (X1 ooy Xpg1) (X15 s X))
X1y ooy Xnt1) > = ,
||7Tn+1,m+1(x17~--axn+1)” ||(x17"'a-xm+])||
where Oy, :={x € S" C R x; = -+ = x4 1 = 0}. See Fig. 1.

Remark 2.2 Note that, since i, (O, ) = 0, one can construct a measurable extension
nm - S" — S™ of e, by setting &,.m|0,,, = 2, where Z is an arbitrary point in §”.
We will incur a slight abuse of notation and use the symbol e, ,, to denote one such
extension.

We then have the following claim whose proof we omit for brevity.

Claim 1 For all n > m, the equatorial map e, ,, : S" — S™ induces a coupling
Ymn € M(Wm, n), where w, and u, are the uniform measures on S” and S"
respectively, and y,, , is given by:

Ym.,n = (en,m» idsn )#tin. 4)
We call y,.n € M(um, ) from Claim 1 the equatorial coupling.
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Remark 2.3 Since vy, € M(im, [n), it follows trivially that
m n 1 . m n
dowp,q(S,',Sy) < 3 dis, g (Vm.n» Sq 5 Sy).
Example 2.4 (dis4 2(0,1,S%, S&;)) By Remark 1.18 and Example B.2, we have

(disa2(r0.1.S%.85))"
= (diam4(S$))* + (diam4(S§)*

—2 / (do(er0(), ero)) (di(y, ¥))* w1 (dy)i (dy')

_7T T NV 2 N2 /
=T+ 2 [ e ety @ dy)
T R
LT LA Y VI A Lo
2 TS T T TS

where the value of the integral in the last line follows from the calculation in Example
B.7. Hence

1\ 174
diss 2(y0.1, S%, SE) = (§> 7 ~2.101.
This implies that
0 «l L. 0 <ly A
dow4,2(Sg, Sg) < §d154,2(1/0,1, Sg,Sg) ~ 1.050.

Example 2.5 One can carry out calculations analogous to those in the previous in the
case of Sb and S%; to obtain

(disa2 (1.2, 8. 5%))"
= (diam4(S§))* + (diams(SE)*

-2 / (d(e2,1(»), e2,1 (Y2 (da(y, ¥))? ady) pa(dy’)

4 4
T b
=— 4246124+ —
s+ ™+

-2 /S 1 /S (@1(e2,1(), 216D (@a(y. ¥ ) rdy) s (dy')

7T4 7'[4
A ?+24—67r2+7 —2 x 14.159 ~ 4.651

Elol:;ﬂ
o

@ Springer uog



Foundations of Computational Mathematics

where we compute the integral in the last step using numerical integration along with
the values of 4-diameters computed in Example B.2. This immediately implies that

1
dowa (S5, SZ) < 5 disaa(12, S§, S&) ~ 0.734.

2.2 Exact Determination of dgwa,2 (SF', S})

In this section, we establish that the equatorial coupling y, , is a minimizer of the
(4, 2)-distortion functional

disa 2 (-, S, SE) : M ) — Ry

amongst all couplings between ,, and w,. Our first result is the following lemma,
which exactly computes the (4, 2)-distortion of the equatorial coupling y,, , for all m
and n.

Lemma 2.6 The (4,2)-distortion of the equatorial coupling between spheres S'; and
S respectively equipped with their Euclidean distance and uniform measure with
n>mis

. moany_ |4 4 8 (r(=A)r g
d1S4y2(ym,n7 E> E)_ m+1+n+1 m+1

We defer the proof of this lemma to Sect.A.3. The main result of this section
establishes the optimality of the equatorial map:

Theorem 1 (Main Theorem). The equatorial coupling yu, n is an optimal coupling for
dowa,2 (S, S). In particular, forn > m > 0,

I .
dowa4,2(S%, SE) = 3 disg,2 (Ym0, S, SE)

o 1 2 (F (") ()
r (=) (42)

_E m~|—1+n~|—1_m—|—1

)2
Remark 2.7 The fact that the equatorial coupling is optimal for dgwa4 2 is in sharp

contrast to what takes place at the level of the closely related Gromov—Hausdorff
distance, where cognates of the equatorial coupling are far from being optimal [27].

Remark 2.8 (m = 0) In the special case when m = 0, Theorem 1 implies:

2
dowan(§0 Sy = L [1¥2 2 I

FolCT
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In particular,

1 /3 8\
dowa2(S%, Sk) = —= (— - —) ~0.644 and

J2\2 n?
0w 1 /5\ /4
d S, S%)=—| = ~ 0.676.
Gw4,2(SE, SE) 7 (6)
Remark 2.9 (n = m + 1) In the interesting case when n = m + 1, Theorem 1 implies:
1 2m +3 2 \3[re2))
dows (S Spty = — - < > =
V2 | m+1)(m+2) m+ 1 NC

In particular,

d sV st _L é_i 1/4w 44
Gwa,2(SE, E)—\/_ = ~ 0.644 ,

2\2
1 /5 =2 74
dGwa2(Sk, SE) = 7 <6 - R) ~ 0.482.

and

1 /7 8 [16\\"*
d St.Sh=—(—-—=(—= ~ 0.400.
Gw4,2(S, Sg) ﬁ(lz 77 (nz))

Remark2.10 (n = m + 2). In some cases, it is possible to simplify the formula given
by Theorem 1 to an explicit one. For example, when n = m + 2, the quantity in
Theorem 1 simplifies to the following explicit formula:

1
1 1 1 1
d (SIS W— + .
w28 SE ) = 0T | Gy D 3) T+ 2% 1 3)
This implies that dgwa 2 (S, S’g*z) = O(m~?) as m — o0o. We compute some
exact values below:

o 5\ 1/4 Lo 11\ /4
dowa2 (S, Sg) = <ﬁ> ~ 0.676 ; dgwa,2(Sg, Si) = (m) ~ (0.526.
Remark 2.11 (Asymptotics for large m and n). It is clear from Theorem 1 that

dowa2 (S, ST) — 0as m,n — oo. More precisely, note that by resorting to the
Stirling approximation, we have

reg?) _ fm+1 L T 2 L
) ) (I+0@m™)); reg) n—i—l( +0m™)),

FoC'T
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which implies that

4 S sy = 1 1 1 Y _2) 1/4
GW4,2\Op, O —ﬁ m+ 1 P m

1 n—m 0(m=2 /4
_E[<m+1)(n+1)+ o )] ’

as m — oo. Thus, if n —m = O(1), we have dowa (S, S%) = O(m~'/?) as
m — OQ.

Remark 2.12 (Asymptotics for fixed m, large n) As above, for large k, Stirling approx-
imation yields

r (m+§+1) ) .
D) Vo k1 (1+067).

Theorem 1 then implies that

m qm+ky\\4 _ 1
(dowa2 (SE, SET) D
2
o [ resy .
T 4m+k+ 1) ! m+1(r(’"7+1) +OE.

Thus, for a fixed m we have

1 1 1/4
dowa (S, Spthy = 7 [m—H} + Ok

as k — oo.
2.3 The Proof of Theorem 1
We divide the proof into several steps.
2.3.1 Preliminaries
For x, x" € S} and y, y’ € S7; one has
I = %17 =2 (1= (e, x)) and Jly =y'I? = 2(1 = {y,)).

Consider any coupling y € M(im, ttn). By the definition of (4, 2)-distortion from
Eq. (1.15), when dx and dy are both the Euclidean distances, one has

disg ,(y) = f / (lx = x'I17 = ly = ¥'IP)? y(dx x dy) y(dx' x dy')
Sm xSn m xS
EOE';W
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= / / 12(x, X'y = 2(y, Y)|* y(dx x dy) y(dx' x dy')
mXS)l )7l><Sn
=4 / / (x, X'V e (dx) o (dx') + 4 / / (v, ) 1n(dy) pn(dy")
SWXSM HXSI‘I

- 8/ / (x, x") (v, ¥') y(dx x dy) y(dx" x dy'). ®)
m XSY! m XSn
Thus for any coupling y € M (i, 1,) we have

disd 5 () = 4 / f (6, i () pom (d) +4 / /S 0 ) ) = 81)
©)

where we define
J(y) = //(x,x/)(y, y) y(dx x dy) y(dx' x dy'). @)

Since the first two terms on the right hand side of Eq. (6) do not depend on the coupling
y, we have the following equivalent optimization problem:

y minimizes disiz(y) < y maximizes J(y)

where both optimizations are over the space of couplings y € M (i, ty,). In the rest
of the proof we therefore focus on maximizing J (y).

2.3.2 A Change of Coordinates

In this section we prove a lemma which permits simplifying the functional J defined
above. See the discussion on page 7.

Lemma2.13 Let o € P(R™Y) and B € P(R"*') where n > m be two rotationally

invariant measures with barycenters coinciding with the respective origins. Consider
the functional J : M(«, B) — R defined above. Then,

max J(y)= max D(y)

yeM(a.p) yeM(a.p)
where
m+1 2
D(y):= Y [[ XYk ¥ (dx X dy)] :
k=1
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Proof Applying the linearity of the integral and the identity trace(AB) = trace(BA)
for conformable matrices® A, B, we compute,

J(y) = //(x,X’Hy, Y') y(dx x dy) y(dx' x dy')
= [ [ee Ty yian < dy) v < ay)
= / / tr [xy Ty |y x dy) y(@x' x dy)
=u [ f / xy &GN DT y(dx x dy)y(dx’ x dy’)}

-
=tr |:/ xy! y(dx x dy) </ X ONT ydx x dy/)> ]

2

= H f xy" y(dx x dy)

F

My

We now manipulate the matrix M, € R +D*"+1 in order to simplify the opti-
mization problem; see the discussion about related work on page 6. Hereon, we write
I; to mean the identity matrix of size d.

Consider the (possibly non-unique) singular value decomposition

M, = PVAVQI

where

L JANRS ROm+Dx0m+1D) s a diagonal matrix containing the singular values of M,,
e P Rm+Dxm+1) qn4q 0, € R@+Dxm+1) satisfy

P) Py =Py P} =Tni1 and Q) Oy =Tns1,

i.e. P, is orthonormal and Q, is semi-orthonormal.

We now define
-
U, = PJ e ROTDxm+D) 54 V, = (Qy Q#) € ROHDx 41

where Q# € RO+DX=m) i5 any semi-orthornormal matrix, i.e., (Q#)TQi =I_m,
which also satisfies Q;,r Q; = 0¢n+1)x(n—m)- Note that by construction U, and V,
are orthonormal, i.e., U;—U), =U, U;— = ;41 and VVTV), =V, V):r = Iy1-

Recall that the marginals of y are j,, and . Let U, € R"FDxm+Dand v,
RO+DXx+D pe the two orthonormal matrices defined above and Ty, and Ty, be the

5 Te. the matrices can be multiplied.
FoCTM
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linear maps they induce by left multiplication (i.e. Ty, : R™*1 — R™*1 s defined as
v = Uy v, with Ty, defined similarly). By the assumed symmetry of the measures o
and B, we may pushforward y through the associated maps and still obtain a coupling
between « and 3, that is:

(Ty,. Tv, )4y € M, B).

Now, we define y := (TUV’ Ty, )#Y, and see that
M; = /xyT y(dx x dy)

=U, (/ xyy(dx x dy)) v,
=U,M,V,
= (Ay Opn+1)x(n—m)) -

Since the Frobenius norm of a matrix is simply the Euclidean norm of its singular
values, we have

1) = |y | = Ay 5 = 105 |5 = 7).

That is, for any optimal coupling y, there exists another optimal coupling y for which
M is of the form (Ay 0(m+1)><(,,_m)) for a diagonal matrix A, € Rm+Dx(m+1)
We can then write:

2
1) = 30) = |5 R = 2| [ 7iax xa)|
k.l
m+1

2
-3 [ |EERCE dy)]
k=1

where the last equality follows since we know that M; = (AV 0¢n+ 1)><(n—m)) for a
diagonal matrix A, € RTD>m+D Thug maximizing J(y) is equivalent to:

m+1

2
maximize D(y) = Z [/ X vk v (dx x dy)i| over y € M(«a, B). ®)
k=1

That is, any optimizer of D is an optimizer of J and any optimizer of J can be pushed
forward via a rotation to an optimizer of D. O

2.3.3 Optimizing J(y) Over Couplings Between Standard Gaussians

In this section, we focus on optimizing J (y) for standard Gaussian marginals. Despite

the close connections between the standard Gaussian measure and the uniform measure
Elo [y
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on the sphere, there are fundamental differences among the two in terms of optimizing
J(y) over all possible couplings. In particular, the techniques of this section will
be, strictly speaking, applicable only to Gaussian measures and not to the uniform
measures. The general method of proof will nevertheless pave the way for our proof
of Theorem 1; see Remark 2.18.

We will use the notation 74 to denote the standard Gaussian measure on R? (so that
n1 will denote the standard Gaussian measure on R). In the usual notation for Normal
distributions, n4 corresponds to N (0, ;).

Using the projection map ;41 ,+1 from Definition 2.1, we define the following
coupling between standard Gaussians:

Definition 2.14 Forall n > m, the projection map 7,41 11 : R**! — R”*+!induces
a coupling V;;%TT,Sn-H € M(Nm+1, Mn+1) given by:

gauss o .
Yim+lnt+l = (TTn+1,m41, gt #0041

Remark 2.15 Note that we can recover the equatorial coupling from Eq. (4) as fol-
1ows Ym.n = (fin+t1, fn+1)#)/,§ilﬁ,,+1 where f,4+1 : Rm+1\{0} — S™ is the central

projection map: x — ﬁ

When the marginals of y are standard Gaussian measures 7,,+1 and 71,41, the
optimization problem in Eq. (8) can be solved by relaxing the optimization into an
optimization over the coordinate wise pushforwards of y. This leads to the following
proposition.

Proposition 2.16 Suppose n > m. Then,

max Jy)=JyE ) =m+1.
y €M m+1,1n+1) m+1,n+1

Remark 2.17 Note that [12, Proposition 4.1] gives a more general claim than Proposi-
tion 2.16 and consequently requires a much more sophisticated method of proof (cf.
[12, Lemma 3.2]).

Proof of Proposition 2.16 By Lemma 2.13, we can equivalently maximize the func-

m+1 2
tional D(y) = Z |:/ Xk yry (dx x dy)i| over all couplings. To proceed with this,
k=1
write
m+1 2
sp D=y swp Uﬁnwwxwﬂ ©)
Y €EMm+1,00+1) k=1 Y EMOms1,104+1)

2
—m+1)  sup UhmﬂwX@ﬂ.(m

Y eMMm+1,Mn+1)

Since the optimization on the right hand side depends only on x1, y;, one can
then optimize over the first coordinate pushforwards of y. To be more precise, if
EOE';W
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(p’I"H :R™*! - R and <p’f+l : R"™! — R denote the respective projections onto the

first coordinate, consider y; := ((p{"‘“, (p{’“)#y. It follows by Lemma 3.2 of [7] that

@ @MY Mt 1, o) = MA@ T8 0mr1), (@7 D80041) = M, m),

where the last step follows from the fact that the pushforward through a (one dimen-
sional) coordinate projection of the standard Gaussian in R is a standard Gaussian in
R. Thus, the optimization on the right hand side above can be equivalently written as

2
sup |:/ x1y1 y(dx x dy)i|
yeMMmg1.0n41) LIRMFIXRAF

2
sup |:/ x1y1 yi(dxy x d)ﬂ)}
yieM@n,n) LYRxR

[/ X7 nl(dX1)] |:/ 0 Ul(d)q)}
R R

2 1 2 i|2
= —z°/2)d =1. 11
[/Rz meXp(z/)z (11)

The first inequality follows by applying the Cauchy—Schwarz inequality. The last
equality uses the well-known computation of the second moment of a one dimensional
standard Gaussian measure. Plugging Eq. (11) into Eq. (10) shows that

IA

sup D(y) < (m+1). (12)
yeMm+1,Mn+1)

To finish the proof of Proposition 2.16 we now note that

sup D(y) = Dyt ayt)
VGM(UWH»I Mn+1)

S
=

gauss
= f Ak Vi J/m+1,n+1(dx x dy):|
Rm+1 R+l

=~

3
if

\/}ém#»l xlg nm (dX)}

I
i

3
if

B 1 m+1

_ 2 _ 2
= Z /R"'H X 7(270(’”“)/2 exp ( Z xk/2> dxy .. .dxm+1i|

k=1 L k=1

m+1 1 m+1

2 2

= / Xi —exp(—xk/Z)dxki| = Z 1=m+1).

o LR V2m k=1

Here the first equality follows by definition of D(y), the second follows by the defini-

tion of yfi‘is?n 1 the third one is due to the definition 7,41 := N (0, I;41), the fourth
Elol:;ﬂ
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and the fifth inequalities follow by standard Gaussian integral computations. Together
with Eq. (12) this finishes the proof of Proposition 2.16. O

Remark 2.18 The strategy used in Proposition 2.16 for finding the optimal coupling
for standard Gaussian marginals, does not, however, work for uniform measures on
the spheres because the inequality in Eq. (9) is not tight for uniform measures on S™
whenever m > 0. This is because whenever m > 0, the uniform measure on S” is not
a product measure over its coordinates—and thus the problem of maximizing D(y)
cannot be solved by a coordinate wise approach: Optimizing in the first coordinate leads
to constraints on the feasible set of the optimization in the second coordinate, and so
on. Note that this is in contrast with the case where y has standard Gaussian measures
as marginals (considered in Sect.2.3.3), which are indeed product distributions. See
Question 3.

We now describe a variant of the approach used in the proof of Proposition 2.16 that
applies to uniform measures on spheres and by taking into consideration the required
dependence between the coordinates.

2.3.4 The Conclusion of the Proof of Theorem 1

Recall from the calculations in Sect.2.3.1 that minimizing diss 2 over all couplings
between the uniform measures /,, and u, leads to maximizing the functional J defined
in Eq. (7). Note that the uniform measures on spheres u,, € P(8") and u, € P(S")
are elements of P(R™*!) and P(R"*1), respectively. Hence, we can invoke Lemma
2.13 and equivalently maximize the functional D over all such couplings. Before
tackling this, we need some preparations.

To simplify subsequent computations, for y € R**! we define the projections
ya € Rl and yp € R" 7 suchthat y = (y4, yg) | . Fixing y, we use the projection
just defined to introduce a decomposition of S” as a disjoint union of products of
spheres of smaller dimension. Indeed, let

A=y eS": yal =1} = (- ") x (\/1 —t2-S"*'"*1), t €0, 1]

so that

1
s" =] A
t=0

Let the measure v € P([0, 1]) be the pushforward of y by (x, y) — ||yall. Then, by
the Disintegration Theorem [3, Theorem 5.3.1], there is a measure-valued map ¢ — y;
from [0, 1] to P(S™ x S") such that:

(1) t — y;(B) is measurable for all Borel set B C S§™ x S§",
) y = [y yiv(d1), and
(3) supply,] € A; x §™ (so we will view y; as a probability measure on A; x S™ for
eacht € [0, 1]).
FoL g
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Marginalizing this disintegration over its first factor, S, we derive a disintegration
of the uniform measure i, according to the map y +— |yall, which we denote by
7;. This new marginal disintegration is, in particular, defined such that for all Borel
subsets B C S", y,(B) := y:(B x S™). To check that this is indeed a disintegration,
let ¢ : S" — R be a measurable function, and then, since y marginalizes to u,, we
have

/ 00y 1n(dy) = / o(y) y(dx x dy)
Sn S»lXSn

1
=/0 fm i ©(y) yi(dx x dy) v(dt) (13)

1
=/ f 0(y) V,(dy) v(dt).
0 Ay

Since ¥, is a disintegration of 1, it has a symmetry informed by the symmetry of .
In particular, for any ¢ : S" — Randany U € O(m + 1) and V € O(n — m),

1
/0 A ©oa,yp) (Ty, Ty)#y,)(dya x dyg) v(dt)

= /01 fAtgo(UyA, Vyp) Vi (dya x dyp) v(dt)
= /S @Uya, Vyg) un(dya x dyp)

= /S” o(ya, y8) (Tu, Ty)#pn(dya x dyp)

= fS ©(ya, yB) un(dya x dyp)

1
:/0 /A ¢(vas yp) ¥ (dya x dyp) v(d?).

So,forany U € O(m+1)andV € O(n—m), (Ty, Ty)#y, =y, for almost every
t. The only probability measure on A; that satisfies these conditions is the product of
uniform measures on both factors y4 and yp (a.e.). Marginalizing over yp, we denote
the induced measure on y4 as u;.s». By the above argument pu;.gn is the uniform
measure over f - S™.

The disintegration described above allows for the computation:

m+1 2
Dy)= ) [/ Xk y(dx x dy)]
k=1 §m x§n
m+1 1 X 2
=2 [/ By xay) v(dz)]
= 0 % A, t
FoCT
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| 7 " : |
/ t- / = yi(dx x dy) . (/ X vi(dx x dy)) v(dt)
0 SmxA, b S x Ay

()

IA
=~ 3
L5 +

m+1[ . 1/2 1/2
3 / t~< / Vs um(dx>> ( / X Vt(dxxdy)> v(dz)}
0 sm Smx Ay

k=1L
1 m+1 2

1 ) 12
= e 2 |:/0 t- </§,mxA, X vi(dx x dy)) v(dt)i| .

The inequality above is an application of the Cauchy—Schwarz inequality, and the
subsequent equality is justified by the following computation:

2

2

% Vi % P
/ — mi(dxxdy) =/ 2 Vildy) = / — Mesm(dya) =/ Vi hm (dy),
Smxa, t Al rsm T S
(14)
where the first two equalities are given by integrating out x and yp respectively. The
final equality follows from a change of variables by the map y — #~! - y, using the
fact that p;.gm is a uniform measure on ¢ - S™.
In the last expression above, we would like to pass the summation inside the square
in order to apply the Cauchy—Schwarz inequality, so we will write out the squared
integral as a product of integrals over independent variables:

m+1

2
1 1 1/2
D(y)< / t- (/ x? Y (dx X dy)) v(dt)
m -+ 1 ]{Z:‘T |: 0 SmXAt k 7t
1 m+1 1 12 1 1/2

= /t-(/x,fyt(dx xdy))v(dt)~/t’- /x,’czy,/(dx/xdy/) v(dt)

m A+ 1= Jo \Jsnxa, 0 \Jsmxa,

m+1 172 1/2
= tht Z(/xkyf(dx Xdy)) (/xl/cz yt/(dx/xdy/)> v(dt)v(dt)
1/2

S"MxA; S"MxA,,
m+1 m+1
< /S ky,(dxxdy)) (Z/k 7% (dx/xdy/)) v(dt’)v(dl)

XAy S™MxA,
(sek)

12 1/2
= / /tt (/1 Y (dx X dy)) fl vi(dx x dy) | v(dt)v(dt)
m + 1 S x Ay S x A,
1 2
m——i—l (/ Il dy))

2
m+1 ([ lyall un(dy)>

<
“m+ 1)

FoE'ﬂ
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We appeal to a well known characterization of u, to compute this integral. More
precisely, if Z1, ..., Z,41 are independent N (0, 1) distributed random variables, the
law of

(217 ZZ’ ceey Zn+l)
Bt t 2,

is given by u,,, which follows by the spherical symmetry of the (n 4 1)-dimensional
standard Gaussian measure. Then by definition of y4, we have

22+ 72+ 4+ 272 +1 n—
lyal® £ nl“NBeta(m 2 ’”)

2 9
Zi+Z5+ o+ Zn+1 2 2
i.e., the Beta distribution with parameters 2= m+1 and "5™. See, e.g., Theorem 5.8.4 and

Section 8.2 of [11]. The o symbol denotes an equahty in distribution. Note that if
X ~ Beta(a, b), then

1
_ a—1 _ b1 _
E(VX) = ﬁ(a,b)/o Vx4 = 0t ldx =

_Bla+1/2,b)
~ Bla.b)

1
f xa—1/2(1 _ .X)b_ld.x
Bla.b) Jo

where B(a, b) := fol x4 1(1 = x)?~dx. Thus,

Bm+2)/2, (n —m)/2) _ T ("F)T (*3)
Bm+1)/2,(n—m)/2) T (=) (242)

/ yall pn(dx) =
Sn

We now return to compute the three terms on the right hand side of Eq. (5) one by one.
First, by the spherical symmetry and the fact that p,, is the uniform measure on S™,
we observe that x’ — me (x, x)? pu(dx) is constant for all x’ € S™. In particular,

/ f (x, )% o (dx) pm (dx")
Sm xSm

/m (x, e1)? tm(dx)

fm (x, €2)? pm (dx)

= [ e e,

Hence
mA+1 m1

(m“)//smxsm” um(dxmm(dx)—Zf (x, ;) um(dX)—/ er, i (dx) =1

Fo C 'ﬂ
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Therefore,

1
/ / (x, X'V o (dx) o (dx') = and
Sm Sm m —+ 1
1

f / P (@) (@) = S

n+1"

It follows that any coupling y € M (i, i,) satisfies

1 1
(disso(y))* =4 <m—+1 + 1) - 8J(y)

n+
54( . )— s (/ ||yA||an<dx)>2
m+1 n+1 m—4+1 \Jsn
() (r(%ﬂ)r(%)z
m+1 n+1 m+ 1 r("%l)r(#)

= (dis4.2(Vim.n> SE. Srll:"))4’

via Lemma 2.6, thus showing that the equatorial map is optimal. O

Remark 2.19 By analyzing the equality conditions for the Cauchy—Schwarz inequality
in the above proof, one obtains a proof of Theorem 1 without relying on the explicit
computation of Lemma 2.6. The equatorial coupling achieves equality in each inequal-
ity, so the computation of the bound of the distortion of y is also a computation of the
distortion of the equatorial coupling and a proof that it is optimal. The two inequalities
occurring in the proof are:

(1) (Cauchy—Schwarz in Eq. (x)): holds with equality if, conditional on || y4 || = ¢,

Yk
llyall

xr = Cy

for a constant C possibly dependent on ||y || but not on k.
(2) (Cauchy-Schwarz in Eq. (*%)): holds with equality if, for almost every 7, ', there
exists a constant C; such that forall k < n + 1:

1/2 1/2
</ x¢ yi(dx x dy)) =0 (/ x? yi(dx x dy)) .
S x Ay S"x A,

The equatorial map satisfies both of these conditions, so it is necessarily optimal.

3 General Lower Bounds

In this section, we will describe a number of different functions LB, , : Gy x Gy —
R4 which will become lower bounds for the (p, g)-Gromov—Wasserstein distance.

FolCT
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Lower bounds for the p-Gromov—Wasserstein distance have been previously discussed
[7, 30, 32]. In [30] three lower bounds for the p-Gromov—Wasserstein distance called
the First, Second, and Third Lower Bounds (denoted FLB,, SLB, and TLB, respec-
tively) were constructed from certain invariants of metric measure spaces. Two of these
lower bounds were based on global and local distributions of distances. SLB, was
constructed using the Wasserstein distance on the real line between global distributions
of distances, and TLB, was constructed using local distribution of distances.

In Sect. 3.2 we consider a generalization of the lower bound based on the p-diameter
of a metric measure space introduced in [30]. Note that we do not consider a gener-
alization of FLB, introduced in [30], which is based on the p-eccentricity function
associated to a metric measure space X € G, that assigns to each point in X a value
reflecting a notion of average distance to all other points in the space. In Sects. 3.3 and
3.4, we construct TLB,, , and SLB, , using the local distributions of distances and
global distributions of distances respectively that depend on the parameter g. For the
choice ¢ = 1, our bounds TLB, ;, and SLB, , agree with TLB, and SLB . Finally,
in Proposition 3.10 we give a hierarchy of our lower bounds for the setting of the
(p, q)-Gromov—Wasserstein distance.

3.1 Invariants

We first recall some invariants of metric measure spaces which we will utilize in our
construction of lower bounds for the (p, ¢)-Gromov—Wasserstein distance.

Definition 3.1 (Global distribution of distances of a metric measure space). Let

(X,dx, nux) € Gy. The global distribution of distances associated to X is the func-
tion,

Hy : [0, diam(X)] — [0, 1] given by ¢ > px @ ux({(x,x") € X x X|dx(x,x") <1}).

Definition 3.2 (Local distribution of distances of a metric measure space). Let
(X,dx, ux) € Gy. The local distribution of distances associated to X is the function,

hy : X x [0, diam(X)] — [0, 1] given by (x, t) —~ ux({x’ € X|dx(x, x") <t}).

Remark 3.3 1t is described in [30, Remark 5.4] that all p-diameters of (X, dy, ux) €
Gy can be recovered from its global distribution of distances as follows:

oo 1/p
diam, (X) = m,(dHy) = <f tdeX(dt)> .
0

The local distribution of distances generalizes the global one and we can relate the
global and local distributions of distances by noting that

hx(x,t) = pux(Bx(x,1))
Elol:;ﬂ
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where By (x, t) is the closed ball centered at x with radius 7. Then we have from [30,
Remark 5.8], that

Hx (1) =// wx(dx") wx(dx) =/ hx(x,t) ux(dx) fort € [0, diam(X)].
X JBy(x.1) X as)

Example 3.4 The global distance distribution function for S§, (forn > 1) is:

1 el t
Hgp (1) = hgp (1) = —= ) sin" "1 (s) ds

VT T35 Jo

where ¢ € [0, 7r]. This follows by the fact that p, is the uniform measure on S” and
basic spherical geometry; see e.g. [4, Chapter 1].

Example 3.5 From the previous example, and the fact that || x — x’|| = 2 sin (M)

forall x, x’ € S" c R*t! we obtain that the global distance distribution function for
S™ is:
E

1 T n+1 2 arcsin(t /2)
) sin " (s) ds

Hey (1) =

NaOW/
o rh 2 \1-2
= ﬁ F(%) A K (\/l—s) ds

where ¢t € [0, 2].

3.2 Diameter Lower Bound

Definition 3.6 ((p, ¢)-Diameter Lower Bound). The (p, g)-Diameter Lower Bound
for X, Y € G, denoted DLB,, 4, for p, g € [1, ool is:

1/q
DLB, , (X, Y) := A, (diam,,(X), diam,(¥)) 2 | (diam ,(X))? — (diam,(¥))*

where () holds when g € [1, 00).

Remark 3.7 In general, by the triangle inequality for dgwp,4 (cf. Theorem 2) and

by Example 1.21, we always have dgwp 4(X,Y) > %l diam,(X) — diam(Y)| for

all p,q € [1, 00]. The lower bound DLB, ;, depends on both p and ¢, and pro-

vides a better lower bound for dgwp 4 since for all ¢ > 1, it can be shown that
DLB, ,(X,Y) > |diam,(X) — diam,(Y)]|.

FoL g
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3.3 Second Lower Bound

Here we consider a general lower bound for the (p, ¢g)-Gromov—Wasserstein distance
between two metric measure spaces X and Y based on the distribution of distances. For
the case ¢ = 1, itis known (see [30, Proposition 6.2]) that the p-Gromov—Wasserstein
distance between X and Y is bounded below by the Wasserstein distance between the
global distribution of distances of X and Y on the real line. We describe a function
which we call (p, g)-Second Lower Bound, denoted SLB , 4, which yields an analogue
of this result for g > 1.

Definition 3.8 ((p, ¢)-Second Lower Bound). The (p, ¢)-Second Lower Bound for
X,Y € Gy, denoted SLB,, , (X, Y), for p, g € [1, 00], is:

SLB,¢(X.Y) :=dy +'"" (dHy. dHy).

For X € G, dHy is the unique measure on R defined by d Hx ([a, b]) := Hx (b) —
Hx (a) for all @ < b. It can be checked that d Hy = (dx)s#(ux ® px).
Note that Remark 1.11 relates the d&l} ;’Aq) distance to the usual Wasserstein dis-

. . Ry, A
tance between suitably transformed measures. The closed form solution of d\()v; @

ensures that SLB, ;, can be computed very efficiently.

3.4 Third Lower Bound

In analogy with the third lower bound from [30], we consider the local distribution of
distances and construct what we call the (p, ¢)-Third Lower Bound, denoted TLB, ;.
For X e G,,, recall that to the local distribution of distances of X, h x (x, -), we associate
the unique measure on R, dhx(x), where dhx (x) = (dx(x, -))#iLx-

Definition 3.9 ((p, ¢)-Third Lower Bound). The (p, ¢)-Third Lower Bound, denoted
TLB, 4. for p,g € [1,00] and X, Y € G, is:

1/p

. R4, A

TLB, (X.Y):= inf (/ (dy q)(dhx(x),dhy(y)))py(dxxdy))
yeM(ux,iy) XxY

forl < p < o0, and

TLBoo ¢ (X, Y) := inf sup af(]R+ Ag)

(dhx(x),dhy(y)).
yeMux.iy) (x,y)esupply]

Note that the closed form solution of dg,R ;’A”) from Remark 1.11 allows one to
efficiently compute the TLB.
Fol:'ﬂ
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3.5 The Complete Hierarchy of Lower Bounds

Hierarchies of lower bounds have been considered in [7, 29, 32]. A key aspect of [30]
was providing a hierarchy between the aforementioned lower bounds, FLB,, SLB,
and TLB, that showed dgw, > TLB, > FLB, and dgw, > SLB,. In [7] they
considered lower bounds in the setting of Gromov—Wasserstein between networks. In
particular, they considered the associated pushforwards of the First, Second, and Third
Lower Bounds from [30] into the real line denoted, R-FLB,, R-SLB, and R-TLB,
and showed that FLB, > R-FLB,, SLB, > R-SLB,, and TLB,, > R-TLB,,.

We note here that [7] and [30] did not provide a complete hierarchy between their
lower bounds, where by incomplete we mean only partial relationships between some
of the bounds were given. Proposition 2.8 of [32] bridged this gap by giving a hierarchy
of lower bounds that related the Third and Second Lower Bounds of [30] to one another
and thus strengthened the original hierarchy results from [30] by showing dgw, >
TLB, > SLB, > FLB,. Proposition 3.10 below generalizes [32, Proposition 2.8] to
the setting of the (p, ¢)-Gromov—Wasserstein distance.

Proposition 3.10 Forall X,Y € Gy, and all p, q € [1, 00] we have
2dowp,q(X,Y) = TLB, 4(X,Y) = SLB,, 4,(X,Y) > DLB,, ,nq(X,Y)

where p A g denotes min{p, g}.

We defer the proof of this proposition to Sect. A.2. See also Example A.3.

3.6 Lower Bounds in the case of Spheres

In this section we consider the hierarchy of lower bounds for the Gromov—Wasserstein
distance between spheres equipped with the geodesic distance and Euclidean distance.
Let S]' represent the m-sphere equipped with the geodesic or Euclidean metric (see
Example 1.13).

3.6.1 Diameter Lower Bound for Spheres

Recall from Remark 3.3 that the p-diameter is related to the p-moment of the global
distance distribution as follows:

1 1/p
diam ,(S?") = m ,(d Hsp) = ( / (HS_,,ll(u))pdu> ,
o s

where HS_,,,l is the generalized inverse of Hgm (see Example 1.5). The diameter lower
bound then boils down to

DLBp’q(ST, SI) = Ag (diamp(S:"), diamp(S:’)).
EOE';W
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3.6.2 Second and Third Lower Bound for Spheres

The local distribution of distances is equal to the global distribution of distances in the
case of spheres. This implies that the third lower bound is equal to the second lower
bound, that is:

m Qn . (Ry,Aq) P r
TS = nt (] (divy ™ @hgy (), dhy (7)) v (@x x dy)
msHn ’.”x f

®1.Ag) Ve
= |\dyw, " (dHsy,dHs;)

= SLB,, ,(SI, S1).

L]

It follows that we have the following hierarchy of lower bounds of dgw . 4 for spheres
when p > ¢:

2dGwp,¢(Sy', S,) = TLB, 4(S;', S,) = SLB, 4(S,', S,) = DLB, , (S}, S}).

We can compute the second lower bound (equivalently the third lower bound)
between SJ' and S] as follows:

m any _ 3 (RiAg) _ ! —1 q _ —1 q|P/q e
LB, (7.8 = dy Wty dHp) = ([ [0t @ — i )| du

where the second equality holds by Remark 1.10.

3.6.3 Lower Bounds for dgwas,, Between Spheres

We now provide example computations for lower bounds of the (4, 2)-Gromov—
Wasserstein distance between spheres of dimensions 0, 1 and 2, when equipped with
the geodesic distance. We make use of the formulas from Sects.3.6.1 and 3.6.2. To
streamline the presentation, we defer the detailed calculations to Appendix B and only
present the final values in Tables 1 and 2.

Remark 3.11 (Hierarchy of lower bounds and dgwa4,» for sY., Sé;, S2G) Following B.2
and B.3, the hierarchy of lower bounds for the (4, 2)-Gromov—Wasserstein distance
is given in Table 1.

Remark 3.12 (Hierarchy of lower bounds and dgwa > for S0 , S}s’ S%) Similarly to the
case of Sg, calculations for bounding dgwa4 2 can be carried out for spheres equipped
with the Euclidean distance using the global distribution of distances for S'7. These
are given in Example 3.5.
In Sect.2, we determined the exact value of the (4, 2)-Gromov—Wasserstein dis-
tance between spheres equipped with the Euclidean distance. So, the values of the
Elol:;ﬂ
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Table 1 This table demonstrates the lower bound hierarchy from Proposition 3.10 in the case of the (4,2)-
Gromov—Wasserstein distance between spheres equipped with the geodesic distance

Spheres % DLB4’2 % SLB4’2 = % TLB4!2 dGW 42
SY, versus SL 0.801 0918 < 1.050
S versus S% 0431 0461 <0.734

The values of the lower bounds are computed in Sect. B.1, while the upper bounds of the (4,2)-Gromov—
Wasserstein distances are computed using the equatorial coupling (see Claim 1 and Examples 2.4 and
2.5)

Table 2 This table demonstrates the lower bound hierarchy from Proposition 3.10 in the case of the (4,2)-
Gromov—Wasserstein distance between spheres with the Euclidean metric

Spheres % DLBy4 > % SLB4 ) = % TLB4 > dcw 4,2
SY. versus Sk 0.308 0.488 0.644
S}, versus S%. 0.187 0.276 0.482

The values of the lower bounds are computed using the elements in Sect. B.2, while the exact values of the
(4,2)-Gromov—Wasserstein distances are computed via Theorem 1 (see Remark 2.9)

lower bounds can be compared against the exact value of (4, 2)-Gromov—Wasserstein
distance between Euclidean spheres as shown in Table 2. Note how the exact values
significantly exceed those provided by the lower bounds.

4 Experimental lllustration

The explicit computations of the (4,2)-Gromov—Wasserstein distance between
Euclidean spheres provide a helpful tool for benchmarking common optimal transport
solvers and packages. The goal of this section is to benchmark various sampling
methods and the number of samples required to obtain accurate estimates of the
Gromov—Wasserstein distance while also ascertaining the accuracy of the various
solvers in relation to the exact values provided by Theorem 1.

The authors are aware of two Python implementations of optimal transport GW
solvers: Python Optimal Transport (POT) [18] and Optimal Transport Tools (OTT)
[10]. These packages implement two of the most common methods for computing the
Gromov—Wasserstein distance: Conditional Gradient Descent (implemented by POT)
[51] and Sinkhorn Projections with entropic regularization (implemented by both OTT
and POT) [40, 41].

In our experiments we used the Conditional Gradient Descent (CGD) solver from
POT and the Sinkhorn solver from OTT (with regularizarion parameter 0.01).% All
experiments and their results are available in the Github repository [39].

6 The reason we used the Sinkhorn solver from OTT instead of the one from POT is that the former appears
to be faster for “smaller scale problems” according to their documentation: https://ott-jax.readthedocs.io/
en/latest/tutorials/OTT_%26_POT.html.
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We ran two types of experiments. First, we examine how the number of samples
relates to the choice of: the solver, the subsampling method, and the weights. Second,
we fix the number of samples and vary the dimension of the spheres. The former are
described next whereas the latter results are presented in Appendix C.

Experiment with Varying Number of Sample Points

In this experiment, we fix the dimensions of both spheres to the values (m,n) =
(1,2), (1, 3) and (2, 3) and vary the number of samples we draw from each of them.
For each number of sample points between 10 and 200 (in increments of 10), we
run 20 trials of each combination of sampling method, weight procedure, and GW
solver (see below). The maximal size 200 was chosen so as to maintain a reasonable
computational burden.

See Figs.2, 3, and 4 where the label POT is used to indicate the CGD solver and
OTT is used to indicate the Sinkhorn solver. The plotted lines are the mean values
estimated from the 20 trials, while the shaded areas represent the central 80% of the
samples. Dotted lines correspond to the “true” values established by Theorem 1:

| /s 2\ 174
(1,2): dowa2(S., SE) = 7 <6 — 711_6) ~ 0.482; see Remark 2.9.

11

1/4
— ~ (.526; see Remark 2.10.
144

(1,3): dow42(Sg, S3) = <

- 1 /7 8 (16\\'*
(2,3): dow42(Sg, Sg) = VAGREACE ~ 0.400; see Remark 2.9.

We implemented two sampling strategies:

(1) Random: We draw the desired number of uniform samples via the well known
method from [38], which consists of normalizing standard Gaussian samples.

(2) Farthest Point Sampling (FPS): We first sample 10° points from the sphere
uniformly at random via [38] and we then select the desired number of subsamples
via the FPS method [16, 20].7

We implement two different procedures for assigning weights to the samples. Given
a finite sample P C S™:

(1) Voronoi: This consists on assigning to each point p € P an estimate of the total
mass of the Voronoi cell on the sphere corresponding to p. To estimate this, we
construct a set S consisting of 10° uniformly sampled points on the sphere and
assign to p the proportion of points from § the that are closer to it than to any other
point in P.

(2) Uniform: We simply give uniform weights | P|~! to all points p € P.

TIna nutshell, given a finite metric space (X, dx) and a positive integer N > 2, the FPS method selects
the first as a random point from X. The second point will be any point at maximal distance from the first
selected point. The third point will be any point at maximal distance from the first two points and so on.

FoC'T
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Distance Between Random Samples of S? and S?! Distance Between Random Samples of S? and S?!
o (Sampling strategy is random with uniform weights) 0.50 (Sampling strategy is random with voronoi weights)
—— POT (CGD, no reg) —— POT (CGD, no reg)
OTT (reg=0.01) OTT (reg=0.01)
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Fig.2 Estimating the Gromov—Wasserstein distance between SZE and S}S

Observations

Below it will be convenient to refer to the different combinations of procedures and

solvers via the specification of the triple (Sampling, Weights, Solver) where Sampling

€ {Random, FPS}, Weights € {Uniform, Voronoi} and Solver € {POT, OTT}.
Figures 2, 3, and 4 suggest the following observations:

e Inall figures, the general trend is that FPS sampling outperforms Random sampling
and that Voronoi weights outperform Uniform weights. This is expected as Voronoi
weights are known to be optimal in the sense of quantization of measures [28,
Lemma D.6], and FPS sampling is expected to provide a quasi-optimal sampling
of a metric space [20, 34].

e The combination (FPS, Voronoi, POT) produced the best results in all cases. In the
case S! versus S? and in the case S! versus S it provided excellent results equal
to 200 points. In those cases, the Sinkhorn solver (OTT) exhibited some bias, as
is expected from the fact that it uses entropic regularization [42]. The case of S*
versus S3 suggests that a dense sampling might be necessary to approach the true
value of the distance.

e For the case S! vs S it is remarkable that with few samples the plots of (Random,
Voronoi, POT), (FPS, Uniform, POT), (FPS, Voronoi, POT) are already quite close
to the true distance value. This especially is the case for (FPS, Voronoi, POT).
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Fig.3 Estimating the Gromov—Wasserstein distance between Si- and SlE

e In the case S? versus S%, in all likelihood due to the fact that a sample size of
200 is expected to be insufficient to effectively represent S*, most combinations
exhibited some degree of error.

5 Conclusions and Perspectives

Our results provide one additional® infinite class of metric measure spaces for which
we know the exact value of the Gromov—Wasserstein distance. Besides their intrinsic
theoretical interest, our results also provide a benchmark against which the standard
solvers for the Gromov—Wasserstein distance can be compared.

We now collect a number of questions.

Some Questions

The fact that we have considered an extra parameter ¢ in our construction of the
(p, q)-Gromov—Wasserstein distance together with the fact that it is known that for
p = q = o0, the resulting distance admits a polynomial time algorithm [31] suggest
posing the following question.

8 Besides the class induced by Gaussian measures studied in [12].
FolCT
e,
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Fig.4 Estimating the Gromov—Wasserstein distance between S3E and S%;

Question 1 Are there classes C C G, of metric measures spaces (or networks, as in
[7]) and particular choices of p, g, such that there exists a polynomial time algorithm
for computing dgwp,q(X,Y) for X, Y € C?

In light of Theorem 1 and Remark 2.7, it is natural to ask at what level of generality
the equatorial coupling is optimal.

Question 2 In particular, we would like to know:

e Is the equatorial coupling optimal for dgw p,q (S, S7;) for values of p and g other
than (p, q) = (4, 2)?

e Are there values of p, g so that the equatorial coupling is optimal for the (p, g)-
Gromov—Wasserstein distance between spheres with their geodesic distances (as
opposed to their Euclidean distances) dgwp 4 (S¢;, Si;)?

Since the uniform measure w,, (resp. ;) on S (resp. S") can be obtained as the
pushforward of the standard Gaussian measure on R”*! (resp. R"+1) under the central
projection map and since, by Remark 2.15, the equatorial coupling can be analogously

gauss
recovered from y, " |", . |, one may ask:

Question 3 Can one directly invoke [12, Proposition 4.1] or Proposition 2.16, estab-
lishing the optimality of the coupling yfl‘frn 41 for (a certain variant of) the
EOE';W
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Gromov—Wasserstein distance between Gaussian measures, to obtain a different proof
of Theorem 1?

Finally we note thatin [15, Theorems 3.2 and 3.6], the authors show the existence of
a Monge map that induces an optimal coupling for both the “inner product” Gromov—
Wasserstein distance and the quadratic (i.e. p = 2) Gromov—Wasserstein distance
between two measures v, € PR and v, € PR"!) with n > m and v,
absolutely continuous with respect to the Lebesgue measure on R” 1. For example, in
the setting of [15, Theorem 3.2], which is the closest to ours, they find that there exists
an optimal coupling arising through a Monge map which is the gradient of a convex
function (in a manner similar to the celebrated Brenier’s theorem in optimal transport).
As we pointed out on page 7, their results do not apply in our setting, since the uniform
distribution on a sphere S‘é is singular with respect to the Lebesgue measure in R4+,
However, in Theorem 1, we found that an optimal coupling for the uniform distribution
between spheres is in fact generated by the Monge map e, , (see Definition 2.1 and
Claim 1). Interestingly, e, , : S" — S™ can be written as e,, ,, = To(7,,m (X)), where
Tp : R™+1 — §™ is the gradient of the convex function g : R+ — R defined as
gy =i+ +ya DV

This leads us to the following question:

Question 4 Do the conclusions of Theorem 3.2 and 3.6 from [15], i.e., the existence
of Monge maps that minimize the Gromov—Wasserstein distance between two metric
measure spaces, hold for more general classes of measures?
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Appendix A Relegated Proofs
A.1 Proof of Theorem 2

LemmaA.1 Let (X,dx, ux), (Y,dy, uy) € Gy be fixed and let y € M(ux, iy).
Then

disp 4(y) < disp’,q’ 62

foralll < p<p <ococandl <q <q’ < oc.
Elol:;ﬂ
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Proof First of all, observe that from the fact that p’ > p it follows that

disp 4 (¥) = [|Ag(dx, dV)l|Lryey) < [1AgWdx, AV (g, = disp g (V).

Also, note that

/ p/
(disy g ()" = / / (Aq(dx(x,x'),dyw,y/») y(dx x dy) y(dx' x dy')
XxY JXxY

»
s/ / (Aqf(dx(x,x’),dy(y,y/))> y(dx x dy) y(dx' x dy")
XxY JXxY

= (dis, o ()"

where the inequality in the second line holds since A; < A, by Proposition 1.9.
Combining the above, it follows that dis, 4(y) < dis, ,(y) < dis, ,(y) which
proves the lemma. O

Proof of Theorem 2 The claim that dgwp,q < dgw,',q forall 1 < p < p’ < oo and
1 < g < g’ < oo follows immediately from Lemma A.1 above.

We now prove that dgwpq(X,Y) = 0 implies that X = Y. Suppose
dGwp,q(X,Y) = 0. Then,

0=dowpq(X,Y) > dowp,1(X,Y) =dowp(X,Y) >0

where the first inequality follows from monotonicity of dgwp,q. By [30, Theorem 5.1
(a)] dowp,q(X,Y) = 0 implies that X = Y.

Finally, we establish the triangle inequality for dgwp,4 as follows. Fix arbitrary
(X,dx, ux), Y,dy,uy), and (Z,dz, uz) in Gy. Let ¢ > 0 be an arbitrary real
number. Then, one can choose couplings uxz € M(ux, uz)and uzy € M(uz, uy)
such that

1
§||Aq(dX’ dZ)HL”(/sz@sz) < dGW[J,q(X’ Z)+¢

and

1
EllAq(dz, AV Lr(uzyouzy) < dowp,q(Z,Y) +&.

Next, by the gluing lemma [54, Lemma 7.6], there exists a probability measure w
on X x Z x Y such that (mxz)sw = wuxz and (mzy)sw = uzy where mxz :
XXxZxY—> XxZandmzy : X X Z xY — Z x Y are the canonical projections.
Now, let uxy := (xy)#w. Then,

1 1
dowp,q(X,Y) < EHAq(dX»dY)HLP(uxy@liXy) = Elll\q(dx, dy)||Lr (wew)
EOE';W
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=<

(I1Ag@x, dD|Lr(@sw) + [1Aq(dz, dY)||Lr(@sw))

—_ DN =

= EHAII (dx, dZ)HL”(sz@MXZ) + E”Aq(dZv dY)HLp(MZY@MZY)
= dGWp,q(Xy Z) + dGWp,q(Zv Y) + 2e.

The second inequality follows from an application of the triangle inequality for A:
Aq(dx (x, x), dy(y, ¥)) < Ag(dx(x, x"), dz(z,2)) + Ag(dz(z,2)), dy (v, ¥))

for (v ® w)-a.e. (x,x’,y,y’, z,z). This is possible since A, is a metric on R by
Proposition 1.9. Since the choice of ¢ is arbitrary, one can establish the required triangle
inequality. O

Remark A.2 Since A,/ , is a metric on the collection of isomorphism classes of
Gw whenever p > g (see [48, Corollary 9.3]) and by Remark 1.22 dgw 4 is the
g-snowflake transform of A/, , multiplied by the constant 2714 one can conclude
that dgw p,4 is also a metric on the collection of isomorphism classes of G, for p > g.
This provides an alternative proof of a claim in Theorem 2 for the case when p > g. We
note that our statement in Theorem 2 and the proof above do not have this restriction.

A.2 Proof of Proposition 3.10 and an Example

Example A.3 We now provide an example showing that DLB, , is not always a lower
bound for dgw 4 in the case where p < g. We set p = 1, and, for some o € [1/2, 1],

X = {x1, x2}, withdx (x1,x2) = land ux({x1}) =, ux({x2}) =1—«q,
Y = {y1, y2}, withdy (y1, y2) = land uy({y1}) = 1/2, uy({y2}) =1/2.

Then,
DLB 4(X, ¥) = |(diam; (X))? — (diam; (¥))?]"" = |Qa(1 —a))? — (1/2)7|'7.
On the other hand,

ZdGWI_q
<disy 4(y)
=2(y (x1, y1) - ¥ (x1, y2) + v (x2, y1) - v (x2, y2) + v (x1, y1) - v (x2, y1)
+y(x1, y2) - y(x2, y2))
=2(a—1/2)(1 —a) + (@ — 1/2) = 4o — 20* —3/2

where y is the coupling between px and py described in Fig. 5. Selecting g = 4, and
o = 3/4 (in fact this is a counterexample for any g > 2.5 and any o € (1/2, 1)), these
FoC'T
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e 1/2 ia—l/Q

X 1 r—-- :
@ 0 | 1-«

Fig.5 We have puy (1)) = @, px({x2)) = 1 —a, puy (1) = py({y2)) = 1/2 for some o € [1/2, 11.
In this scenario, we construct an example where DLB, 4 is not a lower bound for dgw .4 When p < g.
The (p, g) distortion under the coupling y, illustrated in the square, is used to derive an upper bound on
2dgwp,q(X, Y). See Example A.3 for more details

evaluate to:

4 4174
DLB 4(X,Y) = |(3/8)* — (1/2)*| " ~ 0.45
2dgw, (X, Y) <3 —18/16 —3/2 = 3/8 = 0.375.

Thus, the diameter lower bound does not hold in general when p < g.
We will need the following lemmas to prove Proposition 3.10.

Lemma A.4 ([30, Remark 5.8]) Suppose X € G, is given. Let dhx (x) be the unique
probability measure on R associated to the local distributions of distances hx (x, -)
and dHy be the unique probability measure associated to the global distribution of
distances Hy. Then, we have the following:

f dhx (x) jux (dx) = d Hy.
X

LemmaA.5 Suppose X,Y € G, and p,q € [1,00) are given. Then, there is a
measure-valued map (x, y) + vy y from X x Y to P(Ry x Ry) such that

(1) (x,y) = vy y(B) is measurable for every Borel set B C Ry x R,
(2) v,y belongs to M(dhx (x), dhy(y)) for each (x,y) € X x Y, and
1
R, A, )
(3) dy " (dhx (). dhy(y)) = (fRMR+ (Ag(a, b))’ vy y(da x db))” .
While the proof of the above lemma is similar to that of Claim 1 in [31, pg.69], we
provide it in Sect. A.3 for completeness.

Proof of Proposition 3.10 First, consider the p < oo case. We divide the proof into the
proofs of each inequality.

Proof of 2dgwp,q > TLB, 4. Fix an arbitrary coupling y € M(ux, ity). Recall
that,

(disp.g (1)) = / / (A (dx (x. x'). dy (o /D) y(dx’ x dy') y(dx x dy).
XxY JXxY

EOE';W
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Furthermore, observe that for each x € X and y € Y, we have

/X , (Aqdx (x, X)), dy(y, y)))" v(dx’ x dy)

= (Ag(a, b))’ dx(x, ) x dy(y, )# y(da x db)
Ry xRy

(dy " (@hx(x). dhy ()"

v

where the inequality holds since dhx(x) = (dx(x,-)sux and dhy(y) =
(dy (¥, )D#iry, so (dx(x,-),dy(y,))#y is a coupling between dhx (x) and dhy (y).
This implies that

P

disp.q(y) = ( /X . (dy " (@hx ()., dhy ()" y(dx x dy))

Since the choice of y is arbitrary, infimizing over y € M(uyx, iwy) establishes the
required inequality. O
Proof of TLB,, ;, > SLB,, ;. First, consider the case g < oo.

Fix an arbitrary coupling y € M(ux, uy). By Lemma A.5, there is a measur-
able choice (x,y) = vy, such that for each (x,y) € X x Y, v, , belongs to
M(dhx(x),dhy(y)) and

1
P

d\(,il}},Aq)(dhx(x),th(y)) = (A{ (Ag(a, b))’ vy y(da x db))

+ xRy

Next, define a measure v on Ry x Ry by:

V= / Vyy ¥ (dx x dy).
XxY

Inspection of the marginals of v shows that it is a coupling between d Hy and d Hy.
Indeed, for each § € Zg,,

v(S x Ry) =/ Ve,y (S x Ry) y(dx x dy)
XxY

_ / dhx (6)(S) y (dx x dy)
XxY
:[thx(x)(S),ux(dx)ZdHX(S)

where the last equality holds by Lemma A.4. A similar argument proves that v(R4 X
S) = dHy(S) soindeed v € M(dHy, dHy). Therefore,

R,A
/ (d\(Vp q)(dhx(x),th(y)))py(dx x dy)
XxY
Elol:;ﬂ
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= / / (Aq(a, b))’ vy y(da x db)y (dx x dy)
XxY JRExR4

(@ Aq)

:/ (Aq(a, b))’ v(da x db) > (dHx,dHy))".
Ry xRy

The required inequality follows since the choice of y is arbitrary. In order to establish
the claim when g = oo we employ the case when ¢ < oo and the fact that the following
equalities hold:

TLB) o = lim TLB,, and SLB, = 11m SLqu

q—>00

These can be verified by observing that A, uniformly converges to A on the compact
set {dx (x,x")| x,x" € X}U{dy(y,y)|y,y €Y} C Ry as g goes to infinity. O
Proof of SLB), ; > DLB, 4. We divide the proof into two cases.

Case 1. (p > ¢q): Observe first that, since p < oo, we have

1 q/p
(SLB, 4 (X, Y))? = (/0 (Ag(Hy'w), Hy ' (u)))” du)

q/p

1
= ( /O ((Hy ) — (Hy ' ))®)"' du)

1
= </o ( (S, )#dHX (u) — (S )#dHy (”))p/q d”)

= d]\%p/q((sq)#dey (Sq)#dHy)

q/p

> |dyy 0 (Sped Hx. 80) — diy . ((Sg)#d Hy , 0)

where & is the Dirac measure at zero. Note that the first equality follows from Remark
1.10 and the last inequality follows from the triangle inequality of d{% /g Next, we
obtain via Example 1.6 and Remark 3.3 that

q/p
Ay g (Spwd Hy, 80) = ( /X d§<x,x’>ux(dx)ux<dx’)) = (diam, (X))

This establishes the inequality SLB, , > DLB, , when p > g and p < oo.
Case 2. (p < g): Note that DLB, ,,, = DLB, , in this case. Also, it is easy to
verify that SLB, , > SLB,, , since A, < A,. Moreover, SLB, , > DLB, , by the
previous Case 1. Hence, we achieve the inequality SLB, ;, > DLB, , = DLB ;4.
]

This completes the proof of the hierarchy in the case where p < co. More precisely,
thus far we have proved that

2dgwp,y = TLB, 4 > SLB, ; > DLB), ,5ns, for p € [1,00) and g € [1, oo].
(16)
FoE"ﬂ
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Lastly, in order to prove the p = oo case, we proceed as follows. Unless otherwise
specified, we consider g € [1, oo].
Proof of 2dgw.,, = TLBoo 4. Note that by Theorem 2

2dGWqu > 2limsupdGgwp,q-
p—>00

Also, it is easy to verify that TLBs, , > limsup TLB,, , since d\(}f ;DA") < d&l} ;/\”)

p—>0o0
whenever 1 < p < p’ < oo. Therefore, 2dGw,, g = TLByo,q is obtained from the
p < 00 case. O
Proof of TLBso,q > SLB 4. Thisis straightforward since TLB, ; > lim sup TLB, 4,

p—>00

SLBeo,q = pILmOO SLB, 4 and we proved that TLB, ; > SLB, ; in the p < oo case.

O

Proof of SLBeo,q > DLBoo,cong. If ¢ < 00, then it is easy to verify the claim from

the facts that SLBy , = lim SLB, ,, DLBy , = lim DLB,, and the p < oo
p—>00 p—00

case. Finally, if g = 0o, one can use the facts SLBy o = lim SLBo,g» DLBoo, o =
q—

lim DLB 4, and the previous case when p = 00,g < 0. ThlS completes the proof.
q—> 00

O
By the last three cases, we have thus proved that

2dgw,,, = TLBoo g = SLBoo,g = DLBoo cong  for g € [1, 00]. a7
Equations (16) and (17) establish the theorem. O

A.3 Proofs of Lemmas
Proof of Lemma 2.6 By Equations (5), (6) and (7) we have

4 n 4
n+1 m+1

—8/ ¢, XYY, Y)Y Ymndx X dy)ymn(dx x dy').
St xSm JStxS"

disg > (Vi) =

We then compute

/ / () (32 3') Vi (dx  dY) Y (dx’ x dY)
nXSm nXSm

= // o {en,m (3)s enm YNV, ¥') wn(dy) pn(dy’)
n+1 m+1 ’

/ "XS” Zylyl

Fo C 'ﬂ
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n+1m+1 Viy; 2
=ZXX/”MWQ
i1 7o s llyall
m+1 2 2
Z (/ wn(d y))

p llyall

) 2
=w+nf Man )
o Iyall

Here, note that the fourth equality holds because fS" % Un(dy) = 0 whenever

i # j because iy = (Np)#lm+1 where Ny, : R+l 5 S™ is the map such that

D1y v vs Ymt1) > T(yl, ««+s Ym+1) and 1,41 is the standard Gaussian mea-
Z:n:l Vi

sure on R+,

Also,

2 m+1
Yi 1 > 1
un(dy) = un(dy) = —— [ llyall ma(dy).
/Sn lyall m~+1Js yal Hn m+1 Jo "

It remains to calculate the expectation of ||y 4 ||, which follows from a calculation iden-
tical to the one in the proof of Theorem 1. In particular, we appeal to a characterization
of i, in terms of standard Gaussian random variables Z1, ..., Z, 41 in order to write
that

5 m+1 n—m
~ Bet: , .
lyall ea( > 5 >

And hence

/ lyall pn(dy) =
Sn

(m_+1 n— m
2 0 2
_ B2 o e
B 1) T (T ()
This finishes the proof. O

Proofof LemmaA.5 First, let S := {dx(x,x")|x,x" € X} U{dy(y,y)|y,y € Y} C
R+. Since both X and Y are compact, S is also compact. Also, it is easy to verify that
all A, (for r € [1, 00)) induce the same topology and thus the same Borel sets on S.
Therefore all d\(,il}})A’) (for r € [1, 00)) metrize the weak topology on P(S). By [32,
Remark 1], the following two maps are continuous with respect to the weak topology
and thus measurable:

O X - P(S), x> dhx(x)
FoE'ﬂ
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and
Dy Y — P(S), y+> dhy(y).

Since § is a compact space, the space (P(S), d&l} },A")) is separable [53, Theorem
6.18]. This yields that Zp(s)xps) = Zps) ® Zp(s) [19, Proposition 1.5]. Hence,
the product ® of ®; and ®,, defined by

D: X XY — P(S) xP(S), (x,y) — (dhx(x),dhy(y))

is measurable [19, Proposition 2.4]. Since ® is measurable, a direct application of [53,
Corollary 5.22] gives the claim. O
Appendix B Calculations

B.1 Lower Bounds for dgwas,> Between Spheres with the Geodesic Distance

In preparation for the determination of the diameter lower bounds, we first compute the
4-diameters of S’g form = 0, 1, 2 using the formula for the global distance distribution

given in Example 3.4.

Example B.1 (The global distance distributions of S¥., SIG and SzG) S% consists of
two points which are at distance 7 apart and so HS% (1) = o @ uof(x,x’) € S((); X

S |do(x, x') < t}is

1
5 0<t
Ho@m =12 ='°7
G 1 t=m.

By Example 3.4, the global distance distributions of SIG and SZG are

t (1 —cost)
HSIG(I) = g HSzG(t) = B S— forr € [0, m].

Consequently, the generalized inverses (see Eq. 3) are

o
IA TA
—_ D=

<u
—1 =
HSO (u) =
G <u

=

while

Hsﬁl(u)zun and Hggl(u)zarccosu—zu) for u € [0, 1].
G G
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Example B.2 (DLBy »(S%, S;) and DLB4 5 (S§;, S%)) By Example B.1 the 4-diameters
of S%, SlG and SZG are

) 0 1 . 4 1/4 1 . 1/4 T
it ([ o)) ([ 52
1 | OV LA g
diam4(Sg) = </0 <H§_}, (u)> du) (/0 (umr) du) = s
1 4 \1/4 1 1/4
diamy(Sg) = </ (Hg_zl(u)> du) = (/ (arccos(1 — 2u))4du)
0 G 0
4\ 1/4
- <24 —6n? %) .

Hence, by the definition of DLB4 > we have

4\ 2 4\ 2
st (3~ (5)

and

1/2 1 1\ 12
=7 - — ~ 1.602.
(5-5)

1/2

z \2 24\ 2/4
DLB,(SL, %) = ‘(W) - (24 — 617 + 7) ~ 0.861.

Example B.3 (SLB4»(S%, S{.) and SLB4 » (S5, SZ,)) By Example B.1 and the defini-
tion of SLB4 » we obtain

1 1/4
SLB42(S%, SL) =( / I(H )? — (H ) du)
0 S¢ Sg

1 1 1/4
= <f lu*n?)? du +ﬁ |72 — u’n?? a’u)
0 Y

2
11 7\
—r(-4+--L) ~183,
”<2+5 12)

and similarly

1 1/4
SLB4(SL, S%) = I(HS w))? — (HS' u))?)? du
0 s, s%

1 1/4
= (/ lu’n? — (arccos(1 — 2u))?|? du) ~ 0.931.
0
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H_ A
@Springer L0



Foundations of Computational Mathematics

B.2 Lower Bounds for dgwas,> Between Spheres with the Euclidean Metric
Example B.4 (The global distance distributions of S SlE and S%) S% consists of two
points which are at distance 2 apart.

1

5> 0<t<?2
_ )2 —
HS%(t)—{

1 =2
Consequently,
0 0<u<i
Hy'(u) = -2
s 0 {2 T<us<l

Similarly, the global distance distributions for Sg and SZG are

2 ot 12
HS}E(I) = - arcsin —, HSzE (1) = 7 fort € [0, 2].

Thus, for u € [0, 1]

H='(u) = 2sin (ﬂ) and H3'(u) = 2.

Example B.5 (DLB4»(S%., SL)and DLB4 > (S}, S%)) By Example B.4, the 4-diameters
of S%, S}Y and SZE are

1 4 1/4 1 1/4
diamy (S%) = ( f <H§_01(u)> du> = ( / 24du> =23/4,
0 E 1/2
. 1 - 1/4 3\ /4
diamy(SL) = 2(/0 sin (7>du> -2 (§> .
1 1/4
diamy(S%) = 2( / (ﬁ)4du>
0

Hence by the definition of DLB4 > we have

2/4

23/2 _ 2 3 /
8

. 3\ 2/4 2 \2
g)  \31/4

37

1/2
DLB4»(S%, SL) =

~ 0.616.

and

1/2
DLB4(Sk, S%) =

~ 0.374.
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Example B.6 (SLB4»(SY%, SL) and SLB4»(SL, S%)) By Example B.4 and the defini-
tion of SLB4 > we obtain

1 1/4
SLB42(S%, Sk) =( fo |(HS‘%1<M)>2 - (JLIS—}Sl ())*? du)

1 1 1/4
=<f |HG ol ds+/ 2% - (H71<u>)2|2du)
0 E % Sg

([ (D) s - () )

~ 0.976,

1/4

and similarly
1 5 1/4
SLB4(Sh. %) = <f ‘22 sin’ (%) - 22u‘ du> ~ 0.549.
0

B.3 Distortion diss > Under the Equatorial Coupling

ExampleB.7 (disa2(y0.1, S%, SIG)) By Remark 1.18 and Example B.2, we have

(diss2(v0.1, SY. Slg))4
= (diam4(S3))* + (diamy (S))*

) / (doter0(). e100/ M) (d1 (v ¥)) 1 (@) (dy')

* ot

=S +5 -2 /S 1 fg (dotero(), er 0D (@i (v, )2 @y) (dy).
(18)
We use polar coordinates to compute the integral on the right hand side. We write

y = (cos 8, sinf) and y' = (cosd’, sinf’), where 0, 0" € [0, 27 ]. Note also that with
this parametrization and by the definition of the map e o, we can write

e1,0(y) = sign(cos0); e1,0(y") = sign(cos6")
Hence by definition of dj,
do(e1.0(y), e1,0(3) = wl(cos@ - cosf' < 0).
Moreover,
d(y,y") = arccos(cos 6 cos 6’ + sin @ sin0") = arccos(cos(d — 6")).
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We then have

fS 1 fS (dotero(y). €10 (@1 (v, ¥ pa(dy)p (dy”)
2 2 1 2
= / / (r1(cosf - cos® < 0))*(arccos(cos(®@ — 6)))* x (E) dode’
/2 p3m/2
( f / (arccos(cos(0’ — 6)))2dodo’

3m/2
/ / (arccos(cos(f — 9/)))2d9d9’> x 2
3n/2 Jw/

/2 p3m/2—0
—-( / f (arccos(cos(t)))>dtdd

/2—6

6—m/2
/ / (arccos(cos(t)))zdtdé) .
3n/2 Jo—37/2

The first integral becomes

/2 p3m/2—6
/ / (arccos(cos(t)))zdtde

/2—0

/2 T 37/2—0
= / [ / 2dr + f Q2 —t)2dt] do
0 w/2—60 b4
/2 3 3 3 3
=/ |:<7T_ B (/2 —0) >+ (n_ B @ +m/2) >i|d9
0 3 3 3 3

Similarly, the second integral also evaluates to

0—7/2
/ / (arccos(cos(t)))zdtdé’
37/2 JO—37/2

7 9—7/2 4
= [ U 2dt +/ Qr — t)2dti| do = —.
372 LJo—37/2 P 4

Thus,

4

/ / (doler.o(y). er.o(y)))2(di (v, Y 1 (dy)pr (dy') = .
Sl Sl 4

The rest of the calculations are given in Example 2.4.
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Fig.6 Relative errors of Relative error of mean prediction of 10 trials, using POT
computed and true differences and 100 point fps sampling with voronoi weights.
using the CGD solver from POT, -0.30
. . 0.0013 -0.0024 -0.0044 -0.008 -0.0083 -0.01
with FPS as the sampling
procedure and Voronoi weights 025
- 0.036 0.015 0.0062 0.0014 -0.0013
g
S 0.20
£ 0.12 0.066 0.045
el
o
5 0.15
<
o
"
3
] 0.10
£
%]
0.05
© - 0.31
0.00
\ \ \ \ \ .
2 3 4 5 6 7

Larger sphere dimension

Appendix C Another Experiment: Varying Dimensions Experiment

In this experiment, we fixed the number of samples taken at 100 and varied the dimen-
sions of the two spheres between 1 and 7. The subsampling method was chosen to be
FPS and the weights were those produced by the Voronoi method. Finally, we fixed
the solver to the CGD solver from POT.

Using the results of ten trials (nyias = 10) for fixed sphere dimensions, m and n,

d;, ,, where i = 1,..., nyials, We estimated the true distance via the average over
trials,
1 Ntrials
~J — ji
dpp X dpyn = dy -
Nirials *
i=1
. . . . dn—d
We then recorded the relative error of this estimator: relative-error,, , := A
. m,n

in the corresponding entry of the heatmap shown in Fig.6. We observe a dramatic
decrease in accuracy as the dimensions of both spheres increase which of course one
would expect to reduce by using a larger number of points.
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