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Abstract

Partial differential equations (PDEs) have become an essential tool for modeling

complex physical systems. Such equations are typically solved numerically via mesh-

based methods, such as finite element methods, with solutions over the spatial domain.

However, obtaining these solutions are often prohibitively costly, limiting the feasibility

of exploring parameters in PDEs. In this paper, we propose an efficient emulator

that simultaneously predicts the solutions over the spatial domain, with theoretical

justification of its uncertainty quantification. The novelty of the proposed method

lies in the incorporation of the mesh node coordinates into the statistical model. In

particular, the proposed method segments the mesh nodes into multiple clusters via a

Dirichlet process prior and fits Gaussian process models with the same hyperparameters

in each of them. Most importantly, by revealing the underlying clustering structures,

the proposed method can provide valuable insights into qualitative features of the

resulting dynamics that can be used to guide further investigations. Real examples are

demonstrated to show that our proposed method has smaller prediction errors than

its main competitors, with competitive computation time, and identifies interesting

clusters of mesh nodes that possess physical significance, such as satisfying boundary

conditions. An R package for the proposed methodology is provided in an open

repository.
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1 Introduction

Computer models have become essential to study physical systems that are expensive or

infeasible, and have been successfully applied in a variety of scientific research, ranging

from cell adhesion (Sung et al., 2020) to designing a rocket injector (Mak et al., 2018).

Typically, a physical system is described by a computer model consisting of a series of partial

differential equations (PDEs) (Evans, 2010) and evaluated in a two- or three-dimensional

space. For instance, in Wang et al. (2018), the governing PDEs are evaluated to simulate

the characteristics of a three-dimensional swirling flow in a cylindrical chamber.

These PDEs are typically solved by numerical methods, such as finite element methods

(FEMs) or a collocation method (Fornberg and Flyer, 2015), based on a mesh specification

in a two- or three-dimensional space, and the numerical solutions are evaluated at these

mesh node coordinates (also called grid points (Mak et al., 2018; Tan, 2018a)). The number

of nodes is usually fairly large to ensure the numerical accuracy of PDE solutions. Such

evaluations, however, are often prohibitively costly for input space exploration. For instance,

the high-fidelity simulation in Mak et al. (2018) generates around 100,000 grid points and

takes six days of computation time for a given input. Thus, it is essential to develop a

cheaper statistical emulator as a surrogate model that approximates the solutions in a

timely fashion.

The paper focuses on developing an efficient emulator for a series of solutions at many

coordinates in a PDE boundary value problem, where the coordinates are fixed across

inputs. A PDE boundary value problem involves solving a set of PDEs subject to specified

conditions at the boundaries of the domain. A popular statistical emulator for computer

simulations is through Gaussian process (GP) modeling (Santner et al., 2018; Gramacy,

2020), which provides a flexible approximation to the relationship between simulation output

and inputs and quantifies uncertainty through its predictive variance; however, the GP is

mainly for predicting a scalar output and is not directly applicable to the context of many

outputs. One idea is to simultaneously emulate the output at each coordinate separately

using independent GPs, which is discussed in Qian et al. (2008), Conti and O’Hagan

(2010), and Lee et al. (2011, 2012), and another idea is using GPs with a special shared

covariance structure (Gu and Berger, 2016). However, these methods do not incorporate

the information of mesh node locations into their models, making it challenging to provide
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predictions at any coordinates in the domain of interest beyond the mesh coordinates.

Another idea is to perform dimension reduction to approximate the simulation outputs using

basis expansion, such as functional principal component analysis (Ramsay and Silverman,

2005) or Karhunen-Loève expansion (Karhunen, 1947; Loève, 1955), and then fit GP models

on the coefficients, the number of which is usually much less than the number of outputs.

The methods adopting this idea include Higdon et al. (2008), Rougier (2008), Rougier et al.

(2009), Marrel et al. (2011), Mak et al. (2018), and Tan (2018a). Such methods, however,

achieve the dimension reduction by a finite truncation of the expansion in a function basis,

and the approximation error can introduce additional bias to the predictions.

In this paper, we propose a novel emulator, called mesh-clustered Gaussian process

(mcGP) emulator, for predicting the outputs at many fixed coordinates by incorporating the

information of mesh node coordinates. Specifically, instead of fitting separate GPs with

different hyperparameters at each node coordinate, the proposed method makes use of the

divide-and-conquer idea, which segments the node coordinates into clusters with a soft-

assignment clustering approach, within each of which, GPs with the same hyperparameters

are fitted at each coordinate. In particular, the Dirichlet process (DP) prior is adopted here,

facilitating a flexible clustering structure for the proposed mixture model without the need

for specifying a fixed number of clusters. In addition, a basis expansion representation is

employed for mesh-based numerical solutions and the GPs are used to model the coefficients.

This approach enables us to make predictions across the entire spatial domain, extending

beyond the mesh coordinates. Note that, this basis expansion does not perform dimension

reduction, so no additional bias will be introduced to our predictions. Importantly, given

such a sophisticated mixture model, the proposed method can be fitted efficiently by

adopting the variational Bayesian inference method (Jordan et al., 1999; Wainwright and

Jordan, 2008), which provides an analytical approximation to the posterior distribution of

the latent variables and parameters, facilitating faster computation and scalability when

compared with traditional approaches like Markov chain Monte Carlo (MCMC).

In addition to efficient emulation, our method also provides two important features.

First, our method enables efficient uncertainty quantification for emulation with theoretical

guarantees. In particular, we provide the error analysis that not only considers the uncer-

tainty from the emulator given limited training samples, but also accounts for the numerical

error arising from the discrete approximation of the continuous domain through a mesh
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configuration in numerical methods for solving PDEs. Second, by revealing the clustering

structures, the proposed method provides valuable insights into qualitative features of the

resulting dynamics. Unlike traditional reduced-basis methods for flow simulations in physics

and engineering, such as proper orthogonal decomposition (POD) (Lumley, 1967), which

are unsupervised learning methods purely based on the flow data, the latent clustering

structure by the proposed method is determined by both inputs and outputs as in Joseph

and Mak (2021) and Sung et al. (2023), which can be used to separate a simulated flow

into key instability structures, each with its corresponding spatial features.

It is important to note that recent developments in the field of finite element methods

have led to the emergence of the statistical finite elements (statFEM) approach, which

holds promise in advancing uncertainty quantification and model predictions through a

Bayesian statistical construction of finite element methods. See, for example, Duffin et al.

(2021), Girolami et al. (2021) and Akyildiz et al. (2022). Specifically, statFEM introduces a

hierarchical statistical model to handle uncertainties in data, mathematical models, and finite

element discretization. It decomposes data into three components—finite element, model

misspecification, and noise—each treated as a random variable with a corresponding prior

probability density. In contrast, our focus in this paper is primarily on the development of an

efficient surrogate model, providing a faster alternative to costly finite element simulations.

The rest of this article is organized as follows. Section 2 provides a brief overview of

PDE boundary value problems and mesh-based numerical methods. The proposed model is

introduced in Section 3, and its error analysis is derived in Section 4. Real examples are

demonstrated in Section 5. Section 6 concludes with directions for future work. Theoretical

proofs, and the R (R Core Team, 2018) code for reproducing the numerical results, are

provided in Supplementary Materials.

2 PDE boundary value problems and mesh-based nu-

merical methods

PDEs are an essential tool in the description of complex systems drawing from scientific

principles. A PDE boundary value problem typically can be expressed by a set of partial

differential equations with boundary conditions, and the solutions are often dependent on
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certain inputs, denoted as x ∈ χ ⊂ Rp, typically representing parameters in the equations

and boundary conditions, where χ is assumed to be compact and convex. Specifically, a

PDE boundary value problem can be written in the form ofL(u(s); x) = f(s; x), s ∈ Ω

G(u(s); x) = g(s; x), s ∈ ∂Ω,
(1)

where Ω is a compact domain in Rd with a Lipschitz boundary denoted by ∂Ω, L(·; x) and

G(·; x) are differential operators on Ω and ∂Ω given the input x, respectively, f(·; x) and

g(·; x) are two known functions on Ω and ∂Ω with the input x, and u(s) is the solution to

the partial differential equations (1). Given the input x, the exact solution to the equations

when uniqueness holds, denoted by u0(s; x), usually cannot be written explicitly. Instead,

numerical methods are used to approximate the exact solution, for which mesh-based

numerical methods are most widely used, including the finite difference method (FDM),

finite volume method (FVM), and finite element method (FEM) (Brenner and Scott, 2007;

Tekkaya and Soyarslan, 2019). The extensions to mesh-free methods, such as the collocation

method (Golberg et al., 1999; Wendland, 1998; Fasshauer, 1999; Wendland, 1999; Fasshauer,

1996), are straightforward and will be discussed in the remarks. Specifically, mesh-based

numerical methods subdivide a large system into smaller, simpler parts by a particular

space discretization in the space dimensions, which is implemented by the construction of a

mesh of the object. Figure 1 demonstrates a mesh specification for a 2-dimensional FEM

problem, in which the triangular elements connect all characteristic points (called nodes)

that lie on their circumference, and these connections are mathematically expressed through

a set of functions called shape functions.

Figure 1: Introduction of finite element method; similar to one from Tekkaya and Soyarslan
(2019).
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Suppose that there are N nodes in this mesh-based numercial method, the coordinates

of which are denoted by SN = (s1, s2, . . . , sN), where sj ∈ Ω ∪ ∂Ω. We assume that SN is

fixed across different inputs x. In the case of an adaptive mesh, where SN may vary across

different inputs, we explore potential methods in Section 6. The numerical solutions can be

expressed as

uN(s; x) =
N∑
j=1

βj(x)vj(s), (2)

where vj(s) is the (given) shape function depending on the discretization, and βj(x) is the

corresponding coefficient, which is independent of s. The shape function has the Kronecker

Delta property, that is, vj(si) = 1 if i = j and vj(si) = 0 if i 6= j. This ensures that the

function interpolates the solution at the mesh nodes, i.e., uN (sj ; x) = βj(x) for j = 1, . . . , N .

In other words, the solution of the PDE at the mesh node sj is equal to βj(x). As an example,

for a triangular element with six nodes as in Figure 1, the quadratic shape functions, which

will be adopted in our later implementation in Section 5, can be defined as:

v1(s) = ξ1(s)(2ξ1(s)− 1), v2(s) = ξ2(s)(2ξ2(s)− 1), v3(s) = ξ3(s)(2ξ3(s)− 1),

v4(s) = 4ξ1(s)ξ2(s), v5(s) = 4ξ2(s)ξ3(s), v6(s) = 4ξ1(s)ξ3(s),
(3)

where ξ1, ξ2, and ξ3 represent the barycentric coordinates associated with the three vertices

(Nodes 1, 2, and 3, respectively), which are given by ξj(s) = aj + bjs1 + cjs2, where aj, bj,

and cj are determined based on the geometry and orientation of the triangle, and ensure

that the shape functions satisfy the property that they are equal to 1 at the corresponding

nodes and equal to 0 at the other nodes. This formulation can be easily extended to multiple

triangular elements; we refer more detailed information and variations of shape functions to

Bathe (2006).

The coefficients are obtained by solving a linear system,

L(x)βN(x) = b(x), (4)

where βN(x) = (β1(x), . . . , βN(x))T is a vector of the coefficients, and L(x) ∈ RN×N is the

stiffness matrix and b(x) ∈ RN is the load vector, both of which are determined by the
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numerical method.

The main challenge of mesh-based numerical methods is that directly solving the PDE

boundary value problem for any input x, or equivalently, solving the linear system (4), can

be computationally demanding (e.g., the high-fidelity simulation in Mak et al. (2018)). Thus,

an efficient emulator that can approximate the solution, uN(s; x), for any s ∈ Ω,x ∈ χ, is

called for.

3 Mesh-clustered Gaussian process (mcGP) emulator

From (2), since emulating uN(s; x) is equivalent to emulating {βj(x)}Nj=1 (because vj is

a known function), we aim to build an efficient emulator that approximates βN(x) :=

{βj(x)}Nj=1 for any x ∈ χ. Suppose that n computer simulations with the inputs, x1, . . . ,xn,

are conducted, and their corresponding solutions at the N nodes are {βN(xi)}ni=1. Clearly,

this is a multi-output regression problem, because for each input xi, the output βN(xi)

returns a vector of size N , where N can be fairly large. To this end, we propose an efficient

emulator that couples over clusters of Gaussian process (GP) emulators, with the aid of the

mesh specification to find the clustering structure.

To begin, we briefly introduce the GP emulator in the following subsection.

3.1 Gaussian process (GP) emulator

A GP is a popular tool for building an emulator for computer experiments (Santner et al.,

2018; Gramacy, 2020) due to its flexibility and the capability of uncertainty quantification

through the predictive distribution. Specifically, suppose that we aim to emulate the single

output βj(x), then the function βj can be assumed to have a GP prior with zero mean and a

positive-definite covariance function, Kj(·, ·) : Rp × Rp → R. The covariance function often

has the form of Kj(·, ·) = τ 2
j Φθj (·, ·), where τ 2

j is a positive scale and Φθj is a positive-definite

correlation function that depends on some hyperparameters θj. We denote such a GP as

βj(x)|τ 2
j ,θj ∼ GP(0, τ 2

j Φθj(x,x
′)).

The GP assumes that the random vector bj = (βj(x1), . . . , βj(xn))T follows an n-dimensional

multivariate normal distribution, Nn(0, τ 2
j Φθj(Xn,Xn)), where Xn = (x1, . . . ,xn) and
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Φθj(Xn,Xn) is an n × n matrix with (Φθj(Xn,Xn))i,k = Φθj(xi,xk). To emulate the N

outputs βN(x) = (β1(x), . . . , βN(x))T , we assume that the GPs are independent, implying

that the N random vectors, b1, . . . ,bN , are independent.

For a new input x, it can be shown that the posterior predictive distribution is a normal

distribution with the mean

E[βj(x)|bj, τ 2
j ,θj] = Φθj(x,Xn)Φθj(Xn,Xn)−1bj (5)

and the variance

V[βj(x)|bj, τ 2
j ,θj] = τ 2

j (1− Φθj(x,Xn)Φθj(Xn,Xn)−1Φθj(x,Xn)T ), (6)

where Φθj (x,Xn) is a 1×n matrix with (Φθj (x,Xn))1,i = Φθj (x,xi). The posterior predictive

mean can be used to predict βj(x) and the posterior predictive variance can be used to

quantify the prediction uncertainty.

Two families of correlation functions are widely used in practice, which are the power

exponential correlation functions and Matérn correlation function (Santner et al., 2018;

Stein, 1999). For instance, the Matérn correlation function has the form of

Φθ(xi,xj) =
1

Γ(ν)2ν−1
(2
√
ν‖xi − xj‖θ)νBν(2

√
ν‖xi − xj‖θ), (7)

where ‖a‖2
θ =

∑p
k=1(ak/θk)

2 with the p-dimensional lengthscale hyperparameter θ =

(θ1, . . . , θp), ν > 0 is the smoothness parameter (Cramér and Leadbetter, 1967), and Bν is

the modified Bessel function of the second kind.

3.2 Model specification

While it is possible to model multivariate GPs, instead of independent GPs, using a separable

covariance function (Bonilla et al., 2007; Qian et al., 2008) or a nonseparable covariate

function (Fricker et al., 2013; Svenson and Santner, 2016), fitting these models can be

computationally prohibitive when N is large. In addition, recent studies (Zhang and Cai,

2015; Kleijnen and Mehdad, 2014; Li et al., 2020) have shown that such multivariate GPs

could actually yield worse prediction accuracy than the independent (univariate) GPs
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described in Section 3.1. On the other hand, Gu and Berger (2016) considers independent

GPs that share the same lengthscale hyperparameters over the N outputs, i.e., θ1 = · · · = θN ,

but assume different τj’s over the N outputs.

From the perspective of statistical learning, independent univariate GPs sharing the

same hyperparameters over the N outputs could be underparametrized, while the one

sharing different hyperparameters could be overparametrized. To this end, we propose a

flexible model that serves as a compromise between the two models:

βj(x)|τ 2
j ,θj ∼ GP(0, τ 2

j Φθj(x,x
′)) for j = 1, . . . , N,

τ 2
j ,θj ∼ G, (8)

G ∼ DP(H,α0),

where DP(H,α0) denotes a Dirichlet process (DP) prior (Ferguson, 1973) with a positive

real scalar α0 and H being a distribution over τ 2
j and θj. The parameter α0 is often

called concentration parameter. The smaller α0 yields more concentrated distributions.

The DP prior is a Bayesian nonparametric model and is a popular tool for developing

mixture models, which are often called infinite mixture models, because such mixture

models have a countably infinite number of mixture components; therefore, these models do

not require to pre-specify a fixed number of mixture components, which can be difficult to

determine in practice. A DP can be constructively defined by the stick-breaking construction

(Sethuraman, 1994), by which (8) can be equivalently expressed as

βj(x)|zj = k, τ 2
k ,θk ∼ GP(0, τ 2

kΦθk(x,x′)) for j = 1, . . . , N, (9)

zj|γ1, . . . , γ∞
iid∼ Categorical(π1, π2, . . . , π∞) for j = 1, . . . , N, (10)

πk = γk

k−1∏
l=1

(1− γl) for k = 1, 2, . . . ,∞, (11)

γk
iid∼ Beta(1, α0) for k = 1, 2, . . . ,∞, (12)

τ 2
k ,θk

iid∼ H, for k = 1, 2, . . . ,∞,

where “iid” denotes independently and identitically distributed, and “Categorical” and

“Beta” denote a categorical distribution and a Beta distribution, respectively. From (9),
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zj is a latent variable indicating the assignment of βj(x) to the k-th GP having the

hyperparameters θk and τ 2
k , where the number of GPs is countably infinite. This forms an

infinite mixture of GPs for multivariate outputs, with the mixing proportion Pr(zj = k) = πk.

The proportion πk is given by (11), which provides the stick-breaking representation of a

DP as G =
∑∞

k=1 πkδ(τ2k ,θk), where δ(τ2k ,θk) is the indicator function whose value is one at

location (τ 2
k ,θk) and zero elsewhere. The proportions {πk}∞k=1 always sum to one and can

be resembling the breaking of a unit-length stick into a countably infinite number of pieces

(hence the name). That is, a portion of a unit-length stick is broken off according to γk and

assigned to πk, so (11) can be understood by considering that after the first k − 1 values

have been assigned their portions, the length of the remaining stick is
∏k−1

l=1 (1−γl), and this

remaining piece is broken according to γk and assigned to πk. It is important to note that

because the πk’s decrease exponentially quickly, only a small number of components will be

used to model the data a priori, which allows the number of clusters to be automatically

determined. More details about DP applications can be found in Neal (1992), Lo (1984),

and Rasmussen (2000).

We further let the latent indicator variable be mesh-dependent, implying that the

clustering structure is determined by the mesh coordinates. Specifically, assume that a node

coordinate s for the cluster k follows a d-dimensional multivariate normal distribution,

s|z = k ∼ Nd(µk,Σ
−1
k ), (13)

where µk is the mean and Σk is the precision matrix, and their priors are a multivariate

normal distribution and a Wishart distribution, respectively, that is,

µk ∼ Nd(µ0,Σ
−1
0 ), Σk ∼ W(W0, κ0), (14)

where µ0,Σ0,W0 and κ0 are fixed hyperparameters. Unlike a conditional model where z|s
is employed to model the dependence of z and s, the model (13) is a generative model (Ng

and Jordan, 2001), which assumes that the mesh coordinates {sj}Nj=1, while observed and

fixed, are treated as instances or realizations generated from the underlying distribution s|z.

This conceptualization allows us to incorporate uncertainty related to distinct instances of

mesh coordinates within the same cluster, and offers a consistent way of specifying each
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component’s responsibility for a given node coordinate (Meeds and Osindero, 2005; Sun

and Xu, 2010). It is also worth noting that the multivariate normal assumption for s|z
aligns with a well-known classification method—quadratic discriminant analysis (QDA),

implying that mesh nodes will be categorized into distinct classes/clusters based on this

model choice.

Remark 3.1. Although the latent indicator variable is mesh-dependent particularly for

mesh-based numerical methods, the idea can also be extended to mesh-free numerical methods,

such as the collocation method (Wendland, 1998), where the basis function vj(s) becomes

radial basis functions with some given knot locations and the knots can then be clustered

in a similar manner. In addition, the idea can be naturally extended to other applications

than solving PDEs that may have different dependence structures, such as the spatially-

related dependence structure between proximate sites in Dahl and Bonilla (2019) and the

network-related dependence structure in Wilson et al. (2012).

Combining the above models, a graphical representation of the proposed model is given

in Figure 2. It should be noted that the proposed mcGP is intrinsically different from the

infinite mixture of GPs in Rasmussen and Ghahramani (2001), Meeds and Osindero (2005)

and Sun and Xu (2010). In particular, the mixture model therein focuses on dividing the

input space of x to address both the problems of computational complexity and stationary

assumption for a univariate GP, whereas our proposed method addresses multi-output

regression problems by dividing the mesh node coordinates, {sj}Nj=1, into regions, within

which separate univariate GPs with the same hyperparameters make predictions.

3.3 Parameter estimation: Variational inference

Although Markov chain Monte Carlo (MCMC) methods, such as Gibbs sampling, can be

naturally used to draw the posterior distribution of hidden variables for DP mixture models

(see, e.g., Rasmussen (2000); Neal (2000); Rasmussen and Ghahramani (2001)), they are

often computationally demanding. Therefore, variational inference (VI) (Jordan et al., 1999;

Ganguly and Earp, 2021) is adopted here to approximate the posterior, which leads to

faster computation and efficient scalability.

Denote the parameters γ̃ = (γ1, . . . , γ∞), µ̃ = (µ1, . . . ,µ∞), Σ̃ = (Σ1, . . . ,Σ∞) and the

latent variable z̃ = (z1, . . . , zN), and denote the hyperparameters τ̃ 2 = (τ 2
1 , . . . , τ

2
∞) and
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Figure 2: Graphical model representation of mcGP.

θ̃ = (θ1, . . . ,θ∞). Similar to Sun and Xu (2010), the hyperparameters τ̃ 2 and θ̃ will be

estimated via variational expectation maximization (EM). We first develop the posterior of

the hidden variable vector, which is denoted by φ := (γ̃, µ̃, Σ̃, z̃).

Denote D as the observational data, D = {βj(x1), . . . , βj(xn), sj}Nj=1 = {bj, sj}Nj=1. By

the graphical model representation in Figure 2, the joint distribution is

p(D,φ) = p(D|φ)p(φ) =

(
N∏
j=1

p(bj|zj)p(sj, zj|µ̃, Σ̃, γ̃)

)
×

(
∞∏
k=1

p(γk)p(µk)p(Σk)

)

=

(
N∏
j=1

p(bj|zj)p(sj|zj, µ̃, Σ̃)p(zj|γ̃)

)
×

(
∞∏
k=1

p(γk)p(µ)p(Σk)

)
, (15)

where p(bj|zj) is the probability density function (pdf) of the n-dimensional multivariate

normal distribution from (9), i.e., bj|zj = k ∼ Nn(0, τ 2
kΦθk(Xn,Xn)), p(sj|zj, µ̃, Σ̃) is

the pdf of the multivariate normal distribution from (13), p(γk) is the beta distribution

from (12), and p(µk) and p(Σk) are the multivariate normal distribution and the Wishart

distribution from (14), respectively.

Clearly, the posterior, p(φ|D) = p(D,φ)/p(D), has a complex probability density which

cannot be represented in a closed form. To this end, we apply VI to provide an analytical

approximation to p(φ|D). Specifically, VI finds a distribution that is restricted to belong to

a family of distributions of simpler forms, denoted by q(φ), such that q(φ) ≈ p(φ|D), which

is called variational distribution. This can be done by finding the variational distribution
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that minimizes the Kullback-Leibler (KL) divergence of q(φ) from p(φ|D):

KL(q(φ)||p(φ|D)) = Eq[log(q(φ))]− Eq[log p(φ|D)]

= Eq[log(q(φ))]− Eq[log p(D,φ)] + log p(D),

which is equivalent to maximizing

ELBO(q) = Eq[log p(D,φ)]− Eq[log(q(φ))] (16)

because log p(D) = KL(q(φ)||p(φ|D)) + ELBO(q) and log p(D) is fixed with respect to

q(φ). The function is called evidence lower bound (ELBO), which is a lower bound for the

log-evidence of the data (hence the name), that is, log p(D,φ) ≥ ELBO(q) for any q. This

can be shown by the fact that KL(q(φ)||p(φ|D)) ≥ 0 for any q.

Here we adopt the mean field approximation method (see Blei et al. (2017) for more

details) to formulate the variational distribution q(φ), which considers the mean-field

variational family where the variables φ are mutually independent and each governed by

a distinct factor in the variational density. In addition, we approximate the posterior DP

by a truncated stick-breaking representation as in Ishwaran and James (2001), Blei and

Jordan (2006), and Sun and Xu (2010). This can be done by setting q(γK = 1) = 1 with a

fixed value K, indicating that the stick is no longer broken after K − 1 steps. The length

of the remainder of the stick is assigned to πK , while the lengths of the sticks beyond K

become zero. This implies that the mixing proportion πk = 0 for any k > K. Together, the

mean field approximation method uses the following factorized variational distribution to

approximate p(φ|D):

q(φ) =
∞∏
k=1

q(γk)q(µk)q(Σk)
N∏
j=1

q(zj) =
K−1∏
k=1

q(γk)
K∏
k=1

q(µk)q(Σk)
N∏
j=1

q(zj).

Given this mean-field variational family, the variational distribution for each ω ∈ φ can be

optimized by maximizing the ELBO using coordinate ascent variational inference (Bishop,

2006), which gives the optimal variational distribution:

log q(ω) = Eφ\ω[log p(D,φ)] + constant, (17)
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where the expectation Eφ\ω is with respect to the variational distribution over all variables

φ except for ω. For example, from (15), the optimal variational distribution for γk is

log q(γk) = Eφ\γk [log p(D,φ)] + constant

=
N∑
j=1

Eφ\γk [log p(zj|γ̃)] + log p(γk) + constant.

The distribution p(zj|γ̃) can be found from (10). It follows that

Eφ\γk [log p(zj|γ̃)] = Eφ\γk [log πzj ] = Eφ\γk

[
log γzj +

zj−1∑
l=1

log(1− γl)

]

=
∞∑
k′=1

q(zj = k′)Eφ\γk [log γk′ ] +
∞∑
k′=1

q(zj = k′)
k′−1∑
l=1

Eφ\γk [log(1− γl)]

=
∞∑
k′=1

q(zj = k′)Eφ\γk [log γk′ ] +
∞∑
l=1

∞∑
k′=l+1

q(zj = k′)Eφ\γk [log(1− γl)]

= q(zj = k) log γk + q(zj > k) log(1− γk) + constant,

where the third equation is based on the variational distribution of zj , i.e., q(zj). The fourth

equation changes the order of summation, and the last equation holds because the terms

Eφ\γk [log γk′ ] and Eφ\γk [log(1 − γk′)] are constant with respect to γk when k′ 6= k. Since

p(γk) follows a Beta distribution as in (12), we have

log q(γk) =
N∑
j=1

q(zj = k) log γk + q(zj > k) log(1− γk) + (α0 − 1) log(1− γk) + constant

=

(
N∑
j=1

q(zj = k)

)
log γk +

(
N∑
j=1

q(zj > k) + α0 − 1

)
log(1− γk) + constant,

which implies that q(γk) follows Beta(
∑N

j=1 q(zj = k) + 1,
∑N

j=1 q(zj > k) + α0).

The optimal variational distributions for the remaining variables ω ∈ φ can be derived

in a similar manner. The specific results are provided in the E-step of Algorithm 1, and for

detailed derivations, we refer to Supplementary Materials S1. Note that the truncation level

K is a variational parameter which can be freely set. Although it is possible to optimize K
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with respect to the KL divergence, we hold it fixed as in Blei and Jordan (2006) and Sun

and Xu (2010) throughout this paper.

Given the optimal variational distributions, the hyperparameters of the GPs, θk and τ 2
k ,

can be estimated by maximizing the expected log-likelihood with respect to the approximated

distributions, which is called variational EM in the literature (Blei et al., 2017). Specifically,

since bj|zj = k ∼ Nn(0, τ 2
kΦθk(Xn,Xn)), the estimates, denoted by θ̂k and τ̂ 2

k , can be solved

by maximizing

Eq[log p(D,φ)] = constant

− 1

2

(
N∑
j=1

K∑
k=1

q(zj = k)

[
n log τ 2

k + log |Φθk(Xn,Xn)|+ 1

τ 2
k

bTj Φθk(Xn,Xn)−1bj

])
(18)

with respect to θk and τ 2
k . The estimators are given in the M-step of Algorithm 1, and

the detailed derivations are provided in Supplementary Materials S1. The E- and M-steps

repeat iteratively by updating the parameters of the variational distributions until the

ELBO converges, where the explicit form of ELBO (derived from (16)) is provided in

Supplementary Materials S1. In total, each iteration going through all the observations

would take at most O(KNn3), which is linear with respect to the number of mesh nodes,

N . We have developed an open-source R package mcGP, enabling the implementation of the

variational EM algorithm described in Algorithm 1.

3.4 Prediction

For unknown x ∈ χ, the predictive posterior distribution of βj(x) can be constructed as:

p(βj(x)|D,φ, {θ̂k, τ̂ 2
k}Kk=1) =

K∑
k=1

p(zj = k|D,φ)p(βj(x)|zj = k,D, θ̂k, τ̂ 2
k )

≈
K∑
k=1

q(zj = k)p(βj(x)|zj = k,D, θ̂k, τ̂ 2
k ),

where the approximation replaces p(zj = k|D,φ) with its variational distribution q(zj = k) as

in Sun and Xu (2010), and p(βj(x)|zj = k,D, {θ̂k, τ̂ 2
k}Kk=1) is the pdf of a normal distribution

with the mean (5) and the variance (6) by replacing θj and τ 2
j with θ̂k and τ̂ 2

k , respectively.
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Thus, since uN(s; x) =
∑N

j=1 βj(x)vj(s), the posterior predictive mean of uN(s; x) for any

s ∈ Ω and x ∈ χ, can be approximated by

ûN(s; x) :=
N∑
j=1

K∑
k=1

q(zj = k)vj(s)Γθ̂k
(x,Xn)bj, (19)

Algorithm 1 Variational expectation maximization for parameter estimation

1: • Set the truncation level K > 1 and the hyperparameters α0,µ0,Σ0,W0, and κ0.
2: repeat
3: E-step: variational distributions q(γk), q(µk), q(Σk) and q(zj).
4: • γk ∼ Beta(ak, bk) for k = 1, . . . , K − 1, where

ak =
N∑
j=1

q(zj = k) + 1, bk =
N∑
j=1

q(zj > k) + α0.

5: • µk ∼ Nd((Σ0 + Rk2)−1(Σ0µ0 + Rk1), (Σ0 + Rk2)−1) for k = 1, . . . , K, where

Rk1 =
N∑
j=1

q(zj = k)Eq[Σk]sj, Rk2 =
N∑
j=1

q(zj = k)Eq[Σk].

6: • Σk ∼ W(Wk, κk), where κk = κ0 +
∑N

j=1 q(zj = k) and

W−1
k = W−1

0 +
N∑
j=1

q(zj = k)Eq[(sj − µk)(sj − µk)
T ].

7: • q(zj = k) = rjk/
∑K

k=1 rjk for j = 1, . . . , N and k = 1, . . . , K with

log rjk = Eq[log γk] +
k−1∑
i=1

Eq[log(1− γi)] +
1

2
(sjk + tjk), where

sjk = −d log(2π) + Eq[log |Σk|]− Eq[(sj − µk)
TΣk(sj − µk)] and

tjk = −n log(2π)− log τ 2
k − log |Φθk(Xn,Xn)| − 1

τ 2
k

bTj Φθk(Xn,Xn)−1bj.

M-step: estimating the hyperparameters θk and τ 2
k .

8: • θk ← argminθk
log |Φθk(Xn,Xn)|+ n log

∑N
j=1 q(zj = k)bTj Φθk(Xn,Xn)−1bj

9: • τ 2
k ←

(∑N
j=1 q(zj = k)bTj Φθk(Xn,Xn)−1bj

)
/
(
n
∑N

j=1 q(zj = k)
)

10: until ELBO converges
11: • return q(zj = k),θk and τ 2

k for each k and j.
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where Γθ̂k
(x,Xn) = Φθ̂k

(x,Xn)Φθ̂k
(Xn,Xn)−1, and the posterior predictive variance is

N∑
j=1

vj(s)2

(
K∑
k=1

q(zj = k)

[
τ̂ 2
k (1− Γθ̂k

(x,Xn)Φθ̂k
(x,Xn)T ) + (Γθ̂k

(x,Xn)bj)
2

]

−

(
K∑
k=1

q(zj = k)Γθ̂k
(x,Xn)bj

)2)
.

(20)

The derivation of (20) is provided in Supplementary Materials S2. The posterior predictive

mean ûN(s; x) of (19) is used to predict uN(s; x), and its error analysis is studied in the

next section.

4 Error analysis of mcGP emulator

The error analysis is crucial for understanding the uncertainty of the emulator. By the

triangle inequality, the norm of the difference between the posterior predictive mean ûN (s; x)

and true solution can be decomposed into evaluation and emulation components:

‖u0 − ûN‖L2(Ω,χ) ≤ ‖u0 − uN‖L2(Ω,χ)︸ ︷︷ ︸
numerical error

+ ‖uN − ûN‖L2(Ω,χ)︸ ︷︷ ︸
emulation error

,

where the L2-norm is defined as ‖f‖L2(Ω,χ) = (
∫

Ω

∫
χ
f(s; x)2dsdx)1/2. The numerical error

measures the discrepancy between the numerical solution uN(s; x) and the ground truth

u0(s; x), and the emulation error is the error for the emulator ûN(s; x) given limited

evaluations of the simulator uN (s; x). To save the space, we investigate the numerical error

and emulation error in Supplementary Materials S3 and S4, respectively, and then apply the

error bound to a common PDE problem, elliptic equations, in Supplementary Materials S5.

5 Numerical studies

Numerical studies are conducted in this section to examine the performance of the proposed

method. Specifically, three real-world computer models comprised of PDEs are considered,

which are solved via FEM using the quadratic shape functions as in (3).

In these numerical studies, the hyperparameters in the priors (12) and (14) can be quite
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generic without the need of estimation. Similar to Yuan and Neubauer (2009) and Sun

and Xu (2010), the hyperparameter µ0 in (14) is set to the sample average of the node

coordinates SN , and Σ0 are set to the sample inverse covariance of SN ; the parameter

κ0 is the number of degrees of freedom under a Wishart distribution, which is set to the

dimension of sj , that is, κ0 = d; the scale parameter W0 of the Wishart distribution is set to

Σ0/d such that the mean of Σk is the sample inverse covariance of SN . The concentration

parameter α0 in (12) is set to 0.5.

For each individual GP, Matérn correlation functions (7) is considered. The smoothness

parameter ν is set to 5/2, which leads to a simplified form of (7):

Φθ(xi,xj) =

(
1 +
√

5‖xi − xj‖θ +
5

3
‖xi − xj‖2

θ

)
exp

(
−
√

5‖xi − xj‖θ
)
.

A small nugget parameter is added for numerical stability, which is set to g ≈ 1.5× 10−8.

The truncation level K is set to 10. These numerical experiments were performed on a

MacBook Pro laptop with Apple M1 Max of Chip and 32 GB of RAM.

Two performance measures are considered to examine the prediction performance. The

first measure is the root mean squared error (RMSE) which is calculated as

RMSE =

(∑N
j=1

∑ntest

i=1 (uN(sj; x
test
i )− ûN(sj; x

test
i ))2

Nntest

)1/2

, (21)

where ntest is the number of test input points, uN(sj; x
test
i ) is the numerical solution of the

i-th test input point, xtest
i , at the j-th node location, si, and ûN(sj; x

test
i ) is the posterior

predictive mean as in (19). The second measure is the average continuous ranked probability

score (CRPS) (Gneiting and Raftery, 2007), which is a performance measure for predictive

distribution of a scalar observation. Since the predictive distribution is a mixture of normal

distributions as in Section 3.4, the CRPS can be computed by an analytical formula as in

Grimit et al. (2006). For both RMSE and CRPS, lower values indicate better prediction

accuracy.

To provide a comprehensive evaluation, we include the following methods for comparison:

uGP, the independent univariate GPs sharing the same lengthscale hyperparameter (θj)

but different scale hyperparameters (τ 2
j ) across the N mesh nodes, which is similar to Gu
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and Berger (2016); iGP, the independent GPs sharing different hyperparameters (θj and

τ 2
j ) across the N mesh nodes; pcaGP, which uses a functional principal component analysis

(FPCA) with truncated components (Wang et al., 2016):

uN(sj; xi) ≈ u0(sj) +
M∑
l=1

αl(xi)ψl(sj),

with the leading M eigenfunctions {ψl(s)}Ml=1, and the corresponding coefficients {αl(xi)}:

ψl(s) = argmax
‖φ‖2=1,

〈φ,ψl〉=0,∀l<j

n∑
i=1

{∫
uN(s; xi)φ(s)ds

}2

,

αl(xi) =

∫
uN(s; xi)(ψl(s)− u0(s)) ds,

where u0(s) is the mean function, which can be estimated by
∑n

i=1 uN (s; xi)/n. The number

of components, M , is selected by finding the leading M eigenfunctions that explain 99%

of variance over all n training cases. Then, iGP is applied to the M coefficients {αl(·)}Ml=1.

This approach is similar to Dancik and Dorman (2008) and Mak et al. (2018).

5.1 Poisson’s Equation

In this subsection, we explore the performance for emulating a PDE boundary value problem

on an L-shaped membrane based on Poisson’s equation, which has broad applicability in

electrostatics and fluid mechanics (Evans, 2010). The model is represented as:

∆u = (x2 − 2π2)exs1 sin(πs1) sin(πs2) + 2xπexs1 cos(πs1) sin(πs2), s = (s1, s2) ∈ Ω,

where x is the one-dimensional input variable with x ∈ [−1, 1], the operator ∆ is defined by

∆ = ∂2

∂s21
+ ∂2

∂s22
, Ω is an L-shaped membrane, and the Dirichlet boundary condition, u = 0

on ∂Ω, is considered. The geometry and mesh, along with the solutions through FEM

when x = −1, 0, 1, are demonstrated in Figure 3. Partial Differential Equation Toolbox of

MATLAB (2021) is used to create the geometry and mesh to solve the equation.

We conduct a computer experiment of size n = 5, where the input locations are equally

spaced in the input space [−1, 1], i.e., xi = 0.4i− 1.2 for i = 1, . . . , 5. The mesh size is set
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Figure 3: Illustration of geometry, mesh, and solutions via FEM for Poisson’s equation with
(left) x = −1, (middle) x = 0, and (right) x = 1.

to 0.2, yielding N = 401 mesh nodes as shown in Figure 3. The proposed method is applied

to this experimental data. Figure 4 illustrates the variational distribution, q(zj = k), for

k = 1, . . . , 4, and Figure 5 presents the corresponding hyperparameter estimates, τ̂ 2
k and θ̂k.

Note that here k = 5, 6, . . . , 10 are not shown in Figures 4 and 5 because q(zj = k) < 0.001

for all j, indicating that only four mixture components are only needed in this mixture

model. This shows that, even though the proposed model considers an infinite mixture

of GPs throughout a DP prior, the mixing proportions decrease exponentially so quickly

that only a small number of components are used to model the data a priori. The fitting

result reveals interesting scientific insights. First, the cluster k = 3 has higher probability

mass on the nodes at the boundaries and locations of s1 = 0 and s2 = 0 (Figure 4), and the

corresponding hyperparamters of the GP are τ̂ 2
3 ≈ 0 and θ̂3 ≈ 7.5 (Figure 5), which makes

sense because these nodes are related to the solution of 0 based on the boundary condition.

Second, the cluster k = 1 features higher probability mass on the nodes in the regions where

the magnitude of solutions is the highest and their shapes are similar. The cluster shares

high estimates τ̂ 2
1 and θ̂1, indicating the input-output relationship is smooth but the output

values in these regions have relatively high variability across different input settings. More

interestingly, the cluster k = 2 covers a group of the nodes s1 = 0 in the neighbourhood of

the cluster k = 3, while the cluster k = 4 contains a group of nodes in the vicinity of the

cluster k = 1. The example shows that, unlike the traditional reduced-basis methods like

proper orthogonal decomposition (POD) (Lumley, 1967), the clustering structures by the

proposed method not only provide a useful insight for discovering the underlying physics,

but also reveal their shared input-output relationship.

To illustrate the prediction performance, Figure 6 shows the FEM solution (left) at
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Figure 4: Variational distribution q(zj = k) in the Poisson’s equation experiment.
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Figure 5: Hyperparameter estimates in the Poisson’s equation experiment: (left) τ̂k; (right) θ̂k.

the test input point, xtest = −0.25, the mcGP posterior predictive mean (middle), and the

mcGP posterior predictive standard deviation (right). From visual comparison, the mcGP

posterior predictive mean accurately captures the spatial structure of the FEM solution.

The prediction uncertainty can be quantified by the posterior predictive standard deviation,

where the most uncertain predictions are located in the nodes of cluster k = 1, which is

expected provided that the variation of the outputs are most dynamic with large magnitude

in this cluster.

Figure 6: Validation performance of mcGP prediction: (left) the real FEM solution when x =
−0.25; (middle) the mcGP posterior predictive mean; (right) the mcGP posterior predictive standard
deviation.
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Figure 7: Performance comparison in terms of prediction accuracy and computational cost in
the Poisson’s equation experiment. The left two panels are the prediction performance in terms
of RMSE and CRPS in logarithm, and the right two panels are the computational cost in model
fitting and predictions.

We further examine the prediction and computation performance on 201 test input

points equally spaced in [−1, 1] with various mesh size settings, which are 0.4, 0.2, 0.1, 0.05,

and 0.025. The results are presented in Figure 7. From the left two panels, it appears that

uGP and pcaGP perform worse than the other two in terms of prediction accuracy (both

RMSE and CRPS). While there is no significant difference between iGP and mcGP in the

predictive scores, it can be seen that mcGP generally yields lower RMSEs than other methods.

The right two panels present the computational cost. It is of no surprise that the proposed

method requires more fitting time due to the complications of a mixture model; however,

as indicated in Section 3.3, the third panel (from the left) shows that the computational

cost for fitting mcGP is linear with respect to N , which is reasonably tractable in practice.

Besides, in the context of emulation, the computation for predictions is more of interest,

for which it can be seen that the proposed method (and its competitors) can predict much

faster than conducting a real FEM simulation. It is important to note that while in Figure

7, iGP demonstrates comparable prediction accuracy, in the problems presented in Sections

5.2 and 5.3, it performs less accurately compared to uGP and mcGP. On the other hand, mcGP

generally exhibits better prediction accuracy than iGP and uGP.

5.2 Laminar flow past a cylinder

In this subsection, we investigate a system of a two-dimensional flow past a circular cylinder,

which is a classical and interesting problem in fluid mechanics (Rajani et al., 2009; Seo
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Figure 8: The left panel presents the design points in the laminar flow application, and the middle
and right panels show the hyperparameter estimates of mcGP: τ̂k (middle) and θ̂k (right).

Figure 9: The left panel demonstrates the geometry and mesh in the laminar flow application,
and the middle and right panels are the two (out of 30) training examples of the simulations, where
the input settings are indicated by the values of x.

and Song, 2012). The problem is described by the incompressible Navier-Stokes equations.

Two input variables are considered in this study, which are the kinematic viscosity of the

fluid (x1) and the freestream velocity in the s1 direction (x2), where the input space is

x = (x1, x2) ∈ [0.01, 0.1] × [0.5, 2], which results in laminar flows with Reynolds number

between 0.5 and 200. The objective is to predict the velocity component in the s2 direction

(v) using the mcGP method. The sample size is prescribed as n = 30. The sample points

are distributed uniformly in the input space following the maximum projection (MaxPro)

design method (Joseph et al., 2015), as shown in the left panel of Figure 8. The computer

simulations at these points are performed using the FEM solver in the QuickerSim CFD

Toolbox (Ltd., 2022). Figure 9 shows the computational mesh and computer solutions of v

at two different input settings. The total number of mesh nodes is N = 3778.

The proposed mcGP method is applied to this experimental data. Figure 10 illustrates

the variational distribution, q(zj = k), for j = 1, . . . , N , and k = 1, . . . , 5, 8, 9, 10, and the
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Figure 10: Variational distribution q(zj = k) in the laminar flow application.

corresponding hyperparameter estimates are presented in the middle and right panels of

Figure 8 for each k. Note that the clusters k = 6 and k = 7 are not shown here because

q(zj = k) < 0.1 for all j at these clusters. The result shows that different clusters exhibit

high probability mass on the nodes in different fluid regions. For example, the cluster k = 4

has higher probability mass on the nodes at the upstream and vertical boundaries with small

τ̂ 2
4 and large θ̂4, while the cluster k = 3 imposes higher probability mass in the downstream

boundary and associated neighbouring regions. These two clusters share a common feature

of low variation in the vertical velocity, as manifested by Figure 9. The components k = 8

and k = 9 puts higher probability mass in the frontal area of the cylinder with the highest

output magnitude, and this comes with the large hyperparameter estimates τ̂ 2
8 and τ̂ 2

9 . In

addition, the clusters k = 1, 2, and 10 have higher probability mass in the wake region. It

turns out that the regions of high probability mass exerted by different clusters constitute

the entire computational domain, implying the present clustering strategy is efficient.

The prediction and computation performance is examined on 100 uniformly random test

input points from the input space. Three (out of 100) test FEM simulations along with the

mcGP predictions are presented in Figure 11. From visual inspection, it appears that the

point-wise predictions of mcGP are fairly accurate at the three input points. All dynamic

structures in the flow are well captured, including the large-magnitude region in the front of

the cylinder and the wake region behind the cylinder. Table 1 shows the results of the 100

test data in comparison of other GP models, indicating that the proposed mcGP outperforms

the others in terms of prediction accuracy with reasonable computation time. Similar to

the previous subsection, pcaGP performs the worst, which is not surprising because the
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approximation error of the dimension reduction approach can introduce additional bias

to the predictions (Sung et al., 2024b). Unlike the previous subsection, uGP outperforms

iGP in terms of both RMSE and CRPS. This again demonstrates that mcGP can serve as a

middle ground between these two models.

Figure 11: Validation performance of mcGP prediction in the laminar flow application. The upper
panels present three (out of 100) test FEM simulations (with the input settings indicated by the
values of x) and the bottom panels are the corresponding posterior predictive means of mcGP.

method mcGP uGP iGP pcaGP

RMSE (×10−4) 8.741 9.064 15.385 24.880
CRPS (×10−4) 2.276 2.410 5.537 15.178

fitting time (sec.) 98 10 10 0.13
prediction time per run (msec.) 3 0.1 19 0.06

Table 1: Performance comparison in terms of prediction accuracy and computational cost in the
laminar flow application, in which the better performances are boldfaced. Note that the test FEM
simulations take, on average, 1068 milliseconds per run.

5.3 Thermal stress analysis of jet engine turbine blade

In this subsection, we investigate the performance of the proposed method on a thermal

stress analysis application for a jet turbine engine blade in steady-state operating condition.

More details can be found in Wright and Han (2006), Carter (2005) and Sung et al. (2024a).

In this study, we aim to emulate the thermal stress and deformation of a turbine with the
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Figure 12: The left panel presents the design points in the turbine blade application, and the
middle and right panels show the hyperparameter estimates of mcGP: τ̂k (middle) and θ̂k (right).

(Mpa)

Figure 13: Three (out of 30) examples of the training FEM simulations in the turbine blade
application, where the input settings are indicated by the values of x.

effect of the thermal stress and pressure of the surrounding gases on turbine blades. The

problem is analyzed as a static structural model, which can be numerically solved using

FEM. Two input variables are considered, which are the pressure load on the pressure

(x1) and suction (x2) sides of the blade, both of which range from 0.25 to 0.75 MPa, i.e.,

(x1, x2) ∈ [0.25, 0.75]2. FEM simulations of sample size n = 30 for the thermal stress are

conducted via the Partial Differential Equation Toolbox (MATLAB, 2021). The sample

points over the input space are allocated using the MaxPro design, which are presented in

the left panel of Figure 12. The mesh size is set to 0.01, yielding N = 21158 mesh nodes.

Three (out of 30) training examples are presented in Figure 13. They show that larger

suction pressure (x2 = 0.60 and 0.69) tends to impose higher thermal stress on the central

area of the blade airfoil and the blade leading and trailing edges near the platform.

Figure 14 illustrates the variational distribution of the selected components, q(zj = k),

and the corresponding hyperparameter estimates, τ̂ 2
k and θ̂k, are shown in the middle

and right panels of Figure 12. The clusters k = 6, 7, 8 and 9 are not shown here because
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q(zj = k) < 0.3 for all j at these clusters. The distribution of the nodes in resulting clusters

correspond to the distribution of thermal stress in a physically meaning manner. The cluster

k = 4 has higher probability mass on the top center of the blade airfoil, where the thermal

load is relatively large with high variability (τ̂ 2
4 ≈ 1584) across different input settings; on

the other hand, the cluster k = 3 put higher probability mass on the platform area, where

the thermal load is relatively small with subtle variability (small τ̂ 2
3 ). In addition, the cluster

k = 1 has higher probability mass on the leading and trailing edges of the blade next to the

platform, which also tends to have a high variability (τ 2 ≈ 4147) of the thermal stress.

𝑞(𝑧 = 𝑘)

𝑎 	𝑘 = 1 𝑏 	𝑘 = 2 𝑐 	𝑘 = 3

𝑑 	𝑘 = 4 𝑒 	𝑘 = 5 𝑓 	𝑘 = 10

Figure 14: Variational distribution q(zj = k) in the turbine blade application.

Similar to Section 5.2, 100 test FEM simulations are conducted at uniformly random

test input locations to examine the prediction and computation performance. Three (out of

100) test examples are demonstrated in Figure 15, which shows that, from visual inspection,

the predicted thermal stress (upper panels) closely mimics the simulated thermal stress

(lower panels). In comparison with the competitors, the results are presented in Table 2,

which again shows that the proposed method can outperform others in terms of prediction

accuracy with reasonable computation time.

6 Concluding remarks

PDE simulations based on mesh-based numerical methods have become essential in various

applications, ranging from engineering to health care. In this paper, we propose a new
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(Mpa)

Figure 15: Validation performance of mcGP prediction in the turbine blade application. The
upper panels present three (out of 100) test FEM simulations (with the input settings indicated by
the values of x) and the bottom panels are the corresponding posterior predictive means of mcGP.

method mcGP uGP iGP pcaGP

RMSE (×10−1) 9.800 9.823 11.073 13.986
CRPS (×10−1) 3.204 3.236 3.617 6.753

fitting time (sec.) 313 134 71 0.19
prediction time per run (msec.) 19 0.7 97 0.3

Table 2: Performance comparison in terms of prediction accuracy and computational cost in the
turbine blade application, in which the better performances are boldfaced. Note that the test FEM
simulations take, on average, 3819 milliseconds per run.

surrogate model for expensive PDE boundary value problems that simultaneously emulates

the PDE solutions over a spatial domain. An important innovation of this work lies in its

incorporation of mesh node locations into a statistical model, forming a mixture model

that compromises the bias-variance trade-off in the context of many outputs. Furthermore,

we develop a rigorous theoretical error analysis for the proposed emulator, which provides

an important insight about its uncertainty quantification. Three real examples show that

the method not only has advantages in prediction accuracy, but also enables discovery of

interesting physics by interpreting the mixture clusters.

The proposed method shows several avenues for future research. First, in addition to

the fine mesh in a spatial domain, the proposed method can be modified for simulations

having fine grids over both the spatial and temporal domains. This can be naturally done
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by incorporating the time information into the latent model (13) to segment the temporal

domain, and it is conceivable that the resulting clustering structures can reveal interesting

dynamic features. Second, although the method developed herein assumes that the mesh

specifications are identical across different input settings, the proposed method can be

modified to tackle different mesh specifications. This can be done by utilizing the idea

of common grid by Mak et al. (2018). Specifically, we recommend first determining a

common grid, denoted as S̄ = (s̄1, . . . , s̄N )T , which serves as a reference for predictions. By

evaluating training outputs uN(s̄j; xi) for each i = 1, . . . , n and j = 1, . . . , N via (2), we

can subsequently model {uN(s̄j; x)}j=1,...,N as an mcGP, as introduced in Section 3. This

strategy enables predictions at untried points x ∈ χ on the common grid S̄. Lastly, it is

worthwhile investigating the incorporation of the boundary conditions into the proposed

model as in Tan (2018a,b), to further improve the prediction accuracy. We leave these to

our future work.

Supplemental Materials Additional supporting materials can be found in Supplemental

Materials, including the detailed derivations for Algorithm 1, the derivation of (20), the

detailed error analysis in Section 4, and the R code for reproducing the results in Section 5.
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