
Diabatic dynamical diquark bound states: Mass corrections and widths

Richard F. Lebed
*
and Steven R. Martinez

†

Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

(Received 6 May 2024; accepted 13 September 2024; published 3 October 2024)

Using the diabatic formalism, which generalizes the adiabatic approximation in the Born-Oppen-heimer

formalism, we apply well-known Hamiltonian methods to calculate the effect of open di-meson thresholds

that lie well below the mass of elementary cc̄qq̄0, cc̄ss̄, and cc̄qs̄ tetraquark bound states. We compute the

resulting mass shifts for these states, as well as their decay widths to the corresponding meson pairs. Each

mass eigenstate, originally produced using a bound-state approximation under the diabatic formalism,

consists of an admixture of a compact diquark-antidiquark configuration (an eigenstate of the original

dynamical diquark model) with an extended di-meson configuration induced by the nearest threshold. We

compare our results with those from our recent work that employs a scattering formalism, and find a great

deal of agreement, but also comment upon interesting discrepancies between the two approaches.
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I. INTRODUCTION

With over two decades of progress since the discovery

of the famous charmoniumlike state χc1ð3872Þ [1], includ-
ing the discovery of an impressive 60þ other heavy-quark

exotic candidates, it remains conspicuous that no single

theoretical framework has emerged to accommodate every

state and its properties. Indeed, multiple approaches have

been proposed over the years, and it is quite possible that

the most effective description of exotics involves the

simultaneous use of more than one physical picture.

Taking χc1ð3872Þ as an example, with a measured mass

from the Particle Data Group (PDG) [2] that satisfies

mχc1ð3872Þ −mD0 −mD�0 ¼ −0.04� 0.09 MeV; ð1Þ

it is completely natural to describe the state as a loosely

bound hadronic molecule of D0 and D̄�0 (plus charge

conjugate). Indeed, this type of molecular picture has a

long history, going back nearly 30 years prior to the

discovery of χc1ð3872Þ [3,4]. In addition, a number of

other heavy-quark exotic states, such as Zcð3900Þ or

Zbð10610Þ, lie close (<15 MeV) to a nearby di-hadron

threshold. These Z states, however, lie slightly above the

nearest di-meson threshold, discouraging at least a naive

interpretation as a hadronic molecule, and requiring a

more sophisticated interpretation in terms of scattering

theory and the quantum field-theoretical effects induced

by the threshold states. Furthermore, the state χc1ð3872Þ
has been measured to have a significant (>10%) decay

branching fraction to charmonium (including radiative

modes), which points toward the state having some

appreciable short-range component in its wave function.

The most obvious physical configuration that could

provide this component is the currently unobserved

conventional charmonium state χc1ð2PÞ, and in fact

including such a component in admixture with a

D0-D̄�0 molecule has long provided a leading proposal

for the structure of χc1ð3872Þ [5]. However, an additional

compact-configuration candidate is available: a color-

antitriplet diquark δ≡ ðcqÞ3̄ plus a color-triplet antidi-

quark δ̄≡ ðc̄ q̄Þ3, with q ¼ u for χc1ð3872Þ. One specific

framework, the dynamical diquark model [6,7], has been

thoroughly developed to describe the spectroscopy of

heavy-quark exotics in terms of δ-δ̄ states [7–14].

In contrast to molecular and threshold-effect descriptions,

the dynamical diquark model has the advantage of being

able to describe the existence of exotic states such as

Zcð4430Þ that lie far from any relevant threshold.

Additionally, the model includes effects from spin- and

isospin-dependent interactions, thereby generating complete

multiplets—in multiple flavor sectors—that include fine

structure [9–14]. The most recent developments in this

model include the incorporation of mixing between δ − δ̄

and di-meson configurations in order to produce bound [15]

and scattering [16] states. The extension of the dynamical

diquark model to accommodate these threshold states is

performed using the diabatic formalism, originally devel-

oped in atomic physics [17], which was first applied to

heavy-quark exotics in Ref. [18] in the analogous context of
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mixing conventional quarkonium with threshold effects.

This extended “diabatic” formalism (which we describe

in greater detail below) is the rigorous generalization of

the Born-Oppenheimer (BO) approximation [19], which

serves as part of the foundation for the dynamical diquark

model [7].

The hidden-charm states in Ref. [15] (subsequently

reproduced in the scattering formalism of Ref. [16]) are

obtained using a bound-state approximation, which decou-

ples open thresholds from mixing with the mass eigenstates.

While this approximation is effective for states that lie

below or just above a threshold, those whose eigenstates lie

far above an open threshold are more appropriately handled

as scattering resonances, which in turn is the focus of

Ref. [16]. Alternately, it is possible to expand upon the

bound-state approach in the diabatic formalism by incor-

porating open thresholds via the methods of Ref. [20],

which employs coupled-channel techniques previously used

in the early days of charmonium studies [21], and earlier

still in atomic physics [22]. Using this approach allows for a

comparison with results from the scattering calculations, as

discussed below. To perform further tests, we also compute

1−− cc̄ss̄ and 1− cc̄qs̄ states both in the scattering formal-

ism of Ref. [16] (where they did not appear) and in the

current approach.

To emphasize the distinction between the calculations of

Refs. [15,16], and here, we reiterate that Ref. [15] includes

the effects of di-meson thresholds close to the masses of the

elementary δ-δ̄ states but ignores open thresholds that lie

substantially lower, while the current calculations incorpo-

rate these thresholds using the well-known methods of

Refs. [21,22] to compute the resulting mass shifts and

corresponding widths. On the other hand, Ref. [16] feeds

the elementary δ-δ̄ and di-meson scattering states into a

K-matrix scattering formalism, and directly produces di-

meson scattering cross sections. In that case, both resonant

peak structures and nonresonant threshold effects are

apparent, and moreover, the presumptive resonant profiles

tend to be more complicated than just isolated, idealized

Breit-Wigner peaks. Thus, the observables from Ref. [16]

we use for comparison with the current calculations are

simply the locations of peaks.

This paper is organized as follows. In Sec. II we briefly

review the original dynamical diquark model, sub-

sequently modified to incorporate the diabatic formalism.

Section III reviews the explicit methods applied in

Ref. [20] to be used in the diabatic dynamical diquark

model (i.e., the inclusion of explicit mixing with open

di-hadron thresholds), in order to compute mass correc-

tions and decay widths for the eigenstates of Refs. [15,16].

In Sec. IV we discuss the significance of the resulting

mass corrections and decay widths retrieved via those

methods, and in Sec. V we summarize our results, in

addition to providing future directions for expanding upon

this work.

II. THE (DIABATIC) DYNAMICAL

DIQUARK MODEL

The dynamical diquark model provides a general mecha-

nism for describing the formation of both tetraquark [6] and

pentaquark [23] states (and can be extended to other

multiquark configurations as well [24]); here, for simplicity

we confine our attention to just the tetraquark case. For any

process that generates the valence-quark content QQ̄qq̄0,
where Q is a heavy quark, the quark pair (Qq) and the

antiquark pair (Q̄q̄0) are produced in an appreciable fraction
of the events such that their internal momenta are small

relative to that between the pairs, allowing for the respec-

tive pairs to nucleate into compact diquarks δ and δ̄,

respectively. Being bound by confinement, δ and δ̄ must

eventually transfer the bulk of their available kinetic energy

to the color flux tube (string) connecting them. This

“stretched” configuration has difficulty hadronizing into

a di-meson pair ðQq̄0ÞðQ̄qÞ due to the distance separating

the δ-δ̄ pair, and thus may remain in this quasistatic state

long enough to be detectable as an exotic resonance. The

model then applies the BO approximation to the quasistatic

δ-δ̄ pair in order to produce a spectrum of distinct states, as

we briefly review here.

Specifically, the Hamiltonian separates into two parts:

the kinetic-energy operator Kheavy, referring to the heavy

color sources of the system, and the operator Hlight, which

contains both the interactions between the heavy-source

pair and the interaction of the light degrees of freedom

(d.o.f.) within the color flux tube. Explicitly, in the heavy-

source center-of-momentum (c.m.) frame,

H ¼ Kheavy þHlight ¼
p2

2μheavy
þHlight; ð2Þ

where the full eigenstates may then be written as

jψi ¼
X

i

Z

drψ̃ iðrÞjri jξiðrÞi: ð3Þ

Here, jri defines the position eigenstate with separation

vector r between the two heavy color sources. This

separation is in fact general, but exhibits its most trans-

parent interpretation in the context of the so-called adia-

batic expansion, i.e., in which the state jξðrÞi of the light

d.o.f. depends only upon the instantaneous configuration

jri of the heavy degrees of freedom. The set fjξiðrÞig forms

a basis of eigenstates (labeled by i) ofHlight for any value of

r, and ψ̃ iðrÞ are the separation-dependent weights for the

individual state components. Of course, the motivation for

performing this expansion lies in the assumed ability to

solve the light-field problem outright. Plugging Eq. (3)

back into the Schrödinger equation for the Hamiltonian

Eq. (2), one obtains
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X

i

�

−
ℏ
2

2μδδ̄
½∇þ τðrÞ�2ji þ ½VjðrÞ − E�δji

�

ψ̃ iðrÞ ¼ 0; ð4Þ

where we adopt the definition

τjiðrÞ≡ hξjðrÞj∇ξiðrÞi; ð5Þ

each of which is called a nonadiabatic coupling term

(NACT). One sees that Eq. (4) diagonalizes if τjiðrÞ ¼ 0

for j ≠ i, and reduces to a completely conventional

Schrödinger equation if the j ¼ i NACTs vanish as well.

The adiabatic approximation in this notation implies

that if one starts in the ith eigenstate and slightly changes r,
then one remains in the original ith eigenstate: τiiðrÞ ¼ 0.

The full BO approximation consists of the adiabatic

approximation combined with

τjiðrÞ ¼ hξjðrÞj∇ξiðrÞi ≈ 0; ð6Þ

for j ≠ i, which is known as the single-channel approxi-

mation. Clearly, this approximation is most accurate for

exotic states that lie far in mass from an accessible di-meson

threshold to which it may couple, so that the corresponding

off-diagonal NACTs are small.

In situations for which this approximation can fail (i.e.,

near thresholds), a rigorous equivalent generalization of

the BO approximation is available, the so-called dia-

batic formalism. First applied to heavy-quark exotics in

Ref. [18] for quarkonium BO states coupling to thresholds,

and further developed in Refs. [15,16,20,25], this approach

allows for the introduction of a coupling between the

compact (in our case, δ-δ̄) elementary component and the

di-meson thresholds. This formalism is rigorously equiv-

alent to the NACTapproach discussed above [17,25], but is

more convenient from a computational standpoint. One

begins by replacing Eq. (3) with

jψi ¼
X

i

Z

dr0ψ̃ iðr
0; r0Þ jr

0i jξiðr0Þi; ð7Þ

the diabatic expansion. Crucial to this expansion is the fact

that the basis jξiðrÞi is complete for each value of r,

meaning that we are free to choose an arbitrary fiducial r0
for the basis. Substituting back into the Schrödinger

equation for the Hamiltonian of Eq. (2) yields

X

i

�

−
ℏ
2

2μi
δji∇

2 þ Vjiðr; r0Þ − Eδji

�

ψ̃ iðr; r0Þ ¼ 0; ð8Þ

where we have adopted the definition from Ref. [18] of the

diabatic potential matrix,

Vjiðr; r0Þ≡ hξjðr0ÞjHlightjξiðr0Þi; ð9Þ

the r dependence appearing through the operatorHlight. An

appropriate choice of separation r0, i.e., one that is far from

any di-meson threshold, directly implies that jξ0ðr0Þi can
be identified as a pure δ-δ̄ state, and jξiðr0Þi with i > 0

correspond to pure di-meson states. It then follows that the

diagonal elements of the potential matrix are the static

light-field energies of both the pure δ-δ̄ configuration and

its associated di-meson configurations, while the off-

diagonal elements are mixing terms connecting these

configurations. In the light-field eigenstate basis with N
relevant thresholds, V may be expressed in matrix form as

V ¼

0

B

B

B

B

B

B

B

@

Vδδ̄ðrÞ V
ð1Þ
mixðrÞ � � � V

ðNÞ
mixðrÞ

V
ð1Þ
mixðrÞ V

ð1Þ

M1M̄2

ðrÞ

..

. . .
.

V
ðNÞ
mixðrÞ V

ðNÞ

M1M̄2

ðrÞ

1

C

C

C

C

C

C

C

A

; ð10Þ

where omitted elements are taken to be zero; i.e., we

haven taken elements directly connecting distinct di-

meson thresholds to be negligible, an approach consistent

with analogous calculations in molecular physics (see

Ref. [17]). Following the practice of Refs. [15,16,18,25],

we set the static light-field energy of each di-meson pair

equal to its free energy,

V
ðiÞ

M1M̄2

ðrÞ → TM1M̄2
¼ mM1

þmM2
: ð11Þ

While not present in this calculation, a mildly attractive

potential may also be added to Eq. (11), roughly modeling

rescattering through meson exchange between the di-

meson pair, or through the effects of triangle singularities.

To proceed with the calculation, one must now choose a

method for handling states whose eigenvalue does not lie

near or substantially below the lowest available di-meson

threshold. In Refs. [15,18] a bound-state approximation is

applied, in which the authors ignore all thresholds below the

eigenstate (to which the state may decay). In Refs. [16,25],

this approximation is lifted in favor of adopting a scattering

formalism, where the full suite of available thresholds is

included in the potential (and thus the Hamiltonian). The

S-matrix may then be calculated by any of the usual means,

and a set of normalized cross sections are then extracted,

constituting the central results of Refs. [16,25]. However,

as indicated above, this approach is not the only

available method for handling open thresholds in the

diabatic formalism. As first performed in the diabatic

formalism in Ref. [20], one may instead use a well-known

method [21,22] to calculate mass corrections and decay

widths within the bound-state approximation. We now

review this procedure for the specific application to bound

states calculated in the manner presented in Ref. [20].
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III. MASS CORRECTIONS AND DECAY WIDTHS

FROM OPEN THRESHOLDS

Using much of the notation from the pioneering work of

Ref. [20], we now present explicit expressions through

which the model defined in Sec. II incorporates the effects

of the open thresholds on bound states. First, one identifies

the interaction Hamiltonian HI that connects the elemen-

tary bound state jAi to n open thresholds:

HIðrÞ ¼

0

B

B

B

B

B

B

@

V
ð1Þ
mixðrÞ � � � V

ðnÞ
mixðrÞ

V
ð1Þ
mixðrÞ

..

.

V
ðnÞ
mixðrÞ

1

C

C

C

C

C

C

C

A

; ð12Þ

where again, omitted elements are zero. For an elementary

bound state jAiwith quantum numbers JPC interacting with

a single open threshold corresponding to a meson pair B, C,
the shift from its initial mass MA can be calculated using a

standard expression:

M −MA ¼
X

msB
;msC

P

Z

dpBC

OlðpBCÞ
2

M − EBC

; ð13Þ

where

OlðpBCÞ≡ jhpBC; sB; msB
; sC; msC

jHIjAij
2; ð14Þ

and jpBC; sB; msB
; sC; msC

i is the free di-meson state with

c.m. momentum pBC. Additionally, P indicates the Cauchy

principal value operation, which is required in order to

handle the singularity present in the denominator. The free

di-meson wave function in position-space representation

can be written as

hpBC; sB; msB
; sC; msC

jri

¼
X

l;ml

ffiffiffi

2

π

r

i−ljlðpBCrÞY
ml

l
ðp̂BCÞY

ml�
l

ðr̂Þξms†
s ; ð15Þ

where r indicates the separation vector pointing from B to

C, jl are spherical Bessel functions, Y
ml

l
are spherical

harmonics, and ξ
ms
s are di-meson spin wave functions

of total spin s. Using Eq. (15), the overlap in Eqs. (13)

and (14) is

hpBC; sB; msB
; sC; msC

jHIjAi

¼
X

l;ml

C
ml;ms;mJ

l;s;J Y
ml

l
ðp̂BCÞIlðpBCÞ; ð16Þ

where C are Clebsch-Gordan coefficients and

IlðpBCÞ≡

ffiffiffi

2

π

r

i−l
Z

dr r2jlðpBCrÞV
ðBCÞ
mix ðrÞuδδ̄ðrÞ; ð17Þ

with V
ðBCÞ
mix ðrÞ being the sole off-diagonal element in

Eq. (12) for the single open-channel case, and uδδ̄ðrÞ is

the full radial wave function for the initial elementary δ-δ̄

bound state (which may include contributions from several

δ-δ̄ partial waves). Substituting Eqs. (14) and (16) back into

Eq. (13), and integrating over spherical coordinates, one

obtains the mass shift

M −MA ¼ P

Z

dpBC

p2
BC

M − EBC

X

l;s

jIlðpBCÞj
2; ð18Þ

which can easily be rewritten in terms of the BC reduced

mass μBC and a more phenomenologically relevant varia-

ble, the free di-meson energy EBC:

M −MA ¼ P

Z

dEBCμBC
pBC

M − EBC

X

l;s

jIlðpBCÞj
2: ð19Þ

In this notation, the associated strong decay width Γ is

ΓA→BC ¼ 2πμBCpBC

X

l;s

jIlðpBCÞj
2jEBC¼M: ð20Þ

Generalizing to n open thresholds indexed by j, the mass

shift is then

M −MA ¼
X

n

j¼1

P

Z

dEjμj
pj

M − Ej

X

lj;sj

jIlj
ðpjÞj

2; ð21Þ

and the corresponding strong decay width is

ΓA→Σj
¼ 2π

X

j;lj;sj

μjpjjIlj
ðpjÞj

2jEj¼M: ð22Þ

IV. RESULTS

Here we present calculated mass corrections and decay

widths for the hidden-charm states obtained in Ref. [16],

which provide the most recent reference points for states

first calculated in Ref. [15]. These results are separated into

three flavor sectors (cc̄qq̄0, cc̄qs̄, cc̄ss̄), since the calcu-

lations of Refs. [15,16] as well as the ones presented here

require the explicit input of diquark (antidiquark) masses.

We take

RICHARD F. LEBED and STEVEN R. MARTINEZ PHYS. REV. D 110, 074002 (2024)

074002-4



mδ¼ðcqÞ ¼ 1.9271 GeV;

mδ¼ðcsÞ ¼ 1.9446 GeV; ð23Þ

and mδ ¼ mδ̄. The small ∼20 MeV difference between

them, rather than a naively expected difference of

Oðms −mqÞ ∼ 90 MeV, may be surprising. However, these

masses are extracted from two distinct fits: mδ¼ðcqÞ is

obtained from the most recent fine-structure analysis using

the adiabatic dynamical diquark model [13], and mδ¼ðcsÞ is

obtained from the diabatic-model calculation of Ref. [16].

Specifically, mδ¼ðcqÞ is obtained by identifying the unique

ground-state multiplet isoscalar JPC ¼ 1þþ cc̄qq̄0 state

with χc1ð3872Þ, whose PDG-averaged mass central value

is 3871.69 MeV; and mδ¼ðcsÞ is obtained by identifying the

lowest cc̄ss̄ state (which has JPC ¼ 0þþ) with Xð3915Þ,
whose PDG-averaged mass is 3921.7 MeV [2]. The small

value chosen for mδ¼ðcsÞ may be construed as an argument

against this assignment for Xð3915Þ, but the nearby Dþ
s D

−
s

threshold at 3937 MeV argues in its favor; more likely, the

casual use of the same BO potential parameters for the

ðcsÞðc̄s̄Þ and ðcqÞðc̄q̄Þ systems in Ref. [16] warrants greater

scrutiny. In addition to these model parameters, we also

adopt the same forms for the elementary (Vδδ̄) and mixing

[V
ðiÞ
mix] potentials as in Ref. [16], along with their associated

parameters:

Vδδ̄ðrÞ ¼ −
α

r
þ σrþ V0 þmδ þmδ̄; ð24Þ

where α, σ, and V0 are given by [26]

α ¼ 0.053 GeV fm;

σ ¼ 1.097 GeV=fm;

V0 ¼ −0.380 GeV; ð25Þ

as well as

jV
ðiÞ
mixðrÞj ¼

Δ

2
exp

8

<

:

−
1

2

½Vδδ̄ðrÞ − T
ðiÞ

M1M̄2

�
2

ðσρÞ2

9

=

;

; ð26Þ

with ρ, Δ being [16]

ρ ¼ 0.165 fm; Δ ¼ 0.295 GeV: ð27Þ

As discussed in Refs. [15,16,18,20,25], the particular values

of ρ, Δ adopted for this analysis are not uniquely deter-

mined. Rather, they are one set among many ρ, Δ combi-

nations that satisfy the conditions of providing both a

JPC ¼ 1þþ cc̄qq̄0 state with mass 3871.69 MeV and

yielding physical behavior for the mixing transition

obtained from Eq. (26). In addition, while this particular

form of mixing potential is phenomenologically motivated

by lattice-QCD expectations [27], it awaits replacement with

a fully numerically determined potential to be calculated

from detailed lattice-QCD simulations. In light of these

ambiguities in the nature of the mixing potential and its

parameters (see the end of this section for further discussion

of these issues), we do not attempt to attach numerical

uncertainties to its parameters (or the resulting shifts) in this

exploratory study.

Indeed, the parameters ρ, Δ presented in Eqs. (27) vary

greatly from those used in the original diabatic calcula-

tions of Refs. [18,20]: ρ ¼ 0.300 fm, Δ ¼ 0.130 GeV. On

the one hand, this difference reflects the distinct physical

origin of the mixing potential: In the earlier work, it arises

from qq̄ production in string breaking, while here and in

Refs. [15,16] it arises from a recombination between

δδ̄ [ðcqÞðc̄q̄Þ] and di-meson [ðcq̄Þðc̄qÞ] components.

Nevertheless, it is a useful exercise to ask what happens

when the original ρ, Δ parameters are applied in this

calculation. First, the mass of the 1þþ state associated with

χc1ð3872Þ rises about 74 MeV, to M ¼ 3.94536 GeV

[M −MA ¼ −11.41 MeV], so that it lies much higher

than the D0D̄�0 threshold. Similarly, the 0þþ cc̄ss̄ state

rises to M ¼ 3.98303 GeV [M −MA ¼ þ1.74 MeV],

about 46 MeV above the Dþ
s D

−
s threshold. However, since

these masses M were fixed in the first place by identifying

the eigenstates with χc1ð3872Þ and Xð3915Þ, respectively,
we note that these particular values are recovered if the

diquark masses are simply adjusted from those in Eqs. (23)

to mδ¼ðcqÞ ¼ 1.8940 GeV, mδ¼ðcsÞ ¼ 1.9086 GeV. In par-

ticular, the smallness of their difference persists. Similar

shifts to all mass eigenvalues occur, while the calculated

strong decay widths change little unless the states move

drastically away from di-meson thresholds.

To test the sensitivity to the choice of parameters,

one can also experiment with preserving only one of the ρ,

Δ parameters from Refs. [18,20]. Retaining their ρ ¼
0.300 fm and the diquark mass mðcqÞ of Eqs. (23), the

cc̄qq̄ 1þþ state matches the measured χc1ð3872Þ mass

when Δ ¼ 0.205 GeV, while retaining their Δ ¼
0.130 GeV and our same mðcqÞ does not admit a solution

for ρ that produces the measured χc1ð3872Þ mass.

Similarly, the same experiment with the cc̄ss̄0þþ state

shows that ρ ¼ 0.300 fm, Δ ¼ 0.240 GeV, and mðcsÞ from

Eqs. (23) returns the measured Xð3915Þ mass, while once

again, no value of ρ successfully combines with Δ ¼
0.130 GeV and our same mðcsÞ to generate the Xð3915Þ

mass. While these calculations illustrate the numerical

effects of varying ρ, Δ, we hasten to remind the reader that

one does not expect every state to receive the same effect

from mixing. At minimum, the spin state of the di-meson
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threshold should induce nontrivial differences [28], and

the flavor dependence upon replacing light with strange

quarks likely also changes the parameters of the mixing

potential. With these numerous caveats noted, we present

the full results under the current simplifying assumptions.

Using the inputs of Eqs. (23)–(27), one may proceed

with the methods described in Sec. III to produce the full set

of mass corrections and partial decay widths. The mass

corrections are tabulated in Tables I–III, while the strong

decay widths are collected in Table IV. In addition to the

raw results, we also provide a level diagram in Fig. 1, as it is

useful to visualize the distribution of available thresholds in

each case.

First, we examine the results for the cc̄qq̄0 sector, which

are presented in Table I. All states having relevant open
thresholds below the bound-state mass MA previously

computed in Ref. [15] are calculated to have a lower

corrected mass M, although the shift M −MA for the

2þþ state is minimal. When compared to the resonance

mass-peak values MR calculated in Ref. [16], we find

general agreement for the 0þþ state, M and MR having a

difference of less than 5 MeV, while the 2þþ and 1−− states

have moderate to pronounced (∼15–50 MeV) discrepan-

cies, respectively. Specifically, these calculated masses M

lie significantly above the location of the resonant cross-

section peaks MR obtained in Ref. [16]. Notably, the MR

value corresponding to the 1−− state presented here differs

from the result one might infer from Ref. [16], as here we

have also incorporated previously neglected di-meson

thresholds (such as D�D̄�) that sit quite far below MA.

Thus, we conclude that the methods of Ref. [16] create a

stronger attraction to open thresholds than do the methods

of our present work, at least in the cc̄qq̄0 sector. As for the

disagreement between the locations MR of the resonant

peaks and the calculated shifted massesM, one may point to

the relatively complex threshold structure of the 2þþ and

1−− states as compared to the 0þþ state. That is, since

the two methods effectively incorporate each individual

TABLE II. The same as Table I, but for valence quark content

cc̄ss̄.

JPC M −MA [MeV] M [GeV] MR [GeV]

0þþ 2.05 3.92374 3.91540

1þþ 7.23 3.97570 3.92230

2þþ −19.23 3.93010 3.92790

1−− −0.85 4.27787 4.22500

TABLE III. The same as Table I, but for valence quark content

cc̄qs̄. Note that the 1þ state has no relevant open thresholds

(below D�D̄s-DD̄�
s, which forms an intrinsic part of the state),

and thus we leave its row empty.

JPC M −MA [MeV] M [GeV] MR [GeV]

0þ 17.93 3.98697 3.95190

1þ

2þ −12.02 3.93940 3.94220

1− 23.34 4.37086 4.35090

TABLE IV. Partial and total open-flavor strong decay widths (in MeV) for states computed in this work.

Flavor JPC ΓDD̄ ΓDD̄� ΓD�D̄� ΓDsD̄s
ΓD�

s D̄
�
s

ΓDD̄s
ΓD�D̄s

ΓDD̄�
s

ΓD�D̄�
s

Γtotal

cc̄qq̄0 0þþ 2.21 2.21

2þþ 0.14 0.04 0.18

1−− 0.00 0.04 3.80 14.74 18.58

cc̄ss̄ 0þþ 0.90 0.90

1þþ 24.17 24.17

2þþ 4.33 2.14 0.00 6.47

1−− 0.00 0.00 1.23 5.57 6.80

cc̄qs̄ 0þ 6.65 6.65

2þ 7.23 7.23

1− 0.67 2.13 2.14 25.56 30.50

TABLE I. Mass correctionsM −MA calculated in this work for

the elementary bound states with valence quark content cc̄qq̄0

appearing in Ref. [15], where MA (M) is the mass eigenvalue

calculated excluding (including) mixing with open thresholds. In

addition, we list the peak mass of corresponding scattering

resonances taken from Ref. [16] as MR. Note that the 1þþ state

has no relevant open thresholds (below DD̄�, which forms an

intrinsic part of the state), and thus we leave its row empty.

JPC M −MA [MeV] M [GeV] MR [GeV]

0þþ −5.07 3.89876 3.89470

1þþ

2þþ −0.36 3.91708 3.90260

1−− −5.88 4.26370 4.21240
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threshold differently [in this calculation, through Hamil-

tonian coupling of the bound state to the free below-

threshold di-meson state as in Eq. (14); in Ref. [16], through

manifestly unitary scattering-theory techniques], then each

additional threshold may heighten this effect. Additionally,

we note that while it is useful to compare these results to

those for the resonances of Ref. [16], which use methods

that are the generally more rigorous for handling masses

above threshold, the resonant peak values MR are not

precisely the same as the real part of the corresponding

pole masses, which arguably serve as a better analog to the

shifted masses M calculated here.

In the cc̄ss̄ sector, we also see agreement between the

2þþ states, which have a difference M −MR of less than

3 MeV. However, the 0þþ and 1þþ mass shifts M −MA of

Table II are positive, away from the open thresholds. This

result directly contrasts with Ref. [16], where the 0þþ state

sees a ∼ − 6 MeV shift MR −MA, and 1þþ a much more

dramatic shift of approximately −45 MeV. The same

substantial discrepancy arises in the 1−− state as well,

even though now M −MA is small and negative.

Finally, in the cc̄qs̄ sector, we once again see strong

agreement between the 2þ results, the two having a mere

M −MR ¼ −2.8 MeV difference. The 0þ state, on the

other hand, has an almost exactly opposite shift M −MA,

compared to MR −MA ¼ −17.17 MeV from Ref. [16]:

i.e., the 0þ mass M of this work is larger than, and the

resonant peak mass MR is smaller than, the elementary

bound-state mass MA. In the 1− state first calculated for

this work, we find M −MR ≃ 20 MeV. When all three

sectors are considered together, a clear trend appears: In

each case thatM andMR values show substantial disagree-

ment,M is always greater thanMR. Additionally, the larger

discrepancies solely occur within the J ¼ 1 states. At bare

minimum, these differences suggest that a proper inclusion

of spin effects is necessary to obtain precise modeling of

FIG. 1. Shifted mass eigenvalues M of positive-parity states from Tables I and II, with relevant di-meson thresholds indicated by

dashed lines (where the specific di-meson combination is explicitly labeled) or dotted (for its isospin-partner combination). The

1þþ cc̄qq̄0 state, which coincides with χc1ð3872Þ and the D0D̄�0 threshold, is not shifted by the this calculation.
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the open-threshold effects in a bound-state picture, both in

the fine structure of the elementary states and in the

specific di-hadron thresholds [28]. As discussed above,

however, one cannot lose sight of the fact that the

Hamiltonian and unitary scattering methods incorporate

thresholds in two different ways.

Next, we examine the results of applying Eq. (22) to

each state according to the valence-quark flavor and JPC

content. One immediately notes the relatively small decay

widths throughout Table IV. For example, one would

expect the 0þþ states of both the cc̄qq̄0 and cc̄ss̄ sectors to

have relatively large widths, especially given their corre-

sponding resonance profiles in the results of Ref. [16].

However, we emphasize the decisive effect that our

specific choice of mixing potential and parameters

[Eqs. (26) and (27), respectively] has on the present

calculation. If a wider mixing potential were applied,

for example, one would obtain generally stronger mixing

with additional thresholds beyond the closest ones, and

consequently larger partial decay widths. As it stands,

many of the states that one might use for comparison

of decay rates lack sufficient data for the purpose,

e.g., ψð4230Þ and its poorly known open-charm decay

widths [2]. One could, in fact, work backwards once

any such open-flavor partial widths are measured to

determine the acceptable ranges for the mixing-potential

parameters.

Several other neglected features prevent the current

results from being interpreted as the last word in comput-

ing the mass shifts and open-flavor decay widths for these

states. First, this particular calculation does not include

mixing with conventional quarkonium (although doing so

is not difficult [16]), and such contributions not only are

essential for increasing open-flavor decay partial widths

but also provide an avenue for the prominent hidden-

flavor decays of these states. Indeed, our numerical results

are not terribly different from those obtained by consid-

ering only mixing with quarkonium [20]. Second, we

have noted [here in Eq. (11) and after, and previously

in Refs. [15,16]] that direct interactions between the

threshold di-meson pair are neglected but can easily be

incorporated into the calculations. Finally, fine-structure

corrections that distinguish states according to isospin and

spin, as in the adiabatic calculations of Refs. [9–14], can

certainly be included; such effects not only would have

direct effects upon the raw spectrum but would also pull

certain states closer to or further away from thresholds,

generating pronounced effects upon both the mass spec-

trum and decay widths. However, since our purpose in this

work has been to perform a preliminary study of the

effects on these observables of mixing between δ-δ̄

elementary states and open di-meson thresholds in a

landscape of sparse experimental results [e.g., in the

ground-state multiplet, only χc1ð3872Þ, Zcð3900Þ, and

Zcð4020Þ are clear candidate members], we view the

inclusion of such fine-structure corrections here as

premature.
1

V. CONCLUSIONS

The diabatic extension [15,16] to the adiabatic dynami-

cal diquark model [6,7] rigorously extends the Born-

Oppenheimer approximation inherent in the original model

to allow for the inclusion of the effects of mixing with

nearby di-hadron thresholds. In this work, we use well-

known Hamiltonian techniques [21,22] for calculating the

effect of open di-hadron thresholds that lie significantly

below the original bound state. We compute mass shifts and

open-flavor partial decay widths due to the presence of

these thresholds in multiple (cc̄qq̄0, cc̄ss̄, cc̄qs̄) flavor

sectors, and find that in most cases the mass eigenvalues lie

quite close to (within a few MeV) those obtained from a

fully unitarized scattering calculation [16]. In the cases

where a substantial discrepancy arises, we attribute the

difference to the requirement of unitarity imposing con-

straints between the elementary δ-δ̄ state and the allowed

thresholds.

We also find that the open-flavor partial decay widths,

while broadly occurring in physically acceptable ranges,

might be viewed as surprisingly small in many cases [e.g.,

Oð100 keVÞ]. Absent direct input from experimental mea-

surements, such results may in fact turn out to be entirely

physical; or at minimum, the discrepancies will point the

way to understanding the precise nature of the threshold

mixing potential.

This work serves as another milepost for developing the

diabatic dynamical diquark model into a complete formal-

ism capable of addressing the entire sector of heavy-quark

exotic hadrons. However, it should also be noted that the

same techniques apply to any system for which mixing with

elementary states thresholds is an essential feature, such as

hybrids and glueballs. In the diquark model, the next major

step for future work is a study of the effect of including

direct rescattering interactions between the di-meson pair.

Other planned improvements include the incorporation of

fine-structure (spin and isospin) corrections into the

elementary states, and spin corrections to the di-meson

threshold states.
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1
Nevertheless, the fine-structure content does leave an imprint

even in the current landscape: As noted in Ref. [15], the same
DD̄� − D̄D� pair in different C-eigenstate combinations contrib-
utes equally to both 1þþ [χc1ð3872Þ] and 1þ− [Zc] channels, and
hence the mass difference between these states provides a clear
signal of the separate significance of the fine structure.
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