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Diabatic dynamical diquark bound states: Mass corrections and widths
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Using the diabatic formalism, which generalizes the adiabatic approximation in the Born-Oppen-heimer
formalism, we apply well-known Hamiltonian methods to calculate the effect of open di-meson thresholds
that lie well below the mass of elementary ccqq’, c¢css, and ccgs tetraquark bound states. We compute the
resulting mass shifts for these states, as well as their decay widths to the corresponding meson pairs. Each
mass eigenstate, originally produced using a bound-state approximation under the diabatic formalism,
consists of an admixture of a compact diquark-antidiquark configuration (an eigenstate of the original
dynamical diquark model) with an extended di-meson configuration induced by the nearest threshold. We
compare our results with those from our recent work that employs a scattering formalism, and find a great
deal of agreement, but also comment upon interesting discrepancies between the two approaches.
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I. INTRODUCTION

With over two decades of progress since the discovery
of the famous charmoniumlike state y.,(3872) [1], includ-
ing the discovery of an impressive 60+ other heavy-quark
exotic candidates, it remains conspicuous that no single
theoretical framework has emerged to accommodate every
state and its properties. Indeed, multiple approaches have
been proposed over the years, and it is quite possible that
the most effective description of exotics involves the
simultaneous use of more than one physical picture.
Taking y.(3872) as an example, with a measured mass
from the Particle Data Group (PDG) [2] that satisfies

m)m(3872> — Mpo — NMpo = —-0.04 £ 0.09 MeV, (1)

it is completely natural to describe the state as a loosely
bound hadronic molecule of D° and D*° (plus charge
conjugate). Indeed, this type of molecular picture has a
long history, going back nearly 30 years prior to the
discovery of y.;(3872) [3,4]. In addition, a number of
other heavy-quark exotic states, such as Z.(3900) or
Z,(10610), lie close (<15 MeV) to a nearby di-hadron
threshold. These Z states, however, lie slightly above the
nearest di-meson threshold, discouraging at least a naive
interpretation as a hadronic molecule, and requiring a
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more sophisticated interpretation in terms of scattering
theory and the quantum field-theoretical effects induced
by the threshold states. Furthermore, the state y.,(3872)
has been measured to have a significant (>10%) decay
branching fraction to charmonium (including radiative
modes), which points toward the state having some
appreciable short-range component in its wave function.
The most obvious physical configuration that could
provide this component is the currently unobserved
conventional charmonium state y.(2P), and in fact
including such a component in admixture with a
D°-D*0 molecule has long provided a leading proposal
for the structure of y.;(3872) [5]. However, an additional
compact-configuration candidate is available: a color-
antitriplet diquark 6 = (cq); plus a color-triplet antidi-
quark 6 = (¢ g), with ¢ = u for y.;(3872). One specific
framework, the dynamical diquark model [6,7], has been
thoroughly developed to describe the spectroscopy of
heavy-quark exotics in terms of §-6 states [7—14].

In contrast to molecular and threshold-effect descriptions,
the dynamical diquark model has the advantage of being
able to describe the existence of exotic states such as
Z.(4430) that lie far from any relevant threshold.
Additionally, the model includes effects from spin- and
isospin-dependent interactions, thereby generating complete
multiplets—in multiple flavor sectors—that include fine
structure [9-14]. The most recent developments in this
model include the incorporation of mixing between & — &
and di-meson configurations in order to produce bound [15]
and scattering [16] states. The extension of the dynamical
diquark model to accommodate these threshold states is
performed using the diabatic formalism, originally devel-
oped in atomic physics [17], which was first applied to
heavy-quark exotics in Ref. [18] in the analogous context of
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mixing conventional quarkonium with threshold effects.
This extended ‘“diabatic” formalism (which we describe
in greater detail below) is the rigorous generalization of
the Born-Oppenheimer (BO) approximation [19], which
serves as part of the foundation for the dynamical diquark
model [7].

The hidden-charm states in Ref. [15] (subsequently
reproduced in the scattering formalism of Ref. [16]) are
obtained using a bound-state approximation, which decou-
ples open thresholds from mixing with the mass eigenstates.
While this approximation is effective for states that lie
below or just above a threshold, those whose eigenstates lie
far above an open threshold are more appropriately handled
as scattering resonances, which in turn is the focus of
Ref. [16]. Alternately, it is possible to expand upon the
bound-state approach in the diabatic formalism by incor-
porating open thresholds via the methods of Ref. [20],
which employs coupled-channel techniques previously used
in the early days of charmonium studies [21], and earlier
still in atomic physics [22]. Using this approach allows for a
comparison with results from the scattering calculations, as
discussed below. To perform further tests, we also compute
17~ ccss and 17 ccgs states both in the scattering formal-
ism of Ref. [16] (where they did not appear) and in the
current approach.

To emphasize the distinction between the calculations of
Refs. [15,16], and here, we reiterate that Ref. [15] includes
the effects of di-meson thresholds close to the masses of the
elementary -0 states but ignores open thresholds that lie
substantially lower, while the current calculations incorpo-
rate these thresholds using the well-known methods of
Refs. [21,22] to compute the resulting mass shifts and
corresponding widths. On the other hand, Ref. [16] feeds
the elementary 5-6 and di-meson scattering states into a
K-matrix scattering formalism, and directly produces di-
meson scattering cross sections. In that case, both resonant
peak structures and nonresonant threshold effects are
apparent, and moreover, the presumptive resonant profiles
tend to be more complicated than just isolated, idealized
Breit-Wigner peaks. Thus, the observables from Ref. [16]
we use for comparison with the current calculations are
simply the locations of peaks.

This paper is organized as follows. In Sec. II we briefly
review the original dynamical diquark model, sub-
sequently modified to incorporate the diabatic formalism.
Section III reviews the explicit methods applied in
Ref. [20] to be used in the diabatic dynamical diquark
model (i.e., the inclusion of explicit mixing with open
di-hadron thresholds), in order to compute mass correc-
tions and decay widths for the eigenstates of Refs. [15,16].
In Sec. IV we discuss the significance of the resulting
mass corrections and decay widths retrieved via those
methods, and in Sec. V we summarize our results, in
addition to providing future directions for expanding upon
this work.

II. THE (DIABATIC) DYNAMICAL
DIQUARK MODEL

The dynamical diquark model provides a general mecha-
nism for describing the formation of both tetraquark [6] and
pentaquark [23] states (and can be extended to other
multiquark configurations as well [24]); here, for simplicity
we confine our attention to just the tetraquark case. For any
process that generates the valence-quark content QQq7’,
where Q is a heavy quark, the quark pair (Qg) and the
antiquark pair (Qg’) are produced in an appreciable fraction
of the events such that their internal momenta are small
relative to that between the pairs, allowing for the respec-
tive pairs to nucleate into compact diquarks & and 9,
respectively. Being bound by confinement, § and 6 must
eventually transfer the bulk of their available kinetic energy
to the color flux tube (string) connecting them. This
“stretched” configuration has difficulty hadronizing into
a di-meson pair (Q7')(Qq) due to the distance separating
the 5-6 pair, and thus may remain in this quasistatic state
long enough to be detectable as an exotic resonance. The
model then applies the BO approximation to the quasistatic
8-0 pair in order to produce a spectrum of distinct states, as
we briefly review here.

Specifically, the Hamiltonian separates into two parts:
the kinetic-energy operator Kj,,y, referring to the heavy
color sources of the system, and the operator Hy,p,, which
contains both the interactions between the heavy-source
pair and the interaction of the light degrees of freedom
(d.o.f.) within the color flux tube. Explicitly, in the heavy-
source center-of-momentum (c.m.) frame,

2
p
H = Kpeavy + Hijgne = Yt + Hijgpy (2)
eavy

where the full eigenstates may then be written as

W) = [ i) o) )

Here, |r) defines the position eigenstate with separation
vector r between the two heavy color sources. This
separation is in fact general, but exhibits its most trans-
parent interpretation in the context of the so-called adia-
batic expansion, i.e., in which the state |£(r)) of the light
d.o.f. depends only upon the instantaneous configuration
|r) of the heavy degrees of freedom. The set {|£;(r)) } forms
a basis of eigenstates (labeled by i) of Hj;g for any value of
r, and ;(r) are the separation-dependent weights for the
individual state components. Of course, the motivation for
performing this expansion lies in the assumed ability to
solve the light-field problem outright. Plugging Eq. (3)
back into the Schrodinger equation for the Hamiltonian
Eq. (2), one obtains
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where we adopt the definition

7;(r) = (&;(r)|VE(r)), (5)

each of which is called a nonadiabatic coupling term
(NACT). One sees that Eq. (4) diagonalizes if z;;(r) =0
for j#1i, and reduces to a completely conventional
Schrodinger equation if the j = i NACTs vanish as well.

The adiabatic approximation in this notation implies
that if one starts in the ith eigenstate and slightly changes r,
then one remains in the original ith eigenstate: z;;(r) = 0.
The full BO approximation consists of the adiabatic
approximation combined with

7;i(r) = (§;(r)|V&(r)) = 0, (6)

for j # i, which is known as the single-channel approxi-
mation. Clearly, this approximation is most accurate for
exotic states that lie far in mass from an accessible di-meson
threshold to which it may couple, so that the corresponding
off-diagonal NACTs are small.

In situations for which this approximation can fail (i.e.,
near thresholds), a rigorous equivalent generalization of
the BO approximation is available, the so-called dia-
batic formalism. First applied to heavy-quark exotics in
Ref. [18] for quarkonium BO states coupling to thresholds,
and further developed in Refs. [15,16,20,25], this approach
allows for the introduction of a coupling between the
compact (in our case, §-6) elementary component and the
di-meson thresholds. This formalism is rigorously equiv-
alent to the NACT approach discussed above [17,25], but is
more convenient from a computational standpoint. One
begins by replacing Eq. (3) with

)= [ @ a0

the diabatic expansion. Crucial to this expansion is the fact
that the basis |&(r)) is complete for each value of r,
meaning that we are free to choose an arbitrary fiducial r
for the basis. Substituting back into the Schrédinger
equation for the Hamiltonian of Eq. (2) yields

M2 N
Z [_Z_Miéjivz + V;i(r,19) — ES i | Wi (r,19) = 0, (8)

where we have adopted the definition from Ref. [18] of the
diabatic potential matrix,

Vi(r,x9) = (&;(ro)[Hign i (ro)). )

the r dependence appearing through the operator Hjjgp. An
appropriate choice of separation ry, i.e., one that is far from
any di-meson threshold, directly implies that |&y(ry)) can
be identified as a pure 5-6 state, and |&;(ry)) with i >0
correspond to pure di-meson states. It then follows that the
diagonal elements of the potential matrix are the static
light-field energies of both the pure -6 configuration and
its associated di-meson configurations, while the off-
diagonal elements are mixing terms connecting these
configurations. In the light-field eigenstate basis with N
relevant thresholds, V may be expressed in matrix form as

1 N
Vs(r)  Vi(®) V()
1 1
Vi@ Vi @)
V= . (10)
Vi (r) Vi, ()

where omitted elements are taken to be zero; i.e., we
haven taken elements directly connecting distinct di-
meson thresholds to be negligible, an approach consistent
with analogous calculations in molecular physics (see
Ref. [17]). Following the practice of Refs. [15,16,18,25],
we set the static light-field energy of each di-meson pair
equal to its free energy,

Vi i (0) = Tag gz, = myg, + myy,. (11)

While not present in this calculation, a mildly attractive
potential may also be added to Eq. (11), roughly modeling
rescattering through meson exchange between the di-
meson pair, or through the effects of triangle singularities.
To proceed with the calculation, one must now choose a
method for handling states whose eigenvalue does not lie
near or substantially below the lowest available di-meson
threshold. In Refs. [15,18] a bound-state approximation is
applied, in which the authors ignore all thresholds below the
eigenstate (to which the state may decay). In Refs. [16,25],
this approximation is lifted in favor of adopting a scattering
formalism, where the full suite of available thresholds is
included in the potential (and thus the Hamiltonian). The
S-matrix may then be calculated by any of the usual means,
and a set of normalized cross sections are then extracted,
constituting the central results of Refs. [16,25]. However,
as indicated above, this approach is not the only
available method for handling open thresholds in the
diabatic formalism. As first performed in the diabatic
formalism in Ref. [20], one may instead use a well-known
method [21,22] to calculate mass corrections and decay
widths within the bound-state approximation. We now
review this procedure for the specific application to bound
states calculated in the manner presented in Ref. [20].
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III. MASS CORRECTIONS AND DECAY WIDTHS
FROM OPEN THRESHOLDS

Using much of the notation from the pioneering work of
Ref. [20], we now present explicit expressions through
which the model defined in Sec. II incorporates the effects
of the open thresholds on bound states. First, one identifies
the interaction Hamiltonian H; that connects the elemen-
tary bound state |A) to n open thresholds:

Vih@) o Vi ()
Vgi)x(r)
Hie)=| ™ . (12)
VE:iL(r)

where again, omitted elements are zero. For an elementary
bound state |A) with quantum numbers J”€ interacting with
a single open threshold corresponding to a meson pair B, C,
the shift from its initial mass M4 can be calculated using a
standard expression:

PBC
§ P [ dp 13
T / BCM Egc’ (13)

e

where

msc |H1|A> 2’

O¢(psc) = |(Ppcs s m (14)

sgvsCa

and |pgc; sp. My, sc.my,) is the free di-meson state with
c.m. momentum pgc. Additionally, P indicates the Cauchy
principal value operation, which is required in order to
handle the singularity present in the denominator. The free
di-meson wave function in position-space representation
can be written as

<PBC§SB,msB,Sc,m Ir)

= Z\/:l Je(paer) Y7 (Bac) Yy (BEMT,  (15)

where r indicates the separation vector pointing from B to
C, j, are spherical Bessel functions, Y}’ are spherical
harmonics, and & are di-meson spin wave functions
of total spin s. Using Eq. (15), the overlap in Eqgs. (13)
and (14) is

<PBC;SB,msB,Sc, |HI|A>

= ZC;IZ ;’l; nl./me ch)If(ch), (16)

KI’VIf

where C are Clebsch-Gordan coefficients and

To(psc) = @ / dr 2, (pper)VE (Pug(r), (17)

with Vfﬁf)(r) being the sole off-diagonal element in
Eq. (12) for the single open-channel case, and wugs(r) is
the full radial wave function for the initial elementary 5-6
bound state (which may include contributions from several
5-6 partial waves). Substituting Eqgs. (14) and (16) back into
Eq. (13), and integrating over spherical coordinates, one
obtains the mass shift

p?
M~ MAP/deC BC Z|It’ pec)l®, (18)

which can easily be rewritten in terms of the BC reduced
mass ugc and a more phenomenologically relevant varia-
ble, the free di-meson energy Ep :

M—M, IP/dEBcﬂBcAZﬂf(PBC)P- (19)

M — Epc 4
In this notation, the associated strong decay width I is

Faope = ZﬂﬂBchcZ|If(PBC)|2|EBC:M- (20)
‘s

Generalizing to n open thresholds indexed by j, the mass
shift is then

n p A
M=M= :P/dEjﬂjif ST )P 1)
— M-E,; i
j=1 J f/-,sj
and the corresponding strong decay width is

FA—»EI- =2 Z/’ljpj|z.fj(pj)|2|Ej:M' (22)
Ji€ s

IV. RESULTS

Here we present calculated mass corrections and decay
widths for the hidden-charm states obtained in Ref. [16],
which provide the most recent reference points for states
first calculated in Ref. [15]. These results are separated into
three flavor sectors (ccqq’, ccqs, ccss), since the calcu-
lations of Refs. [15,16] as well as the ones presented here
require the explicit input of diquark (antidiquark) masses.
We take
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m5:(cq) =1.9271 G(')V,
Mo(es) = 1.9446 GeV, (23)

and mg = myz. The small ~20 MeV difference between
them, rather than a naively expected difference of
O(my — m,) ~ 90 MeV, may be surprising. However, these
masses are extracted from two distinct fits: ms—_( ) is
obtained from the most recent fine-structure analysis using
the adiabatic dynamical diquark model [13], and ms_ . is
obtained from the diabatic-model calculation of Ref. [16].
Specifically, ms_ ., is obtained by identifying the unique
ground-state multiplet isoscalar J©C = 1%+ ccqqg’ state
with y.;(3872), whose PDG-averaged mass central value
is 3871.69 MeV; and m;_(.y) is obtained by identifying the
lowest c¢Zs3 state (which has J*¢ = 0F) with X(3915),
whose PDG-averaged mass is 3921.7 MeV [2]. The small
value chosen for m;_ .,y may be construed as an argument
against this assignment for X(3915), but the nearby D] Dy
threshold at 3937 MeV argues in its favor; more likely, the
casual use of the same BO potential parameters for the
(cs)(¢5) and (cq)(cq) systems in Ref. [16] warrants greater
scrutiny. In addition to these model parameters, we also
adopt the same forms for the elementary (Vs3) and mixing

[V(i> ] potentials as in Ref. [16], along with their associated

mix
par ameters:

(4
Vss(r) = —;+or+V0+m5+m5, (24)
where a, o, and V|, are given by [26]

a = 0.053 GeV fm,
o = 1.097 GeV/fm,

Vo = —0.380 GeV, (25)
as well as
. Vs(r) =TV T
(i) A 1 [ 60 M, M,
V. =— —— , 26
Vi) = Fexp ¢ —5—— (26)

with p, A being [16]

p = 0.165 fm, A =0.295 GeV. (27)

As discussed in Refs. [15,16,18,20,25], the particular values
of p, A adopted for this analysis are not uniquely deter-
mined. Rather, they are one set among many p, A combi-
nations that satisfy the conditions of providing both a
JPC = 1*F ceqq state with mass 3871.69 MeV and

yielding physical behavior for the mixing transition
obtained from Eq. (26). In addition, while this particular
form of mixing potential is phenomenologically motivated
by lattice-QCD expectations [27], it awaits replacement with
a fully numerically determined potential to be calculated
from detailed lattice-QCD simulations. In light of these
ambiguities in the nature of the mixing potential and its
parameters (see the end of this section for further discussion
of these issues), we do not attempt to attach numerical
uncertainties to its parameters (or the resulting shifts) in this
exploratory study.

Indeed, the parameters p, A presented in Eqgs. (27) vary
greatly from those used in the original diabatic calcula-
tions of Refs. [18,20]: p = 0.300 fm, A = 0.130 GeV. On
the one hand, this difference reflects the distinct physical
origin of the mixing potential: In the earlier work, it arises
from ¢g production in string breaking, while here and in
Refs. [15,16] it arises from a recombination between
86 [(cq)(¢g)] and di-meson [(cg)(¢q)] components.
Nevertheless, it is a useful exercise to ask what happens
when the original p, A parameters are applied in this
calculation. First, the mass of the 17 state associated with
Xc1(3872) rises about 74 MeV, to M = 3.94536 GeV
[M—-M, =-11.41 MeV], so that it lies much higher
than the D°D*0 threshold. Similarly, the 0** cZs5 state
rises to M =3.98303 GeV [M - M, = +1.74 MeV],
about 46 MeV above the D D7 threshold. However, since
these masses M were fixed in the first place by identifying
the eigenstates with y.;(3872) and X(3915), respectively,
we note that these particular values are recovered if the
diquark masses are simply adjusted from those in Egs. (23)
0 ms_(cq) = 1.8940 GeV, ms_(.s) = 1.9086 GeV. In par-
ticular, the smallness of their difference persists. Similar
shifts to all mass eigenvalues occur, while the calculated
strong decay widths change little unless the states move
drastically away from di-meson thresholds.

To test the sensitivity to the choice of parameters,
one can also experiment with preserving only one of the p,
A parameters from Refs. [18,20]. Retaining their p =
0.300 fm and the diquark mass m., of Egs. (23), the
ccqq 17" state matches the measured y.(3872) mass
when A =0.205 GeV, while retaining their A =
0.130 GeV and our same m.,) does not admit a solution
for p that produces the measured y.(3872) mass.
Similarly, the same experiment with the c¢cssO*" state
shows that p = 0.300 fm, A = 0.240 GeV, and m ) from
Egs. (23) returns the measured X(3915) mass, while once
again, no value of p successfully combines with A =
0.130 GeV and our same m., to generate the X (3915)
mass. While these calculations illustrate the numerical
effects of varying p, A, we hasten to remind the reader that
one does not expect every state to receive the same effect
from mixing. At minimum, the spin state of the di-meson

074002-5



RICHARD F. LEBED and STEVEN R. MARTINEZ

PHYS. REV. D 110, 074002 (2024)

TABLEI. Mass corrections M — M 4 calculated in this work for
the elementary bound states with valence quark content ccqg’
appearing in Ref. [15], where M, (M) is the mass eigenvalue
calculated excluding (including) mixing with open thresholds. In
addition, we list the peak mass of corresponding scattering
resonances taken from Ref. [16] as M. Note that the 17" state
has no relevant open thresholds (below DD*, which forms an
intrinsic part of the state), and thus we leave its row empty.

Jre M — M, [MeV] M [GeV] My [GeV]
o++ -5.07 3.89876 3.89470
1++

2+ -0.36 3.91708 3.90260
1 -5.88 4.26370 4.21240
TABLE II. The same as Table I, but for valence quark content
CCSS.

Jre M — M, [MeV] M [GeV] My [GeV]
o+t 2.05 3.92374 3.91540
1+ 7.23 3.97570 3.92230
2+t -19.23 3.93010 3.92790
1 -0.85 4.27787 4.22500
TABLE III.  The same as Table I, but for valence quark content

ccqs. Note that the 1T state has no relevant open thresholds
(below D*D,-DD?, which forms an intrinsic part of the state),
and thus we leave its row empty.

Jre M- M, [MeV] M [GeV] My [GeV]
0" 17.93 3.98697 3.95190
1+

2°F -12.02 3.93940 3.94220
1- 23.34 4.37086 4.35090

threshold should induce nontrivial differences [28], and
the flavor dependence upon replacing light with strange
quarks likely also changes the parameters of the mixing
potential. With these numerous caveats noted, we present
the full results under the current simplifying assumptions.

Using the inputs of Eqgs. (23)—(27), one may proceed
with the methods described in Sec. III to produce the full set
of mass corrections and partial decay widths. The mass
corrections are tabulated in Tables I-III, while the strong
decay widths are collected in Table IV. In addition to the
raw results, we also provide a level diagram in Fig. 1, as it is
useful to visualize the distribution of available thresholds in
each case.

First, we examine the results for the ccqg’ sector, which

are presented in Table I. All states having relevant open
thresholds below the bound-state mass M, previously

computed in Ref. [15] are calculated to have a lower
corrected mass M, although the shift M — M, for the
2T+ state is minimal. When compared to the resonance
mass-peak values My calculated in Ref. [16], we find
general agreement for the 0™+ state, M and My having a
difference of less than 5 MeV, while the 2+* and 17~ states
have moderate to pronounced (~15-50 MeV) discrepan-
cies, respectively. Specifically, these calculated masses M
lie significantly above the location of the resonant cross-
section peaks My obtained in Ref. [16]. Notably, the My
value corresponding to the 17~ state presented here differs
from the result one might infer from Ref. [16], as here we
have also incorporated previously neglected di-meson
thresholds (such as D*D*) that sit quite far below M.
Thus, we conclude that the methods of Ref. [16] create a
stronger attraction to open thresholds than do the methods
of our present work, at least in the ccqg’ sector. As for the
disagreement between the locations Mp of the resonant
peaks and the calculated shifted masses M, one may point to
the relatively complex threshold structure of the 2™+ and
17~ states as compared to the O™ state. That is, since
the two methods effectively incorporate each individual

TABLE IV. Partial and total open-flavor strong decay widths (in MeV) for states computed in this work.

Flavor Jre I'pp Ipp- Ipp I'p.b, U'p:p: Ipp, Ipep, U'pp: pp: Fiotal
ccqq’ ot 221 2.21
27t 0.14 0.04 0.18

- 0.00 0.04 3.80 14.74 18.58

ccss 0t 0.90 0.90
I 24.17 24.17

27 433 2.14 0.00 6.47

1= 0.00 0.00 1.23 5.57 6.80

ccqs 0t 6.65 6.65
2 7.23 7.23

1- 0.67 2.13 2.14 2556 3050
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FIG. 1.

Shifted mass eigenvalues M of positive-parity states from Tables I and II, with relevant di-meson thresholds indicated by

dashed lines (where the specific di-meson combination is explicitly labeled) or dotted (for its isospin-partner combination). The
1++ ceqqg state, which coincides with y.,(3872) and the D°D*? threshold, is not shifted by the this calculation.

threshold differently [in this calculation, through Hamil-
tonian coupling of the bound state to the free below-
threshold di-meson state as in Eq. (14); in Ref. [16], through
manifestly unitary scattering-theory techniques], then each
additional threshold may heighten this effect. Additionally,
we note that while it is useful to compare these results to
those for the resonances of Ref. [16], which use methods
that are the generally more rigorous for handling masses
above threshold, the resonant peak values My are not
precisely the same as the real part of the corresponding
pole masses, which arguably serve as a better analog to the
shifted masses M calculated here.

In the c¢s5 sector, we also see agreement between the
21t states, which have a difference M — My of less than
3 MeV. However, the 0" and 17" mass shifts M — M, of
Table II are positive, away from the open thresholds. This
result directly contrasts with Ref. [16], where the 0 state
sees a ~ — 6 MeV shift My — My, and 17" a much more

dramatic shift of approximately —45 MeV. The same
substantial discrepancy arises in the 17~ state as well,
even though now M — M, is small and negative.

Finally, in the ccgs sector, we once again see strong
agreement between the 2 results, the two having a mere
M — My = —2.8 MeV difference. The 0" state, on the
other hand, has an almost exactly opposite shift M — M,
compared to M — M, = —17.17 MeV from Ref. [16]:
i.e., the 0T mass M of this work is larger than, and the
resonant peak mass My is smaller than, the elementary
bound-state mass M,. In the 1~ state first calculated for
this work, we find M — My ~20 MeV. When all three
sectors are considered together, a clear trend appears: In
each case that M and My values show substantial disagree-
ment, M is always greater than M. Additionally, the larger
discrepancies solely occur within the J = 1 states. At bare
minimum, these differences suggest that a proper inclusion
of spin effects is necessary to obtain precise modeling of
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the open-threshold effects in a bound-state picture, both in
the fine structure of the elementary states and in the
specific di-hadron thresholds [28]. As discussed above,
however, one cannot lose sight of the fact that the
Hamiltonian and unitary scattering methods incorporate
thresholds in two different ways.

Next, we examine the results of applying Eq. (22) to
each state according to the valence-quark flavor and J*¢
content. One immediately notes the relatively small decay
widths throughout Table IV. For example, one would
expect the 07 states of both the ccgg’ and c¢s5 sectors to
have relatively large widths, especially given their corre-
sponding resonance profiles in the results of Ref. [16].
However, we emphasize the decisive effect that our
specific choice of mixing potential and parameters
[Egs. (26) and (27), respectively] has on the present
calculation. If a wider mixing potential were applied,
for example, one would obtain generally stronger mixing
with additional thresholds beyond the closest ones, and
consequently larger partial decay widths. As it stands,
many of the states that one might use for comparison
of decay rates lack sufficient data for the purpose,
e.g., w(4230) and its poorly known open-charm decay
widths [2]. One could, in fact, work backwards once
any such open-flavor partial widths are measured to
determine the acceptable ranges for the mixing-potential
parameters.

Several other neglected features prevent the current
results from being interpreted as the last word in comput-
ing the mass shifts and open-flavor decay widths for these
states. First, this particular calculation does not include
mixing with conventional quarkonium (although doing so
is not difficult [16]), and such contributions not only are
essential for increasing open-flavor decay partial widths
but also provide an avenue for the prominent hidden-
flavor decays of these states. Indeed, our numerical results
are not terribly different from those obtained by consid-
ering only mixing with quarkonium [20]. Second, we
have noted [here in Eq. (11) and after, and previously
in Refs. [15,16]] that direct interactions between the
threshold di-meson pair are neglected but can easily be
incorporated into the calculations. Finally, fine-structure
corrections that distinguish states according to isospin and
spin, as in the adiabatic calculations of Refs. [9-14], can
certainly be included; such effects not only would have
direct effects upon the raw spectrum but would also pull
certain states closer to or further away from thresholds,
generating pronounced effects upon both the mass spec-
trum and decay widths. However, since our purpose in this
work has been to perform a preliminary study of the
effects on these observables of mixing between &-0
elementary states and open di-meson thresholds in a
landscape of sparse experimental results [e.g., in the
ground-state multiplet, only y.,(3872), Z.(3900), and

Z.(4020) are clear candidate members], we view the
inclusion of such fine-structure corrections here as
premature.1

V. CONCLUSIONS

The diabatic extension [15,16] to the adiabatic dynami-
cal diquark model [6,7] rigorously extends the Born-
Oppenheimer approximation inherent in the original model
to allow for the inclusion of the effects of mixing with
nearby di-hadron thresholds. In this work, we use well-
known Hamiltonian techniques [21,22] for calculating the
effect of open di-hadron thresholds that lie significantly
below the original bound state. We compute mass shifts and
open-flavor partial decay widths due to the presence of
these thresholds in multiple (ccqg’, ccss, ccgs) flavor
sectors, and find that in most cases the mass eigenvalues lie
quite close to (within a few MeV) those obtained from a
fully unitarized scattering calculation [16]. In the cases
where a substantial discrepancy arises, we attribute the
difference to the requirement of unitarity imposing con-
straints between the elementary 5-6 state and the allowed
thresholds.

We also find that the open-flavor partial decay widths,
while broadly occurring in physically acceptable ranges,
might be viewed as surprisingly small in many cases [e.g.,
O(100 keV)]. Absent direct input from experimental mea-
surements, such results may in fact turn out to be entirely
physical; or at minimum, the discrepancies will point the
way to understanding the precise nature of the threshold
mixing potential.

This work serves as another milepost for developing the
diabatic dynamical diquark model into a complete formal-
ism capable of addressing the entire sector of heavy-quark
exotic hadrons. However, it should also be noted that the
same techniques apply to any system for which mixing with
elementary states thresholds is an essential feature, such as
hybrids and glueballs. In the diquark model, the next major
step for future work is a study of the effect of including
direct rescattering interactions between the di-meson pair.
Other planned improvements include the incorporation of
fine-structure (spin and isospin) corrections into the
elementary states, and spin corrections to the di-meson
threshold states.
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lNever’theless, the fine-structure content does leave an imprint
even in the current landscape: As noted in Ref. [15], the same
DD* — DD* pair in different C-eigenstate combinations contrib-
utes equally to both 17 [y, (3872)] and 17~ [Z,] channels, and
hence the mass difference between these states provides a clear
signal of the separate significance of the fine structure.
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