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Abstract

Model calibration is crucial for optimizing the performance of complex computer models across various disciplines.
In the era of Industry 4.0, symbolizing rapid technological advancement through the integration of advanced digital
technologies into industrial processes, model calibration plays a key role in advancing digital twin technology,
ensuring alignment between digital representations and real-world systems. This comprehensive review focuses
on the Kennedy and O'Hagan (2001) (KOH) framework. In particular, we explore recent advancements addressing
the challenges of the unidentifiability issue while accommodating model inadequacy within the KOH framework.
In addition, we explore recent advancements in adapting the KOH framework to complex scenarios, including
those involving multivariate outputs and functional calibration parameters. We also delve into experimental design
strategies tailored to the unique demands of model calibration. By offering a comprehensive analysis of the KOH
approach and its diverse applications, this review serves as a valuable resource for researchers and practitioners
aiming to enhance the accuracy and reliability of their computer models.
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Figure 1: The illustration showcases the model calibration process, particularly within the
Kennedy-O'Hagan (KOH) Bayesian calibration framework. The KOH approach serves as a
reliable tool for enhancing the accuracy and reliability of computer models, especially in the
realm of digital twins for Industry 4.0. Digital twins refer to virtual replicas of physical systems,
integrating real-time data for improved performance and decision-making in Industry 4.0 appli-
cations.

1 Introduction

With the advent of sophisticated computer modeling, various fields, ranging from engineering to
epidemiology, have leveraged these models to simulate complex real-world phenomena. These
computer models serve as crucial tools for understanding intricate systems, predicting behaviors,
and making informed decisions. However, the effectiveness of these models often hinges on the
precise calibration of their underlying parameters, ensuring that their outputs align with observed
real-world data.

Model calibration, a fundamental process in computational science and engineering, involves the
adjustment of model parameters to optimize the model’'s performance and enhance its predictive
capabilities. These model parameters are often referred to as calibration parameters. Through
calibration, researchers can fine-tune these models to accurately capture the intricacies of the
systems they represent. Notably, the calibration process plays a pivotal role in fields such as
nuclear physics (Higdon et al., 2015; Pratola and Higdon, 2016; King et al., 2019; Kejzlar et al.,
2020), biology (Henderson et al., 2009; Sung et al., 2020, 2022), environmental sciences (Larssen
et al., 2006; Cheng et al., 2021), climatology (Konomi et al., 2017; Forest et al., 2008; Higdon
et al., 2013; Salter et al., 2019; Lee et al., 2020), hydrology (Goh et al., 2013; Gramacy et al.,
2015; Pratola and Chkrebtii, 2018), manufacturing (Wang et al., 2020), epidemiology (Farah
et al., 2014; Wang et al., 2022; Sung and Hung, 2024), health care (Oakley and Youngman,
2017), mechanical engineering (Gattiker et al., 2006), aerospace (Allaire et al., 2012; Huang
et al.,, 2020; Zhou et al., 2023), material science (Generale et al., 2022), transfer learning
(Liyanage et al., 2022), robotics (Liu and Negrut, 2021), and digital twins (Kenett and Bortman,
2022; Thelen et al., 2022, 2023), where accurate predictions are essential for informed decision-
making.

For instance, in climate science, the calibration of climate models enables scientists to simulate
past and present climate conditions accurately, which is crucial for predicting future climate
scenarios and assessing the potential impact of climate change. Similarly, in epidemiology, the



calibration of disease transmission models helps in understanding the spread of infectious diseases
and devising effective strategies for disease control and prevention.

In this paper, we delve into the methodologies of model calibration, with a specific focus on the
Bayesian calibration method proposed by KOH (Kennedy and O'Hagan, 2001), which accounts
for all sources of uncertainty when using the computer model subsequently for prediction. Figure
1 provides an illustration of the KOH framework.

The concept of model calibration can be traced back to the advent of physics-based models,
where statistical methods using nonlinear least squares have long been used to estimate un-
known parameters (see, e.g., Box and Hunter (1962)). Over time, more sophisticated approaches
emerged, including the generalized likelihood uncertainty estimation method (Romanowicz et al.,
1994), the use of Gaussian process models as cost-effective emulators for expensive computer
codes, enhancing the efficiency of the parameter search for optimal calibration (Cox et al., 1992;
Craig et al., 1996, 2001), and the Bayesian synthesis method (Raftery et al., 1995), and the
subsequent Bayesian melding approach (Poole and Raftery, 2000). Despite the notable advance-
ments, the KOH approach (Kennedy and O'Hagan, 2001), the pioneering method to account
for all sources of uncertainty, prominently accounted for the critical uncertainty from model
inadequacy, particularly relevant when models lack the detail necessary to differentiate between
distinct conditions leading to varying process values. lts profound impact resonated across di-
verse fields reliant on computer models, notably influencing the domains of computer model
validation (Bayarri et al., 2007a,b; Wang et al., 2009). Despite the comprehensive integration
of model inadequacy, the inherent flexibility of the KOH model often renders parameter esti-
mation unidentifiable, a dilemma extensively discussed in subsequent literature. Tuo and Wu
(2016) notably presented the first theoretical description of this problem and proposed an al-
ternative methodology in Tuo and Wu (2015) aimed at mitigating the issue of unidentifiability.
A multitude of subsequent approaches have since been proposed to address this predicament,
showcasing the enduring pursuit of enhancing the robustness and applicability of the calibration
process.

Distinguished from existing reviews (e.g., Campbell (2006), Xiong et al. (2009), and Baker et al.
(2022)) and textbooks (e.g., Santner et al. (2018), Fang et al. (2005), and Gramacy (2020))
within the realm of computer experiments, our discussion delves deeply into recent advances
aimed at addressing this unidentifiability issue. We investigate the theoretical underpinnings that
support these advancements, considering practical implications and challenges. Moreover, we
explore the latest developments in experimental design strategies tailored to the unique demands
of model calibration. Furthermore, we highlight the recent applications of the KOH approach,
emphasizing its adaptability to complex scenarios such as those involving heteroscedastic outputs,
multivariate outputs, and functional calibration parameters.

It is worth noting that, besides KOH model calibration, another important approach in shaping
computer/mathematical modeling is the physics-informed machine learning (Karniadakis et al.,
2021), which has garnered increasing attention and has immediate impacts in engineering and
science due to its potential for reducing computational costs and enhancing modeling flexibility.
Such physics-informed machine learning integrates data and mathematical models through deep
neural networks or other kernel-based regression networks by enforcing fundamental physical laws.
For an extensive survey encompassing both model calibration and physics-informed machine
learning, along with their intersection, we refer to Viana and Subramaniyan (2021).

The rest of this article is organized as follows. We begin by outlining the problem setting of



model calibration in Section 2. In Section 3, we introduce the KOH approach, providing an
in-depth understanding of its key components and principles. Section 4 delves into the posterior
inference of the KOH model. We then discuss various other calibration approaches in Section
5. Section 6 focuses on the unidentifiability issue, exploring different strategies and solutions
proposed to mitigate this challenge. Recent developments on experimental designs in the context
of the calibration problem are provided in Section 7. Recent applications of the KOH approach
in complex scenarios are discussed in Section 8. Finally, we conclude our discussion in Section
9.

2 Problem Setting

In this section, we elucidate the objectives and components of model calibration. We begin by
delineating two distinct sources of data: physical data and computer simulations.

2.1 Physical Data

Consider a real system with d control variables represented as x, where the input space is Q C R¢,
i.e., x € ). We collect a set of n physical data points from a real system, forming input-output
pairs {(x!,y?)}"_,, denoted as D?. The mean process of the output y”, denoted as ((x¥) (also
called true process in Tuo and Wu (2015, 2016)), is subject to the noise €;. We formulate this

relationship using the following statistical model:
yf = C(Xf) + €4y

where ¢; follows an independent and identically distributed (i.i.d.) zero-mean normal distribution

with variance 062, ie., e ~ N(0, af). For addressing the heteroscedastic assumption concerning
o2, refer to Section 8.1.2. One of the primary objectives here is to estimate the mean process
¢(x).

2.2 Computer Model

While utilizing the physical data DP is one approach, computer models have shown their effec-
tiveness in improving the predictive performance of {(x) when integrated with them.

Consider the scenario where there exists a computer model that can simulate the real system. In
the computer model simulations, there are typically p 4+ g control variables. The first p control
variables x coincide with those of the physical system, while the remaining ¢ variables are often
referred to as tuning/calibration parameters, denoted as 8 € © C R?, where © denotes the
parameter space. These parameters are typically unobservable in a physical system but are of
significant interest in practical applications. For instance, in the implosion simulations of Higdon
et al. (2008), the yield stress of steel and the resulting detonation energy are the calibration
parameters that are not measurable in physical experiments.

For deterministic computer simulations (i.e., simulations yielding identical outputs for a given
input), we express the relationship between the model output, denoted as y*, and the input
using the function f, i.e.,

Yy’ :f(X,e). (1)

In the case of stochastic computer simulations, the relationship between the model output and
input is expressed as follows:

vy’ = f(x,0) +v, v~N(0,r(x80)),



where 7(x,0) is the variance of the random error v, which depends on the input (x,6) but
constant variance is also possible. For a comprehensive review of stochastic computer simula-
tions, refer to Baker et al. (2022). Hereafter, we will primarily focus on deterministic computer
simulations and defer the extension to stochastic computer simulations to the interested reader.

Computer models can vary in their computational demands, with some being quick to simulate
while others are computationally intensive. For computationally intensive computer simulations,
it is often necessary to conduct a computer experiment involving several evaluations of f (i.e.,
running simulations) to learn a statistical model. The process is called emulation, and this
statistical model, referred to as an emulator or surrogate model, provides a cost-effective alter-
native to the actual simulator f. The Gaussian process (GP) model is a widely employed choice
for modeling f in computer experiments (Santner et al., 2018; Rasmussen and Williams, 2006;
Gramacy, 2020), with roots dating back to the pioneering work by Sacks et al. (1989). Details
regarding GP models are deferred to Section 3.2.

2.3 Imperfect Computer Model

The main objective of model calibration is to identify the optimal set of 8 such that the computer
model output f closely approximates the true process ¢, i.e., f(x,0") ~ ((x) for any x € Q,
with 8 being the optimal values. This pursuit ultimately aims to improve the predictive accuracy
of ¢ by leveraging the computer model f. In essence, calibration represents a statistical /nverse
problem. However, an important uncertainty arises in the form of model discrepancy, where
the model output may not perfectly match the true process. In other words, finding an optimal
0" such that f(x,0") = ((x) for all x € Q may not be feasible. Such a model is termed an
imperfect or inexact computer model. For such imperfect computer models, our main objectives
are twofold: first, to accurately estimate the parameter 8™ that optimally aligns the computer
model with the true process, and second, to predict {(x) with precision.

In the next section, we will explore a popular model proposed by KOH that addresses this
challenge.

3 Main Approach: Bayesian Calibration

In this section, we delve into a prominent statistical model designed to address model calibration
problems. While various popular approaches exist for estimating calibration parameters (e.g.,
history matching and least squares), our focus in this section centers on the method proposed
by KOH. This method strives to achieve two key objectives: parameter estimation and accurate
true process prediction, especially when dealing with imperfect computer models. For other
methods primarily focusing on estimation, see Section 5.

3.1 KOH Calibration: A Bayesian framework

One of the most widely adopted approaches for model calibration is the Bayesian calibration
method introduced by KOH. This statistical model establishes a connection between the physical
data and the computer model through the following relationship:

C(x) = f(x,0) +d(x), 2)

or equivalently,
vi = f(x],0) +8(x}) + i, €& ~N(0,07), (3)
where §(x) is referred to as the model bias, discrepancy, or inadequacy, acknowledging the
potential imperfections in the computer model. It is worth noting that while the original KOH



paper introduced an unknown regression parameter p and assumed ((x) = pf(x,0) + 6(x),
most subsequent research papers, including this one, often omit the parameter p and simply
assume p = 1.

KOH employs a Bayesian framework to make inferences about the unknown calibration parameter
6 and the true process ((-). Specifically, this Bayesian framework places a Gaussian process prior
on the discrepancy function 6 and employs Markov Chain Monte Carlo (MCMC) sampling to
infer the posterior distributions of both @ and (. Further details regarding the inference process
will be discussed in Section 4.

3.2 Gaussian Process (GP) Prior

Before delving into the inference process, we provide a brief introduction to Gaussian Processes
(GPs), which are utilized to model the discrepancy function & and, when necessary, the computer
model f for emulating expensive computer simulations.

A GP prior is a flexible and widely used approach for expressing prior information about functions
in a Bayesian framework, with applications ranging from machine learning (Rasmussen and
Williams, 2006) to spatial statistics (Stein, 1999). We denote the GP prior as:

8(x) ~ GP(us(x), 75 ®s(x, %)), (4)

where 15(x) represents the mean function, 75 > 0 is a positive scalar, and ®5(x,x’) is a positive-
definite correlation function with ®5(x,x) = 1 for any x € 2. While KOH utilized a linear mean
for the mean function pus(x), throughout this article, we assume a constant mean function for
the sake of simplicity, i.e., ps(x) = us.

For correlation functions, squared exponential kernels and Matérn kernels (Stein, 1999) are
popular choices. The (anisotropic) squared exponential kernels have the form,

d
Ps(x,x') =exp | — Z% (zj — xg)z ,
j=1

and the Matérn kernels have the form

1 v
O5(x,x") :W(Zﬁ‘h © (x = x)[l2)" x B,(2Vv]y © (x = x)]2),
where @ is the Hadamard product, v = (71,72, ..,74) is a lengthscale parameter representing
a vector of size d, || - ||2 denotes the Euclidean norm, B, is the modified Bessel function of the

second kind, and v represents a smoothness parameter.
The realizations of §(x) then follow a multivariate normal distribution, given by:
(6(x1),- -+ 6(Xn))T ~ No(ptsln, Ts®s(7)), (5)

where 1,, is a vector of ones of size n, and ®s(7) is an n X n correlation matrix, with each
element (®5(7));; = Ps(x,%x’) for any 1 <4,j < n.

4 Posterior Inference

This section discusses the main inference approaches used to obtain the posterior distributions of
6 and (. We begin by discussing scenarios where inexpensive computer simulations are available
in Section 4.1, and then delve into cases where expensive computer simulations are involved in
Section 4.2.



4.1 Inexpensive Computer Simulation

Consider a scenario where evaluating the computer model is fast, as studied in Higdon et al.
(2004), referred to as unlimited simulation runs. Denote y? = (y7,...,y2)T and £(0) =
(f(x],0),...,f(x2,0))T. By (3) and (5), it follows that

(y? = £(6)) ~ No(ps1y, 7s®s(v) + 021,),

where I,, is an n x n identity matrix. The likelihood of the unknown parameters 8, 73, ug,af,
and ~y; is given by

L(8,75, 115,75, 02 |D”) o [75@5(7) + 021, /2

exp {—;(y” —£(0) — ps1n)" (15®5(v) + 021,) " (y? — £(6) — ualn)} . (6)

Thus, the parameters, including the calibration parameter 0, can be estimated via maximum
likelihood estimation (MLE) or Bayesian inference, such as a Metropolis—Hastings (MH) style
MCMC method (Gilks et al., 1995).

The posterior of the mean process ((x), conditional on the parameters 0, 75, us, 02,~, and the
data DP, can be derived using the property of conditional multivariate normal distributions,
which follows a normal distribution:

C(x)|DP, 0,75, s, 02,7 ~ N(m(x),0%(x)),

where
o2 -t
m(x) =(usln +£(0)) + Ps(x, XT: ) <¢5(7) + 751”> (y" —£(0) — psln)
and
o2 -t
72(x) =73 ~ 3, XEi) (@) + L, ) Byl X5, ™)
where X2 = (x},...,xP), and ®5(x, XE;v) is a vector of length n with each element

(®5(x, XE;7)); = Ps(x,x7). The posterior ((x)|D? can be obtained either through MCMC
sampling to integrate the parameters @, 75, us, 02, 7, or by plugging in their MLE estimates.

4.2 Expensive Computer Simulation

In the original KOH approach, the scenario involves evaluating the computer model f being
prohibitively expensive, making it necessary to construct an emulator, a common practice in
many applications (see, e.g., Mak et al. (2018)). They assume f follows a GP prior and is
independent of ¢, i.e.,

f(X7 0) ~ gP(va Tqu)f((xv 0)7 (X/, 0/)))7

where p¢ and Tf are similarly denoted as in (4). Suppose that ®; is the squared exponential
kernel, then it has the form

d q
©s((x,0), (x,0) =exp [ =D win (2 — )" = > w2 (6, -0 |,
j=1 j=1



where w = (w11,...,W4,1,w1,2,...,wq2). After collecting the evaluations from f at N inputs
from the computer simulations, where typically the IV input locations are designed to be space-
filling in the input space, such as a uniform or Latin hypercube design (Morris and Mitchell,
1995), the input-output pairs are denoted by D% = {((x¢,05), )}, with yi = f(x$,65).
Then, the computer model outputs follow a multivariate normal distribution,

Wi, yn)T ~ N (pply, 2@ (w)),

where @ ;(w) is an N x N matrix with each element (®;(w));; = ®;((x;,0;),(x;,0;)). The
posterior inference for all the parameters 0, 75, us, 75 can be carried out using the full corpus of
data from computer simulation data D® and physical data DP, as done by KOH. The posterior of
the mean process ((x), conditional on the parameters and the data D*® and D?, can be derived
similarly to the previous subsection. For further details on the MH sampler for the posteriors
in the KOH calibration setting, see Chapter 8.1.1 of Gramacy (2020). Available R packages for
the Bayesian approach include CaliCo (Carmassi, 2018) and BACCO (Hankin, 2005).

Fully Bayesian KOH calibration could be computationally intractable, especially when both sam-
ple sizes of DP and D* are large (more approaches to these scenarios will be discussed in Section
8.4). This might lead to parameter/process identification and confounding because coupled &
and f using GP priors could cause MCMC mixing issues. To address this, Bayarri et al. (2007b)
and Liu et al. (2009) employed an approach called modularization. Instead of coupling the data
D? and DP to infer the posterior, they suggested first training the emulator, f(x7 0), using the
predictive mean of the GP posterior based on the simulation data D?, and then inferring the
posterior as done previously by replacing f with f On the other hand, Kejzlar et al. (2021) used
an empirical Bayes approach, wherein instead of placing a prior distribution on the unknown
parameters, including 6, af, v, w, s, and p g, the method estimates these parameters directly
from the data. To enhance the efficiency of the MCMC methods, Rumsey and Huerta (2021)
employed the eigenvalue decomposition to approximate the inverse of the covariance matrix in
the likelihood (6), i.e., (75®5(7v) + 0?I,) !, which can be computed in nearly quadratic time.
Furthermore, Kejzlar and Maiti (2023) used variational Bayes inference (Blei et al., 2017), an
alternative Bayesian inference to MCMC, which has been widely used to approximate the pos-
terior distribution through optimization as it tends to be faster and easier to scale to massive
datasets.

5 Other Calibration Approaches

Apart from the widely used KOH approach, several other common methods for calibration
parameter estimation are discussed in this section.

The ordinary least squares (OLS) estimator, widely applied in calibration problems (see, e.g.,
Anastassopoulou et al. (2020) and Mahnken (2017)), minimizes the squared difference between
physical outputs and simulation outputs, that is,

6,, = argmin Z(yf — f(x},0))% (8)

In cases where the computer model f is computationally expensive, an emulator can be con-
structed using a computer experiment, as discussed in Section 4.2.

History matching (or Bayesian history matching) is an alternative method to KOH calibration,
as seen in Craig et al. (1996); Vernon et al. (2014); Williamson et al. (2013); Boukouvalas et al.



(2014); Andrianakis et al. (2015, 2017). The fundamental concept involves utilizing physical
outputs to eliminate “implausible” parameter settings. The implausibility measure for 8 € © is
defined (in scenarios with expensive computer simulations where an emulator is necessary) as:

1) = (y” — E[£(0))" (V[y” ~ E[f(0)]) " (v" — EIf(0)])-

If 1(0) exceeds a threshold, the corresponding 0 value is deemed "implausible” and discarded.
The threshold setting is problem-specific, as detailed in Pukelsheim (1994); Craig et al. (1996);
Williamson et al. (2015); Vernon et al. (2010). History matching's iterative nature involves
selecting new computer model simulations to enhance the emulator and calibration, based
on preliminary history matching results, often termed “waves” (Salter and Williamson, 2016;
Williamson et al., 2017; Salter et al., 2019).

Other methods, adapted from diverse contexts to the calibration setting, include Approximate
Bayesian Computation (ABC) methods (Tavaré et al., 1997; Pritchard et al., 1999), which sim-
ulate draws from the posterior distribution by approximating likelihood-based algorithms. These
methods find applications in calibration problems, as demonstrated in McKinley et al. (2018);
Rutter et al. (2019). In addition, Pratola et al. (2013) propose a new criterion, reminiscent of
the Kullback-Liebler (KL) divergence (Kullback, 1997), for estimating the calibration parame-
ters. Furthermore, Frenklach et al. (2016) apply the Bound-to-Bound Data Collaboration (BOB)
methodology to determine feasible bounds for 8, an optimization-based framework for combin-
ing models and experimental data from multiple sources (Feeley et al., 2004, 2006; Frenklach
et al., 2002, 2004; Russi et al., 2008, 2010). Another technique, Bayesian melding (Poole and
Raftery, 2000), akin to Bayesian calibration, reconciles differences between prior distributions on
inputs and outputs of a simulator, with various applications, including Sevéikova et al. (2007);
Radtke et al. (2002); Alkema et al. (2007); Fuentes and Raftery (2005). Recent work by Marmin
and Filippone (2022) considered a more flexible model by relaxing the additive assumption of
KOH in (2) through the use of a wrap function ¢, which involves assuming the true process
((x) = ¢(f(x,80)) and employing a GP prior over ¢.

6 Unidentifiability issue for parameter estimation in KOH

Let us redirect our attention to the original KOH approach of Kennedy and O'Hagan (2001).
While the KOH method has demonstrated prowess in terms of predictions, the estimation for the
calibration parameters @ is recognized to grapple with the issue of unidentifiability between 0
and 4(-) in the KOH model (3). Specifically, because 4(-) is arbitrary, for each distinct 6, there
exists a §(-) that perfectly fits the equation, leading to severe confounding between the two.
Consequently, the interpretation of the estimates of 6 becomes obscure. In the original KOH
paper, it is cautioned that "It is dangerous to interpret the estimates of @ that are obtained by
calibration as estimates of the true physical values of those parameters.”

The issue of non-identifiability was initially highlighted in the discussion of the KOH paper and
has since been extensively discussed in subsequent works, including Higdon et al. (2004); Bayarri
et al. (2007b); Han et al. (2009); Brynjarsdéttir and O'Hagan (2014). Tuo and Wu (2016)
formally delineated this unidentifiability issue mathematically and established the convergence of
the calibration parameter @ of the KOH approach in a large sample setting. Their work demon-
strated that the posterior mode of the calibration parameter converges to a value dependent on
the prior of the discrepancy in a frequentist setting. We will delve into a detailed description of
this issue and introduce the subsequent developments in the following subsections.



6.1 Asymptotic properties of the KOH estimator

In the presence of the identifiability issue of the KOH model, a pertinent question arises: what is
the KOH estimator actually estimating? Addressing this requires a deep dive into the intricacies
of Bayesian estimation. Of particular interest is the impact of the GP prior on the discrepancy
function, denoted as . Tuo and Wu (2016) and Tuo et al. (2020) considered a simplified version
of the KOH estimator. In this version, the hyperparameters in the GP prior are treated as known
quantities, and the focus shifts to the posterior mode rather than the full posterior distribution.
Let 0(x,0) = ((x)— f(x,0). Tuo and Wu (2016) showed that, under certain regularity conditions
for d(x,0) in addition to a noiseless condition ¢; = 0, the posterior mode converges to the
minimizer of [(0) = (-, )| x, - Here, || - |lxs, denotes the norm of the reproducing kernel
Hilbert space (RKHS) generated by the kernel ®5. For a deeper understanding of RKHS and
its statistical applications, readers are directed to Wendland (2004) and Gu (2013). Later in
Tuo et al. (2020), an analogous convergence result for the KOH method was obtained without
necessitating the noiseless condition. These findings suggest that the limit value of the KOH
method depends on the choice of the prior, and this dependence is in general hard to interpret.
In the wake of these revelations, researchers have introduced methods with limiting values not
contingent upon the choice of priors.

6.2 L,-projection estimator
A practical strategy to combat the identifiability issues is: first define an identifiable parameter
as the target parameter, and then propose a method to estimate this parameter. Tuo and Wu
(2015, 2016) introduced the Lo-projection as

0" = argmin |¢(-) — f(-,0)|Z,, (9)

6co

where || -|| L, denotes the Ly norm of a function over its input domain. The Lo-projection can be
regarded as a continuous version of the OLS method in (8), and it can be shown that the OLS
estimator converges to the Lo-projection if the input points are uniformly distributed in the input
domain. However, Tuo and Wu (2015) showed that, the OLS method is not semi-parametric
efficient, in the sense that there exists estimators whose asymptotic variances are strictly smaller
than that of the OLS, unless the computer model is exact.

Tuo and Wu (2015) proposed a two-step approach, called the Ly calibration. In the first
step, estimate ¢ using the physical data alone via the kernel ridge regression (KRR). KRR is a
frequentist analogy to the GP regression method. From a computational perspective, KRR is
equal to the predictive mean of the GP regression. Denote ( as the KRR estimator. Then the
Lo calibration estimator is given by

01, := argmin ||C() — f(-, 0)|Z,- (10)
6co
The asymptotic variance of the Lo calibration estimator cannot be improved in general.

It is important to note that, despite the issue with estimating the calibration parameter, Tuo
and Wu (2018) shows that the KOH method can consistently predict the true process.

A toy example, taken from Tuo and Wu (2015), is presented in Figure 2 to illustrate the Lo-
calibration. Suppose that the true process is ((z) = exp(x/10)sin(z) for z € Q = (0, 2m)
(represented as black lines), and the physical data is simulated by v = ((z;) + €, where
€ ~N(0,1) and x; = 2mi/30 for i = 1,...,31. The computer model is given by

f(z,0) =((z) — V0? — 0 4 1(sin Oz + cos bx)

10



for 0 € © = (—2,2). This computer model is assumed to be inexpensive, eliminating the need
for emulation. Note that there doesn't exist a real number 6 satisfying f(-,6) = () due to
the always-positive quadratic function v/62 — 6 + 1. Thus, the computer model is imperfect as
described in Section 2.3. The Lo-projection (9) defines the true parameter as 6* =~ —0.1789.

We employ KOH and Ls-projection estimators, displayed in the left and right panels of Figure
2, respectively. Their estimates are -0.0821 and -0.1844, indicating that the Ls-calibration
parameter (10) is closer to the true parameter 6*. To illustrate the difference between the two
estimates, Figure 2 shows that the computer model with the KOH estimate, i.e., f(xﬁAKOH)
with éKOH being the KOH estimate, deviates from the true process (though, as mentioned
before, it can still perform well in terms of prediction by compensating for the difference using
the discrepancy function). In contrast, the computer model with the Ly estimate, f(z,0L,),
appears closer to the true process and physical data, making the estimate of § more interpretable.

—— true process —— true process
~ 4 o © - - KOH o~ - o © - - L2
o o o o
> >
o~ o
| |
¥ o ¥ o
T T T T T T T T T T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Xp Xp

Figure 2: lllustration of Lo-calibration using a toy example, where the black lines denote the
true process ((z), and the physical data, 47, ..., y5, are shown as circles. The left panel shows
the result using the KOH estimator, where the red dashed line represents the computer model
with the KOH estimate, i.e., f(:v,éKOH) with fkon being the KOH estimate. The right panel
shows the Lo-projection estimator, with the blue dashed line representing the computer model
with the Ly estimate, f(z,0z,).

6.3 Bayesian L, calibration

A potential drawback of the L, calibration is that it does not have an immediate Bayesian
version, and this makes the uncertainty quantification and prediction more challenging. Plumlee
(2017) proposed a Bayesian approach to rectify the identifiability issue of KOH. The work shows
that Bayesian calibration is possible without the presence of idenifiability issue by adopting the
assumption that there is some value of the calibration parameter that is optimal under some loss
function. Plumlee (2017) considers a broader class of loss functions

Lyz{CC) = f(0)} = > IDC¢() = DO (-, 0)7, s (11)

llexlle, <k
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where D denotes the partial derivative operator. Let §(x,80) = ((x)— f(x,80). Under smoothness
assumptions, (11) implies the orthogonality condition

S [ DD f(x, 07D 5(x, 87)dpu(x) = 0. (12)
lleelly, <k

Recall that in KOH, §(-,0") is modeled as a GP. Plumlee (2017) suggested incorporating the
orthogonality condition (12) in addition to the GP prior. This leads to a restriction of the prior
GP into a linear subset. Plumlee (2017) used his prior work (Plumlee and Joseph, 2018) to show
that such a restriction again ends up with a GP, referred to as orthogonal GP, and presented
the mean and covariance of the new GP. With this orthogonal GP, calibration can be done in a
similar manner of KOH, only by replacing the original GP prior with the orthogonal GP prior.

Tuo (2019) proposed a frequentist version of this method, called the projected kernel calibration,
and showed that, under the Lo loss and other regularity conditions, this method is consistent
and can achieve semi-parametric efficiency just as the Lo calibration.

Xie and Xu (2021) considered another Bayesian version of the Lo calibration and showed that
this Bayesian estimator satisfies similar properties as the Ly calibration estimator (10). An
efficient stochastic approximation algorithm is provided to pursue the Bayesian posterior.

6.4 Confidence set on the parameters

Confidence set (Plumlee, 2019) is a frequentist approach for the uncertainty quantification of the
calibration parameter. In analogous to the Lo calibration, the set of optimal calibration parame-
ter(s), denoted as ©*, should minimize the loss function I(¢, f(-,0)) = [(¢(x)— f(x, 6))%du(x).
An empirical approximation of this loss function is

S|

n
[(data, f(-,0)) = = > (4 — f(x},0))*.
i=1
For inexpensive computer models, under an optimal calibration parameter, the empirical loss
becomes the sum of squares of the random noise, which can be used directly to build a confidence
set. Here a proposed confidence set takes the form {0 € © : i(data, f(-,0)) < ¢n()/n}, which
dn(+) is properly choose such that the coverage rate of this set is no less than 1 —«. For example,
the the noise are standard normally distributed, ¢,, should be the quantile of the x? distribution
with degrees of freedom n. In the presence of model discrepancy, however, the empirical loss
can be much larger that the previous sum of squares, and therefore, the direct method does not
provide sufficient coverage. An additional set of functions, denoted as I(0) are introduced to
offset the model discrepancy, and the conservative and consistent set is described by

CCS = {0 €©: min I(data, f +d) < q"("‘)}
del(0) n

The definition of I(0) involves an RKHS, G, with its norm || - ||g. Consider a ball D = {d € G :
ld]|¢ < n} for a suitably chosen 7. Plumlee (2019) assumed that the discrepancy lies in D and
shown that to ensure a confidence set with sufficient coverage, the set I(0) can be as small as

I1(0) ={d € D:I(f(-,0) +d(), f(-,0)) <I(f(-,0) +d(), f(:;t)) for all t € O}.

Plumlee (2019) further proposed two convex optimization problems to give approximated solu-
tions to CCS.
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6.5 Other approaches

We review some other methods that address the identifiability issue of calibration in this sub-
section. Wong et al. (2017) uses a least squares method to estimate 6 and then estimate the
discrepancy function with non-parametric regression. A relevant two-stage estimation procedure
is presented by Joseph and Melkote (2009). Joseph and Yan (2015) proposed an engineer-driven
statistical model to improve the identifiability of the discrepancies. The scaled GP calibration
(Gu and Wang, 2018; Gu et al., 2022) intends to reconcile the KOH method with the L, calibra-
tion. The goal is to build a method that enjoys both the theoretical rigor of the Ly calibration
and the computational convenience of the KOH method. The key idea of this method is to
penalize the Ly norm of the discrepancy while assuming it as a usual GP realization, which can
be expressed as a hierarchical Bayesian model. An R package RobustCalibration (Gu, 2023) is
available for the scaled GP calibration method. In some other works, it is shown that multiple
responses can substantially enhance identifiability (Arendt et al., 2012a,b; Jiang et al., 2016).
Sun and Fang (2023b) proposed another estimator by incorporating the Loy calibration and the
smoothing spline ANOVA idea.

7 Experimental designs

Experimental designs are crucial for providing accurate estimation and precise predictions under
KOH models by collecting informative samples. Most of the work primarily focuses on selecting
samples to ensure prediction accuracy, for which various criteria are proposed to measure the
information gain through the collected samples (e.g., minimum IMSPE designs by Leatherman
et al. (2017)). On the other hand, due to recent studies on the issue of unidentifiability as
discussed in Section 6, more emphasis is placed on experimental designs to mitigate this problem
(e.g., robust experimental designs by Krishna et al. (2022)).

It is noteworthy that in some studies, the focus is solely on collecting the physical input xZ,
whereas others concentrate on collecting simulation input (x§, ;) for building an emulator for
expensive simulators, as discussed in Section 4.2, and/or physical input x?.

We discuss two scenarios in two subsections, which are one-shot (or initial) designs, representing
designs before collecting any data. Another common scenario is that after obtaining some
samples from initial designs, we can estimate model parameters and then sequentially add one
new sample (or a batch of samples) to the existing design, known as a sequential design or active
learning. These are discussed respectively in Sections 7.1 and 7.2.

7.1 Initial design/One-shot design

One approach to choosing the experimental design is to find the samples that can minimize
some degree of uncertainty quantification (either from prediction or estimation). Leatherman
et al. (2017) developed minimum integrated mean-squared prediction error (IMSPE) designs for
combined physical and simulation data. Specifically, suppose the simulator is inexpensive (and
thus there is no need to design experiments for simulation data); in this case, given the physical
input X2, the IMSPE is defined as
/ o?(x)dx,
Q

where 02(x) is denoted as in (7). The IMSPE criterion measures the prediction accuracy, or
equivalently, the integrated prediction uncertainty over the domain €. Then, the minimum
IMSPE design is to find X2 that minimizes the criterion.
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Contrary to focusing on prediction accuracy, Arendt et al. (2016) and Krishna et al. (2022) aim
to mitigate the unidentifiability issue. Arendt et al. (2016) used preposterior analysis to improve
identification via space-filling criteria, wherein they calculate the preposterior covariance matrix
(Berger, 2013; Carlin and Louis, 2000) of the calibration parameters that can be used to analyze
the degree of unidentifiability when sampling the space-filling physical data. Krishna et al. (2022)
mitigate the unidentifiability issue by providing a robust design for physical data. The central
idea is using the two-stage estimation procedure of Joseph and Melkote (2009), for which they
first use an approximate locally D-optimal design and augment it to a space-filling design using
the remaining budget.

7.2 Sequential design/Active learning

The settings for sequential designs in the literature are diverse. Some of them focus on simulation
data, some on physical data, and some on both.

Ranjan et al. (2011) proposed a batch sequential design for combined physical and simulation
data using the IMSPE criterion. Williams et al. (2011) explored entropy and distance-based
criteria in a batch sequential design setting for the physical experiment by improving the global
prediction of discrepancies inferred from computer model calibration.

Siirer et al. (2023) focuses on sampling the simulation input @; by proposing a sequential
framework with a criterion for parameter selection that targets learning the posterior density
of the parameters. Koermer et al. (2023) focuses on selecting the simulation input (x7,6;)
for building the GP surrogate model in the KOH setting using the IMSPE criterion, for which
they derive a closed-form expression facilitating the optimization. Results suggest that the
selected x{'s are space-filling marginally in their dimension while distinct exploratory behavior is
observed in the 8-coordinate when collecting 8;, reflecting the tradeoff between exploration and
exploitation.

8 Applications in Diverse Scenarios

The KOH framework has served as an inspiration for a multitude of statistical approaches across
diverse calibration problems. In this section, we extend our exploration beyond the problem
settings outlined in Section 2 to consider various model calibration scenarios that have been
adapted from the KOH model (3).

8.1 Assumptions about outputs

This subsection discusses the methods adapted from the KOH model (3) for addressing problems
that deviate from the assumption of normal error with a constant variance.

8.1.1 Multivariate outputs/functional outputs

Multivariate outputs, both in terms of physical observations and simulation outputs, are fre-
quently encountered in calibration problems. As mentioned by Higdon et al. (2008), “Our
experience is that high-dimensional simulation output is the rule, rather than the exception.”

The notion of multivariate outputs signifies that, given an input, the observed data and simu-
lations yield a vector of outputs. This concept aligns with the broader framework of functional
outputs, where the outputs exhibit dependence on time or space. A common approach to these
calibration problems is to represent multivariate/functional outputs through a basis expansion,
such as the wavelet decomposition method (Bayarri et al., 2007a) and the singular value de-
composition (SVD) (Higdon et al., 2008). These basis expansion approaches have enjoyed con-
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siderable success and have paved the way for numerous subsequent studies in the field. See, for
example, the on-site surrogates developed by Huang and Gramacy (2022) for large-scale, multi-
output calibration, the Bayesian additive regression tree (BART) (Chipman et al., 1998, 2010)
proposed by Pratola and Higdon (2016) for calibration problems with both high-dimensional
outputs and inputs, the Bayesian model calibration with large nonstationary spatial outputs by
Chang and Guillas (2019), and the history matching for high-dimensional outputs (Salter and
Williamson, 2022).

Alternatively, techniques such as cross-correlation structure or the linear model of co-
regionalization (LMC) (Gelfand et al., 2004) have been employed to model the correlations
between multiple outputs. These methods, commonly used for emulating multi-output GPs,
have found application in the context of model calibration (Arendt et al., 2012b; Paulo et al.,
2012). Other techniques primarily focused on emulating multi-output simulations also have the
potential for application in model calibration scenarios. Some relevant studies in this area include
the works of Rougier (2008), McFarland et al. (2008), Bayarri et al. (2009), Conti and O'Hagan
(2010), Fricker et al. (2013), Gu and Berger (2016), and Ma et al. (2022).

8.1.2 Heteroscedastic measurement error

When dealing with replicated physical experiments, it is not uncommon to encounter het-
eroscedasticity. In response to this challenge, Sung et al. (2022) have introduced a new statistical
model that facilitates the estimation of calibration parameters and the generation of predictions
in the presence of heteroscedasticity. Specifically, they consider an input-dependent error model:

yf = f(va 0) + 5(Xf) + G(Xf)v

where the measurement error follows an independent normal distribution with heteroscedastic
variance, i.e., €(x) ~ N(0,7(x)). The model inadequacy d(x) is accommodated using the
orthogonal GP outlined in Section 6.3, serving as a remedy for the unidentifiability issue. In
the case of replication, they utilize a latent GP prior to model r(x), drawing upon the concepts
proposed by Goldberg et al. (1998) and Binois et al. (2018). The R package HetCalibrate (Sung,
2020) is available on an open repository for implementing this approach.

8.1.3 Biased measurement error

In certain scenarios, the error within the KOH model (3) may exhibit bias arising from the data
acquisition process, referred to as measurement bias or experimental bias. Experimentation
may introduce specific errors such as setup errors, which, despite occurring randomly during the
experiment, can lead to systematic biases in model estimation. An instance of this can be seen
in the context of the atmospheric error in satellite interferograms (Gu et al., 2023). To handle
such measurement bias, Chang and Joseph (2014) assumes a model of the form

y; = f(x7,0) +0(x]) +ei + e,

and considers that the measurement biases e; are present only at certain locations, enabling a
lasso-based estimation to identify and eliminate specific biases entirely. In a similar vein, Gu
et al. (2023) proposes a model that considers the dependency of the measurement bias e; on the
input x, expressed as e(x;), and assumes that e follows a GP. This approach can be implemented
using the R package RobustCalibration (Gu, 2023).

8.1.4 Non-Gaussian outputs
The original KOH model (3) primarily focuses on real-valued outputs y? assumed to follow a
normal distribution. Recent advancements in the field of model calibration have extended the
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scope to encompass scenarios with non-Gaussian outputs across various disciplines. For instance,
Grosskopf et al. (2021) calibrated a radiation transport model for neutron detection experiments,
dealing with photon counts that represent count data. To accommodate non-Gaussian outputs,
Grosskopf et al. (2021) extended the KOH model, incorporating the concept of generalized linear
models (McCullagh and Nelder, 2019). The authors employed a suitable link function g, e.g.,
the log link for count data, i.e., g(E[y;]) = logE[y;]. Thus, in place of (3), the model assumes

yf = gil(f(va 0) + 5(sz))7

and the simulation outputs from (1) are modeled as y* = g~ '(f(x,0)), where f and J are
independent GPs. Notably, the original KOH model can be regarded as a special case of this
model, where the link function is g(E[y;]) = E[y;] for Gaussian outputs.

To tackle the issue of unidentifiability, Sung et al. (2020) extended the Lo-projection estimator,
as discussed in Section 6.2, to handle binary outputs. Similarly, both Sung and Hung (2024)
and Sun and Fang (2023a) adapted this estimator to handle count data, demonstrating their
consistency and establishing asymptotic distributions. Applications of these methods included
simulations related to cell adhesion and an epidemiological model. The R package calibrateBinary
(Sung, 2018) is available on an open repository for implementing the binary calibration proposed
by Sung et al. (2020). Alternatively, Wang et al. (2022) proposed the weighted least squares
estimation method to compute calibration parameters in an epidemiological model dealing with
COVID-19 count data. A promising avenue for future exploration involves integrating the model
by Grosskopf et al. (2021) with the approaches outlined in Section 6.3 to address the issue of
unidentifiability within a Bayesian framework.

8.1.5 Censored data

Beyond outputs that follow the exponential family, Cao et al. (2018) extended the KOH approach
for model calibration with censored data, which was motivated by a liquid stability forecasting
application where the precise outcome is unknown and only observed to fall within a specific
range. Notably, the work of Chen et al. (2022) introduces experimental designs for GPs un-
der censoring, offering a potential avenue for designing experiments for model calibration with
censored data.

8.2 Functional calibration parameters

In various scenarios, the parameter of interest for calibration exists as a function rather than
a scalar or a set of scalars. An example of this can be found in the context of the model
calibration for ion channel models of cardiac cells (Plumlee et al., 2016). To address such
functional parameters, Pourhabib et al. (2015) and Atamturktur et al. (2015) consider parametric
approaches where 8 = 0(x) assumes a parametric functional form. Recent research has leveraged
the flexibility of GP models, assuming that the function 8(-) has a GP prior, including Plumlee
et al. (2016) and Brown and Atamturktur (2018), where functional parameters are assumed to

follow the distribution
indep.

9(6;(x)) "~ GP(1;(x), 70 (x,%)),
where indep. implies that the prior distribution of §; is independent of 8y, if k # 4, and pj, 75
and ®; are similarly defined as in Section 3.2. While Plumlee et al. (2016) employs the log link
function g, Brown and Atamturktur (2018) uses logit, probit, cumulative, or identity functions,
as they scale the parameters to lie in the unit hypercube. Sung (2022) relaxes the independence
assumption, incorporating the multivariate GP modeling of Fricker et al. (2013) to account for
correlated parameters within an epidemiological model.
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Notably, Brown and Atamturktur (2018) and Sung (2022) do not consider the model discrep-
ancy 6(x) within this KOH framework, as the model is already flexible enough. Brown and
Atamturktur (2018) also argues that bypassing the need for the discrepancy term can alleviate
the identifiability issue, while fostering stronger inferences and enhancing researchers’ confidence
in using the model for extrapolation.

Alternatively, Tuo et al. (2023) have developed a frequentist approach, providing a theoretical
framework for a nonparametric solution to the functional calibration problem. Specifically, Tuo
et al. (2023) defines the true functional calibration parameter by extending the definition of (9):

0" () = ar%gin/ﬁ(g(x) — f(x,0(x)))%dx, st O(x)€© forall x€Q,

and proposed the following estimator:

P

q
8(-) = argmin = " (4 — F(x,0(x:))> + A3 105 lxa
j=1

o) "4

where each 6; lies in an RKHS, N, with the corresponding norm ||9j||Nq>j serving as a measure
of roughness for the jth component of 8(-), and \ is a smoothing parameter. Ezzat et al.
(2018) employed this method and developed a sequential design (of both physical and computer
experiments) for functional calibration of computer models.

8.3 Multi-fidelity computer models

In certain applications, the presence of multi-fidelity simulators for the physical process is com-
mon. These varying levels of fidelity can emerge due to factors such as the presence of reduced-
order physics in lower fidelity models, distinct accuracy levels specified for numerical solvers, or
solutions obtained on finer grids. To handle such multi-fidelity simulators, Goh et al. (2013)
proposed a Bayesian hierarchical model that incorporates the auto-regressive model introduced
by Kennedy and O'Hagan (2000), that is, assuming f(x,0) = £(x, 0;) + J2(x, 6), where f(x,6)
represents the high-fidelity simulator, £(x,6;) represents the low-fidelity simulator with its as-
sociated calibration parameter 6;, which may not necessarily be the same as 0, and d2(x, 0)
represents the discrepancy between high- and low-fidelity simulators. The functions £ and d- are
assumed to be independent GPs. The KOH model can then be rewritten as

yp = &(x7,00) + da(x7, 0) + 6(x]) + €.

Further exploration of integrating alternative techniques for combining multi-fidelity simulators,
such as those proposed by Qian and Wu (2008) and Tuo et al. (2014), within this calibration
framework would be valuable.

8.4 Large-scale dataset

Large-scale data (particularly simulation data) often presents challenges during model calibration,
which can render fully Bayesian KOH calibration computationally intractable, as mentioned in
Section 4.2, due to the large matrix inverses required for evaluating the likelihood in an MCMC
scheme. Various approaches have been developed to address this issue.

Gramacy et al. (2015) utilized local approximate GP modeling (Gramacy and Apley, 2015) to
emulate computer simulators, modularizing the KOH hierarchical model as done in Liu et al.
(2009), and calibrating parameters by solving a derivative-free maximization of a likelihood
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term. This method can be implemented using the R package 1aGP (Gramacy, 2016). Huang
et al. (2020) developed an on-site surrogate (OSS) for large-scale calibration that does not
require modularization, making a fully Bayesian approach feasible. Instead of building a single
large emulator for the simulator f(x, 0) across the entire (p + ¢)-dimensional input space, they
trained separate emulators focused on each input location x¥ where field data has been collected.

Alternatively, tree-based models have also been considered to handle large-scale calibration, such
as the BART calibration by Pratola and Higdon (2016), Bayesian treed calibration (BTC) by
Konomi et al. (2017), and input-dependent Bayesian model calibration (IDBC) by Karagiannis
et al. (2019).

Marmin and Filippone (2022) employed deep GPs, an emerging technique in the field of machine
learning and uncertainty quantification (Damianou and Lawrence, 2013; Bui et al., 2016; Sauer
et al., 2023b,a; Ding et al., 2023), to model both f(x,0) and §(x), thereby enhancing the
flexibility of both models to account for nonstationarity. They adapted techniques based on
random feature expansions and stochastic variational inference, building on the work by Cutajar
et al. (2017), to facilitate large-scale calibration.

Other approaches include parallel computing through divide-and-conquer methods (Cai and Ma-
hadevan, 2017; Tsai et al., 2021), leveraging stochastic partial differential equations for address-
ing large nonstationary spatial outputs (Chang and Guillas, 2019), and subsampling techniques
proposed by Lv et al. (2023).

Other techniques for large-scale GP, such as sparse approximation (Quifionero-Candela and Ras-
mussen, 2005; Sang and Huang, 2012), covariance tapering (Furrer et al., 2006), inducing inputs
(Snelson and Ghahramani, 2006), and nearest neighbor GPs (Datta et al., 2016; Finley et al.,
2019) (which has been utilized in Cheng et al. (2021) for large-scale calibration), as well as
Vecchia-approximated GPs/deep GPs (Katzfuss and Guinness, 2021; Sauer et al., 2023a), are
also worth exploring within the framework of KOH calibration. For a comprehensive review of
large-scale GP, refer to Liu et al. (2020).

9 Conclusion

In the ever-evolving landscape of modern technology, model calibration remains a critical cor-
nerstone, ensuring the reliability and accuracy of complex computer models. With a focused
examination of the Bayesian calibration framework proposed by Kennedy and O'Hagan (2001)
(KOH), this review has shed light on the theoretical intricacies and recent advancements address-
ing the unidentifiability challenge within the KOH framework. Our discussion has emphasized
the adaptability of the KOH framework to diverse and complex scenarios, including those involv-
ing multivariate outputs and functional calibration parameters. Additionally, we have explored
recent developments in experimental design strategies tailored to the unique demands of model
calibration. By offering comprehensive insights into the KOH approach and its versatile appli-
cations, this review serves as an indispensable guide for researchers and practitioners striving
to enhance the precision and robustness of their computer models. Moving forward, continual
research and innovation in the field of model calibration will undoubtedly facilitate advance-
ments in digital twin technology and Industry 4.0, fostering a more efficient and interconnected
industrial landscape.
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