
Active Learning for a Recursive Non-Additive
Emulator for Multi-Fidelity Computer Experiments

Junoh Heo and Chih-Li Sung∗

Michigan State University

Abstract

Computer simulations have become essential for analyzing complex systems, but

high-fidelity simulations often come with significant computational costs. To tackle

this challenge, multi-fidelity computer experiments have emerged as a promising

approach that leverages both low-fidelity and high-fidelity simulations, enhancing both

the accuracy and efficiency of the analysis. In this paper, we introduce a new and

flexible statistical model, the Recursive Non-Additive (RNA) emulator, that integrates

the data from multi-fidelity computer experiments. Unlike conventional multi-fidelity

emulation approaches that rely on an additive auto-regressive structure, the proposed

RNA emulator recursively captures the relationships between multi-fidelity data using

Gaussian process priors without making the additive assumption, allowing the model

to accommodate more complex data patterns. Importantly, we derive the posterior

predictive mean and variance of the emulator, which can be efficiently computed in a

closed-form manner, leading to significant improvements in computational efficiency.

Additionally, based on this emulator, we introduce four active learning strategies that

optimize the balance between accuracy and simulation costs to guide the selection of

the fidelity level and input locations for the next simulation run. We demonstrate

the effectiveness of the proposed approach in a suite of synthetic examples and a

real-world problem. An R package RNAmf for the proposed methodology is provided

on CRAN.

Keywords: Surrogate model; Sequential design; Uncertainty quantification; Gaussian process;

Auto-regressive model.

∗These authors gratefully acknowledge funding from NSF DMS 2113407 and 2338018.

1

1 Introduction

Computer simulations play a crucial role in engineering and scientific research, serving as

valuable tools for predicting the performance of complex systems across diverse fields such as

aerospace engineering (Mak et al., 2018), natural disaster prediction (Ma et al., 2022), and

cell biology (Sung et al., 2020). However, conducting high-fidelity simulations for parameter

space exploration can be demanding due to prohibitive costs. To address this challenge,

multi-fidelity emulation has emerged as a promising alternative. It leverages computationally

expensive yet accurate high-fidelity simulations alongside computationally inexpensive but

potentially less accurate low-fidelity simulations to create an efficient predictive model,

emulating the expensive computer code. By strategically integrating these simulations and

designing multi-fidelity experiments, we can potentially improve accuracy without excessive

computational resources.

The usefulness of the multi-fidelity emulation framework has driven extensive research

in recent years. One popular approach is the Kennedy-O’Hagan (KO) model (Kennedy and

O’Hagan, 2000), which models a sequence of computer simulations from lowest to highest

fidelity using a sequence of Gaussian process (GP) models (Gramacy, 2020; Rasmussen

and Williams, 2006), linked by a linear auto-regressive framework. This model has made

significant contributions across various fields employing multi-fidelity computer experiments

(see, e.g., Patra et al., 2020; Kuya et al., 2011; Demeyer et al., 2017), and several recent

developments, including Qian et al. (2006), Le Gratiet (2013), Le Gratiet and Garnier

(2014), Qian and Wu (2008), Perdikaris et al. (2017), and Ji et al. (2024) (among many

others), have investigated modeling strategies for efficient posterior prediction and Bayesian

uncertainty quantification.

Despite this body of work, most of these approaches rely on the assumption of linear

correlation between low-fidelity and high-fidelity data, resulting in an additive GP structure.

With the growing complexity of modern data, such models face challenges in capturing

complex relationships between data with different fidelity levels. As shown in the left

panel of Figure 1, where the relationship between high-fidelity data and low-fidelity data

is nonlinear, the KO model falls short in providing accurate predictions due to its limited

2

−2

−1

0

1

0.00 0.25 0.50 0.75 1.00

Auto−regressive

y

−2

−1

0

1

0.00 0.25 0.50 0.75 1.00

RNA

y

Emulator high−fidelity low−fidelity

Figure 1: An example adapted from Perdikaris et al. (2017), where n1 = 13 samples (red dots)
are collected from the low-fidelity simulator f1(x) = sin(8πx) (red dashed line), and n2 = 8 samples
(black triangles) are collected from the high-fidelity simulator f2(x) = (x−

√
2)f1(x)2 (black solid

line). The KO emulator (left panel) and the RNA emulator (right panel) are shown as blue lines.
Gray shaded regions represent the 95% pointwise confidence intervals.

flexibility.

In this paper, we propose a new and flexible model that captures the nonlinear relation-

ships between multi-fidelity data in a recursive manner. This flexible nonlinear functional

form can encompass many existing models, including the KO model, as a special case.

Specifically, we compose GP priors to model multi-fidelity data non-additively. Hence, we

refer to this proposed method as the Recursive Non-Additive (RNA) emulator. As shown in

the right panel of Figure 1, the RNA emulator demonstrates superiority over the KO model

by emulating the high-fidelity simulator with high accuracy and low uncertainty.

The RNA emulator belongs to the emerging field of linked/deep GP models (see, e.g.,

Kyzyurova et al., 2018; Ming and Guillas, 2021; Sauer et al., 2023; Ming et al., 2023),

where different GPs are connected in a coupled manner. To the best of our knowledge,

there has been limited research on extending such results for the analysis of multi-fidelity

computer experiments, and we aim to address this gap in our work. Notably, recent work

by Perdikaris et al. (2017) has made progress in this direction, but their approach assumes

3

an additive structure for the kernel function, and employs the Monte Carlo integration

to handle intractable posterior distributions. Recent advancement by Ko and Kim (2022)

extends deep GP models for multi-fidelity computer experiments, but still relies on the

additive structure of the KO model. Similarly, Cutajar et al. (2019) employ an additive

kernel akin to Perdikaris et al. (2017) and rely on the sparse variational approximation

for inference. In a similar vein, Meng and Karniadakis (2020), Li et al. (2020), Meng

et al. (2021), and Kerleguer et al. (2024) establish connections between different fidelities

using (Bayesian) neural networks. In contrast, our proposed model not only provides great

flexibility using GP priors with commonly used kernel structures to connect multi-fidelity

data, but also provides analytical expressions for both the posterior mean and variance.

This computational improvement allows for more efficient calculations, facilitating efficient

uncertainty quantification.

Leveraging this newly developed RNA emulator, we introduce four active learning

strategies to achieve enhanced accuracy while carefully managing the limited simulation

resources, which is particularly crucial for computationally expensive simulations. Active

learning, also known as sequential design, involves sequentially searching for and acquiring

new data points at optimal locations based on a given sampling criterion, to construct an

accurate surrogate model/emulator. While active learning has been well-established for

single-fidelity GP emulators (Gramacy, 2020; Rasmussen and Williams, 2006; Santner et al.,

2018), research in the context of multi-fidelity computer experiments is scarce and more

challenging. This is because it requires simultaneous selection of optimal input locations

and fidelity levels, accounting for their respective simulation costs. Although some recent

works have considered cost in specific cases like single-objective unconstrained optimization

(Huang et al., 2006; Swersky et al., 2013; He et al., 2017) and global approximation (Xiong

et al., 2013; Le Gratiet and Cannamela, 2015; Stroh et al., 2022; Ehara and Guillas, 2023;

Sung et al., 2024a), most of these works were developed based on the KO model. Active

learning for non-additive GP models has not been fully explored in the literature. In

addition, popular sampling criteria for global approximation, such as “Active Learning

MacKay” (McKay et al., 2000, ALM) and “Active Learning Cohn” (Cohn, 1993, ALC),

4

remain largely unexplored in the context of multi-fidelity computer experiments. Recent

successful applications of these sampling criteria to other learning problems can be found in

Binois et al. (2019), Park et al. (2023), Koermer et al. (2024), and Sauer et al. (2023).

Our main contribution lies in advancing active learning with these popular sampling

criteria, based on this newly developed RNA emulator. It is important to note that few

existing works in the multi-fidelity deep GP literature (Perdikaris et al., 2017; Cutajar

et al., 2019; Ko and Kim, 2022) delve into active learning, mainly due to computational

complexities associated with computing acquisition functions. In contrast, our closed-form

posterior mean and variance of the RNA emulator not only facilitate efficient computation

of these sampling criteria, but also provide valuable mathematical insights into the active

learning. To facilitate broader usage, we implement an R (R Core Team, 2018) package

called RNAmf (Heo and Sung, 2024), which is available on CRAN.

The structure of this article is as follows. In Section 2, we provide a brief review of the

KO model. Our proposed RNA emulator is introduced in Section 3. Section 4 outlines our

active learning strategies based on the RNA emulator. Numerical and real data studies are

presented in Sections 5 and 6, respectively. Lastly, we conclude the paper in Section 7.

2 Background

2.1 Problem Setup

Let fl(x) represent the scalar simulation output of the computer code with input parameters

x ∈ Ω ⊆ Rd at fidelity level l = 1, . . . , L. We assume that L distinct fidelity levels of

simulations are conducted for training an emulator, where a higher fidelity level corresponds

to a simulator with more accurate outputs but also higher simulation costs per run.

Our primary objective is to construct an efficient emulator for the highest-fidelity

simulation code, fL(x). For each fidelity level l, we perform simulations at nl design points

denoted by Xl = {x[l]
i }

nl
i=1. These simulations yield the corresponding simulation outputs

yl := (fl(x))x∈Xl
, representing the vector of outputs for fl(x) at design points x ∈ Xl,

and each element of yl is denoted by y
[l]
i = fl(x

[l]
i). We assume that the designs Xl are

5

sequentially nested, i.e.,

XL ⊆ XL−1 ⊆ · · · ⊆ X1 ⊆ Ω, (1)

and x
[l]
i = x

[l−1]
i for i = 1, . . . , nl. In other words, design points run for a higher-fidelity

simulator are contained within the design points run for a lower-fidelity simulator. This

property has been shown to lead to more efficient inference in various multi-fidelity emulation

approaches (Qian, 2009; Qian et al., 2009; Haaland and Qian, 2010).

Furthermore, we let Cl denote the simulation cost (e.g., in CPU hours) for a single run

of the simulator at fidelity level l. Since higher-fidelity simulators are more computationally

demanding, this implies that 0 < C1 < C2 < . . . < CL.

2.2 Auto-regressive model

One of the prominent approaches for modeling fL(x) is the KO model (also known as

co-kriging model) proposed by Kennedy and O’Hagan (2000), which can be expressed in an

auto-regressive form as follows: f1(x) = Z1(x),

fl(x) = ρl−1fl−1(x) + Zl(x), for 2 ≤ l ≤ L,

(2)

where ρl−1 is an unknown auto-regressive parameter, and Zl = (fl− ρl−1fl−1) represents the

discrepancy between the (l − 1)-th and l-th code. The KO model considers a probabilistic

surrogate model by assuming that {Zl}Ll=1 follow independent zero-mean GP models:

Zl(x)
indep.∼ GP{αl(x), τ 2

l Kl(x,x
′)}, l = 1, . . . , L, (3)

where αl(x) is a mean function, τ 2
l is a variance parameter, and Kl(x,x

′) is a positive-definite

kernel function defined on Ω× Ω. In the original KO paper, αl(x) is assumed to be h(x)βl,

where h(x) is a vector of d regression functions. Other common choices for αl(x) include

αl(x) ≡ 0 or αl(x) ≡ µl. As for the kernel function, popular choices include the squared

exponential kernel and Matérn kernel (Stein, 1999). Specifically, the anisotropic squared

6

exponential kernel takes the form:

Kl(x,x
′) =

d∏
j=1

ψ(xj, x
′
j; θlj) =

d∏
j=1

exp

(
−
(
xj − x′j

)2

θlj

)
, (4)

where (θl1, . . . , θld) is the lengthscale hyperparameter, indicating that the correlation decays

exponentially fast in the squared distance between x and x′. The GP model (3), combined

with the auto-regressive model (2), implies that, conditional on the parameters τ 2
l , θlj, and

µ(·), the joint distribution of (y1, . . . ,yL) follows a multivariate normal distribution, and

these unknown parameters can be estimated via maximum likelihood estimation or Bayesian

inference. Given the data (y1, . . . ,yL), it can be shown that the posterior distribution of

fL(x) is also a GP. The posterior mean function can then be used to emulate the expensive

simulator, while the posterior variance function can be employed to quantify the emulation

uncertainty. Refer to Kennedy and O’Hagan (2000) for further details.

The auto-regressive framework of the KO model has led to the development of several

variants. For instance, Le Gratiet and Garnier (2014) introduce a faster algorithm based on

a recursive formulation for computing the posterior of fl(x) more efficiently. To enhance

the model’s flexibility, Qian et al. (2006), Le Gratiet and Garnier (2014), and Qian and

Wu (2008) allow the auto-regressive parameter ρl to depend on the input x, that is,

fl(x) = ρl−1(x)fl−1(x) + Zl(x) for 2 ≤ l ≤ L, where the first two assume ρl−1(x) to be a

linear function, while the last one assumes ρl−1(x) to be a GP.

3 Recursive Non-Additive (RNA) emulator

Despite the advantages of the KO model, it results in an additive GP model based on (2) and

(3), which may not adequately capture the nonlinear relationships between data at different

fidelity levels. To overcome this limitation and achieve a more flexible representation, we

7

propose a novel Recursive Non-Additive (RNA) emulator:

 f1(x) = W1(x),

fl(x) = Wl(x, fl−1(x)), for l = 2, . . . , L.

(5)

The model structure is illustrated in Figure 2. This RNA model offers greater flexibility and

can encompass many existing models as special cases. For instance, the auto-regressive KO

model can be represented in the form of (5) by setting Wl(x, fl−1(x)) = ρl−1fl−1(x) + δ(x).

Similarly, the model in Qian et al. (2006), Le Gratiet and Garnier (2014), and Qian and Wu

(2008) can be considered a special case by setting Wl(x, fl−1(x)) = ρl−1(x)fl−1(x) + δ(x).

X1 W1 y1

X2 W2 y2

X3 W3 y3

......

XL WL yL

Figure 2: An illustration of the recursive structure of the RNA model.

We model the relationship Wl using a GP prior: W1(x) ∼ GP{α1(x), τ 2
1K1(x,x′)} and

Wl(z) ∼ GP{αl(z), τ 2
l Kl(z, z

′)}, l = 2, · · · , L, (6)

where z = (x, y), forming a vector of size (d+ 1), and Kl is a positive-definite kernel. We

consider a constant mean, i.e., α1(x) = α1 and αl(z) = αl for l ≥ 2. We adopt popular kernel

choices for Kl, such as the squared exponential kernel and Matérn kernel. In particular, the

8

squared exponential kernel Kl for l ≥ 2, following (4), can be expressed as:

Kl(z, z
′) = ψ(yl−1, y

′
l−1; θly)

d∏
j=1

ψ(xj, x
′
j; θlj)

= exp

(
−
(
yl−1 − y′l−1

)2

θly

)
d∏
j=1

exp

(
−
(
xj − x′j

)2

θlj

)
, (7)

where the lengthscale hyperparameter, θl = (θl1, . . . , θld, θly), represents a vector of size

(d+ 1), and K1(x,x′) takes the form of (4). The Matérn kernel can be similarly constructed,

which is given in the Supplementary Materials S1.

Combining the GP model (6) with the recursive formulation (5) and assuming the nested

design as in (1), the observed simulations yl follow a multivariate normal distribution:

yl ∼ Nnl
(αl1nl

, τ 2
l Kl) for l = 1, . . . , L,

where 1nl
is a unit vector of size nl, Kl is an nl × nl matrix with each element (K1)ij =

K1(x
[1]
i ,x

[1]
j), and (Kl)ij = Kl(z

[l]
i , z

[l]
j) for l ≥ 2, where z

[l]
i = (x

[l]
i , fl−1(x

[l]
i)). Note that

fl−1(x
[l]
i) = y

[l−1]
i due to the nested design assumption, which is the i-th simulation output

at level l − 1. The parameters {αl, τ 2
l ,θl}Ll=1 can be estimated by maximum likelihood

estimation. Specifically, the log-likelihood (up to an additive constant) is

−1

2

(
nl log(τ 2

l) + log(det(Kl)) +
1

τ 2
l

(yl − αl1nl
)TK−1

l (yl − αl1nl
)

)
.

The parameters can then be efficiently estimated by maximizing the log-likelihood via an

optimization algorithm, such as quasi-Newton optimization method of Byrd et al. (1995).

It is important to acknowledge that the idea of a recursive GP was previously proposed

by Perdikaris et al. (2017), referred to as a nonlinear auto-regressive model therein. However,

there are two key distinctions between their model and ours. The first distinction lies in the

kernel assumption, where they assume an additive form of the kernel to better capture the

auto-regressive nature. Specifically, they use Kl(z, z
′) = Kl1(x,x

′)Kl2(fl−1(x), fl−1(x
′)) +

Kl3(x,x′) with valid kernel functions Kl1, Kl2, and Kl3. While our kernel function shares

9

some similarities, particularly the first component Kl1(x,x′)Kl2(fl−1(x), fl−1(x′)), the role

of the second component Kl3 in predictions remains unclear. The inclusion of this compo-

nent introduces d hyperparameters for an anisotropic kernel, making the estimation more

challenging, especially for high-dimensional problems. In contrast, we adopt the natural

form of popular kernel choices, such as the squared exponential kernel in (7) and the Matérn

kernel, placing our model within the emerging field of linked/deep GP models, which has

shown promising results in the computer experiment literature (Kyzyurova et al., 2018;

Ming and Guillas, 2021; Sauer et al., 2023). The second distinction is in the computation

for the posterior of fL(x). Specifically, their model relies on Monte Carlo (MC) integration

for their computation, which can be quite computationally demanding, especially in this

recursive formulation. In contrast, with these popular kernel choices, we can derive the

posterior mean and variance of fL(x) in a closed form, which is presented in the following

proposition, enabling more efficient predictions and uncertainty quantification.

The derivation of the posterior follows these steps. Starting with the GP assumption (6),

and utilizing the properties of conditional multivariate normal distribution, the posterior

distribution of fl given yl and fl−1 at a new input location x is normally distributed, namely:

f1(x)|y1 ∼ N (µ1(x), σ2
1(x)) with

µ1(x) = α11n1 + k1(x)TK−1
1 (y1 − αl1n1), and (8)

σ2
1(x) = τ 2

1 (1− k1(x)TK−1
1 k1(x)), (9)

and fl(x)|yl, fl−1(x) ∼ N (µl(x, fl−1(x)), σ2
l (x, fl−1(x))) for l = 2, . . . , L with

µl(x, fl−1(x)) = αl1nl
+ kl(x, fl−1(x))TK−1

l (yl − αl1nl
), and (10)

σ2
l (x, fl−1(x)) = τ 2

l (1− kl(x, fl−1(x))TK−1
l kl(x, fl−1(x))), (11)

where k1(x) and kl(x, fl−1(x)) are an nl×1 matrix with each element (k1(x))i,1 = K1(x,x
[1]
i)

and (kl(x, fl−1(x)))i,1 = Kl((x, fl−1(x)), (x
[l]
i , y

[l−1]
i)) for l ≥ 2, respectively. The posterior

10

distribution of fl can then be obtained by

p(fl(x)|y1, . . . ,yl)

=

∫
· · ·
∫
p(fl(x)|yl, fl−1(x))p(fl−1(x)|yl−1, fl−2(x)) · · · p(f1(x)|y1)d(fl−1(x)) . . . d(f1(x)).

This posterior is analytically intractable but can be numerically approximated using MC

integration, as done in Perdikaris et al. (2017), which involves sequential sampling from the

normal distribution p(fl(x)|yl, fl−1(x)) from l = 1 to l = L. However, this method can be

computationally demanding, especially when the dimension of x and the number of fidelity

levels increase. To address this, we derive recursive closed-form expressions for the posterior

mean and variance under popular kernel choices as follows.

Proposition 3.1. Under the squared exponential kernel function (7), the posterior mean

and variance of fl(x) given the data {yl}Ll=1 for l ≥ 2 can be expressed in a recursive fashion:

µ∗l (x) : = E[fl(x)|y1, . . . ,yl]

= αl +

nl∑
i=1

ri

d∏
j=1

exp

(
−

(xj − x[l]
ij)

2

θlj

)
1√

1 + 2
σ∗2
l−1(x)

θly

exp

(
−

(y
[l−1]
i − µ∗l−1(x))2

θly + 2σ∗2l−1(x)

)
,

and

σ∗2l (x) := V[fl(x)|y1, . . . ,yl] = τ 2
l − (µ∗l (x)− αl)2+(

nl∑
i,k=1

ζik
(
rirk − τ 2

l (K−1
l)ik

) d∏
j=1

exp

(
−

(xj − x[l]
ij)

2 + (xj − x[l]
kj)

2

θlj

))
, (12)

where ri = (K−1
l (yl − αl1nl

))i, and

ζik =
1√

1 + 4
σ∗2
l−1(x)

θly

exp

−(
y
[l−1]
i +y

[l−1]
k

2
− µ∗l−1(x))2

θly
2

+ 2σ∗2l−1(x)
− (y

[l−1]
i − y[l−1]

k)2

2θly

. (13)

For l = 1, it follows that µ∗1(x) = µ1(x) and σ∗21 (x) = σ2
1(x) as in (8) and (9), respectively.

11

The posterior mean and variance under a Matérn kernel with the smoothness parameter

ν = 1.5 and ν = 2.5 are provided in the Supplementary Materials S3, and the detailed

derivations for Proposition 3.1 are provided in Supplementary Materials S2, which follow

the proof of Kyzyurova et al. (2018) and Ming and Guillas (2021). With this proposition,

the posterior mean and variance can be efficiently computed in a recursive fashion. Similar

to Kyzyurova et al. (2018) and Ming and Guillas (2021), we adopt the moment matching

method, using a Gaussian distribution to approximate the posterior distribution with

the mean and variance presented in the proposition. The parameters in the posterior

distribution, including {αl, τ 2
l ,θl}Ll=1, can be plugged in by their estimates.

Notably, Proposition 3.1 can be viewed as a simplified representation of Theorem 3.3 from

Ming and Guillas (2021) for constructing a linked GP surrogate. However, it is important

to highlight the distinctions and contributions of our work, particularly in the context of

multi-fidelity computer experiments. Firstly, there are currently no existing closed-form

expressions for the posterior mean and variance in the multi-fidelity deep GP literature. By

providing such expressions, our work fills this gap, offering valuable mathematical insights

and enhancing computational efficiency for active learning strategies, which will be discussed

in Section 3.1 and Section 4. Additionally, while the linked GP model provides a general

framework, much of the discussion in their work focuses on sequential GPs, where the output

of the high-layer emulator depends solely on the output of the low-layer emulator, i.e.,

W2(W1(x)). Our setup differs slightly, as the high-fidelity emulator in our RNA framework

depends not only on the output of the low-fidelity emulator but also on the input variables

directly, i.e., W2(x,W1(x)). This difference in formulation is important and impacts the

design of active learning strategies in our framework.

Similar to conventional GP emulators for single-fidelity deterministic computer models,

the proposed RNA emulator also exhibits the interpolation property, which is described in

the following proposition. The proof is provided in Supplementary Materials S4.

Proposition 3.2. The RNA emulator satisfies interpolation property, that is, µ∗l (x
[l]
i) = y

[l]
i ,

and σ∗2l (x
[l]
i) = 0, where {(x[l]

i , y
[l]
i)}i=1,...,nl

are the training samples.

An example of this posterior distribution is presented in the right panel of Figure 1,

12

illustrating that the posterior mean closely aligns with the true function, and the confidence

intervals constructed by the posterior variance cover the true function. For further insights

into how this nonlinear relationship modeling can effectively reconstruct the high-fidelity

function f2(x) for this example, we refer to Perdikaris et al. (2017).

Our R package, RNAmf, implements the parameter estimation and computations for the

closed-form posterior mean and variance using a squared exponential kernel and a Matérn

kernel with smoothness parameters of 1.5 and 2.5.

3.1 Insights into the RNA emulator

We delve into the RNA emulator, exploring its mathematical insights and investigating

scenarios where this method may succeed or encounter challenges.

For the sake of simplicity in explanation, we consider two fidelity levels (L = 2) and

assume the input x is one-dimensional. According to Proposition 3.1, under a squared

exponential kernel function, the RNA emulator yields the following posterior mean:

µ∗2(x) = α2 +

√
θ2y

θ2y + 2σ∗21 (x)

n2∑
i=1

ri exp

(
−(x− x[2]

i)2

θ2

− (y
[1]
i − µ∗1(x))2

θ2y + 2σ∗21 (x)

)
,

where ri = (K−1
2 (y2 − α21n2))i.

The mathematical expression reveals several insights into the behavior of the RNA

emulator. Firstly, it reveals the impact of the uncertainty in the low-fidelity model, σ∗21 (x),

on the posterior mean µ∗2(x). In scenarios where σ∗21 (x) = 0 for all x ∈ Ω, µ∗2(x) mirrors the

posterior mean when µ∗1(x) is replaced with the true low-fidelity function f1(x). Consequently,

the term
√

θ2y
θ2y+2σ∗2

1 (x)
acts as a scaling factor for the posterior mean, adjusting the influence

of the uncertainty σ∗21 (x) on the overall prediction to account for the approximation error

between µ∗1(x) and f1(x). Additionally, the inflated denominator of
(y

[1]
i −µ

∗
1(x))2

θ2y+2σ2
1(x)

by the low-

fidelity model uncertainty also aids in mitigating the approximation error, indicating a slower

decay in correlation with the squared distance between the low-fidelity observations y
[1]
i

and µ∗1(x). Both aspects ensure a balanced integration of high and low-fidelity information,

which is particularly crucial when dealing with limited samples from low-fidelity data.

13

−3

−2

−1

0

1

0.00 0.25 0.50 0.75 1.00

x

y

n1 = 8, n2 = 6

−3

−2

−1

0

1

0.00 0.25 0.50 0.75 1.00

x

y

n1 = 12, n2 = 6

high−fidelity low−fidelity low−fidelity emulator RNA emulator scaling factor − 3

Figure 3: Illustration of RNA emulator insights using the Perdikaris example. The left panel and
right panel depict results obtained with different sample sizes of low-fidelity data (red dots), n1 = 8
(left) and n1 = 12 (right), alongside the same high-fidelity data (black triangles) of size n2 = 6.
The scaling factor is the orange solid line, with values shifted by subtracting 3.

Figure 3 demonstrates an example of how the low-fidelity emulator impacts RNA

emulation performance. The left panel illustrates that with limited low-fidelity data

(n1 = 8), especially in the absence of data at x ∈ (0.3, 0.8), the posterior mean of the

low-fidelity emulator, µ∗1(x) (represented by the green line), inaccurately predicts the true

low-fidelity simulator f1(x) (red dashed line). In this scenario, the scaling factor (orange line),√
θ2y

θ2y+2σ2
1(x)

, is very small for those poor predictions of µ∗1(x), particularly for x ∈ (0.3, 0.8).

This results in µ∗2(x) being close to the mean estimate α̂2. This is not surprising because

there is no data available from both low-fidelity and high-fidelity simulators in this region,

leading to the posterior mean reverting back to the mean estimate. With an increase in

low-fidelity data (n1 = 12), which makes µ∗1(x) much closer to the true f1(x), the scaling

factor is close to one everywhere, significantly enhancing the accuracy of the RNA emulator.

The posterior variance can be written as (see Supplementary Materials S2)

σ∗22 (x) = V [E[f2(x)|f1(x),y1,y2]] + E [V[f2(x)|f1(x),y1,y2]] , (14)

where both terms can be expressed in a closed form as in (S5.1) and (S5.2), respectively.

14

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.25 0.50 0.75 1.00

x

n1 = 8, n2 = 6

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.25 0.50 0.75 1.00

x

n1 = 12, n2 = 6

High−fidelity variance V1 V2

Figure 4: Illustration of decomposition of σ∗22 (x) (black solid line) for the examples of Figure 3,
where V1 is the blue dashed line and V2(x) is the green dashed line.

Define V1(x) = V [E[f2(x)|f1(x),y1,y2]] and V2(x) = E [V[f2(x)|f1(x),y1,y2]], then V1(x)

represents the overall contribution of the GP emulator W1 to σ∗22 (x) and V2(x) represents the

contribution of the GP emulator W2 to σ∗22 (x). This decomposition mirrors that of Ming and

Guillas (2021) within the context of linked GPs. Figure 4 illustrates this decomposition for

the examples in Figure 3. It can be seen that for both scenarios, V2 appears to dominate V1,

indicating that W2 contributes more uncertainty than W1. However, when we have limited

low-fidelity data (left panel), V1 exhibits a very high peak at x ≈ 0.04 with a value close

to 0.10, even very close to the maximum value of V2. From an active learning perspective,

if the cost of evaluating f1(x) is cheaper than f2(x), then it’s sensible to select the next

sample from the cheaper f1(x) to reduce σ∗22 (x). On the other hand, when we have more

low-fidelity data (right panel), V1 remains very small everywhere compared to V2, indicating

that selecting the next sample from f2(x) would be more effective in reducing the predictive

uncertainty. More details of active learning strategies will be introduced in the next section.

4 Active learning for RNA emulator

We present four active learning (AL) strategies aimed at enhancing the predictive capabilities

of the proposed model through the careful design of computer experiments. These strategies

15

encompass the dual task of not only identifying the optimal input locations but also

determining the most appropriate fidelity level.

We suppose that an initial experiment of sample size nl for each fidelity level l, following

a nested design XL ⊆ · · · ⊆ X1, is conducted, for which a space-filling design is often

considered, such as the nested Latin hypercube design (Qian, 2009). AL seeks to optimize

a selection criterion for choosing the next point x
[l]
nl+1 at fidelity level l, carrying out its

corresponding simulation y
[l]
nl+1 = fl(x

[l]
nl+1), and thus augmenting the dataset.

4.1 Active Learning Decomposition (ALD)

We first introduce an active learning criterion inspired by Section 3.1 and the variance-based

adaptive design for linked GPs outlined in Ming and Guillas (2021). Specifically, we extend

the decomposition of (14) to encompass L fidelity levels:

σ∗2L (x) =
L∑
l=1

Vl(x), (15)

where Vl(x) represents the contribution of each GP emulator Wl at fidelity level l to σ∗2L (x):

Vl(x) = E · · ·EVE · · ·E [fL(x)|fL−1(x), · · · , f1(x),yL, · · · ,y1] ,

with V being at the l-th term. The expectation or variance in the l-th term is taken with

respect to the variable fl(x). When L = 2, the closed-form expression for Vl(x) is available,

as shown in (14). For L = 3, each Vl(x) can be easily approximated using MC methods.

We detail the calculation of Vl(x) for the settings of L = 2 and L = 3 in Supplementary

Materials S5. However, the calculation becomes more cumbersome for L ≥ 4, which we

leave as a topic for future development.

Considering the simulation cost Cl, our approach guides the selection of the next point

x
[l]
nl+1 at fidelity level l by maximizing the criterion, which we refer to as Active Learning

Decomposition (ALD):

(l∗,x
[l∗]
nl∗+1) = argmax

l∈{1,...,L};x∈Ω

Vl(x)∑l
j=1Cj

,

16

which aims to maximize the ratio between each contribution Vl(x) to σ∗2L (x) and the

simulation cost
∑l

j=1Cj at each fidelity level l.

Simulation costs are incorporated to account for the nested structure. That is, to run the

simulation fl∗(x
[l∗]
nl∗+1), we also need to run fl(x

[l]
nl+1) with x

[l]
nl+1 = x

[l∗]
nl∗+1 for all 1 ≤ l < l∗.

It is also worth mentioning that the cost can be tailored to depend on the input x, as done

in He et al. (2017) and Stroh et al. (2022).

4.2 Active Learning MacKay (ALM)

A straightforward but commonly used sampling criterion in AL is to select the next point

that maximizes the posterior predictive variance (MacKay, 1992). Extending this concept

to our scenario, we choose the next point by maximizing the ALM criterion:

(l∗,x
[l∗]
nl∗+1) = argmax

l∈{1,...,L};x∈Ω

σ∗2l (x)∑l
j=1Cj

. (16)

Note that after running the simulation at the optimal input location x
[l∗]
nl∗+1 at level l∗,

the posterior predictive variance σ∗2l∗ (x
[l∗]
nl∗+1) becomes zero (see Proposition 3.2). In other

words, our selection of the optimal level hinges on achieving the highest ratio of uncertainty

reduction at x
[l∗]
nl∗+1 to the simulation cost.

The computation of ALM criterion is facilitated by the availability of the closed-form

expression of the posterior predictive variance as in (12), which in turn simplifies the

optimization process of (16). In particular, the optimal input location x
[l]
nl+1 for each l can

be efficiently obtained through the optim library in R, using the method=L-BFGS-B option,

which performs a quasi-Newton optimization approach of Byrd et al. (1995).

4.3 Active Learning Cohn (ALC)

Another widely employed, more aggregate criterion is Active Learning Cohn (ALC) (Cohn,

1993; Seo et al., 2000). In contrast to ALM, ALC selects an input location that maximizes

the reduction in posterior variances across the entire input space after running this selected

simulation. Extending the concept to our scenario, we choose the next point by maximizing

17

the ALC criterion:

(l∗,x
[l∗]
nl∗+1) = argmax

l∈{1,...,L};x∈Ω

∆σ2
L(l,x)∑l
j=1Cj

, (17)

where ∆σ2
L(l,x) is the average reduction in variance (of the highest-fidelity emulator) from

the current design measured through a choice of the fidelity level l and the input location x,

augmenting the design. That is,

∆σ2
L(l,x) =

∫
Ω

σ∗2L (ξ)− σ̃∗2L (ξ; l,x)dξ, (18)

where σ∗2L (ξ) is the posterior variance of fL(ξ) based on the current design {Xl}Ll=1, and

σ̃∗2L (ξ; l,x) is the posterior variance based on the augmented design combining the current

design and a new input location x at each fidelity level lower than or equal to l, i.e.,

{(X1 ∪ x
[1]
n1+1), . . . , (Xl ∪ x

[l]
nl+1),Xl+1, . . . ,XL} with x

[1]
n1+1 = · · · = x

[l]
nl+1 = x. Once again,

the incorporation of the new input location x at each fidelity level lower than l is due to

the nested structure assumption. In other words, our selection of the optimal level involves

maximizing the ratio of average reduction in the variance of the highest-fidelity emulator to

the associated simulation cost. In practice, the integration in (18) can be approximated by

numerical methods, such as MC integration.

Unlike ALM where the influence of design augmentation on the variance of the highest-

fidelity emulator is unclear, ALC is specifically designed to maximize the reduction in

variance of the highest-fidelity emulator. However, the ALC strategy involves requiring

knowledge of future outputs y
[s]
ns+1 = fs(x

[s]
ns+1) for all 1 ≤ s ≤ l, as they are involved in

σ̃∗2L (ξ; l,x) (as seen in (13)), but these outputs are not available prior to conducting the

simulations. A possible approach to address this issue is through MC approximation to

impute the outputs. Specifically, we can impute y
[s]
ns+1 for each 1 ≤ s ≤ l by drawing

samples from the posterior distribution of fs(x
[s]
ns+1) based on the current design, which is

a normal distribution with the posterior mean and variance presented in Proposition 3.1.

This allows us to repeatedly compute σ̃∗2L (ξ; l,x) using the imputations and average the

results to approximate the variance. Notably, with the imputed output y
[s]
ns+1, the variance

18

σ̃∗2L (ξ; l,x) can be efficiently computed using the Sherman–Morrison formula (Harville, 1998)

for updating the covariance matrix’s inverse, K−1
l , from σ∗2L (ξ) (Gramacy, 2020).

In contrast to ALM, maximizing the ALC criterion (17) can be quite computationally

expensive due to the costly MC approximation to compute (18). To this end, an alternative

strategy is proposed to strike a compromise by combining the two criteria.

4.4 Two-step approach: ALMC

Given the distinct advantages and limitations of both ALM and ALC criteria (details of

which are referred to Chapter 6 of Gramacy, 2020), for a comprehensive exploration, we can

contemplate their combination. Inspired by Le Gratiet and Cannamela (2015), we introduce

a hybrid approach, which we refer to as ALMC. First, the optimal input location is selected

by maximizing the posterior predictive variance of the highest fidelity emulator:

x∗ = argmax
x∈Ω

σ∗2L (x).

Then, the ALC criterion determines the fidelity level with the identified input location:

l∗ = argmax
l∈{1,...,L}

∆σ2
L(l,x∗)∑l
j=1 Cj

.

Unlike ALM, this hybrid approach focuses on the direct impact on the highest-fidelity

emulator. It first identifies the sampling location that maximizes σ∗2L (x), and then determines

which level selection will effectively reduce the overall variance of the highest-fidelity emulator

across the input space after running this location. This synergistic approach is not only

expected to capture the advantages of both ALM and ALC, but also offers computational

efficiency advantages compared to the ALC method in the previous subsection. This is due

to the fact that the optimization for x∗ by maximizing the closed-form posterior variance is

computationally much cheaper, as discussed in Section 4.2.

Figure 5 demonstrates the effectiveness of these four strategies for the example in the

right panel of Figure 1. Consider the simulation costs: C1 = 1 and C2 = 3 for the two

simulators. It shows that, for all four criteria, the choice is consistently in favor of selecting

19

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

 low−fidelity high−fidelity prediction new point

0.00 0.25 0.50 0.75 1.00

ALD
0.00 0.25 0.50 0.75 1.00

ALM
0.00 0.25 0.50 0.75 1.00

ALC
0.00 0.25 0.50 0.75 1.00

ALMC

level high−fidelity low−fidelity predictive variance

Figure 5: Demonstration of the four active learning strategies using the example in the right
panel of Figure 1. The criteria of the four strategies are presented in the bottom panel, where the
dots represent the optimal input locations for each of the simulators. Notably, ALD utilizes the
gray line to illustrate σ∗22 (x), which is decomposed into V1(x) (depicted in red) and V2(x) (depicted
in black). ALMC, on the other hand, employs the gray line to determine the optimal input location
and then utilizes the red and black lines (which are identical to ALC) to decide the fidelity level.
The upper panels show the corresponding fits after adding the selected points to the training dataset,
where the solid dots represent the chosen samples, all of which select the low-fidelity simulator.

the low-fidelity simulator to augment the dataset. While the selected locations differ, ALD,

ALC, and ALMC all fall within the range of [0.18, 0.25], which, as per the current design

(prior to running this simulation), holds large uncertainty, as seen in the right panel of

Figure 1. ALM selects the sample at the boundary of the input space. All these selection

outcomes contribute to an overall improvement in emulation accuracy, while simultaneously

reducing global uncertainty, even when opting for low-fidelity data alone.

4.5 Remark on the AL strategies

In this section, we delve deeper into the merits of the AL strategies, with a focus on the

conditions favoring each method. To gain deeper insights, we consider a synthetic example

20

generated from a 2-level Currin function (Xiong et al., 2013; Kerleguer et al., 2024), with the

explicit form provided in Supplementary Materials S6. Assuming simulation costs C1 = 1

and C2 = 3, we employ the four AL strategies until reaching a total budget of 15.

Figure 6 showcases the selected sites within the input space [0, 1]2. Similar to discussions

on AL for single-fidelity GPs (Seo et al., 2000; Gramacy and Lee, 2009; Bilionis and

Zabaras, 2012; Beck and Guillas, 2016), ALM tends to push selected data points towards

the boundaries of the input space, whereas ALC avoids boundary locations. ALD and

ALMC, inheriting attributes of ALM, exhibit similar behavior to ALM. The choice between

them depends on the underlying true function: if the function in the boundary region is

flat and exhibits more variability in the interior, then ALC may be preferable. Regarding

computational efficiency, ALD, ALM, and ALMC benefit from closed-form expressions of

the posterior variance, requiring only a few seconds per acquisition. In contrast, ALC is

more computationally demanding due to extensive MC sampling efforts, taking several

minutes per acquisition.

It is worth noting that if the scale of low-fidelity outputs significantly exceeds that of

high-fidelity outputs, ALM may consistently favor low-fidelity levels in the initial acquisitions,

as the maximum of the low-fidelity posterior variance tends to be large. However, it’s

unclear whether this selection is effective, as maximizing the posterior variance of the

low-fidelity emulator doesn’t necessarily translate to a reduction in the uncertainty of the

high-fidelity emulator. In contrast, the other three methods focus on directly impacting

the high-fidelity emulator by selecting points, making them independent of the scale. In

summary, considering the discussions above and the findings from our empirical studies

in Sections 5 and 6, ALD (for L ≤ 3) and ALMC generally emerge as favorable choices,

offering accurate RNA emulators along with computational efficiency.

5 Numerical Studies

In this section, we conduct a suite of numerical experiments to examine the performance of

the proposed approach. The experiments encompass two main aspects. In Section 5.1, we

assess the predictive capabilities of the proposed RNA emulator, while Section 5.2 delves

21

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x1

x 2
ALD

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x1
x 2

ALM

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x1

x 2

ALC

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x1

x 2

ALMC

Level high−fidelity low−fidelity

Figure 6: Selected input locations by four proposed strategies with a total budget of 15, where the
simulation costs are C1 = 1 and C2 = 3. The initial design points are represented as filled shapes.

into the evaluation of the performance of the proposed AL strategies.

We consider the anisotropic squared exponential kernel as in (7) for the proposed model,

a choice that is also shared by our competing methods. All experiments are performed on a

MacBook Pro laptop with 2.9 GHz 6-Core Intel Core i9 and 16Gb of RAM.

5.1 Emulation performance

We begin by comparing the predictive performance of the proposed RNA emulator (labeled

RNAmf) with two other methods in the numerical experiments: the co-kriging model (labeled

CoKriging) by Le Gratiet and Garnier (2014), and the nonlinear auto-regressive multi-

fidelity GP (labeled NARGP) by Perdikaris et al. (2017). The two methods are readily available

through open repositories, specifically the R package MuFiCokriging (Le Gratiet, 2012) and

the Python package on the GitHub repository (Perdikaris, 2016), respectively. Note that

the multi-fidelity deep GP of Cutajar et al. (2019), which can be implemented using the

Python package emukit (Paleyes et al., 2019, 2023), is not included in our comparison due

to software limitations. We encountered challenges during implementation as the package

relies on an outdated package, rendering it incompatible with our current environment.

Five synthetic examples commonly used in the literature to evaluate emulation per-

formance in multi-fidelity simulations are considered, including the two-level Perdikaris

function (Perdikaris et al., 2017; Kerleguer et al., 2024), the two-level Park function (Park,

22

0.2

0.4

0.6

Perdikaris

25

50

75

Branin

0.05

0.10

Park

1

2

3

Borehole

0.5

1.0

1.5

Currin

0.4

0.8

1.2

1.6

Franke

model RNAmf CoKriging NARGP

Figure 7: RMSEs of six synthetic examples across 100 repetitions.

1991; Xiong et al., 2013), the three-level Branin function (Sobester et al., 2008), the two-level

Borehole function (Morris et al., 1993; Xiong et al., 2013), and the two-level Currin function

(Xiong et al., 2013; Kerleguer et al., 2024). Additionally, we introduce a three-level function

modified from the Franke function (Franke, 1979). The explicit forms of these functions are

available in Supplementary Materials S6.

The data are generated by evaluating these functions at input locations obtained from

the nested space-filling design introduced by Le Gratiet and Garnier (2014) with sample

sizes {nl}Ll=1. The sample sizes and input dimension for each example are outlined in Table

S1. To examine the prediction performance, ntest = 1000 random test input locations are

generated from the same input space. We evaluate the prediction performance based on

two criteria: the root-mean-square error (RMSE) and continuous rank probability score

(CRPS) (Gneiting and Raftery, 2007), which are defined in Supplementary Materials S7.

Note that CRPS serves as a performance metric for the posterior predictive distribution of

a scalar observation. Lower values for the RMSE and CRPS indicate better model accuracy.

Additionally, we assess the computational efficiency by comparing the computation time.

23

Figures 7 and S14 respectively show the results of RMSE and CRPS metrics across 100

repetitions, each employing a different random nested design for the training input locations.

The proposed RNAmf consistently outperforms CoKriging by both metrics, particularly for

examples exhibiting nonlinear relationships between simulators, such as the Perdikaris,

Borehole, Currin, and Franke functions. For instances where simulators follow a linear (or

nearly linear) auto-regressive model, like the Brainin and Park functions, the proposed RNAmf

remains competitive with CoKriging, which is designed to excel in such scenarios. This

highlights the flexibility of our approach, enabled by the GP prior for modeling relationships.

On the other hand, NARGP, another approach modeling nonlinear relationships, outperforms

CoKriging in most of the examples and is competitive with RNAmf, except in the Perdikaris

and Franke examples, where RNAmf exhibits superior performance. However, it comes with

significantly higher computational costs, as shown in Figure 8, due to its expensive MC

approximation, being roughly fifty times slower than both RNAmf and CoKriging on average.

Notably, in scenarios involving three fidelities, including the Brainin and Franke examples,

the computational time for NARGP exceeds that of RNAmf by more than 150 times. This shows

that NARGP can suffer from intensive computation as the number of fidelity levels increases,

while our method remains competitive in this regard. In summary, the performance across

these synthetic examples underscores the capability of the proposed method in providing

an accurate emulator at a reasonable computational time.

5.2 Active learning performance

With the accurate RNA emulator in place, we now investigate on the performance of AL

strategies for the emulator using the proposed criteria. We compare with two existing

methods: CoKriging-CV, a cokriging-based sequential design utilizing cross-validation

techniques (Le Gratiet and Cannamela, 2015), and MR-SUR, a sequential design maximizing

the rate of stepwise uncertainty reduction using the KO model (Stroh et al., 2022). As for

implementing CoKriging-CV, we utilized the code provided in the Supplementary Materials

of Le Gratiet and Cannamela (2015). Notably, both of these methods employed the (linear)

autoregressive model as in (2) in their implementations. To maintain a consistent comparison,

24

Pe
rd

ik
ar

is

Br
an

in

Pa
rk

Bo
re

ho
le

C
ur

rin

Fr
an

ke

Pe
rd

ik
ar

is

Br
an

in

Pa
rk

Bo
re

ho
le

C
ur

rin

Fr
an

ke

Pe
rd

ik
ar

is

Br
an

in

Pa
rk

Bo
re

ho
le

C
ur

rin

Fr
an

ke

0

50

100

C
om

pu
ta

tio
na

l t
im

e
(s

ec
.)

model RNAmf CoKriging NARGP

Figure 8: Computational time of six synthetic functions across 100 repetitions.

we use the one-dimensional Perdikaris function (nonlinear) and the 4-dimensional Park

function (linear autoregressive) in Section 5.1, to illustrate the performance of these methods.

In this experiment, we suppose that the simulation costs associated with the low- and

high-fidelity simulators are C1 = 1 and C2 = 3, respectively. The initial data is established

similar to Section 5.1, with sample sizes specified in Table S1. We consider a total simulation

budget of Ctotal = 80 for the Perdikaris function and Ctotal = 130 for the Park function. For

ALC and ALMC acquisitions which involve the computation of the average reduction in

variance as in (18), 1000 and 100 uniform samples are respectively generated from the input

space to approximate the integral and impute the future outputs.

Figure 9 shows the results of RMSE and CRPS metrics for the Perdikaris function,

with respect to the total simulation costs accrued after each sample selection. The left

panel of Figure 10 displays a boxplot depicting the final RMSEs after reaching the total

simulation budget across the 10 repetitions. The results show that the proposed AL methods

dramatically outperform the two competing methods, CoKriging-CV and MR-SUR, in terms

of both accuracy and stability, considering the same costs. As the cost increases, MR-SUR

begins to close the gap, while CoKriging-CV lags behind the other methods. Among the

four proposed AL strategies, the distinctions are minimal. As noted in Section 4, ALC

25

acquisitions involve intricate numerical integration approximations and data imputation,

taking approximately 400 seconds for each acquisition in this example. In contrast, ALD,

ALM and ALMC are significantly more computationally efficient due to the closed-form

nature of the criteria, requiring only around 1, 1, and 10 seconds per acquisition, respectively.

0.0

0.2

0.4

0.6

40 50 60 70 80

Costs

R
M
SE

0.0

0.1

0.2

0.3

0.4

40 50 60 70 80

Costs

C
R
PS

Strategy
ALD

ALM

ALC

ALMC

Cokriging−CV

MR−SUR

Figure 9: RMSE and CRPS for the Perdikaris function with respect to the simulation cost. Solid
lines represent the average over 10 repetitions and shaded regions represent the ranges.

0.0

0.1

0.2

0.3

0.4

A
LD

A
LM

A
LC

A
LM

C

C
ok

rig
in

g−
C

V

M
R

−
S

U
R

F
in

al
 R

M
S

E

0.0

0.2

0.4

0.6

A
LD

A
LM

A
LC

A
LM

C

C
ok

rig
in

g−
C

V

M
R

−
S

U
R

P
ro

po
rt

io
n

of
 lo

w
−

fid
el

ity
 d

at
a

Figure 10: Final RMSE (left) and proportion of AL acquisitions choosing low-fidelity data (right)
for the Perdikaris function. Boxplots indicate spread over 10 repetitions.

From the right panel of Figure 10, it can be seen that the proposed AL methods tend

26

to select low-fidelity simulators more frequently than the other two comparative methods,

notably MR-SUR, which consistently chooses samples exclusively from the high-fidelity

simulator. This suggests that the proposed RNA model can effectively infer the high-fidelity

simulation using primarily low-fidelity data for the nonlinear Perdikaris function, while the

other two KO-based methods (CoKriging-CV and MR-SUR) require more high-fidelity data

to reduce the uncertainty.

Figures S15 and S16 present the results for the Park function. As expected, the

distinctions between these strategies are not as significant because the function aligns more

closely with the KO model (linear autoregressive). Nonetheless, our proposed AL strategies

still exhibit better average performance. At the final cost budget of Ctotal = 130, ALM

and ALMC perform the best, collecting a larger portion of high-fidelity data, as indicated

in Figure S16. In contrast, the KO-based strategies collect more low-fidelity data, which

is again expected because KO-based models are efficient at leveraging low-fidelity data

to infer the high-fidelity simulator. In these scenarios, our strategies efficiently prioritize

the selection of high-fidelity data to minimize uncertainty, resulting in superior prediction

accuracy at the same cost.

6 Thermal Stress Analysis of Jet Engine Turbine Blade

We leverage our proposed method for a real application involving the analysis of thermal

stress in a jet turbine engine blade under steady-state operating conditions. The turbine

blade, which forms part of the jet engine, is constructed from nickel alloys capable of

withstanding extremely high temperatures. It is crucial for the blade’s design to ensure

that it can endure stress and deformations while avoiding mechanical failure and friction

between the blade tip and the turbine casing. Refer to Carter (2005), Wright and Han

(2006), and Sung et al. (2024a,b) for more details.

This problem can be treated as a static structural model and can be solved numerically

using finite element methods. There are two input variables denoted as x1 and x2, which

represent the pressure load on the pressure and suction sides of the blade, both of which fall

within the range of 0.25 to 0.75 MPa, i.e., x = (x1, x2) ∈ Ω = [0.25, 0.75]2. The response of

27

interest is the maximum value over the thermal stress profile, which is a critical parameter

used to assess the structural stability of the turbine blade. We perform finite element

simulations using the Partial Differential Equation Toolbox in MATLAB (MATLAB, 2021).

The simulations are conducted at two fidelity levels, each using different mesh densities

for finite element methods. A denser mesh provides higher fidelity and more accurate

results but demands greater computational resources. Conversely, a coarser mesh sacrifices

some accuracy for reduced computational cost. Figure S17 demonstrates the turbine blade

structure and thermal stress profiles obtained at these two fidelity levels for the input

location x = (0.5, 0.45).

We perform the finite element simulations with sample sizes of n1 = 20 and n2 = 10 to

examine the emulation performance. Similar to Section 5.1, we use the nested space-filling

design of Le Gratiet and Garnier (2014) to generate the input locations of the computer

experiments. We record the simulation time of the finite element simulations, which are

respectively C1 = 2.25 and C2 = 6.85 (seconds) and will be used later for comparing AL

strategies. To examine the performance, we conduct the high-fidelity simulations (i.e. f2(x))

at the test input locations of size ntest = 100 generated from a set of Latin hypercube

samples from the same design space. The experiment is repeated 10 times, each time

considering different nested space-filling designs for the training input locations.

Figure 11 presents a comparison of emulation performance with the other two competing

methods, CoKriging and NARGP. Our proposed method, RNAmf, outperforms the other two

methods in terms of CRPS and is comparable in terms of RMSE. While NARGP delivers

competitive prediction performance, it comes at a significantly higher computational cost

compared to RNAmf.

Figures 12 and 13 present a comparison of the AL strategies with a fixed cost budget

of Ctotal = 160 seconds. The right panel of Figure 13 reveals that these strategies collect

a similar number of low-fidelity data points. Notably, CoKriging-CV exhibits significant

variability across the 10 repetitions, so we have removed the shaded region and only show

the average, indicating that it yields poorer prediction performance compared to the other

strategies. Another KO-based strategy, MR-SUR, performs better but still falls short of our

28

10

15

20

25

30

R
M

SE

5

10

15

C
R

PS

0.0

2.5

5.0

7.5

10.0

C
om

pu
ta

tio
n

tim
e

(s
ec

.)

model RNAmf CoKriging NARGP

Figure 11: RMSE, CRPS, and computation time across 10 repetitions in the turbine blade
application.

proposed AL strategies at any given simulation cost. Conversely, our proposed AL strategies

demonstrate effective results and outperform the others. This is evident from RMSE and

CRPS values exhibiting a leveling-off trend, with final results around 10 and 5, respectively,

compared to the initial designs yielding both metrics averaging around 15 and 7. Among the

AL strategies, the performance of the four strategies does not show significant differences at

the final cost budget.

10

20

30

40

120 130 140 150

Costs

R
M
SE

5

10

15

20

25

120 130 140 150

Costs

C
R
PS

Strategy
ALD

ALM

ALC

ALMC

Cokriging−CV

MR−SUR

Figure 12: RMSE and CRPS for the turbine blade application with respect to the cost. Solid
lines represent the average over 10 repetitions and shaded regions represent the ranges.

29

20

40

60

A
LD

A
LM

A
LC

A
LM

C

C
ok

rig
in

g−
C

V

M
R

−
S

U
R

F
in

al
 R

M
S

E

0.25

0.50

0.75

A
LD

A
LM

A
LC

A
LM

C

C
ok

rig
in

g−
C

V

M
R

−
S

U
R

P
ro

po
rt

io
n

of
 lo

w
−

fid
el

ity
 d

at
a

Figure 13: Final RMSE (left) and proportion of AL acquisitions choosing low-fidelity data (right)
for the turbine blade application. Boxplots indicate spread over 10 repetitions.

7 Conclusion

Multi-fidelity computer experiments have become an essential tool in simulating complex

scientific problems. This paper introduces a new emulator tailored for multi-fidelity simu-

lations, which proves effective in producing accurate, efficient predictions for high-fidelity

simulations, especially when dealing with nonlinear relationships between simulators. Build-

ing upon this new emulator, we present four AL strategies designed to select optimal input

locations and fidelity levels to augment data, thereby enhancing emulation performance.

With the RNA emulator’s success, it is worthwhile to explore emulators and AL strategies

built upon similar principles for addressing multi-fidelity problems with tunable fidelity

parameters, such as mesh density (Picheny et al., 2013; Tuo et al., 2014). Designing

experiments for such scenarios presents intriguing challenges, as shown in recent studies (see,

e.g., Shaowu Yuchi et al., 2023; Sung et al., 2024a). Furthermore, considering the increasing

prevalence of stochastic computer models (Baker et al., 2022), extending the proposed RNA

emulator to accommodate noisy data would significantly enhance its relevance in real-world

applications. While this article assumes noise-free data, introducing noise into the model is

a feasible endeavor, a task we leave for our future research.

30

Supplemental Materials Additional supporting materials can be found in Supplemental

Materials, including the closed-form posterior mean and variance under a Matérn kernel,

the proof of Proposition 3.1, and the supporting tables and figures for Sections 5 and 6.

The R code and package for reproducing the results in Sections 5 and 6 are also provided.

Acknowledgments The authors express sincere gratitude for the conscientious efforts

of the associate editor and two anonymous reviewers whose insightful comments greatly

strengthen this article.

Disclosure Statement No potential conflict of interest was reported by the authors.

References

Baker, E., Barbillon, P., Fadikar, A., Gramacy, R. B., Herbei, R., Higdon, D., Huang,

J., Johnson, L. R., Ma, P., Mondal, A., Pires, B., Sacks, J., and Sokolov, V. (2022).

Analyzing stochastic computer models: A review with opportunities. Statistical Science,

37(1):64–89.

Beck, J. and Guillas, S. (2016). Sequential design with mutual information for computer

experiments (MICE): Emulation of a tsunami model. SIAM/ASA Journal on Uncertainty

Quantification, 4(1):739–766.

Bilionis, I. and Zabaras, N. (2012). Multi-output local gaussian process regression: Applica-

tions to uncertainty quantification. Journal of Computational Physics, 231(17):5718–5746.

Binois, M., Huang, J., Gramacy, R. B., and Ludkovski, M. (2019). Replication or exploration?

sequential design for stochastic simulation experiments. Technometrics, 61(1):7–23.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory algorithm for bound

constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208.

Carter, T. J. (2005). Common failures in gas turbine blades. Engineering Failure Analysis,

12(2):237–247.

31

Cohn, D. (1993). Neural network exploration using optimal experiment design. Advances in

Neural Information Processing Systems, 6:1071–1083.

Cutajar, K., Pullin, M., Damianou, A., Lawrence, N., and González, J. (2019). Deep

Gaussian processes for multi-fidelity modeling. arXiv preprint arXiv:1903.07320.

Demeyer, S., Fischer, N., and Marquis, D. (2017). Surrogate model based sequential sampling

estimation of conformance probability for computationally expensive systems: application

to fire safety science. Journal de la société française de statistique, 158(1):111–138.

Ehara, A. and Guillas, S. (2023). An adaptive strategy for sequential designs of multilevel

computer experiments. International Journal for Uncertainty Quantification, 13(4):61–98.

Franke, R. (1979). A critical comparison of some methods for interpolation of scattered

data. Technical report, Monterey, California: Naval Postgraduate School.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and

estimation. Journal of the American Statistical Association, 102(477):359–378.

Gramacy, R. B. (2020). Surrogates: Gaussian Process Modeling, Design, and Optimization

for the Applied Sciences. CRC press.

Gramacy, R. B. and Lee, H. K. (2009). Adaptive design and analysis of supercomputer

experiments. Technometrics, 51(2):130–145.

Haaland, B. and Qian, P. Z. G. (2010). An approach to constructing nested space-filling

designs for multi-fidelity computer experiments. Statistica Sinica, 20(3):1063–1075.

Harville, D. A. (1998). Matrix Algebra from a Statistician’s Perspective. New York: Springer-

Verlag.

He, X., Tuo, R., and Wu, C. F. J. (2017). Optimization of multi-fidelity computer experiments

via the EQIE criterion. Technometrics, 59(1):58–68.

Heo, J. and Sung, C.-L. (2024). RNAmf: Recursive Non-Additive Emulator for Multi-Fidelity

Data. R package version 0.1.2.

32

Huang, D., Allen, T. T., Notz, W. I., and Miller, R. A. (2006). Sequential kriging optimization

using multiple-fidelity evaluations. Structural and Multidisciplinary Optimization, 32:369–

382.

Ji, Y., Mak, S., Soeder, D., Paquet, J., and Bass, S. A. (2024). A graphical multi-

fidelity Gaussian process model, with application to emulation of heavy-ion collisions.

Technometrics, 66(2):267–281.

Kennedy, M. C. and O’Hagan, A. (2000). Predicting the output from a complex computer

code when fast approximations are available. Biometrika, 87(1):1–13.

Kerleguer, B., Cannamela, C., and Garnier, J. (2024). A Bayesian neural network approach

to multi-fidelity surrogate modelling. International Journal for Uncertainty Quantification,

14(1):43–60.

Ko, J. and Kim, H. (2022). Deep gaussian process models for integrating multifidelity

experiments with nonstationary relationships. IISE Transactions, 54(7):686–698.

Koermer, S., Loda, J., Noble, A., and Gramacy, R. B. (2024). Augmenting a simulation

campaign for hybrid computer model and field data experiments. Technometrics, to

appear.

Kuya, Y., Takeda, K., Zhang, X., and Forrester, A. I. (2011). Multifidelity surrogate

modeling of experimental and computational aerodynamic data sets. AIAA Journal,

49(2):289–298.

Kyzyurova, K. N., Berger, J. O., and Wolpert, R. L. (2018). Coupling computer mod-

els through linking their statistical emulators. SIAM/ASA Journal on Uncertainty

Quantification, 6(3):1151–1171.

Le Gratiet, L. (2012). MuFiCokriging: Multi-Fidelity Cokriging models. R package version

1.2.

Le Gratiet, L. (2013). Bayesian analysis of hierarchical multifidelity codes. SIAM/ASA

Journal on Uncertainty Quantification, 1(1):244–269.

33

Le Gratiet, L. and Cannamela, C. (2015). Cokriging-based sequential design strategies

using fast cross-validation techniques for multi-fidelity computer codes. Technometrics,

57(3):418–427.

Le Gratiet, L. and Garnier, J. (2014). Recursive co-kriging model for design of com-

puter experiments with multiple levels of fidelity. International Journal for Uncertainty

Quantification, 4(5):365–386.

Li, S., Xing, W., Kirby, R., and Zhe, S. (2020). Multi-fidelity Bayesian optimization via

deep neural networks. Advances in Neural Information Processing Systems, 33:8521–8531.

Ma, P., Karagiannis, G., Konomi, B. A., Asher, T. G., Toro, G. R., and Cox, A. T. (2022).

Multifidelity computer model emulation with high-dimensional output: An application

to storm surge. Journal of the Royal Statistical Society Series C: Applied Statistics,

71(4):861–883.

MacKay, D. J. C. (1992). Information-based objective functions for active data selection.

Neural Computation, 4(4):590–604.

Mak, S., Sung, C.-L., Wang, X., Yeh, S.-T., Chang, Y.-H., Joseph, V. R., Yang, V., and Wu,

C. F. J. (2018). An efficient surrogate model for emulation and physics extraction of large

eddy simulations. Journal of the American Statistical Association, 113(524):1443–1456.

MATLAB (2021). MATLAB version 9.11.0.1769968 (R2021b). The Mathworks, Inc.,

Natick, Massachusetts.

McKay, M. D., Beckman, R. J., and Conover, W. J. (2000). A comparison of three methods

for selecting values of input variables in the analysis of output from a computer code.

Technometrics, 42(1):55–61.

Meng, X., Babaee, H., and Karniadakis, G. E. (2021). Multi-fidelity Bayesian neural

networks: Algorithms and applications. Journal of Computational Physics, 438:110361.

34

Meng, X. and Karniadakis, G. E. (2020). A composite neural network that learns from

multi-fidelity data: Application to function approximation and inverse PDE problems.

Journal of Computational Physics, 401:109020.

Ming, D. and Guillas, S. (2021). Linked Gaussian process emulation for systems of computer

models using Matérn kernels and adaptive design. SIAM/ASA Journal on Uncertainty

Quantification, 9(4):1615–1642.

Ming, D., Williamson, D., and Guillas, S. (2023). Deep Gaussian process emulation using

stochastic imputation. Technometrics, 65(2):150–161.

Morris, M. D., Mitchell, T. J., and Ylvisaker, D. (1993). Bayesian design and analysis of

computer experiments: use of derivatives in surface prediction. Technometrics, 35(3):243–

255.

Paleyes, A., Mahsereci, M., and Lawrence, N. D. (2023). Emukit: A Python toolkit for

decision making under uncertainty. Proceedings of the Python in Science Conference.

Paleyes, A., Pullin, M., Mahsereci, M., McCollum, C., Lawrence, N., and González, J.

(2019). Emulation of physical processes with Emukit. In Second Workshop on Machine

Learning and the Physical Sciences, NeurIPS.

Park, C., Waelder, R., Kang, B., Maruyama, B., Hong, S., and Gramacy, R. B. (2023).

Active learning of piecewise Gaussian process surrogates. arXiv preprint arXiv:2301.08789.

Park, J. S. (1991). Tuning Complex Computer Codes to Data and Optimal Designs. University

of Illinois at Urbana-Champaign.

Patra, A., Batra, R., Chandrasekaran, A., Kim, C., Huan, T. D., and Ramprasad, R.

(2020). A multi-fidelity information-fusion approach to machine learn and predict polymer

bandgap. Computational Materials Science, 172:109286.

Perdikaris, P. (2016). Multi-fidelity modeling using Gaussian processes and nonlinear

auto-regressive schemes. https://github.com/paraklas/NARGP.

35

Perdikaris, P., Raissi, M., Damianou, A., Lawrence, N. D., and Karniadakis, G. E.

(2017). Nonlinear information fusion algorithms for data-efficient multi-fidelity mod-

elling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 473(2198):20160751.

Picheny, V., Ginsbourger, D., Richet, Y., and Caplin, G. (2013). Quantile-based optimization

of noisy computer experiments with tunable precision. Technometrics, 55(1):2–13.

Qian, P. Z. G. (2009). Nested Latin hypercube designs. Biometrika, 96(4):957–970.

Qian, P. Z. G., Ai, M., and Wu, C. F. J. (2009). Construction of nested space-filling designs.

Annals of Statistics, 37(6A):3616–3643.

Qian, P. Z. G. and Wu, C. F. J. (2008). Bayesian hierarchical modeling for integrating

low-accuracy and high-accuracy experiments. Technometrics, 50(2):192–204.

Qian, Z., Seepersad, C. C., Joseph, V. R., Allen, J. K., and Wu, C. F. J. (2006). Building

surrogate models based on detailed and approximate simulations. Journal of Mechanical

Design, 128(4):668–677.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian Processes for Machine Learning.

Cambridge, MA: MIT Press.

Santner, T. J., Williams, B. J., and Notz, W. I. (2018). The Design and Analysis of

Computer Experiments. Springer New York.

Sauer, A., Gramacy, R. B., and Higdon, D. (2023). Active learning for deep Gaussian

process surrogates. Technometrics, 65(1):4–18.

Seo, S., Wallat, M., Graepel, T., and Obermayer, K. (2000). Gaussian process regression:

Active data selection and test point rejection. In Mustererkennung 2000: 22. DAGM-

Symposium. Kiel, 13.–15. September 2000, pages 27–34. Springer.

36

Shaowu Yuchi, H., Roshan Joseph, V., and Wu, C. F. J. (2023). Design and analysis of

multifidelity finite element simulations. Journal of Mechanical Design, 145(6):061703.

Sobester, A., Forrester, A., and Keane, A. (2008). Engineering Design via Surrogate

Modelling: A Practical Guide. John Wiley & Sons.

Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer

Science & Business Media.

Stroh, R., Bect, J., Demeyer, S., Fischer, N., Marquis, D., and Vazquez, E. (2022). Sequential

design of multi-fidelity computer experiments: maximizing the rate of stepwise uncertainty

reduction. Technometrics, 64(2):199–209.

Sung, C.-L., Hung, Y., Rittase, W., Zhu, C., and Wu, C. F. J. (2020). Calibration for

computer experiments with binary responses and application to cell adhesion study.

Journal of the American Statistical Association, 115(532):1664–1674.

Sung, C.-L., Ji, Y., Mak, S., Wang, W., and Tang, T. (2024a). Stacking designs: Designing

multifidelity computer experiments with target predictive accuracy. SIAM/ASA Journal

on Uncertainty Quantification, 12(1):157–181.

Sung, C.-L., Wang, W., Ding, L., and Wang, X. (2024b). Mesh-clustered Gaussian process

emulator for partial differential equation boundary value problems. Technometrics, to

appear.

Swersky, K., Snoek, J., and Adams, R. P. (2013). Multi-task Bayesian optimization.

Advances in Neural Information Processing Systems, 26:2004–2012.

Tuo, R., Wu, C. F. J., and Yu, D. (2014). Surrogate modeling of computer experiments

with different mesh densities. Technometrics, 56(3):372–380.

Wright, L. M. and Han, J.-C. (2006). Enhanced internal cooling of turbine blades and vanes.

The Gas Turbine Handbook, 4:1–5.

Xiong, S., Qian, P. Z. G., and Wu, C. F. J. (2013). Sequential design and analysis of

high-accuracy and low-accuracy computer codes. Technometrics, 55(1):37–46.

37

