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Abstract

Computer simulations have become essential for analyzing complex systems, but
high-fidelity simulations often come with significant computational costs. To tackle
this challenge, multi-fidelity computer experiments have emerged as a promising
approach that leverages both low-fidelity and high-fidelity simulations, enhancing both
the accuracy and efficiency of the analysis. In this paper, we introduce a new and
flexible statistical model, the Recursive Non-Additive (RNA) emulator, that integrates
the data from multi-fidelity computer experiments. Unlike conventional multi-fidelity
emulation approaches that rely on an additive auto-regressive structure, the proposed
RNA emulator recursively captures the relationships between multi-fidelity data using
Gaussian process priors without making the additive assumption, allowing the model
to accommodate more complex data patterns. Importantly, we derive the posterior
predictive mean and variance of the emulator, which can be efficiently computed in a
closed-form manner, leading to significant improvements in computational efficiency.
Additionally, based on this emulator, we introduce four active learning strategies that
optimize the balance between accuracy and simulation costs to guide the selection of
the fidelity level and input locations for the next simulation run. We demonstrate
the effectiveness of the proposed approach in a suite of synthetic examples and a
real-world problem. An R package RNAmf for the proposed methodology is provided
on CRAN.

Keywords: Surrogate model; Sequential design; Uncertainty quantification; Gaussian process;
Auto-regressive model.
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1 Introduction

Computer simulations play a crucial role in engineering and scientific research, serving as
valuable tools for predicting the performance of complex systems across diverse fields such as
aerospace engineering (Mak et al., 2018), natural disaster prediction (Ma et al., 2022), and
cell biology (Sung et al., 2020). However, conducting high-fidelity simulations for parameter
space exploration can be demanding due to prohibitive costs. To address this challenge,
multi-fidelity emulation has emerged as a promising alternative. It leverages computationally
expensive yet accurate high-fidelity simulations alongside computationally inexpensive but
potentially less accurate low-fidelity simulations to create an efficient predictive model,
emulating the expensive computer code. By strategically integrating these simulations and
designing multi-fidelity experiments, we can potentially improve accuracy without excessive
computational resources.

The usefulness of the multi-fidelity emulation framework has driven extensive research
in recent years. One popular approach is the Kennedy-O’Hagan (KO) model (Kennedy and
O’Hagan, 2000), which models a sequence of computer simulations from lowest to highest
fidelity using a sequence of Gaussian process (GP) models (Gramacy, 2020; Rasmussen
and Williams, 2006), linked by a linear auto-regressive framework. This model has made
significant contributions across various fields employing multi-fidelity computer experiments
(see, e.g., Patra et al., 2020; Kuya et al., 2011; Demeyer et al., 2017), and several recent
developments, including Qian et al. (2006), Le Gratiet (2013), Le Gratiet and Garnier
(2014), Qian and Wu (2008), Perdikaris et al. (2017), and Ji et al. (2024) (among many
others), have investigated modeling strategies for efficient posterior prediction and Bayesian
uncertainty quantification.

Despite this body of work, most of these approaches rely on the assumption of linear
correlation between low-fidelity and high-fidelity data, resulting in an additive GP structure.
With the growing complexity of modern data, such models face challenges in capturing
complex relationships between data with different fidelity levels. As shown in the left
panel of Figure 1, where the relationship between high-fidelity data and low-fidelity data

is nonlinear, the KO model falls short in providing accurate predictions due to its limited
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Figure 1: An ezample adapted from Perdikaris et al. (2017), where ny = 13 samples (red dots)
are collected from the low-fidelity simulator fi(x) = sin(87x) (red dashed line), and ny = 8 samples
(black triangles) are collected from the high-fidelity simulator fo(x) = (x — v/2)f1(z)? (black solid
line). The KO emulator (left panel) and the RNA emulator (right panel) are shown as blue lines.
Gray shaded regions represent the 95% pointwise confidence intervals.

flexibility.

In this paper, we propose a new and flexible model that captures the nonlinear relation-
ships between multi-fidelity data in a recursive manner. This flexible nonlinear functional
form can encompass many existing models, including the KO model, as a special case.
Specifically, we compose GP priors to model multi-fidelity data non-additively. Hence, we
refer to this proposed method as the Recursive Non-Additive (RNA) emulator. As shown in
the right panel of Figure 1, the RNA emulator demonstrates superiority over the KO model
by emulating the high-fidelity simulator with high accuracy and low uncertainty.

The RNA emulator belongs to the emerging field of linked /deep GP models (see, e.g.,
Kyzyurova et al., 2018; Ming and Guillas, 2021; Sauer et al., 2023; Ming et al., 2023),
where different GPs are connected in a coupled manner. To the best of our knowledge,
there has been limited research on extending such results for the analysis of multi-fidelity
computer experiments, and we aim to address this gap in our work. Notably, recent work

by Perdikaris et al. (2017) has made progress in this direction, but their approach assumes



an additive structure for the kernel function, and employs the Monte Carlo integration
to handle intractable posterior distributions. Recent advancement by Ko and Kim (2022)
extends deep GP models for multi-fidelity computer experiments, but still relies on the
additive structure of the KO model. Similarly, Cutajar et al. (2019) employ an additive
kernel akin to Perdikaris et al. (2017) and rely on the sparse variational approximation
for inference. In a similar vein, Meng and Karniadakis (2020), Li et al. (2020), Meng
et al. (2021), and Kerleguer et al. (2024) establish connections between different fidelities
using (Bayesian) neural networks. In contrast, our proposed model not only provides great
flexibility using GP priors with commonly used kernel structures to connect multi-fidelity
data, but also provides analytical expressions for both the posterior mean and variance.
This computational improvement allows for more efficient calculations, facilitating efficient
uncertainty quantification.

Leveraging this newly developed RNA emulator, we introduce four active learning
strategies to achieve enhanced accuracy while carefully managing the limited simulation
resources, which is particularly crucial for computationally expensive simulations. Active
learning, also known as sequential design, involves sequentially searching for and acquiring
new data points at optimal locations based on a given sampling criterion, to construct an
accurate surrogate model/emulator. While active learning has been well-established for
single-fidelity GP emulators (Gramacy, 2020; Rasmussen and Williams, 2006; Santner et al.,
2018), research in the context of multi-fidelity computer experiments is scarce and more
challenging. This is because it requires simultaneous selection of optimal input locations
and fidelity levels, accounting for their respective simulation costs. Although some recent
works have considered cost in specific cases like single-objective unconstrained optimization
(Huang et al., 2006; Swersky et al., 2013; He et al., 2017) and global approximation (Xiong
et al., 2013; Le Gratiet and Cannamela, 2015; Stroh et al., 2022; Ehara and Guillas, 2023;
Sung et al., 2024a), most of these works were developed based on the KO model. Active
learning for non-additive GP models has not been fully explored in the literature. In

addition, popular sampling criteria for global approximation, such as “Active Learning

MacKay” (McKay et al., 2000, ALM) and “Active Learning Cohn” (Cohn, 1993, ALC),



remain largely unexplored in the context of multi-fidelity computer experiments. Recent
successful applications of these sampling criteria to other learning problems can be found in
Binois et al. (2019), Park et al. (2023), Koermer et al. (2024), and Sauer et al. (2023).

Our main contribution lies in advancing active learning with these popular sampling
criteria, based on this newly developed RNA emulator. It is important to note that few
existing works in the multi-fidelity deep GP literature (Perdikaris et al., 2017; Cutajar
et al., 2019; Ko and Kim, 2022) delve into active learning, mainly due to computational
complexities associated with computing acquisition functions. In contrast, our closed-form
posterior mean and variance of the RNA emulator not only facilitate efficient computation
of these sampling criteria, but also provide valuable mathematical insights into the active
learning. To facilitate broader usage, we implement an R (R Core Team, 2018) package
called RNAmf (Heo and Sung, 2024), which is available on CRAN.

The structure of this article is as follows. In Section 2, we provide a brief review of the
KO model. Our proposed RNA emulator is introduced in Section 3. Section 4 outlines our
active learning strategies based on the RNA emulator. Numerical and real data studies are

presented in Sections 5 and 6, respectively. Lastly, we conclude the paper in Section 7.

2 Background

2.1 Problem Setup

Let f;(x) represent the scalar simulation output of the computer code with input parameters
x € Q C R? at fidelity level [ = 1,...,L. We assume that L distinct fidelity levels of
simulations are conducted for training an emulator, where a higher fidelity level corresponds
to a simulator with more accurate outputs but also higher simulation costs per run.

Our primary objective is to construct an efficient emulator for the highest-fidelity
simulation code, fr(x). For each fidelity level [, we perform simulations at n; design points
denoted by X; = {XEZ]}?;l. These simulations yield the corresponding simulation outputs
yi = (fi(x))xex,, representing the vector of outputs for fj(x) at design points x € A,

and each element of y; is denoted by yz[l] = fl(xy]). We assume that the designs A are



sequentially nested, i.e.,

X, CAXL,C---C A CQ, (1)

[

and Xgl] = Xil_l] for i = 1,...,n;. In other words, design points run for a higher-fidelity
simulator are contained within the design points run for a lower-fidelity simulator. This
property has been shown to lead to more efficient inference in various multi-fidelity emulation
approaches (Qian, 2009; Qian et al., 2009; Haaland and Qian, 2010).

Furthermore, we let C} denote the simulation cost (e.g., in CPU hours) for a single run
of the simulator at fidelity level /. Since higher-fidelity simulators are more computationally

demanding, this implies that 0 < C}; < Cy < ... < (.

2.2 Auto-regressive model

One of the prominent approaches for modeling f7(x) is the KO model (also known as
co-kriging model) proposed by Kennedy and O’Hagan (2000), which can be expressed in an

auto-regressive form as follows:

f[i(x) = Z1(x),

filx) = pi1 fioi(x) + Zi(x), for 2<I<L,

(2)

where p;_; is an unknown auto-regressive parameter, and Z; = (f; — p;_1fi—1) represents the
discrepancy between the (I — 1)-th and [-th code. The KO model considers a probabilistic

surrogate model by assuming that {Z;}/-, follow independent zero-mean GP models:

indep.

Zi(x) "~ GP{a(x), 7K (x,x)}, 1=1,...,L, (3)

where a;(x) is a mean function, 77 is a variance parameter, and K;(x,x’) is a positive-definite

kernel function defined on © x Q. In the original KO paper, o;(x) is assumed to be h(x)0;,
where h(x) is a vector of d regression functions. Other common choices for o;(x) include
a;(x) = 0 or ay(x) = 1. As for the kernel function, popular choices include the squared

exponential kernel and Matérn kernel (Stein, 1999). Specifically, the anisotropic squared



exponential kernel takes the form:

d d 1\2
K (x,x) = Hl/) (x5, 2% 05) He ( 9—;])> : (4)
Jj=1 j=1

where (01, . ..,054) is the lengthscale hyperparameter, indicating that the correlation decays
exponentially fast in the squared distance between x and x’. The GP model (3), combined
with the auto-regressive model (2), implies that, conditional on the parameters 77, 6,;, and
u(+), the joint distribution of (yq,...,yr) follows a multivariate normal distribution, and
these unknown parameters can be estimated via maximum likelihood estimation or Bayesian
inference. Given the data (yi,...,yz), it can be shown that the posterior distribution of
fr(x) is also a GP. The posterior mean function can then be used to emulate the expensive
simulator, while the posterior variance function can be employed to quantify the emulation
uncertainty. Refer to Kennedy and O’Hagan (2000) for further details.

The auto-regressive framework of the KO model has led to the development of several
variants. For instance, Le Gratiet and Garnier (2014) introduce a faster algorithm based on
a recursive formulation for computing the posterior of f;(x) more efficiently. To enhance
the model’s flexibility, Qian et al. (2006), Le Gratiet and Garnier (2014), and Qian and
Wu (2008) allow the auto-regressive parameter p; to depend on the input x, that is,
fi(x) = p—1(x) fic1(x) + Zi(x) for 2 < 1 < L, where the first two assume p;_;(x) to be a

linear function, while the last one assumes p;_1(x) to be a GP.

3 Recursive Non-Additive (RNA) emulator

Despite the advantages of the KO model, it results in an additive GP model based on (2) and
(3), which may not adequately capture the nonlinear relationships between data at different

fidelity levels. To overcome this limitation and achieve a more flexible representation, we



propose a novel Recursive Non-Additive (RNA) emulator:

fl(x) = W1<X)7
filx) = Wi(x, fi1(x)), for 1=2,...,L.

()

The model structure is illustrated in Figure 2. This RNA model offers greater flexibility and
can encompass many existing models as special cases. For instance, the auto-regressive KO
model can be represented in the form of (5) by setting Wj(x, fi_1(x)) = pi_1 fi—1(x) + 6(x).
Similarly, the model in Qian et al. (2006), Le Gratiet and Garnier (2014), and Qian and Wu
(2008) can be considered a special case by setting Wi(x, fi—1(x)) = p—1(x) fi—1(x) + 0(x).

oR=E
e
@)
DRSO

Figure 2: An illustration of the recursive structure of the RNA model.
We model the relationship W; using a GP prior: Wi (x) ~ GP{a;(x), 72K, (x,x’)} and
VV[(Z) ~ gP{Oél<Z), TZQKI(Zu Zl)}? [ = 27 e 7L7 <6>

where z = (x,y), forming a vector of size (d + 1), and K; is a positive-definite kernel. We
consider a constant mean, i.e., a1(x) = ay and oy(z) = oy for [ > 2. We adopt popular kernel

choices for K, such as the squared exponential kernel and Matérn kernel. In particular, the



squared exponential kernel K for [ > 2, following (4), can be expressed as:

d
Ki(z,2') = (Y1, Y115 Ouy) H¢(x], ;3 015)
j=1
(yl 1= yl 1 x’-)2
= exp H exp | ————— |, (7)
015
where the lengthscale hyperparameter, 8; = (01, ..., 614,0,,), represents a vector of size

(d+1), and K;(x,x’) takes the form of (4). The Matérn kernel can be similarly constructed,
which is given in the Supplementary Materials S1.
Combining the GP model (6) with the recursive formulation (5) and assuming the nested

design as in (1), the observed simulations y; follow a multivariate normal distribution:
Y ~ an(allnl, Tl2Kl) for [ = 1, RN L,

where 1,, is a unit vector of size n;, K; is an n; x n; matrix with each element (K;);; =
Kl(xgl],xgl]), and (K;);; = Kl(zz[-l],zy]) for [ > 2, where zl’ = (x', f,_1(x")). Note that
fl_l(xy )= yl[l U due to the nested design assumption, which is the i-th simulation output
at level I — 1. The parameters {a;, 77, 0;}7, can be estimated by maximum likelihood

estimation. Specifically, the log-likelihood (up to an additive constant) is

1

1
~3 (nl log(777) + log(det(K;)) + = (yi — auly,) " K; ' (yi — allnl)) :

T

The parameters can then be efficiently estimated by maximizing the log-likelihood via an
optimization algorithm, such as quasi-Newton optimization method of Byrd et al. (1995).

It is important to acknowledge that the idea of a recursive GP was previously proposed
by Perdikaris et al. (2017), referred to as a nonlinear auto-regressive model therein. However,
there are two key distinctions between their model and ours. The first distinction lies in the
kernel assumption, where they assume an additive form of the kernel to better capture the
auto-regressive nature. Specifically, they use K;(z,z') = Kj(x, X ) Ki2(fi—1(x), fi-1(x')) +

Ki3(x,x’) with valid kernel functions Kj;, Kz, and K;3. While our kernel function shares



some similarities, particularly the first component Ky (x,x") Ko fi—1(x), fi—1(x’)), the role
of the second component K3 in predictions remains unclear. The inclusion of this compo-
nent introduces d hyperparameters for an anisotropic kernel, making the estimation more
challenging, especially for high-dimensional problems. In contrast, we adopt the natural
form of popular kernel choices, such as the squared exponential kernel in (7) and the Matérn
kernel, placing our model within the emerging field of linked/deep GP models, which has
shown promising results in the computer experiment literature (Kyzyurova et al., 2018;
Ming and Guillas, 2021; Sauer et al., 2023). The second distinction is in the computation
for the posterior of fr(x). Specifically, their model relies on Monte Carlo (MC) integration
for their computation, which can be quite computationally demanding, especially in this
recursive formulation. In contrast, with these popular kernel choices, we can derive the
posterior mean and variance of f;(x) in a closed form, which is presented in the following
proposition, enabling more efficient predictions and uncertainty quantification.

The derivation of the posterior follows these steps. Starting with the GP assumption (6),
and utilizing the properties of conditional multivariate normal distribution, the posterior

distribution of f; given y; and f;_; at a new input location x is normally distributed, namely:

A yr ~ N (i (x), 01 (x)) with
M1 (X) = allm + kl (X)TKl_l(yl - allnl>7 and (8>
o1(x) = 71 (1 — ki (x) Ky ki (x)), (9)

and fi(x)|y1, fi-1(x) ~ N (u(x, fii1(x)), 07 (x, firr(x))) for I =2,..., L with

pu(x, fie1(x)) = arly +ka(x, fi1(x) K (yi — aily,),  and (10)

o7 (x, fir(x)) = (1 = ki(x, fiir () K[ ka(x, fioa (%)), (11)

[1])

)

where k; (x) and k;(x, fi_1(x)) are an n; X 1 matrix with each element (k;(x));1 = K;(x,x

and (k;(x, fi—1(x)))i1 = Ki((x, fi-1(x)), (xz[.l],yyfl])) for | > 2, respectively. The posterior

10



distribution of f; can then be obtained by

|Y17---a}’l)

/ / (fi(X)]ye, fir () p(froa(X)[yi1, fia(x)) -+ p(f1(x)[y1)d(fimi(x)) - . d(f1(x))-

This posterior is analytically intractable but can be numerically approximated using MC
integration, as done in Perdikaris et al. (2017), which involves sequential sampling from the
normal distribution p(f;(x)|y:, fi—1(x)) from [ = 1 to | = L. However, this method can be
computationally demanding, especially when the dimension of x and the number of fidelity
levels increase. To address this, we derive recursive closed-form expressions for the posterior

mean and variance under popular kernel choices as follows.

Proposition 3.1. Under the squared exponential kernel function (7), the posterior mean

and variance of fi(x) given the data {y,}_, for 1 > 2 can be expressed in a recursive fashion:

i (x) : = E[f (X)Iyl,.--,w]

[1\2 [1-1] * 2
j xz]) 1 _ (yz - :ul—l(x))
=q+ Z T H exp ( ) exp 91y n 20;_21()() ,

and

07" (x) = VI[i®)lyr, -y =7 = (4 (x) — a0)*+

d My 0y
<Z Czk rirE — . zk HeXp< lj) ;l_(m] xk]) ))7 (12>

i,k=1

where r; = (Kl_l(yz —oqly,))i, and

[1—1] [1—1]

N 1 (Bt — (%) (T =y .
e L LI St S ) FRC)
1+ 4Ul 1(X) R + 20[—1<X) ly

For 1 =1, it follows that pi(x) = p1(x) and o}%(x) = 0%(x) as in (8) and (9), respectively.
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The posterior mean and variance under a Matérn kernel with the smoothness parameter
v = 1.5 and v = 2.5 are provided in the Supplementary Materials S3, and the detailed
derivations for Proposition 3.1 are provided in Supplementary Materials S2, which follow
the proof of Kyzyurova et al. (2018) and Ming and Guillas (2021). With this proposition,
the posterior mean and variance can be efficiently computed in a recursive fashion. Similar
to Kyzyurova et al. (2018) and Ming and Guillas (2021), we adopt the moment matching
method, using a Gaussian distribution to approximate the posterior distribution with
the mean and variance presented in the proposition. The parameters in the posterior
distribution, including {cy, 77, 6;}2,, can be plugged in by their estimates.

Notably, Proposition 3.1 can be viewed as a simplified representation of Theorem 3.3 from
Ming and Guillas (2021) for constructing a linked GP surrogate. However, it is important
to highlight the distinctions and contributions of our work, particularly in the context of
multi-fidelity computer experiments. Firstly, there are currently no existing closed-form
expressions for the posterior mean and variance in the multi-fidelity deep GP literature. By
providing such expressions, our work fills this gap, offering valuable mathematical insights
and enhancing computational efficiency for active learning strategies, which will be discussed
in Section 3.1 and Section 4. Additionally, while the linked GP model provides a general
framework, much of the discussion in their work focuses on sequential GPs, where the output
of the high-layer emulator depends solely on the output of the low-layer emulator, i.e.,
Wy (Wi (x)). Our setup differs slightly, as the high-fidelity emulator in our RNA framework
depends not only on the output of the low-fidelity emulator but also on the input variables
directly, i.e., Wa(x, Wi(x)). This difference in formulation is important and impacts the
design of active learning strategies in our framework.

Similar to conventional GP emulators for single-fidelity deterministic computer models,
the proposed RNA emulator also exhibits the interpolation property, which is described in

the following proposition. The proof is provided in Supplementary Materials S4.
Proposition 3.2. The RNA emulator satisfies interpolation property, that is, ,u?‘(xz[l]) = yl[l],

and 01*2(X£l]> =0, where {(xﬁ”,yy])}i:l,,,,m are the training samples.

An example of this posterior distribution is presented in the right panel of Figure 1,

12



illustrating that the posterior mean closely aligns with the true function, and the confidence
intervals constructed by the posterior variance cover the true function. For further insights
into how this nonlinear relationship modeling can effectively reconstruct the high-fidelity
function fy(x) for this example, we refer to Perdikaris et al. (2017).

Our R package, RNAmf, implements the parameter estimation and computations for the
closed-form posterior mean and variance using a squared exponential kernel and a Matérn

kernel with smoothness parameters of 1.5 and 2.5.

3.1 Insights into the RNA emulator

We delve into the RNA emulator, exploring its mathematical insights and investigating
scenarios where this method may succeed or encounter challenges.

For the sake of simplicity in explanation, we consider two fidelity levels (L = 2) and
assume the input z is one-dimensional. According to Proposition 3.1, under a squared

exponential kernel function, the RNA emulator yields the following posterior mean:

(2]\2 1] (1)) 2
*(,N -z ) _ (i —wi(z))
K] = o o) 92y+2a Z” eXp( 6, b2, + 207%(x) |

where T, = (K;l(y2 — Oé2].n2))l‘.

The mathematical expression reveals several insights into the behavior of the RNA
emulator. Firstly, it reveals the impact of the uncertainty in the low-fidelity model, o}?(z),
on the posterior mean p3(x). In scenarios where o3%(z) = 0 for all z € Q, p4(x) mirrors the
posterior mean when p () is replaced with the true low-fidelity function fi(x). Consequently,

the term . ) acts as a scaling factor for the posterior mean, adjusting the influence

Oy
92y +20’T2 x

of the uncertainty o}%(z) on the overall prediction to account for the approximation error

between p}(z) and fi(z). Additionally, the inflated denominator of (ZZ++2$) by the low-

fidelity model uncertainty also aids in mitigating the approximation error, indicating a slower

decay in correlation with the squared distance between the low-fidelity observations ylm
and pf(x). Both aspects ensure a balanced integration of high and low-fidelity information,

which is particularly crucial when dealing with limited samples from low-fidelity data.
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Figure 3: Illustration of RNA emulator insights using the Perdikaris ezample. The left panel and
right panel depict results obtained with different sample sizes of low-fidelity data (red dots), n; = 8
(left) and ny = 12 (right), alongside the same high-fidelity data (black triangles) of size ny = 6.
The scaling factor is the orange solid line, with values shifted by subtracting 3.

Figure 3 demonstrates an example of how the low-fidelity emulator impacts RNA
emulation performance. The left panel illustrates that with limited low-fidelity data
(ny = 8), especially in the absence of data at x € (0.3,0.8), the posterior mean of the
low-fidelity emulator, uf(x) (represented by the green line), inaccurately predicts the true
low-fidelity simulator f;(z) (red dashed line). In this scenario, the scaling factor (orange line),
A /#ﬁ’m, is very small for those poor predictions of uj(x), particularly for z € (0.3,0.8).
This results in p5(x) being close to the mean estimate ¢s. This is not surprising because
there is no data available from both low-fidelity and high-fidelity simulators in this region,
leading to the posterior mean reverting back to the mean estimate. With an increase in
low-fidelity data (n; = 12), which makes pj(x) much closer to the true fi(x), the scaling
factor is close to one everywhere, significantly enhancing the accuracy of the RNA emulator.

The posterior variance can be written as (see Supplementary Materials S2)

03’ (x) = V[E[fo(2)| f1(2), y1, y2]] + E [V[fa(2) | f2(2), y1,¥2]] (14)
where both terms can be expressed in a closed form as in (S5.1) and (S5.2), respectively.
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Figure 4: lllustration of decomposition of o32(x) (black solid line) for the evamples of Figure 3,
where Vi is the blue dashed line and Va(x) is the green dashed line.

Define Vi(z) = V [E[f2(2)|f1(x), y1, y2]] and Va(x) = E [V[fa(2)]fi(2), y1, 2]}, then Vi(z)
represents the overall contribution of the GP emulator Wi to 03%(z) and V() represents the
contribution of the GP emulator Wy to 3?(z). This decomposition mirrors that of Ming and
Guillas (2021) within the context of linked GPs. Figure 4 illustrates this decomposition for
the examples in Figure 3. It can be seen that for both scenarios, V5 appears to dominate V7,
indicating that W5 contributes more uncertainty than W;. However, when we have limited
low-fidelity data (left panel), V; exhibits a very high peak at x ~ 0.04 with a value close
to 0.10, even very close to the maximum value of V5. From an active learning perspective,
if the cost of evaluating fi(z) is cheaper than fy(x), then it’s sensible to select the next
sample from the cheaper fi(z) to reduce o3%(x). On the other hand, when we have more
low-fidelity data (right panel), V; remains very small everywhere compared to V5, indicating
that selecting the next sample from fy(x) would be more effective in reducing the predictive

uncertainty. More details of active learning strategies will be introduced in the next section.

4 Active learning for RNA emulator

We present four active learning (AL) strategies aimed at enhancing the predictive capabilities

of the proposed model through the careful design of computer experiments. These strategies
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encompass the dual task of not only identifying the optimal input locations but also
determining the most appropriate fidelity level.

We suppose that an initial experiment of sample size n; for each fidelity level [, following
a nested design X;, C --- C A), is conducted, for which a space-filling design is often

considered, such as the nested Latin hypercube design (Qian, 2009). AL seeks to optimize

U

mt1 at fidelity level [, carrying out its

a selection criterion for choosing the next point x

corresponding simulation yﬁ} =N (x%]l +1), and thus augmenting the dataset.

4.1 Active Learning Decomposition (ALD)

We first introduce an active learning criterion inspired by Section 3.1 and the variance-based
adaptive design for linked GPs outlined in Ming and Guillas (2021). Specifically, we extend
the decomposition of (14) to encompass L fidelity levels:

L
o2 (x) = > Vix), (15)
where Vj(x) represents the contribution of each GP emulator W; at fidelity level [ to o}*(x):

Vix) =E---EVE---E[f.(x)|fo-1(x), -, i(X), ¥, -+, ¥1],

with V being at the [-th term. The expectation or variance in the [-th term is taken with
respect to the variable fj(x). When L = 2, the closed-form expression for Vj(x) is available,
as shown in (14). For L = 3, each V}(x) can be easily approximated using MC methods.
We detail the calculation of Vj(x) for the settings of L = 2 and L = 3 in Supplementary
Materials S5. However, the calculation becomes more cumbersome for L > 4, which we
leave as a topic for future development.

Considering the simulation cost C, our approach guides the selection of the next point

U

m1 at fidelity level [ by maximizing the criterion, which we refer to as Active Learning

X
Decomposition (ALD):

. Vi
(l*7le3+l) = argmax ll(X) ’
le{l,....L}ixeQ 23:1 Cj
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which aims to maximize the ratio between each contribution Vj(x) to 03*(x) and the
simulation cost 22:1 C; at each fidelity level [.

Simulation costs are incorporated to account for the nested structure. That is, to run the
simulation fl*(xmﬂ), we also need to run fl(xwlﬂ) with xq[i]lﬂ = XZ;]_H forall 1 <1<

It is also worth mentioning that the cost can be tailored to depend on the input x, as done

in He et al. (2017) and Stroh et al. (2022).

4.2 Active Learning MacKay (ALM)

A straightforward but commonly used sampling criterion in AL is to select the next point
that maximizes the posterior predictive variance (MacKay, 1992). Extending this concept

to our scenario, we choose the next point by maximizing the ALM criterion:

. *2 (X)
", X% J = argmax AR 16
( 1) le{l,..., L}x€Q 22:1 C; (16)

("]

net1 at level [%,

Note that after running the simulation at the optimal input location x
the posterior predictive variance al"f(ng +1) becomes zero (see Proposition 3.2). In other
words, our selection of the optimal level hinges on achieving the highest ratio of uncertainty
reduction at xgl] 41 to the simulation cost.

The computation of ALM criterion is facilitated by the availability of the closed-form
expression of the posterior predictive variance as in (12), which in turn simplifies the
optimization process of (16). In particular, the optimal input location Xg]l 4 for each [ can
be efficiently obtained through the optim library in R, using the method=L-BFGS-B option,

which performs a quasi-Newton optimization approach of Byrd et al. (1995).

4.3 Active Learning Cohn (ALC)

Another widely employed, more aggregate criterion is Active Learning Cohn (ALC) (Cohn,
1993; Seo et al., 2000). In contrast to ALM, ALC selects an input location that maximizes
the reduction in posterior variances across the entire input space after running this selected

simulation. Extending the concept to our scenario, we choose the next point by maximizing
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the ALC criterion:

. Ac?(l
(l*,lejﬂ): argmax AUL)

l : (17)
le{1,...,L};xeN Zj:l Oj

where Ac?(1,x) is the average reduction in variance (of the highest-fidelity emulator) from
the current design measured through a choice of the fidelity level [ and the input location x,

augmenting the design. That is,

Ac?(l,x) = / 0P (E) — 6P (E: LX) e, (18)

Q

where 032(€) is the posterior variance of fr(€) based on the current design {X;}%,, and

53%(&;1,x) is the posterior variance based on the augmented design combining the current
design and a new input location x at each fidelity level lower than or equal to [, i.e.,
{(x U X£L11]+1>, (AU XZ]ZH), X1, .., X} with XEH =... = xg]ﬁl = x. Once again,
the incorporation of the new input location x at each fidelity level lower than [ is due to
the nested structure assumption. In other words, our selection of the optimal level involves
maximizing the ratio of average reduction in the variance of the highest-fidelity emulator to
the associated simulation cost. In practice, the integration in (18) can be approximated by
numerical methods, such as MC integration.

Unlike ALM where the influence of design augmentation on the variance of the highest-
fidelity emulator is unclear, ALC is specifically designed to mazimize the reduction in
variance of the highest-fidelity emulator. However, the ALC strategy involves requiring
knowledge of future outputs y,[fj = fs(xfi 41) forall 1 < s <[, as they are involved in
532(&;1,x) (as seen in (13)), but these outputs are not available prior to conducting the

simulations. A possible approach to address this issue is through MC approximation to

impute the outputs. Specifically, we can impute y,[fs] 41 for each 1 < s < [ by drawing

[s]

samples from the posterior distribution of f,(x,

) based on the current design, which is
a normal distribution with the posterior mean and variance presented in Proposition 3.1.
This allows us to repeatedly compute 53%(€;1,x) using the imputations and average the

results to approximate the variance. Notably, with the imputed output ylf] 41, the variance
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53%(&;1,x) can be efficiently computed using the Sherman—Morrison formula (Harville, 1998)
for updating the covariance matrix’s inverse, K; !, from ¢}2(¢) (Gramacy, 2020).

In contrast to ALM, maximizing the ALC criterion (17) can be quite computationally
expensive due to the costly MC approximation to compute (18). To this end, an alternative

strategy is proposed to strike a compromise by combining the two criteria.

4.4 Two-step approach: ALMC

Given the distinct advantages and limitations of both ALM and ALC criteria (details of
which are referred to Chapter 6 of Gramacy, 2020), for a comprehensive exploration, we can
contemplate their combination. Inspired by Le Gratiet and Cannamela (2015), we introduce
a hybrid approach, which we refer to as ALMC. First, the optimal input location is selected

by maximizing the posterior predictive variance of the highest fidelity emulator:

X" = argmax 0}2(X).
x€e

Then, the ALC criterion determines the fidelity level with the identified input location:

[* = argmax w.
1e{1,....L} ijl C;

Unlike ALM, this hybrid approach focuses on the direct impact on the highest-fidelity
emulator. It first identifies the sampling location that maximizes o}*(x), and then determines
which level selection will effectively reduce the overall variance of the highest-fidelity emulator
across the input space after running this location. This synergistic approach is not only
expected to capture the advantages of both ALM and ALC, but also offers computational
efficiency advantages compared to the ALC method in the previous subsection. This is due
to the fact that the optimization for x* by maximizing the closed-form posterior variance is
computationally much cheaper, as discussed in Section 4.2.

Figure 5 demonstrates the effectiveness of these four strategies for the example in the
right panel of Figure 1. Consider the simulation costs: ' = 1 and Cy = 3 for the two

simulators. It shows that, for all four criteria, the choice is consistently in favor of selecting
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Figure 5: Demonstration of the four active learning strategies using the example in the right
panel of Figure 1. The criteria of the four strategies are presented in the bottom panel, where the
dots represent the optimal input locations for each of the simulators. Notably, ALD utilizes the
gray line to illustrate o3%(x), which is decomposed into Vy(x) (depicted in red) and Vo(x) (depicted
in black). ALMC, on the other hand, employs the gray line to determine the optimal input location
and then utilizes the red and black lines (which are identical to ALC) to decide the fidelity level.
The upper panels show the corresponding fits after adding the selected points to the training dataset,
where the solid dots represent the chosen samples, all of which select the low-fidelity simulator.

the low-fidelity simulator to augment the dataset. While the selected locations differ, ALD,
ALC, and ALMC all fall within the range of [0.18,0.25], which, as per the current design
(prior to running this simulation), holds large uncertainty, as seen in the right panel of
Figure 1. ALM selects the sample at the boundary of the input space. All these selection
outcomes contribute to an overall improvement in emulation accuracy, while simultaneously

reducing global uncertainty, even when opting for low-fidelity data alone.

4.5 Remark on the AL strategies

In this section, we delve deeper into the merits of the AL strategies, with a focus on the

conditions favoring each method. To gain deeper insights, we consider a synthetic example
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generated from a 2-level Currin function (Xiong et al., 2013; Kerleguer et al., 2024), with the
explicit form provided in Supplementary Materials S6. Assuming simulation costs C} = 1
and Cy = 3, we employ the four AL strategies until reaching a total budget of 15.

Figure 6 showcases the selected sites within the input space [0, 1]?. Similar to discussions
on AL for single-fidelity GPs (Seo et al., 2000; Gramacy and Lee, 2009; Bilionis and
Zabaras, 2012; Beck and Guillas, 2016), ALM tends to push selected data points towards
the boundaries of the input space, whereas ALC avoids boundary locations. ALD and
ALMC, inheriting attributes of ALM, exhibit similar behavior to ALM. The choice between
them depends on the underlying true function: if the function in the boundary region is
flat and exhibits more variability in the interior, then ALC may be preferable. Regarding
computational efficiency, ALD, ALM, and ALMC benefit from closed-form expressions of
the posterior variance, requiring only a few seconds per acquisition. In contrast, ALC is
more computationally demanding due to extensive MC sampling efforts, taking several
minutes per acquisition.

It is worth noting that if the scale of low-fidelity outputs significantly exceeds that of
high-fidelity outputs, ALM may consistently favor low-fidelity levels in the initial acquisitions,
as the maximum of the low-fidelity posterior variance tends to be large. However, it’s
unclear whether this selection is effective, as maximizing the posterior variance of the
low-fidelity emulator doesn’t necessarily translate to a reduction in the uncertainty of the
high-fidelity emulator. In contrast, the other three methods focus on directly impacting
the high-fidelity emulator by selecting points, making them independent of the scale. In
summary, considering the discussions above and the findings from our empirical studies
in Sections 5 and 6, ALD (for L < 3) and ALMC generally emerge as favorable choices,

offering accurate RNA emulators along with computational efficiency.

5 Numerical Studies

In this section, we conduct a suite of numerical experiments to examine the performance of
the proposed approach. The experiments encompass two main aspects. In Section 5.1, we

assess the predictive capabilities of the proposed RNA emulator, while Section 5.2 delves
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Figure 6: Selected input locations by four proposed strategies with a total budget of 15, where the
simulation costs are C1 =1 and Co = 3. The initial design points are represented as filled shapes.

into the evaluation of the performance of the proposed AL strategies.
We consider the anisotropic squared exponential kernel as in (7) for the proposed model,
a choice that is also shared by our competing methods. All experiments are performed on a

MacBook Pro laptop with 2.9 GHz 6-Core Intel Core i9 and 16Gb of RAM.

5.1 Emulation performance

We begin by comparing the predictive performance of the proposed RNA emulator (labeled
RNAmf) with two other methods in the numerical experiments: the co-kriging model (labeled
CoKriging) by Le Gratiet and Garnier (2014), and the nonlinear auto-regressive multi-
fidelity GP (labeled NARGP) by Perdikaris et al. (2017). The two methods are readily available
through open repositories, specifically the R package MuFiCokriging (Le Gratiet, 2012) and
the Python package on the GitHub repository (Perdikaris, 2016), respectively. Note that
the multi-fidelity deep GP of Cutajar et al. (2019), which can be implemented using the
Python package emukit (Paleyes et al., 2019, 2023), is not included in our comparison due
to software limitations. We encountered challenges during implementation as the package
relies on an outdated package, rendering it incompatible with our current environment.
Five synthetic examples commonly used in the literature to evaluate emulation per-
formance in multi-fidelity simulations are considered, including the two-level Perdikaris

function (Perdikaris et al., 2017; Kerleguer et al., 2024), the two-level Park function (Park,
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Figure 7: RMSEs of siz synthetic exzamples across 100 repetitions.

1991; Xiong et al., 2013), the three-level Branin function (Sobester et al., 2008), the two-level
Borehole function (Morris et al., 1993; Xiong et al., 2013), and the two-level Currin function
(Xiong et al., 2013; Kerleguer et al., 2024). Additionally, we introduce a three-level function
modified from the Franke function (Franke, 1979). The explicit forms of these functions are
available in Supplementary Materials S6.

The data are generated by evaluating these functions at input locations obtained from
the nested space-filling design introduced by Le Gratiet and Garnier (2014) with sample
sizes {n;}£ . The sample sizes and input dimension for each example are outlined in Table
S1. To examine the prediction performance, nis; = 1000 random test input locations are
generated from the same input space. We evaluate the prediction performance based on
two criteria: the root-mean-square error (RMSE) and continuous rank probability score
(CRPS) (Gneiting and Raftery, 2007), which are defined in Supplementary Materials S7.
Note that CRPS serves as a performance metric for the posterior predictive distribution of
a scalar observation. Lower values for the RMSE and CRPS indicate better model accuracy.

Additionally, we assess the computational efficiency by comparing the computation time.
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Figures 7 and S14 respectively show the results of RMSE and CRPS metrics across 100
repetitions, each employing a different random nested design for the training input locations.
The proposed RNAmf consistently outperforms CoKriging by both metrics, particularly for
examples exhibiting nonlinear relationships between simulators, such as the Perdikaris,
Borehole, Currin, and Franke functions. For instances where simulators follow a linear (or
nearly linear) auto-regressive model, like the Brainin and Park functions, the proposed RNAmf
remains competitive with CoKriging, which is designed to excel in such scenarios. This
highlights the flexibility of our approach, enabled by the GP prior for modeling relationships.
On the other hand, NARGP, another approach modeling nonlinear relationships, outperforms
CoKriging in most of the examples and is competitive with RNAmf, except in the Perdikaris
and Franke examples, where RNAmf exhibits superior performance. However, it comes with
significantly higher computational costs, as shown in Figure 8, due to its expensive MC
approximation, being roughly fifty times slower than both RNAmf and CoKriging on average.
Notably, in scenarios involving three fidelities, including the Brainin and Franke examples,
the computational time for NARGP exceeds that of RNAmf by more than 150 times. This shows
that NARGP can suffer from intensive computation as the number of fidelity levels increases,
while our method remains competitive in this regard. In summary, the performance across
these synthetic examples underscores the capability of the proposed method in providing

an accurate emulator at a reasonable computational time.

5.2 Active learning performance

With the accurate RNA emulator in place, we now investigate on the performance of AL
strategies for the emulator using the proposed criteria. We compare with two existing
methods: CoKriging-CV, a cokriging-based sequential design utilizing cross-validation
techniques (Le Gratiet and Cannamela, 2015), and MR-SUR, a sequential design maximizing
the rate of stepwise uncertainty reduction using the KO model (Stroh et al., 2022). As for
implementing CoKriging-CV, we utilized the code provided in the Supplementary Materials
of Le Gratiet and Cannamela (2015). Notably, both of these methods employed the (linear)

autoregressive model as in (2) in their implementations. To maintain a consistent comparison,
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Figure 8: Computational time of siz synthetic functions across 100 repetitions.

we use the one-dimensional Perdikaris function (nonlinear) and the 4-dimensional Park
function (linear autoregressive) in Section 5.1, to illustrate the performance of these methods.

In this experiment, we suppose that the simulation costs associated with the low- and
high-fidelity simulators are C} = 1 and Cy = 3, respectively. The initial data is established
similar to Section 5.1, with sample sizes specified in Table S1. We consider a total simulation
budget of Ciota = 80 for the Perdikaris function and Ciy. = 130 for the Park function. For
ALC and ALMC acquisitions which involve the computation of the average reduction in
variance as in (18), 1000 and 100 uniform samples are respectively generated from the input
space to approximate the integral and impute the future outputs.

Figure 9 shows the results of RMSE and CRPS metrics for the Perdikaris function,
with respect to the total simulation costs accrued after each sample selection. The left
panel of Figure 10 displays a boxplot depicting the final RMSEs after reaching the total
simulation budget across the 10 repetitions. The results show that the proposed AL methods
dramatically outperform the two competing methods, CoKriging-CV and MR-SUR, in terms
of both accuracy and stability, considering the same costs. As the cost increases, MR-SUR
begins to close the gap, while CoKriging-CV lags behind the other methods. Among the

four proposed AL strategies, the distinctions are minimal. As noted in Section 4, ALC
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acquisitions involve intricate numerical integration approximations and data imputation,
taking approximately 400 seconds for each acquisition in this example. In contrast, ALD,
ALM and ALMC are significantly more computationally efficient due to the closed-form

nature of the criteria, requiring only around 1, 1, and 10 seconds per acquisition, respectively.
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Figure 9: RMSFE and CRPS for the Perdikaris function with respect to the simulation cost. Solid
lines represent the average over 10 repetitions and shaded regions represent the ranges.
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Figure 10: Final RMSE (left) and proportion of AL acquisitions choosing low-fidelity data (right)
for the Perdikaris function. Bozplots indicate spread over 10 repetitions.

From the right panel of Figure 10, it can be seen that the proposed AL methods tend
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to select low-fidelity simulators more frequently than the other two comparative methods,
notably MR-SUR, which consistently chooses samples exclusively from the high-fidelity
simulator. This suggests that the proposed RNA model can effectively infer the high-fidelity
simulation using primarily low-fidelity data for the nonlinear Perdikaris function, while the
other two KO-based methods (CoKriging-CV and MR-SUR) require more high-fidelity data
to reduce the uncertainty.

Figures S15 and S16 present the results for the Park function. As expected, the
distinctions between these strategies are not as significant because the function aligns more
closely with the KO model (linear autoregressive). Nonetheless, our proposed AL strategies
still exhibit better average performance. At the final cost budget of Ci. = 130, ALM
and ALMC perform the best, collecting a larger portion of high-fidelity data, as indicated
in Figure S16. In contrast, the KO-based strategies collect more low-fidelity data, which
is again expected because KO-based models are efficient at leveraging low-fidelity data
to infer the high-fidelity simulator. In these scenarios, our strategies efficiently prioritize
the selection of high-fidelity data to minimize uncertainty, resulting in superior prediction

accuracy at the same cost.

6 Thermal Stress Analysis of Jet Engine Turbine Blade

We leverage our proposed method for a real application involving the analysis of thermal
stress in a jet turbine engine blade under steady-state operating conditions. The turbine
blade, which forms part of the jet engine, is constructed from nickel alloys capable of
withstanding extremely high temperatures. It is crucial for the blade’s design to ensure
that it can endure stress and deformations while avoiding mechanical failure and friction
between the blade tip and the turbine casing. Refer to Carter (2005), Wright and Han
(2006), and Sung et al. (2024a,b) for more details.

This problem can be treated as a static structural model and can be solved numerically
using finite element methods. There are two input variables denoted as x; and x5, which
represent the pressure load on the pressure and suction sides of the blade, both of which fall

within the range of 0.25 to 0.75 MPa, i.e., x = (z1,x2) € = [0.25,0.75]%. The response of
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interest is the maximum value over the thermal stress profile, which is a critical parameter
used to assess the structural stability of the turbine blade. We perform finite element
simulations using the Partial Differential Equation Toolbox in MATLAB (MATLAB, 2021).

The simulations are conducted at two fidelity levels, each using different mesh densities
for finite element methods. A denser mesh provides higher fidelity and more accurate
results but demands greater computational resources. Conversely, a coarser mesh sacrifices
some accuracy for reduced computational cost. Figure S17 demonstrates the turbine blade
structure and thermal stress profiles obtained at these two fidelity levels for the input
location x = (0.5,0.45).

We perform the finite element simulations with sample sizes of n; = 20 and ny = 10 to
examine the emulation performance. Similar to Section 5.1, we use the nested space-filling
design of Le Gratiet and Garnier (2014) to generate the input locations of the computer
experiments. We record the simulation time of the finite element simulations, which are
respectively Cy = 2.25 and Cy = 6.85 (seconds) and will be used later for comparing AL
strategies. To examine the performance, we conduct the high-fidelity simulations (i.e. fa(x))
at the test input locations of size nys = 100 generated from a set of Latin hypercube
samples from the same design space. The experiment is repeated 10 times, each time
considering different nested space-filling designs for the training input locations.

Figure 11 presents a comparison of emulation performance with the other two competing
methods, CoKriging and NARGP. Our proposed method, RNAmf, outperforms the other two
methods in terms of CRPS and is comparable in terms of RMSE. While NARGP delivers
competitive prediction performance, it comes at a significantly higher computational cost
compared to RNAmf.

Figures 12 and 13 present a comparison of the AL strategies with a fixed cost budget
of Ciotal = 160 seconds. The right panel of Figure 13 reveals that these strategies collect
a similar number of low-fidelity data points. Notably, CoKriging-CV exhibits significant
variability across the 10 repetitions, so we have removed the shaded region and only show
the average, indicating that it yields poorer prediction performance compared to the other

strategies. Another KO-based strategy, MR-SUR, performs better but still falls short of our
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Figure 11: RMSE, CRPS, and computation time across 10 repetitions in the turbine blade
application.

proposed AL strategies at any given simulation cost. Conversely, our proposed AL strategies
demonstrate effective results and outperform the others. This is evident from RMSE and
CRPS values exhibiting a leveling-off trend, with final results around 10 and 5, respectively,
compared to the initial designs yielding both metrics averaging around 15 and 7. Among the
AL strategies, the performance of the four strategies does not show significant differences at

the final cost budget.
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Figure 12: RMSE and CRPS for the turbine blade application with respect to the cost. Solid
lines represent the average over 10 repetitions and shaded regions represent the ranges.
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for the turbine blade application. Bozxplots indicate spread over 10 repetitions.

7 Conclusion

Multi-fidelity computer experiments have become an essential tool in simulating complex
scientific problems. This paper introduces a new emulator tailored for multi-fidelity simu-
lations, which proves effective in producing accurate, efficient predictions for high-fidelity
simulations, especially when dealing with nonlinear relationships between simulators. Build-
ing upon this new emulator, we present four AL strategies designed to select optimal input
locations and fidelity levels to augment data, thereby enhancing emulation performance.
With the RNA emulator’s success, it is worthwhile to explore emulators and AL strategies
built upon similar principles for addressing multi-fidelity problems with tunable fidelity
parameters, such as mesh density (Picheny et al., 2013; Tuo et al., 2014). Designing
experiments for such scenarios presents intriguing challenges, as shown in recent studies (see,
e.g., Shaowu Yuchi et al., 2023; Sung et al., 2024a). Furthermore, considering the increasing
prevalence of stochastic computer models (Baker et al., 2022), extending the proposed RNA
emulator to accommodate noisy data would significantly enhance its relevance in real-world
applications. While this article assumes noise-free data, introducing noise into the model is

a feasible endeavor, a task we leave for our future research.
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Supplemental Materials Additional supporting materials can be found in Supplemental
Materials, including the closed-form posterior mean and variance under a Matérn kernel,
the proof of Proposition 3.1, and the supporting tables and figures for Sections 5 and 6.

The R code and package for reproducing the results in Sections 5 and 6 are also provided.
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